Linux 4.19.133
[linux/fpc-iii.git] / tools / testing / selftests / bpf / test_lpm_map.c
blob006be39639778f9311fd849849a41ebe4e62f5c0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Randomized tests for eBPF longest-prefix-match maps
5 * This program runs randomized tests against the lpm-bpf-map. It implements a
6 * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked
7 * lists. The implementation should be pretty straightforward.
9 * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies
10 * the trie-based bpf-map implementation behaves the same way as tlpm.
13 #include <assert.h>
14 #include <errno.h>
15 #include <inttypes.h>
16 #include <linux/bpf.h>
17 #include <pthread.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <time.h>
22 #include <unistd.h>
23 #include <arpa/inet.h>
24 #include <sys/time.h>
26 #include <bpf/bpf.h>
28 #include "bpf_util.h"
29 #include "bpf_rlimit.h"
31 struct tlpm_node {
32 struct tlpm_node *next;
33 size_t n_bits;
34 uint8_t key[];
37 static struct tlpm_node *tlpm_match(struct tlpm_node *list,
38 const uint8_t *key,
39 size_t n_bits);
41 static struct tlpm_node *tlpm_add(struct tlpm_node *list,
42 const uint8_t *key,
43 size_t n_bits)
45 struct tlpm_node *node;
46 size_t n;
48 n = (n_bits + 7) / 8;
50 /* 'overwrite' an equivalent entry if one already exists */
51 node = tlpm_match(list, key, n_bits);
52 if (node && node->n_bits == n_bits) {
53 memcpy(node->key, key, n);
54 return list;
57 /* add new entry with @key/@n_bits to @list and return new head */
59 node = malloc(sizeof(*node) + n);
60 assert(node);
62 node->next = list;
63 node->n_bits = n_bits;
64 memcpy(node->key, key, n);
66 return node;
69 static void tlpm_clear(struct tlpm_node *list)
71 struct tlpm_node *node;
73 /* free all entries in @list */
75 while ((node = list)) {
76 list = list->next;
77 free(node);
81 static struct tlpm_node *tlpm_match(struct tlpm_node *list,
82 const uint8_t *key,
83 size_t n_bits)
85 struct tlpm_node *best = NULL;
86 size_t i;
88 /* Perform longest prefix-match on @key/@n_bits. That is, iterate all
89 * entries and match each prefix against @key. Remember the "best"
90 * entry we find (i.e., the longest prefix that matches) and return it
91 * to the caller when done.
94 for ( ; list; list = list->next) {
95 for (i = 0; i < n_bits && i < list->n_bits; ++i) {
96 if ((key[i / 8] & (1 << (7 - i % 8))) !=
97 (list->key[i / 8] & (1 << (7 - i % 8))))
98 break;
101 if (i >= list->n_bits) {
102 if (!best || i > best->n_bits)
103 best = list;
107 return best;
110 static struct tlpm_node *tlpm_delete(struct tlpm_node *list,
111 const uint8_t *key,
112 size_t n_bits)
114 struct tlpm_node *best = tlpm_match(list, key, n_bits);
115 struct tlpm_node *node;
117 if (!best || best->n_bits != n_bits)
118 return list;
120 if (best == list) {
121 node = best->next;
122 free(best);
123 return node;
126 for (node = list; node; node = node->next) {
127 if (node->next == best) {
128 node->next = best->next;
129 free(best);
130 return list;
133 /* should never get here */
134 assert(0);
135 return list;
138 static void test_lpm_basic(void)
140 struct tlpm_node *list = NULL, *t1, *t2;
142 /* very basic, static tests to verify tlpm works as expected */
144 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));
146 t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8);
147 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
148 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
149 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16));
150 assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8));
151 assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8));
152 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7));
154 t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16);
155 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
156 assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
157 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15));
158 assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16));
160 list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16);
161 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
162 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
164 list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8);
165 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));
167 tlpm_clear(list);
170 static void test_lpm_order(void)
172 struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL;
173 size_t i, j;
175 /* Verify the tlpm implementation works correctly regardless of the
176 * order of entries. Insert a random set of entries into @l1, and copy
177 * the same data in reverse order into @l2. Then verify a lookup of
178 * random keys will yield the same result in both sets.
181 for (i = 0; i < (1 << 12); ++i)
182 l1 = tlpm_add(l1, (uint8_t[]){
183 rand() % 0xff,
184 rand() % 0xff,
185 }, rand() % 16 + 1);
187 for (t1 = l1; t1; t1 = t1->next)
188 l2 = tlpm_add(l2, t1->key, t1->n_bits);
190 for (i = 0; i < (1 << 8); ++i) {
191 uint8_t key[] = { rand() % 0xff, rand() % 0xff };
193 t1 = tlpm_match(l1, key, 16);
194 t2 = tlpm_match(l2, key, 16);
196 assert(!t1 == !t2);
197 if (t1) {
198 assert(t1->n_bits == t2->n_bits);
199 for (j = 0; j < t1->n_bits; ++j)
200 assert((t1->key[j / 8] & (1 << (7 - j % 8))) ==
201 (t2->key[j / 8] & (1 << (7 - j % 8))));
205 tlpm_clear(l1);
206 tlpm_clear(l2);
209 static void test_lpm_map(int keysize)
211 size_t i, j, n_matches, n_matches_after_delete, n_nodes, n_lookups;
212 struct tlpm_node *t, *list = NULL;
213 struct bpf_lpm_trie_key *key;
214 uint8_t *data, *value;
215 int r, map;
217 /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of
218 * prefixes and insert it into both tlpm and bpf-lpm. Then run some
219 * randomized lookups and verify both maps return the same result.
222 n_matches = 0;
223 n_matches_after_delete = 0;
224 n_nodes = 1 << 8;
225 n_lookups = 1 << 16;
227 data = alloca(keysize);
228 memset(data, 0, keysize);
230 value = alloca(keysize + 1);
231 memset(value, 0, keysize + 1);
233 key = alloca(sizeof(*key) + keysize);
234 memset(key, 0, sizeof(*key) + keysize);
236 map = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
237 sizeof(*key) + keysize,
238 keysize + 1,
239 4096,
240 BPF_F_NO_PREALLOC);
241 assert(map >= 0);
243 for (i = 0; i < n_nodes; ++i) {
244 for (j = 0; j < keysize; ++j)
245 value[j] = rand() & 0xff;
246 value[keysize] = rand() % (8 * keysize + 1);
248 list = tlpm_add(list, value, value[keysize]);
250 key->prefixlen = value[keysize];
251 memcpy(key->data, value, keysize);
252 r = bpf_map_update_elem(map, key, value, 0);
253 assert(!r);
256 for (i = 0; i < n_lookups; ++i) {
257 for (j = 0; j < keysize; ++j)
258 data[j] = rand() & 0xff;
260 t = tlpm_match(list, data, 8 * keysize);
262 key->prefixlen = 8 * keysize;
263 memcpy(key->data, data, keysize);
264 r = bpf_map_lookup_elem(map, key, value);
265 assert(!r || errno == ENOENT);
266 assert(!t == !!r);
268 if (t) {
269 ++n_matches;
270 assert(t->n_bits == value[keysize]);
271 for (j = 0; j < t->n_bits; ++j)
272 assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
273 (value[j / 8] & (1 << (7 - j % 8))));
277 /* Remove the first half of the elements in the tlpm and the
278 * corresponding nodes from the bpf-lpm. Then run the same
279 * large number of random lookups in both and make sure they match.
280 * Note: we need to count the number of nodes actually inserted
281 * since there may have been duplicates.
283 for (i = 0, t = list; t; i++, t = t->next)
285 for (j = 0; j < i / 2; ++j) {
286 key->prefixlen = list->n_bits;
287 memcpy(key->data, list->key, keysize);
288 r = bpf_map_delete_elem(map, key);
289 assert(!r);
290 list = tlpm_delete(list, list->key, list->n_bits);
291 assert(list);
293 for (i = 0; i < n_lookups; ++i) {
294 for (j = 0; j < keysize; ++j)
295 data[j] = rand() & 0xff;
297 t = tlpm_match(list, data, 8 * keysize);
299 key->prefixlen = 8 * keysize;
300 memcpy(key->data, data, keysize);
301 r = bpf_map_lookup_elem(map, key, value);
302 assert(!r || errno == ENOENT);
303 assert(!t == !!r);
305 if (t) {
306 ++n_matches_after_delete;
307 assert(t->n_bits == value[keysize]);
308 for (j = 0; j < t->n_bits; ++j)
309 assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
310 (value[j / 8] & (1 << (7 - j % 8))));
314 close(map);
315 tlpm_clear(list);
317 /* With 255 random nodes in the map, we are pretty likely to match
318 * something on every lookup. For statistics, use this:
320 * printf(" nodes: %zu\n"
321 * " lookups: %zu\n"
322 * " matches: %zu\n"
323 * "matches(delete): %zu\n",
324 * n_nodes, n_lookups, n_matches, n_matches_after_delete);
328 /* Test the implementation with some 'real world' examples */
330 static void test_lpm_ipaddr(void)
332 struct bpf_lpm_trie_key *key_ipv4;
333 struct bpf_lpm_trie_key *key_ipv6;
334 size_t key_size_ipv4;
335 size_t key_size_ipv6;
336 int map_fd_ipv4;
337 int map_fd_ipv6;
338 __u64 value;
340 key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32);
341 key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4;
342 key_ipv4 = alloca(key_size_ipv4);
343 key_ipv6 = alloca(key_size_ipv6);
345 map_fd_ipv4 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
346 key_size_ipv4, sizeof(value),
347 100, BPF_F_NO_PREALLOC);
348 assert(map_fd_ipv4 >= 0);
350 map_fd_ipv6 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
351 key_size_ipv6, sizeof(value),
352 100, BPF_F_NO_PREALLOC);
353 assert(map_fd_ipv6 >= 0);
355 /* Fill data some IPv4 and IPv6 address ranges */
356 value = 1;
357 key_ipv4->prefixlen = 16;
358 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
359 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
361 value = 2;
362 key_ipv4->prefixlen = 24;
363 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
364 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
366 value = 3;
367 key_ipv4->prefixlen = 24;
368 inet_pton(AF_INET, "192.168.128.0", key_ipv4->data);
369 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
371 value = 5;
372 key_ipv4->prefixlen = 24;
373 inet_pton(AF_INET, "192.168.1.0", key_ipv4->data);
374 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
376 value = 4;
377 key_ipv4->prefixlen = 23;
378 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
379 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
381 value = 0xdeadbeef;
382 key_ipv6->prefixlen = 64;
383 inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data);
384 assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0);
386 /* Set tprefixlen to maximum for lookups */
387 key_ipv4->prefixlen = 32;
388 key_ipv6->prefixlen = 128;
390 /* Test some lookups that should come back with a value */
391 inet_pton(AF_INET, "192.168.128.23", key_ipv4->data);
392 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
393 assert(value == 3);
395 inet_pton(AF_INET, "192.168.0.1", key_ipv4->data);
396 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
397 assert(value == 2);
399 inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data);
400 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
401 assert(value == 0xdeadbeef);
403 inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data);
404 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
405 assert(value == 0xdeadbeef);
407 /* Test some lookups that should not match any entry */
408 inet_pton(AF_INET, "10.0.0.1", key_ipv4->data);
409 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 &&
410 errno == ENOENT);
412 inet_pton(AF_INET, "11.11.11.11", key_ipv4->data);
413 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 &&
414 errno == ENOENT);
416 inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data);
417 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 &&
418 errno == ENOENT);
420 close(map_fd_ipv4);
421 close(map_fd_ipv6);
424 static void test_lpm_delete(void)
426 struct bpf_lpm_trie_key *key;
427 size_t key_size;
428 int map_fd;
429 __u64 value;
431 key_size = sizeof(*key) + sizeof(__u32);
432 key = alloca(key_size);
434 map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
435 key_size, sizeof(value),
436 100, BPF_F_NO_PREALLOC);
437 assert(map_fd >= 0);
439 /* Add nodes:
440 * 192.168.0.0/16 (1)
441 * 192.168.0.0/24 (2)
442 * 192.168.128.0/24 (3)
443 * 192.168.1.0/24 (4)
445 * (1)
446 * / \
447 * (IM) (3)
448 * / \
449 * (2) (4)
451 value = 1;
452 key->prefixlen = 16;
453 inet_pton(AF_INET, "192.168.0.0", key->data);
454 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
456 value = 2;
457 key->prefixlen = 24;
458 inet_pton(AF_INET, "192.168.0.0", key->data);
459 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
461 value = 3;
462 key->prefixlen = 24;
463 inet_pton(AF_INET, "192.168.128.0", key->data);
464 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
466 value = 4;
467 key->prefixlen = 24;
468 inet_pton(AF_INET, "192.168.1.0", key->data);
469 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0);
471 /* remove non-existent node */
472 key->prefixlen = 32;
473 inet_pton(AF_INET, "10.0.0.1", key->data);
474 assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 &&
475 errno == ENOENT);
477 key->prefixlen = 30; // unused prefix so far
478 inet_pton(AF_INET, "192.255.0.0", key->data);
479 assert(bpf_map_delete_elem(map_fd, key) == -1 &&
480 errno == ENOENT);
482 key->prefixlen = 16; // same prefix as the root node
483 inet_pton(AF_INET, "192.255.0.0", key->data);
484 assert(bpf_map_delete_elem(map_fd, key) == -1 &&
485 errno == ENOENT);
487 /* assert initial lookup */
488 key->prefixlen = 32;
489 inet_pton(AF_INET, "192.168.0.1", key->data);
490 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
491 assert(value == 2);
493 /* remove leaf node */
494 key->prefixlen = 24;
495 inet_pton(AF_INET, "192.168.0.0", key->data);
496 assert(bpf_map_delete_elem(map_fd, key) == 0);
498 key->prefixlen = 32;
499 inet_pton(AF_INET, "192.168.0.1", key->data);
500 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
501 assert(value == 1);
503 /* remove leaf (and intermediary) node */
504 key->prefixlen = 24;
505 inet_pton(AF_INET, "192.168.1.0", key->data);
506 assert(bpf_map_delete_elem(map_fd, key) == 0);
508 key->prefixlen = 32;
509 inet_pton(AF_INET, "192.168.1.1", key->data);
510 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
511 assert(value == 1);
513 /* remove root node */
514 key->prefixlen = 16;
515 inet_pton(AF_INET, "192.168.0.0", key->data);
516 assert(bpf_map_delete_elem(map_fd, key) == 0);
518 key->prefixlen = 32;
519 inet_pton(AF_INET, "192.168.128.1", key->data);
520 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0);
521 assert(value == 3);
523 /* remove last node */
524 key->prefixlen = 24;
525 inet_pton(AF_INET, "192.168.128.0", key->data);
526 assert(bpf_map_delete_elem(map_fd, key) == 0);
528 key->prefixlen = 32;
529 inet_pton(AF_INET, "192.168.128.1", key->data);
530 assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 &&
531 errno == ENOENT);
533 close(map_fd);
536 static void test_lpm_get_next_key(void)
538 struct bpf_lpm_trie_key *key_p, *next_key_p;
539 size_t key_size;
540 __u32 value = 0;
541 int map_fd;
543 key_size = sizeof(*key_p) + sizeof(__u32);
544 key_p = alloca(key_size);
545 next_key_p = alloca(key_size);
547 map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, sizeof(value),
548 100, BPF_F_NO_PREALLOC);
549 assert(map_fd >= 0);
551 /* empty tree. get_next_key should return ENOENT */
552 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == -1 &&
553 errno == ENOENT);
555 /* get and verify the first key, get the second one should fail. */
556 key_p->prefixlen = 16;
557 inet_pton(AF_INET, "192.168.0.0", key_p->data);
558 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
560 memset(key_p, 0, key_size);
561 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
562 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 &&
563 key_p->data[1] == 168);
565 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
566 errno == ENOENT);
568 /* no exact matching key should get the first one in post order. */
569 key_p->prefixlen = 8;
570 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
571 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 &&
572 key_p->data[1] == 168);
574 /* add one more element (total two) */
575 key_p->prefixlen = 24;
576 inet_pton(AF_INET, "192.168.128.0", key_p->data);
577 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
579 memset(key_p, 0, key_size);
580 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
581 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
582 key_p->data[1] == 168 && key_p->data[2] == 128);
584 memset(next_key_p, 0, key_size);
585 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
586 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
587 next_key_p->data[1] == 168);
589 memcpy(key_p, next_key_p, key_size);
590 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
591 errno == ENOENT);
593 /* Add one more element (total three) */
594 key_p->prefixlen = 24;
595 inet_pton(AF_INET, "192.168.0.0", key_p->data);
596 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
598 memset(key_p, 0, key_size);
599 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
600 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
601 key_p->data[1] == 168 && key_p->data[2] == 0);
603 memset(next_key_p, 0, key_size);
604 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
605 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
606 next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
608 memcpy(key_p, next_key_p, key_size);
609 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
610 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
611 next_key_p->data[1] == 168);
613 memcpy(key_p, next_key_p, key_size);
614 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
615 errno == ENOENT);
617 /* Add one more element (total four) */
618 key_p->prefixlen = 24;
619 inet_pton(AF_INET, "192.168.1.0", key_p->data);
620 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
622 memset(key_p, 0, key_size);
623 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
624 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
625 key_p->data[1] == 168 && key_p->data[2] == 0);
627 memset(next_key_p, 0, key_size);
628 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
629 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
630 next_key_p->data[1] == 168 && next_key_p->data[2] == 1);
632 memcpy(key_p, next_key_p, key_size);
633 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
634 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
635 next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
637 memcpy(key_p, next_key_p, key_size);
638 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
639 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
640 next_key_p->data[1] == 168);
642 memcpy(key_p, next_key_p, key_size);
643 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
644 errno == ENOENT);
646 /* Add one more element (total five) */
647 key_p->prefixlen = 28;
648 inet_pton(AF_INET, "192.168.1.128", key_p->data);
649 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0);
651 memset(key_p, 0, key_size);
652 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0);
653 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 &&
654 key_p->data[1] == 168 && key_p->data[2] == 0);
656 memset(next_key_p, 0, key_size);
657 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
658 assert(next_key_p->prefixlen == 28 && next_key_p->data[0] == 192 &&
659 next_key_p->data[1] == 168 && next_key_p->data[2] == 1 &&
660 next_key_p->data[3] == 128);
662 memcpy(key_p, next_key_p, key_size);
663 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
664 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
665 next_key_p->data[1] == 168 && next_key_p->data[2] == 1);
667 memcpy(key_p, next_key_p, key_size);
668 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
669 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
670 next_key_p->data[1] == 168 && next_key_p->data[2] == 128);
672 memcpy(key_p, next_key_p, key_size);
673 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
674 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 &&
675 next_key_p->data[1] == 168);
677 memcpy(key_p, next_key_p, key_size);
678 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 &&
679 errno == ENOENT);
681 /* no exact matching key should return the first one in post order */
682 key_p->prefixlen = 22;
683 inet_pton(AF_INET, "192.168.1.0", key_p->data);
684 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0);
685 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 &&
686 next_key_p->data[1] == 168 && next_key_p->data[2] == 0);
688 close(map_fd);
691 #define MAX_TEST_KEYS 4
692 struct lpm_mt_test_info {
693 int cmd; /* 0: update, 1: delete, 2: lookup, 3: get_next_key */
694 int iter;
695 int map_fd;
696 struct {
697 __u32 prefixlen;
698 __u32 data;
699 } key[MAX_TEST_KEYS];
702 static void *lpm_test_command(void *arg)
704 int i, j, ret, iter, key_size;
705 struct lpm_mt_test_info *info = arg;
706 struct bpf_lpm_trie_key *key_p;
708 key_size = sizeof(struct bpf_lpm_trie_key) + sizeof(__u32);
709 key_p = alloca(key_size);
710 for (iter = 0; iter < info->iter; iter++)
711 for (i = 0; i < MAX_TEST_KEYS; i++) {
712 /* first half of iterations in forward order,
713 * and second half in backward order.
715 j = (iter < (info->iter / 2)) ? i : MAX_TEST_KEYS - i - 1;
716 key_p->prefixlen = info->key[j].prefixlen;
717 memcpy(key_p->data, &info->key[j].data, sizeof(__u32));
718 if (info->cmd == 0) {
719 __u32 value = j;
720 /* update must succeed */
721 assert(bpf_map_update_elem(info->map_fd, key_p, &value, 0) == 0);
722 } else if (info->cmd == 1) {
723 ret = bpf_map_delete_elem(info->map_fd, key_p);
724 assert(ret == 0 || errno == ENOENT);
725 } else if (info->cmd == 2) {
726 __u32 value;
727 ret = bpf_map_lookup_elem(info->map_fd, key_p, &value);
728 assert(ret == 0 || errno == ENOENT);
729 } else {
730 struct bpf_lpm_trie_key *next_key_p = alloca(key_size);
731 ret = bpf_map_get_next_key(info->map_fd, key_p, next_key_p);
732 assert(ret == 0 || errno == ENOENT || errno == ENOMEM);
736 // Pass successful exit info back to the main thread
737 pthread_exit((void *)info);
740 static void setup_lpm_mt_test_info(struct lpm_mt_test_info *info, int map_fd)
742 info->iter = 2000;
743 info->map_fd = map_fd;
744 info->key[0].prefixlen = 16;
745 inet_pton(AF_INET, "192.168.0.0", &info->key[0].data);
746 info->key[1].prefixlen = 24;
747 inet_pton(AF_INET, "192.168.0.0", &info->key[1].data);
748 info->key[2].prefixlen = 24;
749 inet_pton(AF_INET, "192.168.128.0", &info->key[2].data);
750 info->key[3].prefixlen = 24;
751 inet_pton(AF_INET, "192.168.1.0", &info->key[3].data);
754 static void test_lpm_multi_thread(void)
756 struct lpm_mt_test_info info[4];
757 size_t key_size, value_size;
758 pthread_t thread_id[4];
759 int i, map_fd;
760 void *ret;
762 /* create a trie */
763 value_size = sizeof(__u32);
764 key_size = sizeof(struct bpf_lpm_trie_key) + value_size;
765 map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, value_size,
766 100, BPF_F_NO_PREALLOC);
768 /* create 4 threads to test update, delete, lookup and get_next_key */
769 setup_lpm_mt_test_info(&info[0], map_fd);
770 for (i = 0; i < 4; i++) {
771 if (i != 0)
772 memcpy(&info[i], &info[0], sizeof(info[i]));
773 info[i].cmd = i;
774 assert(pthread_create(&thread_id[i], NULL, &lpm_test_command, &info[i]) == 0);
777 for (i = 0; i < 4; i++)
778 assert(pthread_join(thread_id[i], &ret) == 0 && ret == (void *)&info[i]);
780 close(map_fd);
783 int main(void)
785 int i;
787 /* we want predictable, pseudo random tests */
788 srand(0xf00ba1);
790 test_lpm_basic();
791 test_lpm_order();
793 /* Test with 8, 16, 24, 32, ... 128 bit prefix length */
794 for (i = 1; i <= 16; ++i)
795 test_lpm_map(i);
797 test_lpm_ipaddr();
798 test_lpm_delete();
799 test_lpm_get_next_key();
800 test_lpm_multi_thread();
802 printf("test_lpm: OK\n");
803 return 0;