1 // SPDX-License-Identifier: GPL-2.0
3 * Wireless utility functions
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
9 #include <linux/export.h>
10 #include <linux/bitops.h>
11 #include <linux/etherdevice.h>
12 #include <linux/slab.h>
13 #include <net/cfg80211.h>
15 #include <net/dsfield.h>
16 #include <linux/if_vlan.h>
17 #include <linux/mpls.h>
18 #include <linux/gcd.h>
23 struct ieee80211_rate
*
24 ieee80211_get_response_rate(struct ieee80211_supported_band
*sband
,
25 u32 basic_rates
, int bitrate
)
27 struct ieee80211_rate
*result
= &sband
->bitrates
[0];
30 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
31 if (!(basic_rates
& BIT(i
)))
33 if (sband
->bitrates
[i
].bitrate
> bitrate
)
35 result
= &sband
->bitrates
[i
];
40 EXPORT_SYMBOL(ieee80211_get_response_rate
);
42 u32
ieee80211_mandatory_rates(struct ieee80211_supported_band
*sband
,
43 enum nl80211_bss_scan_width scan_width
)
45 struct ieee80211_rate
*bitrates
;
46 u32 mandatory_rates
= 0;
47 enum ieee80211_rate_flags mandatory_flag
;
53 if (sband
->band
== NL80211_BAND_2GHZ
) {
54 if (scan_width
== NL80211_BSS_CHAN_WIDTH_5
||
55 scan_width
== NL80211_BSS_CHAN_WIDTH_10
)
56 mandatory_flag
= IEEE80211_RATE_MANDATORY_G
;
58 mandatory_flag
= IEEE80211_RATE_MANDATORY_B
;
60 mandatory_flag
= IEEE80211_RATE_MANDATORY_A
;
63 bitrates
= sband
->bitrates
;
64 for (i
= 0; i
< sband
->n_bitrates
; i
++)
65 if (bitrates
[i
].flags
& mandatory_flag
)
66 mandatory_rates
|= BIT(i
);
67 return mandatory_rates
;
69 EXPORT_SYMBOL(ieee80211_mandatory_rates
);
71 int ieee80211_channel_to_frequency(int chan
, enum nl80211_band band
)
73 /* see 802.11 17.3.8.3.2 and Annex J
74 * there are overlapping channel numbers in 5GHz and 2GHz bands */
76 return 0; /* not supported */
78 case NL80211_BAND_2GHZ
:
82 return 2407 + chan
* 5;
84 case NL80211_BAND_5GHZ
:
85 if (chan
>= 182 && chan
<= 196)
86 return 4000 + chan
* 5;
88 return 5000 + chan
* 5;
90 case NL80211_BAND_60GHZ
:
92 return 56160 + chan
* 2160;
97 return 0; /* not supported */
99 EXPORT_SYMBOL(ieee80211_channel_to_frequency
);
101 int ieee80211_frequency_to_channel(int freq
)
103 /* see 802.11 17.3.8.3.2 and Annex J */
106 else if (freq
< 2484)
107 return (freq
- 2407) / 5;
108 else if (freq
>= 4910 && freq
<= 4980)
109 return (freq
- 4000) / 5;
110 else if (freq
<= 45000) /* DMG band lower limit */
111 return (freq
- 5000) / 5;
112 else if (freq
>= 58320 && freq
<= 64800)
113 return (freq
- 56160) / 2160;
117 EXPORT_SYMBOL(ieee80211_frequency_to_channel
);
119 struct ieee80211_channel
*ieee80211_get_channel(struct wiphy
*wiphy
, int freq
)
121 enum nl80211_band band
;
122 struct ieee80211_supported_band
*sband
;
125 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
126 sband
= wiphy
->bands
[band
];
131 for (i
= 0; i
< sband
->n_channels
; i
++) {
132 if (sband
->channels
[i
].center_freq
== freq
)
133 return &sband
->channels
[i
];
139 EXPORT_SYMBOL(ieee80211_get_channel
);
141 static void set_mandatory_flags_band(struct ieee80211_supported_band
*sband
)
145 switch (sband
->band
) {
146 case NL80211_BAND_5GHZ
:
148 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
149 if (sband
->bitrates
[i
].bitrate
== 60 ||
150 sband
->bitrates
[i
].bitrate
== 120 ||
151 sband
->bitrates
[i
].bitrate
== 240) {
152 sband
->bitrates
[i
].flags
|=
153 IEEE80211_RATE_MANDATORY_A
;
159 case NL80211_BAND_2GHZ
:
161 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
162 switch (sband
->bitrates
[i
].bitrate
) {
167 sband
->bitrates
[i
].flags
|=
168 IEEE80211_RATE_MANDATORY_B
|
169 IEEE80211_RATE_MANDATORY_G
;
175 sband
->bitrates
[i
].flags
|=
176 IEEE80211_RATE_MANDATORY_G
;
180 sband
->bitrates
[i
].flags
|=
181 IEEE80211_RATE_ERP_G
;
185 WARN_ON(want
!= 0 && want
!= 3);
187 case NL80211_BAND_60GHZ
:
188 /* check for mandatory HT MCS 1..4 */
189 WARN_ON(!sband
->ht_cap
.ht_supported
);
190 WARN_ON((sband
->ht_cap
.mcs
.rx_mask
[0] & 0x1e) != 0x1e);
192 case NUM_NL80211_BANDS
:
199 void ieee80211_set_bitrate_flags(struct wiphy
*wiphy
)
201 enum nl80211_band band
;
203 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
204 if (wiphy
->bands
[band
])
205 set_mandatory_flags_band(wiphy
->bands
[band
]);
208 bool cfg80211_supported_cipher_suite(struct wiphy
*wiphy
, u32 cipher
)
211 for (i
= 0; i
< wiphy
->n_cipher_suites
; i
++)
212 if (cipher
== wiphy
->cipher_suites
[i
])
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device
*rdev
,
218 struct key_params
*params
, int key_idx
,
219 bool pairwise
, const u8
*mac_addr
)
221 if (key_idx
< 0 || key_idx
> 5)
224 if (!pairwise
&& mac_addr
&& !(rdev
->wiphy
.flags
& WIPHY_FLAG_IBSS_RSN
))
227 if (pairwise
&& !mac_addr
)
230 switch (params
->cipher
) {
231 case WLAN_CIPHER_SUITE_TKIP
:
232 case WLAN_CIPHER_SUITE_CCMP
:
233 case WLAN_CIPHER_SUITE_CCMP_256
:
234 case WLAN_CIPHER_SUITE_GCMP
:
235 case WLAN_CIPHER_SUITE_GCMP_256
:
236 /* Disallow pairwise keys with non-zero index unless it's WEP
237 * or a vendor specific cipher (because current deployments use
238 * pairwise WEP keys with non-zero indices and for vendor
239 * specific ciphers this should be validated in the driver or
240 * hardware level - but 802.11i clearly specifies to use zero)
242 if (pairwise
&& key_idx
)
245 case WLAN_CIPHER_SUITE_AES_CMAC
:
246 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
249 /* Disallow BIP (group-only) cipher as pairwise cipher */
255 case WLAN_CIPHER_SUITE_WEP40
:
256 case WLAN_CIPHER_SUITE_WEP104
:
263 switch (params
->cipher
) {
264 case WLAN_CIPHER_SUITE_WEP40
:
265 if (params
->key_len
!= WLAN_KEY_LEN_WEP40
)
268 case WLAN_CIPHER_SUITE_TKIP
:
269 if (params
->key_len
!= WLAN_KEY_LEN_TKIP
)
272 case WLAN_CIPHER_SUITE_CCMP
:
273 if (params
->key_len
!= WLAN_KEY_LEN_CCMP
)
276 case WLAN_CIPHER_SUITE_CCMP_256
:
277 if (params
->key_len
!= WLAN_KEY_LEN_CCMP_256
)
280 case WLAN_CIPHER_SUITE_GCMP
:
281 if (params
->key_len
!= WLAN_KEY_LEN_GCMP
)
284 case WLAN_CIPHER_SUITE_GCMP_256
:
285 if (params
->key_len
!= WLAN_KEY_LEN_GCMP_256
)
288 case WLAN_CIPHER_SUITE_WEP104
:
289 if (params
->key_len
!= WLAN_KEY_LEN_WEP104
)
292 case WLAN_CIPHER_SUITE_AES_CMAC
:
293 if (params
->key_len
!= WLAN_KEY_LEN_AES_CMAC
)
296 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
297 if (params
->key_len
!= WLAN_KEY_LEN_BIP_CMAC_256
)
300 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
301 if (params
->key_len
!= WLAN_KEY_LEN_BIP_GMAC_128
)
304 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
305 if (params
->key_len
!= WLAN_KEY_LEN_BIP_GMAC_256
)
310 * We don't know anything about this algorithm,
311 * allow using it -- but the driver must check
312 * all parameters! We still check below whether
313 * or not the driver supports this algorithm,
320 switch (params
->cipher
) {
321 case WLAN_CIPHER_SUITE_WEP40
:
322 case WLAN_CIPHER_SUITE_WEP104
:
323 /* These ciphers do not use key sequence */
325 case WLAN_CIPHER_SUITE_TKIP
:
326 case WLAN_CIPHER_SUITE_CCMP
:
327 case WLAN_CIPHER_SUITE_CCMP_256
:
328 case WLAN_CIPHER_SUITE_GCMP
:
329 case WLAN_CIPHER_SUITE_GCMP_256
:
330 case WLAN_CIPHER_SUITE_AES_CMAC
:
331 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
332 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
333 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
334 if (params
->seq_len
!= 6)
340 if (!cfg80211_supported_cipher_suite(&rdev
->wiphy
, params
->cipher
))
346 unsigned int __attribute_const__
ieee80211_hdrlen(__le16 fc
)
348 unsigned int hdrlen
= 24;
350 if (ieee80211_is_data(fc
)) {
351 if (ieee80211_has_a4(fc
))
353 if (ieee80211_is_data_qos(fc
)) {
354 hdrlen
+= IEEE80211_QOS_CTL_LEN
;
355 if (ieee80211_has_order(fc
))
356 hdrlen
+= IEEE80211_HT_CTL_LEN
;
361 if (ieee80211_is_mgmt(fc
)) {
362 if (ieee80211_has_order(fc
))
363 hdrlen
+= IEEE80211_HT_CTL_LEN
;
367 if (ieee80211_is_ctl(fc
)) {
369 * ACK and CTS are 10 bytes, all others 16. To see how
370 * to get this condition consider
371 * subtype mask: 0b0000000011110000 (0x00F0)
372 * ACK subtype: 0b0000000011010000 (0x00D0)
373 * CTS subtype: 0b0000000011000000 (0x00C0)
374 * bits that matter: ^^^ (0x00E0)
375 * value of those: 0b0000000011000000 (0x00C0)
377 if ((fc
& cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
385 EXPORT_SYMBOL(ieee80211_hdrlen
);
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff
*skb
)
389 const struct ieee80211_hdr
*hdr
=
390 (const struct ieee80211_hdr
*)skb
->data
;
393 if (unlikely(skb
->len
< 10))
395 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
396 if (unlikely(hdrlen
> skb
->len
))
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb
);
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags
)
404 int ae
= flags
& MESH_FLAGS_AE
;
405 /* 802.11-2012, 8.2.4.7.3 */
410 case MESH_FLAGS_AE_A4
:
412 case MESH_FLAGS_AE_A5_A6
:
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr
*meshhdr
)
419 return __ieee80211_get_mesh_hdrlen(meshhdr
->flags
);
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen
);
423 int ieee80211_data_to_8023_exthdr(struct sk_buff
*skb
, struct ethhdr
*ehdr
,
424 const u8
*addr
, enum nl80211_iftype iftype
,
427 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
429 u8 hdr
[ETH_ALEN
] __aligned(2);
436 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
439 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
) + data_offset
;
440 if (skb
->len
< hdrlen
+ 8)
443 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
445 * IEEE 802.11 address fields:
446 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
447 * 0 0 DA SA BSSID n/a
448 * 0 1 DA BSSID SA n/a
449 * 1 0 BSSID SA DA n/a
452 memcpy(tmp
.h_dest
, ieee80211_get_DA(hdr
), ETH_ALEN
);
453 memcpy(tmp
.h_source
, ieee80211_get_SA(hdr
), ETH_ALEN
);
455 if (iftype
== NL80211_IFTYPE_MESH_POINT
)
456 skb_copy_bits(skb
, hdrlen
, &mesh_flags
, 1);
458 mesh_flags
&= MESH_FLAGS_AE
;
460 switch (hdr
->frame_control
&
461 cpu_to_le16(IEEE80211_FCTL_TODS
| IEEE80211_FCTL_FROMDS
)) {
462 case cpu_to_le16(IEEE80211_FCTL_TODS
):
463 if (unlikely(iftype
!= NL80211_IFTYPE_AP
&&
464 iftype
!= NL80211_IFTYPE_AP_VLAN
&&
465 iftype
!= NL80211_IFTYPE_P2P_GO
))
468 case cpu_to_le16(IEEE80211_FCTL_TODS
| IEEE80211_FCTL_FROMDS
):
469 if (unlikely(iftype
!= NL80211_IFTYPE_WDS
&&
470 iftype
!= NL80211_IFTYPE_MESH_POINT
&&
471 iftype
!= NL80211_IFTYPE_AP_VLAN
&&
472 iftype
!= NL80211_IFTYPE_STATION
))
474 if (iftype
== NL80211_IFTYPE_MESH_POINT
) {
475 if (mesh_flags
== MESH_FLAGS_AE_A4
)
477 if (mesh_flags
== MESH_FLAGS_AE_A5_A6
) {
478 skb_copy_bits(skb
, hdrlen
+
479 offsetof(struct ieee80211s_hdr
, eaddr1
),
480 tmp
.h_dest
, 2 * ETH_ALEN
);
482 hdrlen
+= __ieee80211_get_mesh_hdrlen(mesh_flags
);
485 case cpu_to_le16(IEEE80211_FCTL_FROMDS
):
486 if ((iftype
!= NL80211_IFTYPE_STATION
&&
487 iftype
!= NL80211_IFTYPE_P2P_CLIENT
&&
488 iftype
!= NL80211_IFTYPE_MESH_POINT
) ||
489 (is_multicast_ether_addr(tmp
.h_dest
) &&
490 ether_addr_equal(tmp
.h_source
, addr
)))
492 if (iftype
== NL80211_IFTYPE_MESH_POINT
) {
493 if (mesh_flags
== MESH_FLAGS_AE_A5_A6
)
495 if (mesh_flags
== MESH_FLAGS_AE_A4
)
496 skb_copy_bits(skb
, hdrlen
+
497 offsetof(struct ieee80211s_hdr
, eaddr1
),
498 tmp
.h_source
, ETH_ALEN
);
499 hdrlen
+= __ieee80211_get_mesh_hdrlen(mesh_flags
);
503 if (iftype
!= NL80211_IFTYPE_ADHOC
&&
504 iftype
!= NL80211_IFTYPE_STATION
&&
505 iftype
!= NL80211_IFTYPE_OCB
)
510 skb_copy_bits(skb
, hdrlen
, &payload
, sizeof(payload
));
511 tmp
.h_proto
= payload
.proto
;
513 if (likely((ether_addr_equal(payload
.hdr
, rfc1042_header
) &&
514 tmp
.h_proto
!= htons(ETH_P_AARP
) &&
515 tmp
.h_proto
!= htons(ETH_P_IPX
)) ||
516 ether_addr_equal(payload
.hdr
, bridge_tunnel_header
)))
517 /* remove RFC1042 or Bridge-Tunnel encapsulation and
518 * replace EtherType */
519 hdrlen
+= ETH_ALEN
+ 2;
521 tmp
.h_proto
= htons(skb
->len
- hdrlen
);
523 pskb_pull(skb
, hdrlen
);
526 ehdr
= skb_push(skb
, sizeof(struct ethhdr
));
527 memcpy(ehdr
, &tmp
, sizeof(tmp
));
531 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr
);
534 __frame_add_frag(struct sk_buff
*skb
, struct page
*page
,
535 void *ptr
, int len
, int size
)
537 struct skb_shared_info
*sh
= skb_shinfo(skb
);
541 page_offset
= ptr
- page_address(page
);
542 skb_add_rx_frag(skb
, sh
->nr_frags
, page
, page_offset
, len
, size
);
546 __ieee80211_amsdu_copy_frag(struct sk_buff
*skb
, struct sk_buff
*frame
,
549 struct skb_shared_info
*sh
= skb_shinfo(skb
);
550 const skb_frag_t
*frag
= &sh
->frags
[0];
551 struct page
*frag_page
;
553 int frag_len
, frag_size
;
554 int head_size
= skb
->len
- skb
->data_len
;
557 frag_page
= virt_to_head_page(skb
->head
);
558 frag_ptr
= skb
->data
;
559 frag_size
= head_size
;
561 while (offset
>= frag_size
) {
563 frag_page
= skb_frag_page(frag
);
564 frag_ptr
= skb_frag_address(frag
);
565 frag_size
= skb_frag_size(frag
);
570 frag_len
= frag_size
- offset
;
572 cur_len
= min(len
, frag_len
);
574 __frame_add_frag(frame
, frag_page
, frag_ptr
, cur_len
, frag_size
);
578 frag_len
= skb_frag_size(frag
);
579 cur_len
= min(len
, frag_len
);
580 __frame_add_frag(frame
, skb_frag_page(frag
),
581 skb_frag_address(frag
), cur_len
, frag_len
);
587 static struct sk_buff
*
588 __ieee80211_amsdu_copy(struct sk_buff
*skb
, unsigned int hlen
,
589 int offset
, int len
, bool reuse_frag
)
591 struct sk_buff
*frame
;
594 if (skb
->len
- offset
< len
)
598 * When reusing framents, copy some data to the head to simplify
599 * ethernet header handling and speed up protocol header processing
600 * in the stack later.
603 cur_len
= min_t(int, len
, 32);
606 * Allocate and reserve two bytes more for payload
607 * alignment since sizeof(struct ethhdr) is 14.
609 frame
= dev_alloc_skb(hlen
+ sizeof(struct ethhdr
) + 2 + cur_len
);
613 skb_reserve(frame
, hlen
+ sizeof(struct ethhdr
) + 2);
614 skb_copy_bits(skb
, offset
, skb_put(frame
, cur_len
), cur_len
);
621 __ieee80211_amsdu_copy_frag(skb
, frame
, offset
, len
);
626 void ieee80211_amsdu_to_8023s(struct sk_buff
*skb
, struct sk_buff_head
*list
,
627 const u8
*addr
, enum nl80211_iftype iftype
,
628 const unsigned int extra_headroom
,
629 const u8
*check_da
, const u8
*check_sa
)
631 unsigned int hlen
= ALIGN(extra_headroom
, 4);
632 struct sk_buff
*frame
= NULL
;
635 int offset
= 0, remaining
;
637 bool reuse_frag
= skb
->head_frag
&& !skb_has_frag_list(skb
);
638 bool reuse_skb
= false;
642 unsigned int subframe_len
;
646 skb_copy_bits(skb
, offset
, ð
, sizeof(eth
));
647 len
= ntohs(eth
.h_proto
);
648 subframe_len
= sizeof(struct ethhdr
) + len
;
649 padding
= (4 - subframe_len
) & 0x3;
651 /* the last MSDU has no padding */
652 remaining
= skb
->len
- offset
;
653 if (subframe_len
> remaining
)
656 offset
+= sizeof(struct ethhdr
);
657 last
= remaining
<= subframe_len
+ padding
;
659 /* FIXME: should we really accept multicast DA? */
660 if ((check_da
&& !is_multicast_ether_addr(eth
.h_dest
) &&
661 !ether_addr_equal(check_da
, eth
.h_dest
)) ||
662 (check_sa
&& !ether_addr_equal(check_sa
, eth
.h_source
))) {
663 offset
+= len
+ padding
;
667 /* reuse skb for the last subframe */
668 if (!skb_is_nonlinear(skb
) && !reuse_frag
&& last
) {
669 skb_pull(skb
, offset
);
673 frame
= __ieee80211_amsdu_copy(skb
, hlen
, offset
, len
,
678 offset
+= len
+ padding
;
681 skb_reset_network_header(frame
);
682 frame
->dev
= skb
->dev
;
683 frame
->priority
= skb
->priority
;
685 payload
= frame
->data
;
686 ethertype
= (payload
[6] << 8) | payload
[7];
687 if (likely((ether_addr_equal(payload
, rfc1042_header
) &&
688 ethertype
!= ETH_P_AARP
&& ethertype
!= ETH_P_IPX
) ||
689 ether_addr_equal(payload
, bridge_tunnel_header
))) {
690 eth
.h_proto
= htons(ethertype
);
691 skb_pull(frame
, ETH_ALEN
+ 2);
694 memcpy(skb_push(frame
, sizeof(eth
)), ð
, sizeof(eth
));
695 __skb_queue_tail(list
, frame
);
704 __skb_queue_purge(list
);
707 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s
);
709 /* Given a data frame determine the 802.1p/1d tag to use. */
710 unsigned int cfg80211_classify8021d(struct sk_buff
*skb
,
711 struct cfg80211_qos_map
*qos_map
)
714 unsigned char vlan_priority
;
716 /* skb->priority values from 256->263 are magic values to
717 * directly indicate a specific 802.1d priority. This is used
718 * to allow 802.1d priority to be passed directly in from VLAN
721 if (skb
->priority
>= 256 && skb
->priority
<= 263)
722 return skb
->priority
- 256;
724 if (skb_vlan_tag_present(skb
)) {
725 vlan_priority
= (skb_vlan_tag_get(skb
) & VLAN_PRIO_MASK
)
727 if (vlan_priority
> 0)
728 return vlan_priority
;
731 switch (skb
->protocol
) {
732 case htons(ETH_P_IP
):
733 dscp
= ipv4_get_dsfield(ip_hdr(skb
)) & 0xfc;
735 case htons(ETH_P_IPV6
):
736 dscp
= ipv6_get_dsfield(ipv6_hdr(skb
)) & 0xfc;
738 case htons(ETH_P_MPLS_UC
):
739 case htons(ETH_P_MPLS_MC
): {
740 struct mpls_label mpls_tmp
, *mpls
;
742 mpls
= skb_header_pointer(skb
, sizeof(struct ethhdr
),
743 sizeof(*mpls
), &mpls_tmp
);
747 return (ntohl(mpls
->entry
) & MPLS_LS_TC_MASK
)
750 case htons(ETH_P_80221
):
751 /* 802.21 is always network control traffic */
758 unsigned int i
, tmp_dscp
= dscp
>> 2;
760 for (i
= 0; i
< qos_map
->num_des
; i
++) {
761 if (tmp_dscp
== qos_map
->dscp_exception
[i
].dscp
)
762 return qos_map
->dscp_exception
[i
].up
;
765 for (i
= 0; i
< 8; i
++) {
766 if (tmp_dscp
>= qos_map
->up
[i
].low
&&
767 tmp_dscp
<= qos_map
->up
[i
].high
)
774 EXPORT_SYMBOL(cfg80211_classify8021d
);
776 const u8
*ieee80211_bss_get_ie(struct cfg80211_bss
*bss
, u8 ie
)
778 const struct cfg80211_bss_ies
*ies
;
780 ies
= rcu_dereference(bss
->ies
);
784 return cfg80211_find_ie(ie
, ies
->data
, ies
->len
);
786 EXPORT_SYMBOL(ieee80211_bss_get_ie
);
788 void cfg80211_upload_connect_keys(struct wireless_dev
*wdev
)
790 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wdev
->wiphy
);
791 struct net_device
*dev
= wdev
->netdev
;
794 if (!wdev
->connect_keys
)
797 for (i
= 0; i
< CFG80211_MAX_WEP_KEYS
; i
++) {
798 if (!wdev
->connect_keys
->params
[i
].cipher
)
800 if (rdev_add_key(rdev
, dev
, i
, false, NULL
,
801 &wdev
->connect_keys
->params
[i
])) {
802 netdev_err(dev
, "failed to set key %d\n", i
);
805 if (wdev
->connect_keys
->def
== i
&&
806 rdev_set_default_key(rdev
, dev
, i
, true, true)) {
807 netdev_err(dev
, "failed to set defkey %d\n", i
);
812 kzfree(wdev
->connect_keys
);
813 wdev
->connect_keys
= NULL
;
816 void cfg80211_process_wdev_events(struct wireless_dev
*wdev
)
818 struct cfg80211_event
*ev
;
821 spin_lock_irqsave(&wdev
->event_lock
, flags
);
822 while (!list_empty(&wdev
->event_list
)) {
823 ev
= list_first_entry(&wdev
->event_list
,
824 struct cfg80211_event
, list
);
826 spin_unlock_irqrestore(&wdev
->event_lock
, flags
);
830 case EVENT_CONNECT_RESULT
:
831 __cfg80211_connect_result(
834 ev
->cr
.status
== WLAN_STATUS_SUCCESS
);
837 __cfg80211_roamed(wdev
, &ev
->rm
);
839 case EVENT_DISCONNECTED
:
840 __cfg80211_disconnected(wdev
->netdev
,
841 ev
->dc
.ie
, ev
->dc
.ie_len
,
843 !ev
->dc
.locally_generated
);
845 case EVENT_IBSS_JOINED
:
846 __cfg80211_ibss_joined(wdev
->netdev
, ev
->ij
.bssid
,
850 __cfg80211_leave(wiphy_to_rdev(wdev
->wiphy
), wdev
);
852 case EVENT_PORT_AUTHORIZED
:
853 __cfg80211_port_authorized(wdev
, ev
->pa
.bssid
);
860 spin_lock_irqsave(&wdev
->event_lock
, flags
);
862 spin_unlock_irqrestore(&wdev
->event_lock
, flags
);
865 void cfg80211_process_rdev_events(struct cfg80211_registered_device
*rdev
)
867 struct wireless_dev
*wdev
;
871 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
)
872 cfg80211_process_wdev_events(wdev
);
875 int cfg80211_change_iface(struct cfg80211_registered_device
*rdev
,
876 struct net_device
*dev
, enum nl80211_iftype ntype
,
877 struct vif_params
*params
)
880 enum nl80211_iftype otype
= dev
->ieee80211_ptr
->iftype
;
884 /* don't support changing VLANs, you just re-create them */
885 if (otype
== NL80211_IFTYPE_AP_VLAN
)
888 /* cannot change into P2P device or NAN */
889 if (ntype
== NL80211_IFTYPE_P2P_DEVICE
||
890 ntype
== NL80211_IFTYPE_NAN
)
893 if (!rdev
->ops
->change_virtual_intf
||
894 !(rdev
->wiphy
.interface_modes
& (1 << ntype
)))
897 /* if it's part of a bridge, reject changing type to station/ibss */
898 if ((dev
->priv_flags
& IFF_BRIDGE_PORT
) &&
899 (ntype
== NL80211_IFTYPE_ADHOC
||
900 ntype
== NL80211_IFTYPE_STATION
||
901 ntype
== NL80211_IFTYPE_P2P_CLIENT
))
904 if (ntype
!= otype
) {
905 dev
->ieee80211_ptr
->use_4addr
= false;
906 dev
->ieee80211_ptr
->mesh_id_up_len
= 0;
907 wdev_lock(dev
->ieee80211_ptr
);
908 rdev_set_qos_map(rdev
, dev
, NULL
);
909 wdev_unlock(dev
->ieee80211_ptr
);
912 case NL80211_IFTYPE_AP
:
913 cfg80211_stop_ap(rdev
, dev
, true);
915 case NL80211_IFTYPE_ADHOC
:
916 cfg80211_leave_ibss(rdev
, dev
, false);
918 case NL80211_IFTYPE_STATION
:
919 case NL80211_IFTYPE_P2P_CLIENT
:
920 wdev_lock(dev
->ieee80211_ptr
);
921 cfg80211_disconnect(rdev
, dev
,
922 WLAN_REASON_DEAUTH_LEAVING
, true);
923 wdev_unlock(dev
->ieee80211_ptr
);
925 case NL80211_IFTYPE_MESH_POINT
:
926 /* mesh should be handled? */
932 cfg80211_process_rdev_events(rdev
);
933 cfg80211_mlme_purge_registrations(dev
->ieee80211_ptr
);
936 err
= rdev_change_virtual_intf(rdev
, dev
, ntype
, params
);
938 WARN_ON(!err
&& dev
->ieee80211_ptr
->iftype
!= ntype
);
940 if (!err
&& params
&& params
->use_4addr
!= -1)
941 dev
->ieee80211_ptr
->use_4addr
= params
->use_4addr
;
944 dev
->priv_flags
&= ~IFF_DONT_BRIDGE
;
946 case NL80211_IFTYPE_STATION
:
947 if (dev
->ieee80211_ptr
->use_4addr
)
950 case NL80211_IFTYPE_OCB
:
951 case NL80211_IFTYPE_P2P_CLIENT
:
952 case NL80211_IFTYPE_ADHOC
:
953 dev
->priv_flags
|= IFF_DONT_BRIDGE
;
955 case NL80211_IFTYPE_P2P_GO
:
956 case NL80211_IFTYPE_AP
:
957 case NL80211_IFTYPE_AP_VLAN
:
958 case NL80211_IFTYPE_WDS
:
959 case NL80211_IFTYPE_MESH_POINT
:
962 case NL80211_IFTYPE_MONITOR
:
963 /* monitor can't bridge anyway */
965 case NL80211_IFTYPE_UNSPECIFIED
:
966 case NUM_NL80211_IFTYPES
:
969 case NL80211_IFTYPE_P2P_DEVICE
:
970 case NL80211_IFTYPE_NAN
:
976 if (!err
&& ntype
!= otype
&& netif_running(dev
)) {
977 cfg80211_update_iface_num(rdev
, ntype
, 1);
978 cfg80211_update_iface_num(rdev
, otype
, -1);
984 static u32
cfg80211_calculate_bitrate_ht(struct rate_info
*rate
)
986 int modulation
, streams
, bitrate
;
988 /* the formula below does only work for MCS values smaller than 32 */
989 if (WARN_ON_ONCE(rate
->mcs
>= 32))
992 modulation
= rate
->mcs
& 7;
993 streams
= (rate
->mcs
>> 3) + 1;
995 bitrate
= (rate
->bw
== RATE_INFO_BW_40
) ? 13500000 : 6500000;
998 bitrate
*= (modulation
+ 1);
999 else if (modulation
== 4)
1000 bitrate
*= (modulation
+ 2);
1002 bitrate
*= (modulation
+ 3);
1006 if (rate
->flags
& RATE_INFO_FLAGS_SHORT_GI
)
1007 bitrate
= (bitrate
/ 9) * 10;
1009 /* do NOT round down here */
1010 return (bitrate
+ 50000) / 100000;
1013 static u32
cfg80211_calculate_bitrate_60g(struct rate_info
*rate
)
1015 static const u32 __mcs2bitrate
[] = {
1023 [5] = 12512, /* 1251.25 mbps */
1033 [14] = 8662, /* 866.25 mbps */
1043 [24] = 67568, /* 6756.75 mbps */
1054 if (WARN_ON_ONCE(rate
->mcs
>= ARRAY_SIZE(__mcs2bitrate
)))
1057 return __mcs2bitrate
[rate
->mcs
];
1060 static u32
cfg80211_calculate_bitrate_vht(struct rate_info
*rate
)
1062 static const u32 base
[4][10] = {
1072 /* not in the spec, but some devices use this: */
1116 case RATE_INFO_BW_160
:
1119 case RATE_INFO_BW_80
:
1122 case RATE_INFO_BW_40
:
1125 case RATE_INFO_BW_5
:
1126 case RATE_INFO_BW_10
:
1129 case RATE_INFO_BW_20
:
1133 bitrate
= base
[idx
][rate
->mcs
];
1134 bitrate
*= rate
->nss
;
1136 if (rate
->flags
& RATE_INFO_FLAGS_SHORT_GI
)
1137 bitrate
= (bitrate
/ 9) * 10;
1139 /* do NOT round down here */
1140 return (bitrate
+ 50000) / 100000;
1142 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1143 rate
->bw
, rate
->mcs
, rate
->nss
);
1147 static u32
cfg80211_calculate_bitrate_he(struct rate_info
*rate
)
1150 u16 mcs_divisors
[12] = {
1151 34133, /* 16.666666... */
1152 17067, /* 8.333333... */
1153 11378, /* 5.555555... */
1154 8533, /* 4.166666... */
1155 5689, /* 2.777777... */
1156 4267, /* 2.083333... */
1157 3923, /* 1.851851... */
1158 3413, /* 1.666666... */
1159 2844, /* 1.388888... */
1160 2560, /* 1.250000... */
1161 2276, /* 1.111111... */
1162 2048, /* 1.000000... */
1164 u32 rates_160M
[3] = { 960777777, 907400000, 816666666 };
1165 u32 rates_969
[3] = { 480388888, 453700000, 408333333 };
1166 u32 rates_484
[3] = { 229411111, 216666666, 195000000 };
1167 u32 rates_242
[3] = { 114711111, 108333333, 97500000 };
1168 u32 rates_106
[3] = { 40000000, 37777777, 34000000 };
1169 u32 rates_52
[3] = { 18820000, 17777777, 16000000 };
1170 u32 rates_26
[3] = { 9411111, 8888888, 8000000 };
1174 if (WARN_ON_ONCE(rate
->mcs
> 11))
1177 if (WARN_ON_ONCE(rate
->he_gi
> NL80211_RATE_INFO_HE_GI_3_2
))
1179 if (WARN_ON_ONCE(rate
->he_ru_alloc
>
1180 NL80211_RATE_INFO_HE_RU_ALLOC_2x996
))
1182 if (WARN_ON_ONCE(rate
->nss
< 1 || rate
->nss
> 8))
1185 if (rate
->bw
== RATE_INFO_BW_160
)
1186 result
= rates_160M
[rate
->he_gi
];
1187 else if (rate
->bw
== RATE_INFO_BW_80
||
1188 (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1189 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_996
))
1190 result
= rates_969
[rate
->he_gi
];
1191 else if (rate
->bw
== RATE_INFO_BW_40
||
1192 (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1193 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_484
))
1194 result
= rates_484
[rate
->he_gi
];
1195 else if (rate
->bw
== RATE_INFO_BW_20
||
1196 (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1197 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_242
))
1198 result
= rates_242
[rate
->he_gi
];
1199 else if (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1200 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_106
)
1201 result
= rates_106
[rate
->he_gi
];
1202 else if (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1203 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_52
)
1204 result
= rates_52
[rate
->he_gi
];
1205 else if (rate
->bw
== RATE_INFO_BW_HE_RU
&&
1206 rate
->he_ru_alloc
== NL80211_RATE_INFO_HE_RU_ALLOC_26
)
1207 result
= rates_26
[rate
->he_gi
];
1208 else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1209 rate
->bw
, rate
->he_ru_alloc
))
1212 /* now scale to the appropriate MCS */
1215 do_div(tmp
, mcs_divisors
[rate
->mcs
]);
1218 /* and take NSS, DCM into account */
1219 result
= (result
* rate
->nss
) / 8;
1223 return result
/ 10000;
1226 u32
cfg80211_calculate_bitrate(struct rate_info
*rate
)
1228 if (rate
->flags
& RATE_INFO_FLAGS_MCS
)
1229 return cfg80211_calculate_bitrate_ht(rate
);
1230 if (rate
->flags
& RATE_INFO_FLAGS_60G
)
1231 return cfg80211_calculate_bitrate_60g(rate
);
1232 if (rate
->flags
& RATE_INFO_FLAGS_VHT_MCS
)
1233 return cfg80211_calculate_bitrate_vht(rate
);
1234 if (rate
->flags
& RATE_INFO_FLAGS_HE_MCS
)
1235 return cfg80211_calculate_bitrate_he(rate
);
1237 return rate
->legacy
;
1239 EXPORT_SYMBOL(cfg80211_calculate_bitrate
);
1241 int cfg80211_get_p2p_attr(const u8
*ies
, unsigned int len
,
1242 enum ieee80211_p2p_attr_id attr
,
1243 u8
*buf
, unsigned int bufsize
)
1246 u16 attr_remaining
= 0;
1247 bool desired_attr
= false;
1248 u16 desired_len
= 0;
1251 unsigned int iedatalen
;
1258 if (iedatalen
+ 2 > len
)
1261 if (ies
[0] != WLAN_EID_VENDOR_SPECIFIC
)
1269 /* check WFA OUI, P2P subtype */
1270 if (iedata
[0] != 0x50 || iedata
[1] != 0x6f ||
1271 iedata
[2] != 0x9a || iedata
[3] != 0x09)
1277 /* check attribute continuation into this IE */
1278 copy
= min_t(unsigned int, attr_remaining
, iedatalen
);
1279 if (copy
&& desired_attr
) {
1280 desired_len
+= copy
;
1282 memcpy(out
, iedata
, min(bufsize
, copy
));
1283 out
+= min(bufsize
, copy
);
1284 bufsize
-= min(bufsize
, copy
);
1288 if (copy
== attr_remaining
)
1292 attr_remaining
-= copy
;
1299 while (iedatalen
> 0) {
1302 /* P2P attribute ID & size must fit */
1305 desired_attr
= iedata
[0] == attr
;
1306 attr_len
= get_unaligned_le16(iedata
+ 1);
1310 copy
= min_t(unsigned int, attr_len
, iedatalen
);
1313 desired_len
+= copy
;
1315 memcpy(out
, iedata
, min(bufsize
, copy
));
1316 out
+= min(bufsize
, copy
);
1317 bufsize
-= min(bufsize
, copy
);
1320 if (copy
== attr_len
)
1326 attr_remaining
= attr_len
- copy
;
1334 if (attr_remaining
&& desired_attr
)
1339 EXPORT_SYMBOL(cfg80211_get_p2p_attr
);
1341 static bool ieee80211_id_in_list(const u8
*ids
, int n_ids
, u8 id
, bool id_ext
)
1345 /* Make sure array values are legal */
1346 if (WARN_ON(ids
[n_ids
- 1] == WLAN_EID_EXTENSION
))
1351 if (ids
[i
] == WLAN_EID_EXTENSION
) {
1352 if (id_ext
&& (ids
[i
+ 1] == id
))
1359 if (ids
[i
] == id
&& !id_ext
)
1367 static size_t skip_ie(const u8
*ies
, size_t ielen
, size_t pos
)
1369 /* we assume a validly formed IEs buffer */
1370 u8 len
= ies
[pos
+ 1];
1374 /* the IE itself must have 255 bytes for fragments to follow */
1378 while (pos
< ielen
&& ies
[pos
] == WLAN_EID_FRAGMENT
) {
1386 size_t ieee80211_ie_split_ric(const u8
*ies
, size_t ielen
,
1387 const u8
*ids
, int n_ids
,
1388 const u8
*after_ric
, int n_after_ric
,
1391 size_t pos
= offset
;
1393 while (pos
< ielen
) {
1396 if (ies
[pos
] == WLAN_EID_EXTENSION
)
1398 if ((pos
+ ext
) >= ielen
)
1401 if (!ieee80211_id_in_list(ids
, n_ids
, ies
[pos
+ ext
],
1402 ies
[pos
] == WLAN_EID_EXTENSION
))
1405 if (ies
[pos
] == WLAN_EID_RIC_DATA
&& n_after_ric
) {
1406 pos
= skip_ie(ies
, ielen
, pos
);
1408 while (pos
< ielen
) {
1409 if (ies
[pos
] == WLAN_EID_EXTENSION
)
1414 if ((pos
+ ext
) >= ielen
)
1417 if (!ieee80211_id_in_list(after_ric
,
1421 pos
= skip_ie(ies
, ielen
, pos
);
1426 pos
= skip_ie(ies
, ielen
, pos
);
1432 EXPORT_SYMBOL(ieee80211_ie_split_ric
);
1434 bool ieee80211_operating_class_to_band(u8 operating_class
,
1435 enum nl80211_band
*band
)
1437 switch (operating_class
) {
1441 *band
= NL80211_BAND_5GHZ
;
1447 *band
= NL80211_BAND_2GHZ
;
1450 *band
= NL80211_BAND_60GHZ
;
1456 EXPORT_SYMBOL(ieee80211_operating_class_to_band
);
1458 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def
*chandef
,
1462 u32 freq
= chandef
->center_freq1
;
1464 if (freq
>= 2412 && freq
<= 2472) {
1465 if (chandef
->width
> NL80211_CHAN_WIDTH_40
)
1468 /* 2.407 GHz, channels 1..13 */
1469 if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1470 if (freq
> chandef
->chan
->center_freq
)
1471 *op_class
= 83; /* HT40+ */
1473 *op_class
= 84; /* HT40- */
1482 if (chandef
->width
> NL80211_CHAN_WIDTH_40
)
1485 *op_class
= 82; /* channel 14 */
1489 switch (chandef
->width
) {
1490 case NL80211_CHAN_WIDTH_80
:
1493 case NL80211_CHAN_WIDTH_160
:
1496 case NL80211_CHAN_WIDTH_80P80
:
1499 case NL80211_CHAN_WIDTH_10
:
1500 case NL80211_CHAN_WIDTH_5
:
1501 return false; /* unsupported for now */
1507 /* 5 GHz, channels 36..48 */
1508 if (freq
>= 5180 && freq
<= 5240) {
1510 *op_class
= vht_opclass
;
1511 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1512 if (freq
> chandef
->chan
->center_freq
)
1523 /* 5 GHz, channels 52..64 */
1524 if (freq
>= 5260 && freq
<= 5320) {
1526 *op_class
= vht_opclass
;
1527 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1528 if (freq
> chandef
->chan
->center_freq
)
1539 /* 5 GHz, channels 100..144 */
1540 if (freq
>= 5500 && freq
<= 5720) {
1542 *op_class
= vht_opclass
;
1543 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1544 if (freq
> chandef
->chan
->center_freq
)
1555 /* 5 GHz, channels 149..169 */
1556 if (freq
>= 5745 && freq
<= 5845) {
1558 *op_class
= vht_opclass
;
1559 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1560 if (freq
> chandef
->chan
->center_freq
)
1564 } else if (freq
<= 5805) {
1573 /* 56.16 GHz, channel 1..4 */
1574 if (freq
>= 56160 + 2160 * 1 && freq
<= 56160 + 2160 * 4) {
1575 if (chandef
->width
>= NL80211_CHAN_WIDTH_40
)
1582 /* not supported yet */
1585 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class
);
1587 static void cfg80211_calculate_bi_data(struct wiphy
*wiphy
, u32 new_beacon_int
,
1588 u32
*beacon_int_gcd
,
1589 bool *beacon_int_different
)
1591 struct wireless_dev
*wdev
;
1593 *beacon_int_gcd
= 0;
1594 *beacon_int_different
= false;
1596 list_for_each_entry(wdev
, &wiphy
->wdev_list
, list
) {
1597 if (!wdev
->beacon_interval
)
1600 if (!*beacon_int_gcd
) {
1601 *beacon_int_gcd
= wdev
->beacon_interval
;
1605 if (wdev
->beacon_interval
== *beacon_int_gcd
)
1608 *beacon_int_different
= true;
1609 *beacon_int_gcd
= gcd(*beacon_int_gcd
, wdev
->beacon_interval
);
1612 if (new_beacon_int
&& *beacon_int_gcd
!= new_beacon_int
) {
1613 if (*beacon_int_gcd
)
1614 *beacon_int_different
= true;
1615 *beacon_int_gcd
= gcd(*beacon_int_gcd
, new_beacon_int
);
1619 int cfg80211_validate_beacon_int(struct cfg80211_registered_device
*rdev
,
1620 enum nl80211_iftype iftype
, u32 beacon_int
)
1623 * This is just a basic pre-condition check; if interface combinations
1624 * are possible the driver must already be checking those with a call
1625 * to cfg80211_check_combinations(), in which case we'll validate more
1626 * through the cfg80211_calculate_bi_data() call and code in
1627 * cfg80211_iter_combinations().
1630 if (beacon_int
< 10 || beacon_int
> 10000)
1636 int cfg80211_iter_combinations(struct wiphy
*wiphy
,
1637 struct iface_combination_params
*params
,
1638 void (*iter
)(const struct ieee80211_iface_combination
*c
,
1642 const struct ieee80211_regdomain
*regdom
;
1643 enum nl80211_dfs_regions region
= 0;
1645 int num_interfaces
= 0;
1646 u32 used_iftypes
= 0;
1648 bool beacon_int_different
;
1651 * This is a bit strange, since the iteration used to rely only on
1652 * the data given by the driver, but here it now relies on context,
1653 * in form of the currently operating interfaces.
1654 * This is OK for all current users, and saves us from having to
1655 * push the GCD calculations into all the drivers.
1656 * In the future, this should probably rely more on data that's in
1657 * cfg80211 already - the only thing not would appear to be any new
1658 * interfaces (while being brought up) and channel/radar data.
1660 cfg80211_calculate_bi_data(wiphy
, params
->new_beacon_int
,
1661 &beacon_int_gcd
, &beacon_int_different
);
1663 if (params
->radar_detect
) {
1665 regdom
= rcu_dereference(cfg80211_regdomain
);
1667 region
= regdom
->dfs_region
;
1671 for (iftype
= 0; iftype
< NUM_NL80211_IFTYPES
; iftype
++) {
1672 num_interfaces
+= params
->iftype_num
[iftype
];
1673 if (params
->iftype_num
[iftype
] > 0 &&
1674 !cfg80211_iftype_allowed(wiphy
, iftype
, 0, 1))
1675 used_iftypes
|= BIT(iftype
);
1678 for (i
= 0; i
< wiphy
->n_iface_combinations
; i
++) {
1679 const struct ieee80211_iface_combination
*c
;
1680 struct ieee80211_iface_limit
*limits
;
1681 u32 all_iftypes
= 0;
1683 c
= &wiphy
->iface_combinations
[i
];
1685 if (num_interfaces
> c
->max_interfaces
)
1687 if (params
->num_different_channels
> c
->num_different_channels
)
1690 limits
= kmemdup(c
->limits
, sizeof(limits
[0]) * c
->n_limits
,
1695 for (iftype
= 0; iftype
< NUM_NL80211_IFTYPES
; iftype
++) {
1696 if (cfg80211_iftype_allowed(wiphy
, iftype
, 0, 1))
1698 for (j
= 0; j
< c
->n_limits
; j
++) {
1699 all_iftypes
|= limits
[j
].types
;
1700 if (!(limits
[j
].types
& BIT(iftype
)))
1702 if (limits
[j
].max
< params
->iftype_num
[iftype
])
1704 limits
[j
].max
-= params
->iftype_num
[iftype
];
1708 if (params
->radar_detect
!=
1709 (c
->radar_detect_widths
& params
->radar_detect
))
1712 if (params
->radar_detect
&& c
->radar_detect_regions
&&
1713 !(c
->radar_detect_regions
& BIT(region
)))
1716 /* Finally check that all iftypes that we're currently
1717 * using are actually part of this combination. If they
1718 * aren't then we can't use this combination and have
1719 * to continue to the next.
1721 if ((all_iftypes
& used_iftypes
) != used_iftypes
)
1724 if (beacon_int_gcd
) {
1725 if (c
->beacon_int_min_gcd
&&
1726 beacon_int_gcd
< c
->beacon_int_min_gcd
)
1728 if (!c
->beacon_int_min_gcd
&& beacon_int_different
)
1732 /* This combination covered all interface types and
1733 * supported the requested numbers, so we're good.
1743 EXPORT_SYMBOL(cfg80211_iter_combinations
);
1746 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination
*c
,
1753 int cfg80211_check_combinations(struct wiphy
*wiphy
,
1754 struct iface_combination_params
*params
)
1758 err
= cfg80211_iter_combinations(wiphy
, params
,
1759 cfg80211_iter_sum_ifcombs
, &num
);
1767 EXPORT_SYMBOL(cfg80211_check_combinations
);
1769 int ieee80211_get_ratemask(struct ieee80211_supported_band
*sband
,
1770 const u8
*rates
, unsigned int n_rates
,
1778 if (n_rates
== 0 || n_rates
> NL80211_MAX_SUPP_RATES
)
1783 for (i
= 0; i
< n_rates
; i
++) {
1784 int rate
= (rates
[i
] & 0x7f) * 5;
1787 for (j
= 0; j
< sband
->n_bitrates
; j
++) {
1788 if (sband
->bitrates
[j
].bitrate
== rate
) {
1799 * mask must have at least one bit set here since we
1800 * didn't accept a 0-length rates array nor allowed
1801 * entries in the array that didn't exist
1807 unsigned int ieee80211_get_num_supported_channels(struct wiphy
*wiphy
)
1809 enum nl80211_band band
;
1810 unsigned int n_channels
= 0;
1812 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
1813 if (wiphy
->bands
[band
])
1814 n_channels
+= wiphy
->bands
[band
]->n_channels
;
1818 EXPORT_SYMBOL(ieee80211_get_num_supported_channels
);
1820 int cfg80211_get_station(struct net_device
*dev
, const u8
*mac_addr
,
1821 struct station_info
*sinfo
)
1823 struct cfg80211_registered_device
*rdev
;
1824 struct wireless_dev
*wdev
;
1826 wdev
= dev
->ieee80211_ptr
;
1830 rdev
= wiphy_to_rdev(wdev
->wiphy
);
1831 if (!rdev
->ops
->get_station
)
1834 memset(sinfo
, 0, sizeof(*sinfo
));
1836 return rdev_get_station(rdev
, dev
, mac_addr
, sinfo
);
1838 EXPORT_SYMBOL(cfg80211_get_station
);
1840 void cfg80211_free_nan_func(struct cfg80211_nan_func
*f
)
1847 kfree(f
->serv_spec_info
);
1850 for (i
= 0; i
< f
->num_rx_filters
; i
++)
1851 kfree(f
->rx_filters
[i
].filter
);
1853 for (i
= 0; i
< f
->num_tx_filters
; i
++)
1854 kfree(f
->tx_filters
[i
].filter
);
1856 kfree(f
->rx_filters
);
1857 kfree(f
->tx_filters
);
1860 EXPORT_SYMBOL(cfg80211_free_nan_func
);
1862 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range
*freq_range
,
1863 u32 center_freq_khz
, u32 bw_khz
)
1865 u32 start_freq_khz
, end_freq_khz
;
1867 start_freq_khz
= center_freq_khz
- (bw_khz
/ 2);
1868 end_freq_khz
= center_freq_khz
+ (bw_khz
/ 2);
1870 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
1871 end_freq_khz
<= freq_range
->end_freq_khz
)
1877 int cfg80211_sinfo_alloc_tid_stats(struct station_info
*sinfo
, gfp_t gfp
)
1879 sinfo
->pertid
= kcalloc(IEEE80211_NUM_TIDS
+ 1,
1880 sizeof(*(sinfo
->pertid
)),
1887 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats
);
1889 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1890 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1891 const unsigned char rfc1042_header
[] __aligned(2) =
1892 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1893 EXPORT_SYMBOL(rfc1042_header
);
1895 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1896 const unsigned char bridge_tunnel_header
[] __aligned(2) =
1897 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1898 EXPORT_SYMBOL(bridge_tunnel_header
);
1900 bool cfg80211_iftype_allowed(struct wiphy
*wiphy
, enum nl80211_iftype iftype
,
1901 bool is_4addr
, u8 check_swif
)
1904 bool is_vlan
= iftype
== NL80211_IFTYPE_AP_VLAN
;
1906 switch (check_swif
) {
1908 if (is_vlan
&& is_4addr
)
1909 return wiphy
->flags
& WIPHY_FLAG_4ADDR_AP
;
1910 return wiphy
->interface_modes
& BIT(iftype
);
1912 if (!(wiphy
->software_iftypes
& BIT(iftype
)) && is_vlan
)
1913 return wiphy
->flags
& WIPHY_FLAG_4ADDR_AP
;
1914 return wiphy
->software_iftypes
& BIT(iftype
);
1921 EXPORT_SYMBOL(cfg80211_iftype_allowed
);
1923 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1924 struct iapp_layer2_update
{
1925 u8 da
[ETH_ALEN
]; /* broadcast */
1926 u8 sa
[ETH_ALEN
]; /* STA addr */
1934 void cfg80211_send_layer2_update(struct net_device
*dev
, const u8
*addr
)
1936 struct iapp_layer2_update
*msg
;
1937 struct sk_buff
*skb
;
1939 /* Send Level 2 Update Frame to update forwarding tables in layer 2
1942 skb
= dev_alloc_skb(sizeof(*msg
));
1945 msg
= skb_put(skb
, sizeof(*msg
));
1947 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
1948 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
1950 eth_broadcast_addr(msg
->da
);
1951 ether_addr_copy(msg
->sa
, addr
);
1952 msg
->len
= htons(6);
1954 msg
->ssap
= 0x01; /* NULL LSAP, CR Bit: Response */
1955 msg
->control
= 0xaf; /* XID response lsb.1111F101.
1956 * F=0 (no poll command; unsolicited frame) */
1957 msg
->xid_info
[0] = 0x81; /* XID format identifier */
1958 msg
->xid_info
[1] = 1; /* LLC types/classes: Type 1 LLC */
1959 msg
->xid_info
[2] = 0; /* XID sender's receive window size (RW) */
1962 skb
->protocol
= eth_type_trans(skb
, dev
);
1963 memset(skb
->cb
, 0, sizeof(skb
->cb
));
1966 EXPORT_SYMBOL(cfg80211_send_layer2_update
);