Linux 4.19.133
[linux/fpc-iii.git] / net / wireless / util.c
blob1a878b84cbd0db8b64db31f4767a0310b05e2e4d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 */
9 #include <linux/export.h>
10 #include <linux/bitops.h>
11 #include <linux/etherdevice.h>
12 #include <linux/slab.h>
13 #include <net/cfg80211.h>
14 #include <net/ip.h>
15 #include <net/dsfield.h>
16 #include <linux/if_vlan.h>
17 #include <linux/mpls.h>
18 #include <linux/gcd.h>
19 #include "core.h"
20 #include "rdev-ops.h"
23 struct ieee80211_rate *
24 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
25 u32 basic_rates, int bitrate)
27 struct ieee80211_rate *result = &sband->bitrates[0];
28 int i;
30 for (i = 0; i < sband->n_bitrates; i++) {
31 if (!(basic_rates & BIT(i)))
32 continue;
33 if (sband->bitrates[i].bitrate > bitrate)
34 continue;
35 result = &sband->bitrates[i];
38 return result;
40 EXPORT_SYMBOL(ieee80211_get_response_rate);
42 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
43 enum nl80211_bss_scan_width scan_width)
45 struct ieee80211_rate *bitrates;
46 u32 mandatory_rates = 0;
47 enum ieee80211_rate_flags mandatory_flag;
48 int i;
50 if (WARN_ON(!sband))
51 return 1;
53 if (sband->band == NL80211_BAND_2GHZ) {
54 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
55 scan_width == NL80211_BSS_CHAN_WIDTH_10)
56 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
57 else
58 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
59 } else {
60 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
63 bitrates = sband->bitrates;
64 for (i = 0; i < sband->n_bitrates; i++)
65 if (bitrates[i].flags & mandatory_flag)
66 mandatory_rates |= BIT(i);
67 return mandatory_rates;
69 EXPORT_SYMBOL(ieee80211_mandatory_rates);
71 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
73 /* see 802.11 17.3.8.3.2 and Annex J
74 * there are overlapping channel numbers in 5GHz and 2GHz bands */
75 if (chan <= 0)
76 return 0; /* not supported */
77 switch (band) {
78 case NL80211_BAND_2GHZ:
79 if (chan == 14)
80 return 2484;
81 else if (chan < 14)
82 return 2407 + chan * 5;
83 break;
84 case NL80211_BAND_5GHZ:
85 if (chan >= 182 && chan <= 196)
86 return 4000 + chan * 5;
87 else
88 return 5000 + chan * 5;
89 break;
90 case NL80211_BAND_60GHZ:
91 if (chan < 5)
92 return 56160 + chan * 2160;
93 break;
94 default:
97 return 0; /* not supported */
99 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
101 int ieee80211_frequency_to_channel(int freq)
103 /* see 802.11 17.3.8.3.2 and Annex J */
104 if (freq == 2484)
105 return 14;
106 else if (freq < 2484)
107 return (freq - 2407) / 5;
108 else if (freq >= 4910 && freq <= 4980)
109 return (freq - 4000) / 5;
110 else if (freq <= 45000) /* DMG band lower limit */
111 return (freq - 5000) / 5;
112 else if (freq >= 58320 && freq <= 64800)
113 return (freq - 56160) / 2160;
114 else
115 return 0;
117 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
119 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
121 enum nl80211_band band;
122 struct ieee80211_supported_band *sband;
123 int i;
125 for (band = 0; band < NUM_NL80211_BANDS; band++) {
126 sband = wiphy->bands[band];
128 if (!sband)
129 continue;
131 for (i = 0; i < sband->n_channels; i++) {
132 if (sband->channels[i].center_freq == freq)
133 return &sband->channels[i];
137 return NULL;
139 EXPORT_SYMBOL(ieee80211_get_channel);
141 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
143 int i, want;
145 switch (sband->band) {
146 case NL80211_BAND_5GHZ:
147 want = 3;
148 for (i = 0; i < sband->n_bitrates; i++) {
149 if (sband->bitrates[i].bitrate == 60 ||
150 sband->bitrates[i].bitrate == 120 ||
151 sband->bitrates[i].bitrate == 240) {
152 sband->bitrates[i].flags |=
153 IEEE80211_RATE_MANDATORY_A;
154 want--;
157 WARN_ON(want);
158 break;
159 case NL80211_BAND_2GHZ:
160 want = 7;
161 for (i = 0; i < sband->n_bitrates; i++) {
162 switch (sband->bitrates[i].bitrate) {
163 case 10:
164 case 20:
165 case 55:
166 case 110:
167 sband->bitrates[i].flags |=
168 IEEE80211_RATE_MANDATORY_B |
169 IEEE80211_RATE_MANDATORY_G;
170 want--;
171 break;
172 case 60:
173 case 120:
174 case 240:
175 sband->bitrates[i].flags |=
176 IEEE80211_RATE_MANDATORY_G;
177 want--;
178 /* fall through */
179 default:
180 sband->bitrates[i].flags |=
181 IEEE80211_RATE_ERP_G;
182 break;
185 WARN_ON(want != 0 && want != 3);
186 break;
187 case NL80211_BAND_60GHZ:
188 /* check for mandatory HT MCS 1..4 */
189 WARN_ON(!sband->ht_cap.ht_supported);
190 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191 break;
192 case NUM_NL80211_BANDS:
193 default:
194 WARN_ON(1);
195 break;
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
201 enum nl80211_band band;
203 for (band = 0; band < NUM_NL80211_BANDS; band++)
204 if (wiphy->bands[band])
205 set_mandatory_flags_band(wiphy->bands[band]);
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
210 int i;
211 for (i = 0; i < wiphy->n_cipher_suites; i++)
212 if (cipher == wiphy->cipher_suites[i])
213 return true;
214 return false;
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 struct key_params *params, int key_idx,
219 bool pairwise, const u8 *mac_addr)
221 if (key_idx < 0 || key_idx > 5)
222 return -EINVAL;
224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 return -EINVAL;
227 if (pairwise && !mac_addr)
228 return -EINVAL;
230 switch (params->cipher) {
231 case WLAN_CIPHER_SUITE_TKIP:
232 case WLAN_CIPHER_SUITE_CCMP:
233 case WLAN_CIPHER_SUITE_CCMP_256:
234 case WLAN_CIPHER_SUITE_GCMP:
235 case WLAN_CIPHER_SUITE_GCMP_256:
236 /* Disallow pairwise keys with non-zero index unless it's WEP
237 * or a vendor specific cipher (because current deployments use
238 * pairwise WEP keys with non-zero indices and for vendor
239 * specific ciphers this should be validated in the driver or
240 * hardware level - but 802.11i clearly specifies to use zero)
242 if (pairwise && key_idx)
243 return -EINVAL;
244 break;
245 case WLAN_CIPHER_SUITE_AES_CMAC:
246 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 /* Disallow BIP (group-only) cipher as pairwise cipher */
250 if (pairwise)
251 return -EINVAL;
252 if (key_idx < 4)
253 return -EINVAL;
254 break;
255 case WLAN_CIPHER_SUITE_WEP40:
256 case WLAN_CIPHER_SUITE_WEP104:
257 if (key_idx > 3)
258 return -EINVAL;
259 default:
260 break;
263 switch (params->cipher) {
264 case WLAN_CIPHER_SUITE_WEP40:
265 if (params->key_len != WLAN_KEY_LEN_WEP40)
266 return -EINVAL;
267 break;
268 case WLAN_CIPHER_SUITE_TKIP:
269 if (params->key_len != WLAN_KEY_LEN_TKIP)
270 return -EINVAL;
271 break;
272 case WLAN_CIPHER_SUITE_CCMP:
273 if (params->key_len != WLAN_KEY_LEN_CCMP)
274 return -EINVAL;
275 break;
276 case WLAN_CIPHER_SUITE_CCMP_256:
277 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 return -EINVAL;
279 break;
280 case WLAN_CIPHER_SUITE_GCMP:
281 if (params->key_len != WLAN_KEY_LEN_GCMP)
282 return -EINVAL;
283 break;
284 case WLAN_CIPHER_SUITE_GCMP_256:
285 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 return -EINVAL;
287 break;
288 case WLAN_CIPHER_SUITE_WEP104:
289 if (params->key_len != WLAN_KEY_LEN_WEP104)
290 return -EINVAL;
291 break;
292 case WLAN_CIPHER_SUITE_AES_CMAC:
293 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 return -EINVAL;
295 break;
296 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 return -EINVAL;
299 break;
300 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 return -EINVAL;
303 break;
304 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 return -EINVAL;
307 break;
308 default:
310 * We don't know anything about this algorithm,
311 * allow using it -- but the driver must check
312 * all parameters! We still check below whether
313 * or not the driver supports this algorithm,
314 * of course.
316 break;
319 if (params->seq) {
320 switch (params->cipher) {
321 case WLAN_CIPHER_SUITE_WEP40:
322 case WLAN_CIPHER_SUITE_WEP104:
323 /* These ciphers do not use key sequence */
324 return -EINVAL;
325 case WLAN_CIPHER_SUITE_TKIP:
326 case WLAN_CIPHER_SUITE_CCMP:
327 case WLAN_CIPHER_SUITE_CCMP_256:
328 case WLAN_CIPHER_SUITE_GCMP:
329 case WLAN_CIPHER_SUITE_GCMP_256:
330 case WLAN_CIPHER_SUITE_AES_CMAC:
331 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 if (params->seq_len != 6)
335 return -EINVAL;
336 break;
340 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 return -EINVAL;
343 return 0;
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
348 unsigned int hdrlen = 24;
350 if (ieee80211_is_data(fc)) {
351 if (ieee80211_has_a4(fc))
352 hdrlen = 30;
353 if (ieee80211_is_data_qos(fc)) {
354 hdrlen += IEEE80211_QOS_CTL_LEN;
355 if (ieee80211_has_order(fc))
356 hdrlen += IEEE80211_HT_CTL_LEN;
358 goto out;
361 if (ieee80211_is_mgmt(fc)) {
362 if (ieee80211_has_order(fc))
363 hdrlen += IEEE80211_HT_CTL_LEN;
364 goto out;
367 if (ieee80211_is_ctl(fc)) {
369 * ACK and CTS are 10 bytes, all others 16. To see how
370 * to get this condition consider
371 * subtype mask: 0b0000000011110000 (0x00F0)
372 * ACK subtype: 0b0000000011010000 (0x00D0)
373 * CTS subtype: 0b0000000011000000 (0x00C0)
374 * bits that matter: ^^^ (0x00E0)
375 * value of those: 0b0000000011000000 (0x00C0)
377 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 hdrlen = 10;
379 else
380 hdrlen = 16;
382 out:
383 return hdrlen;
385 EXPORT_SYMBOL(ieee80211_hdrlen);
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
389 const struct ieee80211_hdr *hdr =
390 (const struct ieee80211_hdr *)skb->data;
391 unsigned int hdrlen;
393 if (unlikely(skb->len < 10))
394 return 0;
395 hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 if (unlikely(hdrlen > skb->len))
397 return 0;
398 return hdrlen;
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
404 int ae = flags & MESH_FLAGS_AE;
405 /* 802.11-2012, 8.2.4.7.3 */
406 switch (ae) {
407 default:
408 case 0:
409 return 6;
410 case MESH_FLAGS_AE_A4:
411 return 12;
412 case MESH_FLAGS_AE_A5_A6:
413 return 18;
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
419 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 const u8 *addr, enum nl80211_iftype iftype,
425 u8 data_offset)
427 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428 struct {
429 u8 hdr[ETH_ALEN] __aligned(2);
430 __be16 proto;
431 } payload;
432 struct ethhdr tmp;
433 u16 hdrlen;
434 u8 mesh_flags = 0;
436 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
437 return -1;
439 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
440 if (skb->len < hdrlen + 8)
441 return -1;
443 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
444 * header
445 * IEEE 802.11 address fields:
446 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
447 * 0 0 DA SA BSSID n/a
448 * 0 1 DA BSSID SA n/a
449 * 1 0 BSSID SA DA n/a
450 * 1 1 RA TA DA SA
452 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
453 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
455 if (iftype == NL80211_IFTYPE_MESH_POINT)
456 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
458 mesh_flags &= MESH_FLAGS_AE;
460 switch (hdr->frame_control &
461 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
462 case cpu_to_le16(IEEE80211_FCTL_TODS):
463 if (unlikely(iftype != NL80211_IFTYPE_AP &&
464 iftype != NL80211_IFTYPE_AP_VLAN &&
465 iftype != NL80211_IFTYPE_P2P_GO))
466 return -1;
467 break;
468 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
469 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
470 iftype != NL80211_IFTYPE_MESH_POINT &&
471 iftype != NL80211_IFTYPE_AP_VLAN &&
472 iftype != NL80211_IFTYPE_STATION))
473 return -1;
474 if (iftype == NL80211_IFTYPE_MESH_POINT) {
475 if (mesh_flags == MESH_FLAGS_AE_A4)
476 return -1;
477 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
478 skb_copy_bits(skb, hdrlen +
479 offsetof(struct ieee80211s_hdr, eaddr1),
480 tmp.h_dest, 2 * ETH_ALEN);
482 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
484 break;
485 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
486 if ((iftype != NL80211_IFTYPE_STATION &&
487 iftype != NL80211_IFTYPE_P2P_CLIENT &&
488 iftype != NL80211_IFTYPE_MESH_POINT) ||
489 (is_multicast_ether_addr(tmp.h_dest) &&
490 ether_addr_equal(tmp.h_source, addr)))
491 return -1;
492 if (iftype == NL80211_IFTYPE_MESH_POINT) {
493 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
494 return -1;
495 if (mesh_flags == MESH_FLAGS_AE_A4)
496 skb_copy_bits(skb, hdrlen +
497 offsetof(struct ieee80211s_hdr, eaddr1),
498 tmp.h_source, ETH_ALEN);
499 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
501 break;
502 case cpu_to_le16(0):
503 if (iftype != NL80211_IFTYPE_ADHOC &&
504 iftype != NL80211_IFTYPE_STATION &&
505 iftype != NL80211_IFTYPE_OCB)
506 return -1;
507 break;
510 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
511 tmp.h_proto = payload.proto;
513 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
514 tmp.h_proto != htons(ETH_P_AARP) &&
515 tmp.h_proto != htons(ETH_P_IPX)) ||
516 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
517 /* remove RFC1042 or Bridge-Tunnel encapsulation and
518 * replace EtherType */
519 hdrlen += ETH_ALEN + 2;
520 else
521 tmp.h_proto = htons(skb->len - hdrlen);
523 pskb_pull(skb, hdrlen);
525 if (!ehdr)
526 ehdr = skb_push(skb, sizeof(struct ethhdr));
527 memcpy(ehdr, &tmp, sizeof(tmp));
529 return 0;
531 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
533 static void
534 __frame_add_frag(struct sk_buff *skb, struct page *page,
535 void *ptr, int len, int size)
537 struct skb_shared_info *sh = skb_shinfo(skb);
538 int page_offset;
540 get_page(page);
541 page_offset = ptr - page_address(page);
542 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
545 static void
546 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
547 int offset, int len)
549 struct skb_shared_info *sh = skb_shinfo(skb);
550 const skb_frag_t *frag = &sh->frags[0];
551 struct page *frag_page;
552 void *frag_ptr;
553 int frag_len, frag_size;
554 int head_size = skb->len - skb->data_len;
555 int cur_len;
557 frag_page = virt_to_head_page(skb->head);
558 frag_ptr = skb->data;
559 frag_size = head_size;
561 while (offset >= frag_size) {
562 offset -= frag_size;
563 frag_page = skb_frag_page(frag);
564 frag_ptr = skb_frag_address(frag);
565 frag_size = skb_frag_size(frag);
566 frag++;
569 frag_ptr += offset;
570 frag_len = frag_size - offset;
572 cur_len = min(len, frag_len);
574 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
575 len -= cur_len;
577 while (len > 0) {
578 frag_len = skb_frag_size(frag);
579 cur_len = min(len, frag_len);
580 __frame_add_frag(frame, skb_frag_page(frag),
581 skb_frag_address(frag), cur_len, frag_len);
582 len -= cur_len;
583 frag++;
587 static struct sk_buff *
588 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
589 int offset, int len, bool reuse_frag)
591 struct sk_buff *frame;
592 int cur_len = len;
594 if (skb->len - offset < len)
595 return NULL;
598 * When reusing framents, copy some data to the head to simplify
599 * ethernet header handling and speed up protocol header processing
600 * in the stack later.
602 if (reuse_frag)
603 cur_len = min_t(int, len, 32);
606 * Allocate and reserve two bytes more for payload
607 * alignment since sizeof(struct ethhdr) is 14.
609 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
610 if (!frame)
611 return NULL;
613 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
614 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
616 len -= cur_len;
617 if (!len)
618 return frame;
620 offset += cur_len;
621 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
623 return frame;
626 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
627 const u8 *addr, enum nl80211_iftype iftype,
628 const unsigned int extra_headroom,
629 const u8 *check_da, const u8 *check_sa)
631 unsigned int hlen = ALIGN(extra_headroom, 4);
632 struct sk_buff *frame = NULL;
633 u16 ethertype;
634 u8 *payload;
635 int offset = 0, remaining;
636 struct ethhdr eth;
637 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
638 bool reuse_skb = false;
639 bool last = false;
641 while (!last) {
642 unsigned int subframe_len;
643 int len;
644 u8 padding;
646 skb_copy_bits(skb, offset, &eth, sizeof(eth));
647 len = ntohs(eth.h_proto);
648 subframe_len = sizeof(struct ethhdr) + len;
649 padding = (4 - subframe_len) & 0x3;
651 /* the last MSDU has no padding */
652 remaining = skb->len - offset;
653 if (subframe_len > remaining)
654 goto purge;
656 offset += sizeof(struct ethhdr);
657 last = remaining <= subframe_len + padding;
659 /* FIXME: should we really accept multicast DA? */
660 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
661 !ether_addr_equal(check_da, eth.h_dest)) ||
662 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
663 offset += len + padding;
664 continue;
667 /* reuse skb for the last subframe */
668 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
669 skb_pull(skb, offset);
670 frame = skb;
671 reuse_skb = true;
672 } else {
673 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
674 reuse_frag);
675 if (!frame)
676 goto purge;
678 offset += len + padding;
681 skb_reset_network_header(frame);
682 frame->dev = skb->dev;
683 frame->priority = skb->priority;
685 payload = frame->data;
686 ethertype = (payload[6] << 8) | payload[7];
687 if (likely((ether_addr_equal(payload, rfc1042_header) &&
688 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
689 ether_addr_equal(payload, bridge_tunnel_header))) {
690 eth.h_proto = htons(ethertype);
691 skb_pull(frame, ETH_ALEN + 2);
694 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
695 __skb_queue_tail(list, frame);
698 if (!reuse_skb)
699 dev_kfree_skb(skb);
701 return;
703 purge:
704 __skb_queue_purge(list);
705 dev_kfree_skb(skb);
707 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
709 /* Given a data frame determine the 802.1p/1d tag to use. */
710 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
711 struct cfg80211_qos_map *qos_map)
713 unsigned int dscp;
714 unsigned char vlan_priority;
716 /* skb->priority values from 256->263 are magic values to
717 * directly indicate a specific 802.1d priority. This is used
718 * to allow 802.1d priority to be passed directly in from VLAN
719 * tags, etc.
721 if (skb->priority >= 256 && skb->priority <= 263)
722 return skb->priority - 256;
724 if (skb_vlan_tag_present(skb)) {
725 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
726 >> VLAN_PRIO_SHIFT;
727 if (vlan_priority > 0)
728 return vlan_priority;
731 switch (skb->protocol) {
732 case htons(ETH_P_IP):
733 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
734 break;
735 case htons(ETH_P_IPV6):
736 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
737 break;
738 case htons(ETH_P_MPLS_UC):
739 case htons(ETH_P_MPLS_MC): {
740 struct mpls_label mpls_tmp, *mpls;
742 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
743 sizeof(*mpls), &mpls_tmp);
744 if (!mpls)
745 return 0;
747 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
748 >> MPLS_LS_TC_SHIFT;
750 case htons(ETH_P_80221):
751 /* 802.21 is always network control traffic */
752 return 7;
753 default:
754 return 0;
757 if (qos_map) {
758 unsigned int i, tmp_dscp = dscp >> 2;
760 for (i = 0; i < qos_map->num_des; i++) {
761 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
762 return qos_map->dscp_exception[i].up;
765 for (i = 0; i < 8; i++) {
766 if (tmp_dscp >= qos_map->up[i].low &&
767 tmp_dscp <= qos_map->up[i].high)
768 return i;
772 return dscp >> 5;
774 EXPORT_SYMBOL(cfg80211_classify8021d);
776 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
778 const struct cfg80211_bss_ies *ies;
780 ies = rcu_dereference(bss->ies);
781 if (!ies)
782 return NULL;
784 return cfg80211_find_ie(ie, ies->data, ies->len);
786 EXPORT_SYMBOL(ieee80211_bss_get_ie);
788 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
790 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
791 struct net_device *dev = wdev->netdev;
792 int i;
794 if (!wdev->connect_keys)
795 return;
797 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
798 if (!wdev->connect_keys->params[i].cipher)
799 continue;
800 if (rdev_add_key(rdev, dev, i, false, NULL,
801 &wdev->connect_keys->params[i])) {
802 netdev_err(dev, "failed to set key %d\n", i);
803 continue;
805 if (wdev->connect_keys->def == i &&
806 rdev_set_default_key(rdev, dev, i, true, true)) {
807 netdev_err(dev, "failed to set defkey %d\n", i);
808 continue;
812 kzfree(wdev->connect_keys);
813 wdev->connect_keys = NULL;
816 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
818 struct cfg80211_event *ev;
819 unsigned long flags;
821 spin_lock_irqsave(&wdev->event_lock, flags);
822 while (!list_empty(&wdev->event_list)) {
823 ev = list_first_entry(&wdev->event_list,
824 struct cfg80211_event, list);
825 list_del(&ev->list);
826 spin_unlock_irqrestore(&wdev->event_lock, flags);
828 wdev_lock(wdev);
829 switch (ev->type) {
830 case EVENT_CONNECT_RESULT:
831 __cfg80211_connect_result(
832 wdev->netdev,
833 &ev->cr,
834 ev->cr.status == WLAN_STATUS_SUCCESS);
835 break;
836 case EVENT_ROAMED:
837 __cfg80211_roamed(wdev, &ev->rm);
838 break;
839 case EVENT_DISCONNECTED:
840 __cfg80211_disconnected(wdev->netdev,
841 ev->dc.ie, ev->dc.ie_len,
842 ev->dc.reason,
843 !ev->dc.locally_generated);
844 break;
845 case EVENT_IBSS_JOINED:
846 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
847 ev->ij.channel);
848 break;
849 case EVENT_STOPPED:
850 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
851 break;
852 case EVENT_PORT_AUTHORIZED:
853 __cfg80211_port_authorized(wdev, ev->pa.bssid);
854 break;
856 wdev_unlock(wdev);
858 kfree(ev);
860 spin_lock_irqsave(&wdev->event_lock, flags);
862 spin_unlock_irqrestore(&wdev->event_lock, flags);
865 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
867 struct wireless_dev *wdev;
869 ASSERT_RTNL();
871 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
872 cfg80211_process_wdev_events(wdev);
875 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
876 struct net_device *dev, enum nl80211_iftype ntype,
877 struct vif_params *params)
879 int err;
880 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
882 ASSERT_RTNL();
884 /* don't support changing VLANs, you just re-create them */
885 if (otype == NL80211_IFTYPE_AP_VLAN)
886 return -EOPNOTSUPP;
888 /* cannot change into P2P device or NAN */
889 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
890 ntype == NL80211_IFTYPE_NAN)
891 return -EOPNOTSUPP;
893 if (!rdev->ops->change_virtual_intf ||
894 !(rdev->wiphy.interface_modes & (1 << ntype)))
895 return -EOPNOTSUPP;
897 /* if it's part of a bridge, reject changing type to station/ibss */
898 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
899 (ntype == NL80211_IFTYPE_ADHOC ||
900 ntype == NL80211_IFTYPE_STATION ||
901 ntype == NL80211_IFTYPE_P2P_CLIENT))
902 return -EBUSY;
904 if (ntype != otype) {
905 dev->ieee80211_ptr->use_4addr = false;
906 dev->ieee80211_ptr->mesh_id_up_len = 0;
907 wdev_lock(dev->ieee80211_ptr);
908 rdev_set_qos_map(rdev, dev, NULL);
909 wdev_unlock(dev->ieee80211_ptr);
911 switch (otype) {
912 case NL80211_IFTYPE_AP:
913 cfg80211_stop_ap(rdev, dev, true);
914 break;
915 case NL80211_IFTYPE_ADHOC:
916 cfg80211_leave_ibss(rdev, dev, false);
917 break;
918 case NL80211_IFTYPE_STATION:
919 case NL80211_IFTYPE_P2P_CLIENT:
920 wdev_lock(dev->ieee80211_ptr);
921 cfg80211_disconnect(rdev, dev,
922 WLAN_REASON_DEAUTH_LEAVING, true);
923 wdev_unlock(dev->ieee80211_ptr);
924 break;
925 case NL80211_IFTYPE_MESH_POINT:
926 /* mesh should be handled? */
927 break;
928 default:
929 break;
932 cfg80211_process_rdev_events(rdev);
933 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
936 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
938 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
940 if (!err && params && params->use_4addr != -1)
941 dev->ieee80211_ptr->use_4addr = params->use_4addr;
943 if (!err) {
944 dev->priv_flags &= ~IFF_DONT_BRIDGE;
945 switch (ntype) {
946 case NL80211_IFTYPE_STATION:
947 if (dev->ieee80211_ptr->use_4addr)
948 break;
949 /* fall through */
950 case NL80211_IFTYPE_OCB:
951 case NL80211_IFTYPE_P2P_CLIENT:
952 case NL80211_IFTYPE_ADHOC:
953 dev->priv_flags |= IFF_DONT_BRIDGE;
954 break;
955 case NL80211_IFTYPE_P2P_GO:
956 case NL80211_IFTYPE_AP:
957 case NL80211_IFTYPE_AP_VLAN:
958 case NL80211_IFTYPE_WDS:
959 case NL80211_IFTYPE_MESH_POINT:
960 /* bridging OK */
961 break;
962 case NL80211_IFTYPE_MONITOR:
963 /* monitor can't bridge anyway */
964 break;
965 case NL80211_IFTYPE_UNSPECIFIED:
966 case NUM_NL80211_IFTYPES:
967 /* not happening */
968 break;
969 case NL80211_IFTYPE_P2P_DEVICE:
970 case NL80211_IFTYPE_NAN:
971 WARN_ON(1);
972 break;
976 if (!err && ntype != otype && netif_running(dev)) {
977 cfg80211_update_iface_num(rdev, ntype, 1);
978 cfg80211_update_iface_num(rdev, otype, -1);
981 return err;
984 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
986 int modulation, streams, bitrate;
988 /* the formula below does only work for MCS values smaller than 32 */
989 if (WARN_ON_ONCE(rate->mcs >= 32))
990 return 0;
992 modulation = rate->mcs & 7;
993 streams = (rate->mcs >> 3) + 1;
995 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
997 if (modulation < 4)
998 bitrate *= (modulation + 1);
999 else if (modulation == 4)
1000 bitrate *= (modulation + 2);
1001 else
1002 bitrate *= (modulation + 3);
1004 bitrate *= streams;
1006 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1007 bitrate = (bitrate / 9) * 10;
1009 /* do NOT round down here */
1010 return (bitrate + 50000) / 100000;
1013 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1015 static const u32 __mcs2bitrate[] = {
1016 /* control PHY */
1017 [0] = 275,
1018 /* SC PHY */
1019 [1] = 3850,
1020 [2] = 7700,
1021 [3] = 9625,
1022 [4] = 11550,
1023 [5] = 12512, /* 1251.25 mbps */
1024 [6] = 15400,
1025 [7] = 19250,
1026 [8] = 23100,
1027 [9] = 25025,
1028 [10] = 30800,
1029 [11] = 38500,
1030 [12] = 46200,
1031 /* OFDM PHY */
1032 [13] = 6930,
1033 [14] = 8662, /* 866.25 mbps */
1034 [15] = 13860,
1035 [16] = 17325,
1036 [17] = 20790,
1037 [18] = 27720,
1038 [19] = 34650,
1039 [20] = 41580,
1040 [21] = 45045,
1041 [22] = 51975,
1042 [23] = 62370,
1043 [24] = 67568, /* 6756.75 mbps */
1044 /* LP-SC PHY */
1045 [25] = 6260,
1046 [26] = 8340,
1047 [27] = 11120,
1048 [28] = 12510,
1049 [29] = 16680,
1050 [30] = 22240,
1051 [31] = 25030,
1054 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1055 return 0;
1057 return __mcs2bitrate[rate->mcs];
1060 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1062 static const u32 base[4][10] = {
1063 { 6500000,
1064 13000000,
1065 19500000,
1066 26000000,
1067 39000000,
1068 52000000,
1069 58500000,
1070 65000000,
1071 78000000,
1072 /* not in the spec, but some devices use this: */
1073 86500000,
1075 { 13500000,
1076 27000000,
1077 40500000,
1078 54000000,
1079 81000000,
1080 108000000,
1081 121500000,
1082 135000000,
1083 162000000,
1084 180000000,
1086 { 29300000,
1087 58500000,
1088 87800000,
1089 117000000,
1090 175500000,
1091 234000000,
1092 263300000,
1093 292500000,
1094 351000000,
1095 390000000,
1097 { 58500000,
1098 117000000,
1099 175500000,
1100 234000000,
1101 351000000,
1102 468000000,
1103 526500000,
1104 585000000,
1105 702000000,
1106 780000000,
1109 u32 bitrate;
1110 int idx;
1112 if (rate->mcs > 9)
1113 goto warn;
1115 switch (rate->bw) {
1116 case RATE_INFO_BW_160:
1117 idx = 3;
1118 break;
1119 case RATE_INFO_BW_80:
1120 idx = 2;
1121 break;
1122 case RATE_INFO_BW_40:
1123 idx = 1;
1124 break;
1125 case RATE_INFO_BW_5:
1126 case RATE_INFO_BW_10:
1127 default:
1128 goto warn;
1129 case RATE_INFO_BW_20:
1130 idx = 0;
1133 bitrate = base[idx][rate->mcs];
1134 bitrate *= rate->nss;
1136 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1137 bitrate = (bitrate / 9) * 10;
1139 /* do NOT round down here */
1140 return (bitrate + 50000) / 100000;
1141 warn:
1142 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1143 rate->bw, rate->mcs, rate->nss);
1144 return 0;
1147 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1149 #define SCALE 2048
1150 u16 mcs_divisors[12] = {
1151 34133, /* 16.666666... */
1152 17067, /* 8.333333... */
1153 11378, /* 5.555555... */
1154 8533, /* 4.166666... */
1155 5689, /* 2.777777... */
1156 4267, /* 2.083333... */
1157 3923, /* 1.851851... */
1158 3413, /* 1.666666... */
1159 2844, /* 1.388888... */
1160 2560, /* 1.250000... */
1161 2276, /* 1.111111... */
1162 2048, /* 1.000000... */
1164 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1165 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1166 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1167 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1168 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1169 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1170 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1171 u64 tmp;
1172 u32 result;
1174 if (WARN_ON_ONCE(rate->mcs > 11))
1175 return 0;
1177 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1178 return 0;
1179 if (WARN_ON_ONCE(rate->he_ru_alloc >
1180 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1181 return 0;
1182 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1183 return 0;
1185 if (rate->bw == RATE_INFO_BW_160)
1186 result = rates_160M[rate->he_gi];
1187 else if (rate->bw == RATE_INFO_BW_80 ||
1188 (rate->bw == RATE_INFO_BW_HE_RU &&
1189 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1190 result = rates_969[rate->he_gi];
1191 else if (rate->bw == RATE_INFO_BW_40 ||
1192 (rate->bw == RATE_INFO_BW_HE_RU &&
1193 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1194 result = rates_484[rate->he_gi];
1195 else if (rate->bw == RATE_INFO_BW_20 ||
1196 (rate->bw == RATE_INFO_BW_HE_RU &&
1197 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1198 result = rates_242[rate->he_gi];
1199 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1200 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1201 result = rates_106[rate->he_gi];
1202 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1203 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1204 result = rates_52[rate->he_gi];
1205 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1206 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1207 result = rates_26[rate->he_gi];
1208 else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1209 rate->bw, rate->he_ru_alloc))
1210 return 0;
1212 /* now scale to the appropriate MCS */
1213 tmp = result;
1214 tmp *= SCALE;
1215 do_div(tmp, mcs_divisors[rate->mcs]);
1216 result = tmp;
1218 /* and take NSS, DCM into account */
1219 result = (result * rate->nss) / 8;
1220 if (rate->he_dcm)
1221 result /= 2;
1223 return result / 10000;
1226 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1228 if (rate->flags & RATE_INFO_FLAGS_MCS)
1229 return cfg80211_calculate_bitrate_ht(rate);
1230 if (rate->flags & RATE_INFO_FLAGS_60G)
1231 return cfg80211_calculate_bitrate_60g(rate);
1232 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1233 return cfg80211_calculate_bitrate_vht(rate);
1234 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1235 return cfg80211_calculate_bitrate_he(rate);
1237 return rate->legacy;
1239 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1241 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1242 enum ieee80211_p2p_attr_id attr,
1243 u8 *buf, unsigned int bufsize)
1245 u8 *out = buf;
1246 u16 attr_remaining = 0;
1247 bool desired_attr = false;
1248 u16 desired_len = 0;
1250 while (len > 0) {
1251 unsigned int iedatalen;
1252 unsigned int copy;
1253 const u8 *iedata;
1255 if (len < 2)
1256 return -EILSEQ;
1257 iedatalen = ies[1];
1258 if (iedatalen + 2 > len)
1259 return -EILSEQ;
1261 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1262 goto cont;
1264 if (iedatalen < 4)
1265 goto cont;
1267 iedata = ies + 2;
1269 /* check WFA OUI, P2P subtype */
1270 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1271 iedata[2] != 0x9a || iedata[3] != 0x09)
1272 goto cont;
1274 iedatalen -= 4;
1275 iedata += 4;
1277 /* check attribute continuation into this IE */
1278 copy = min_t(unsigned int, attr_remaining, iedatalen);
1279 if (copy && desired_attr) {
1280 desired_len += copy;
1281 if (out) {
1282 memcpy(out, iedata, min(bufsize, copy));
1283 out += min(bufsize, copy);
1284 bufsize -= min(bufsize, copy);
1288 if (copy == attr_remaining)
1289 return desired_len;
1292 attr_remaining -= copy;
1293 if (attr_remaining)
1294 goto cont;
1296 iedatalen -= copy;
1297 iedata += copy;
1299 while (iedatalen > 0) {
1300 u16 attr_len;
1302 /* P2P attribute ID & size must fit */
1303 if (iedatalen < 3)
1304 return -EILSEQ;
1305 desired_attr = iedata[0] == attr;
1306 attr_len = get_unaligned_le16(iedata + 1);
1307 iedatalen -= 3;
1308 iedata += 3;
1310 copy = min_t(unsigned int, attr_len, iedatalen);
1312 if (desired_attr) {
1313 desired_len += copy;
1314 if (out) {
1315 memcpy(out, iedata, min(bufsize, copy));
1316 out += min(bufsize, copy);
1317 bufsize -= min(bufsize, copy);
1320 if (copy == attr_len)
1321 return desired_len;
1324 iedata += copy;
1325 iedatalen -= copy;
1326 attr_remaining = attr_len - copy;
1329 cont:
1330 len -= ies[1] + 2;
1331 ies += ies[1] + 2;
1334 if (attr_remaining && desired_attr)
1335 return -EILSEQ;
1337 return -ENOENT;
1339 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1341 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1343 int i;
1345 /* Make sure array values are legal */
1346 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1347 return false;
1349 i = 0;
1350 while (i < n_ids) {
1351 if (ids[i] == WLAN_EID_EXTENSION) {
1352 if (id_ext && (ids[i + 1] == id))
1353 return true;
1355 i += 2;
1356 continue;
1359 if (ids[i] == id && !id_ext)
1360 return true;
1362 i++;
1364 return false;
1367 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1369 /* we assume a validly formed IEs buffer */
1370 u8 len = ies[pos + 1];
1372 pos += 2 + len;
1374 /* the IE itself must have 255 bytes for fragments to follow */
1375 if (len < 255)
1376 return pos;
1378 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1379 len = ies[pos + 1];
1380 pos += 2 + len;
1383 return pos;
1386 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1387 const u8 *ids, int n_ids,
1388 const u8 *after_ric, int n_after_ric,
1389 size_t offset)
1391 size_t pos = offset;
1393 while (pos < ielen) {
1394 u8 ext = 0;
1396 if (ies[pos] == WLAN_EID_EXTENSION)
1397 ext = 2;
1398 if ((pos + ext) >= ielen)
1399 break;
1401 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1402 ies[pos] == WLAN_EID_EXTENSION))
1403 break;
1405 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1406 pos = skip_ie(ies, ielen, pos);
1408 while (pos < ielen) {
1409 if (ies[pos] == WLAN_EID_EXTENSION)
1410 ext = 2;
1411 else
1412 ext = 0;
1414 if ((pos + ext) >= ielen)
1415 break;
1417 if (!ieee80211_id_in_list(after_ric,
1418 n_after_ric,
1419 ies[pos + ext],
1420 ext == 2))
1421 pos = skip_ie(ies, ielen, pos);
1422 else
1423 break;
1425 } else {
1426 pos = skip_ie(ies, ielen, pos);
1430 return pos;
1432 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1434 bool ieee80211_operating_class_to_band(u8 operating_class,
1435 enum nl80211_band *band)
1437 switch (operating_class) {
1438 case 112:
1439 case 115 ... 127:
1440 case 128 ... 130:
1441 *band = NL80211_BAND_5GHZ;
1442 return true;
1443 case 81:
1444 case 82:
1445 case 83:
1446 case 84:
1447 *band = NL80211_BAND_2GHZ;
1448 return true;
1449 case 180:
1450 *band = NL80211_BAND_60GHZ;
1451 return true;
1454 return false;
1456 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1458 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1459 u8 *op_class)
1461 u8 vht_opclass;
1462 u32 freq = chandef->center_freq1;
1464 if (freq >= 2412 && freq <= 2472) {
1465 if (chandef->width > NL80211_CHAN_WIDTH_40)
1466 return false;
1468 /* 2.407 GHz, channels 1..13 */
1469 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1470 if (freq > chandef->chan->center_freq)
1471 *op_class = 83; /* HT40+ */
1472 else
1473 *op_class = 84; /* HT40- */
1474 } else {
1475 *op_class = 81;
1478 return true;
1481 if (freq == 2484) {
1482 if (chandef->width > NL80211_CHAN_WIDTH_40)
1483 return false;
1485 *op_class = 82; /* channel 14 */
1486 return true;
1489 switch (chandef->width) {
1490 case NL80211_CHAN_WIDTH_80:
1491 vht_opclass = 128;
1492 break;
1493 case NL80211_CHAN_WIDTH_160:
1494 vht_opclass = 129;
1495 break;
1496 case NL80211_CHAN_WIDTH_80P80:
1497 vht_opclass = 130;
1498 break;
1499 case NL80211_CHAN_WIDTH_10:
1500 case NL80211_CHAN_WIDTH_5:
1501 return false; /* unsupported for now */
1502 default:
1503 vht_opclass = 0;
1504 break;
1507 /* 5 GHz, channels 36..48 */
1508 if (freq >= 5180 && freq <= 5240) {
1509 if (vht_opclass) {
1510 *op_class = vht_opclass;
1511 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1512 if (freq > chandef->chan->center_freq)
1513 *op_class = 116;
1514 else
1515 *op_class = 117;
1516 } else {
1517 *op_class = 115;
1520 return true;
1523 /* 5 GHz, channels 52..64 */
1524 if (freq >= 5260 && freq <= 5320) {
1525 if (vht_opclass) {
1526 *op_class = vht_opclass;
1527 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1528 if (freq > chandef->chan->center_freq)
1529 *op_class = 119;
1530 else
1531 *op_class = 120;
1532 } else {
1533 *op_class = 118;
1536 return true;
1539 /* 5 GHz, channels 100..144 */
1540 if (freq >= 5500 && freq <= 5720) {
1541 if (vht_opclass) {
1542 *op_class = vht_opclass;
1543 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1544 if (freq > chandef->chan->center_freq)
1545 *op_class = 122;
1546 else
1547 *op_class = 123;
1548 } else {
1549 *op_class = 121;
1552 return true;
1555 /* 5 GHz, channels 149..169 */
1556 if (freq >= 5745 && freq <= 5845) {
1557 if (vht_opclass) {
1558 *op_class = vht_opclass;
1559 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1560 if (freq > chandef->chan->center_freq)
1561 *op_class = 126;
1562 else
1563 *op_class = 127;
1564 } else if (freq <= 5805) {
1565 *op_class = 124;
1566 } else {
1567 *op_class = 125;
1570 return true;
1573 /* 56.16 GHz, channel 1..4 */
1574 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1575 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1576 return false;
1578 *op_class = 180;
1579 return true;
1582 /* not supported yet */
1583 return false;
1585 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1587 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1588 u32 *beacon_int_gcd,
1589 bool *beacon_int_different)
1591 struct wireless_dev *wdev;
1593 *beacon_int_gcd = 0;
1594 *beacon_int_different = false;
1596 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1597 if (!wdev->beacon_interval)
1598 continue;
1600 if (!*beacon_int_gcd) {
1601 *beacon_int_gcd = wdev->beacon_interval;
1602 continue;
1605 if (wdev->beacon_interval == *beacon_int_gcd)
1606 continue;
1608 *beacon_int_different = true;
1609 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1612 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1613 if (*beacon_int_gcd)
1614 *beacon_int_different = true;
1615 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1619 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1620 enum nl80211_iftype iftype, u32 beacon_int)
1623 * This is just a basic pre-condition check; if interface combinations
1624 * are possible the driver must already be checking those with a call
1625 * to cfg80211_check_combinations(), in which case we'll validate more
1626 * through the cfg80211_calculate_bi_data() call and code in
1627 * cfg80211_iter_combinations().
1630 if (beacon_int < 10 || beacon_int > 10000)
1631 return -EINVAL;
1633 return 0;
1636 int cfg80211_iter_combinations(struct wiphy *wiphy,
1637 struct iface_combination_params *params,
1638 void (*iter)(const struct ieee80211_iface_combination *c,
1639 void *data),
1640 void *data)
1642 const struct ieee80211_regdomain *regdom;
1643 enum nl80211_dfs_regions region = 0;
1644 int i, j, iftype;
1645 int num_interfaces = 0;
1646 u32 used_iftypes = 0;
1647 u32 beacon_int_gcd;
1648 bool beacon_int_different;
1651 * This is a bit strange, since the iteration used to rely only on
1652 * the data given by the driver, but here it now relies on context,
1653 * in form of the currently operating interfaces.
1654 * This is OK for all current users, and saves us from having to
1655 * push the GCD calculations into all the drivers.
1656 * In the future, this should probably rely more on data that's in
1657 * cfg80211 already - the only thing not would appear to be any new
1658 * interfaces (while being brought up) and channel/radar data.
1660 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1661 &beacon_int_gcd, &beacon_int_different);
1663 if (params->radar_detect) {
1664 rcu_read_lock();
1665 regdom = rcu_dereference(cfg80211_regdomain);
1666 if (regdom)
1667 region = regdom->dfs_region;
1668 rcu_read_unlock();
1671 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1672 num_interfaces += params->iftype_num[iftype];
1673 if (params->iftype_num[iftype] > 0 &&
1674 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1675 used_iftypes |= BIT(iftype);
1678 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1679 const struct ieee80211_iface_combination *c;
1680 struct ieee80211_iface_limit *limits;
1681 u32 all_iftypes = 0;
1683 c = &wiphy->iface_combinations[i];
1685 if (num_interfaces > c->max_interfaces)
1686 continue;
1687 if (params->num_different_channels > c->num_different_channels)
1688 continue;
1690 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1691 GFP_KERNEL);
1692 if (!limits)
1693 return -ENOMEM;
1695 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1696 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1697 continue;
1698 for (j = 0; j < c->n_limits; j++) {
1699 all_iftypes |= limits[j].types;
1700 if (!(limits[j].types & BIT(iftype)))
1701 continue;
1702 if (limits[j].max < params->iftype_num[iftype])
1703 goto cont;
1704 limits[j].max -= params->iftype_num[iftype];
1708 if (params->radar_detect !=
1709 (c->radar_detect_widths & params->radar_detect))
1710 goto cont;
1712 if (params->radar_detect && c->radar_detect_regions &&
1713 !(c->radar_detect_regions & BIT(region)))
1714 goto cont;
1716 /* Finally check that all iftypes that we're currently
1717 * using are actually part of this combination. If they
1718 * aren't then we can't use this combination and have
1719 * to continue to the next.
1721 if ((all_iftypes & used_iftypes) != used_iftypes)
1722 goto cont;
1724 if (beacon_int_gcd) {
1725 if (c->beacon_int_min_gcd &&
1726 beacon_int_gcd < c->beacon_int_min_gcd)
1727 goto cont;
1728 if (!c->beacon_int_min_gcd && beacon_int_different)
1729 goto cont;
1732 /* This combination covered all interface types and
1733 * supported the requested numbers, so we're good.
1736 (*iter)(c, data);
1737 cont:
1738 kfree(limits);
1741 return 0;
1743 EXPORT_SYMBOL(cfg80211_iter_combinations);
1745 static void
1746 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1747 void *data)
1749 int *num = data;
1750 (*num)++;
1753 int cfg80211_check_combinations(struct wiphy *wiphy,
1754 struct iface_combination_params *params)
1756 int err, num = 0;
1758 err = cfg80211_iter_combinations(wiphy, params,
1759 cfg80211_iter_sum_ifcombs, &num);
1760 if (err)
1761 return err;
1762 if (num == 0)
1763 return -EBUSY;
1765 return 0;
1767 EXPORT_SYMBOL(cfg80211_check_combinations);
1769 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1770 const u8 *rates, unsigned int n_rates,
1771 u32 *mask)
1773 int i, j;
1775 if (!sband)
1776 return -EINVAL;
1778 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1779 return -EINVAL;
1781 *mask = 0;
1783 for (i = 0; i < n_rates; i++) {
1784 int rate = (rates[i] & 0x7f) * 5;
1785 bool found = false;
1787 for (j = 0; j < sband->n_bitrates; j++) {
1788 if (sband->bitrates[j].bitrate == rate) {
1789 found = true;
1790 *mask |= BIT(j);
1791 break;
1794 if (!found)
1795 return -EINVAL;
1799 * mask must have at least one bit set here since we
1800 * didn't accept a 0-length rates array nor allowed
1801 * entries in the array that didn't exist
1804 return 0;
1807 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1809 enum nl80211_band band;
1810 unsigned int n_channels = 0;
1812 for (band = 0; band < NUM_NL80211_BANDS; band++)
1813 if (wiphy->bands[band])
1814 n_channels += wiphy->bands[band]->n_channels;
1816 return n_channels;
1818 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1820 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1821 struct station_info *sinfo)
1823 struct cfg80211_registered_device *rdev;
1824 struct wireless_dev *wdev;
1826 wdev = dev->ieee80211_ptr;
1827 if (!wdev)
1828 return -EOPNOTSUPP;
1830 rdev = wiphy_to_rdev(wdev->wiphy);
1831 if (!rdev->ops->get_station)
1832 return -EOPNOTSUPP;
1834 memset(sinfo, 0, sizeof(*sinfo));
1836 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1838 EXPORT_SYMBOL(cfg80211_get_station);
1840 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1842 int i;
1844 if (!f)
1845 return;
1847 kfree(f->serv_spec_info);
1848 kfree(f->srf_bf);
1849 kfree(f->srf_macs);
1850 for (i = 0; i < f->num_rx_filters; i++)
1851 kfree(f->rx_filters[i].filter);
1853 for (i = 0; i < f->num_tx_filters; i++)
1854 kfree(f->tx_filters[i].filter);
1856 kfree(f->rx_filters);
1857 kfree(f->tx_filters);
1858 kfree(f);
1860 EXPORT_SYMBOL(cfg80211_free_nan_func);
1862 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1863 u32 center_freq_khz, u32 bw_khz)
1865 u32 start_freq_khz, end_freq_khz;
1867 start_freq_khz = center_freq_khz - (bw_khz / 2);
1868 end_freq_khz = center_freq_khz + (bw_khz / 2);
1870 if (start_freq_khz >= freq_range->start_freq_khz &&
1871 end_freq_khz <= freq_range->end_freq_khz)
1872 return true;
1874 return false;
1877 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1879 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1880 sizeof(*(sinfo->pertid)),
1881 gfp);
1882 if (!sinfo->pertid)
1883 return -ENOMEM;
1885 return 0;
1887 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1889 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1890 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1891 const unsigned char rfc1042_header[] __aligned(2) =
1892 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1893 EXPORT_SYMBOL(rfc1042_header);
1895 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1896 const unsigned char bridge_tunnel_header[] __aligned(2) =
1897 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1898 EXPORT_SYMBOL(bridge_tunnel_header);
1900 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
1901 bool is_4addr, u8 check_swif)
1904 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
1906 switch (check_swif) {
1907 case 0:
1908 if (is_vlan && is_4addr)
1909 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
1910 return wiphy->interface_modes & BIT(iftype);
1911 case 1:
1912 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
1913 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
1914 return wiphy->software_iftypes & BIT(iftype);
1915 default:
1916 break;
1919 return false;
1921 EXPORT_SYMBOL(cfg80211_iftype_allowed);
1923 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1924 struct iapp_layer2_update {
1925 u8 da[ETH_ALEN]; /* broadcast */
1926 u8 sa[ETH_ALEN]; /* STA addr */
1927 __be16 len; /* 6 */
1928 u8 dsap; /* 0 */
1929 u8 ssap; /* 0 */
1930 u8 control;
1931 u8 xid_info[3];
1932 } __packed;
1934 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1936 struct iapp_layer2_update *msg;
1937 struct sk_buff *skb;
1939 /* Send Level 2 Update Frame to update forwarding tables in layer 2
1940 * bridge devices */
1942 skb = dev_alloc_skb(sizeof(*msg));
1943 if (!skb)
1944 return;
1945 msg = skb_put(skb, sizeof(*msg));
1947 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
1948 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
1950 eth_broadcast_addr(msg->da);
1951 ether_addr_copy(msg->sa, addr);
1952 msg->len = htons(6);
1953 msg->dsap = 0;
1954 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
1955 msg->control = 0xaf; /* XID response lsb.1111F101.
1956 * F=0 (no poll command; unsolicited frame) */
1957 msg->xid_info[0] = 0x81; /* XID format identifier */
1958 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
1959 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
1961 skb->dev = dev;
1962 skb->protocol = eth_type_trans(skb, dev);
1963 memset(skb->cb, 0, sizeof(skb->cb));
1964 netif_rx_ni(skb);
1966 EXPORT_SYMBOL(cfg80211_send_layer2_update);