2 * linux/drivers/thermal/cpu_cooling.c
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 #include <linux/module.h>
26 #include <linux/thermal.h>
27 #include <linux/cpufreq.h>
28 #include <linux/err.h>
29 #include <linux/pm_opp.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/cpu_cooling.h>
34 #include <trace/events/thermal.h>
37 * Cooling state <-> CPUFreq frequency
39 * Cooling states are translated to frequencies throughout this driver and this
40 * is the relation between them.
42 * Highest cooling state corresponds to lowest possible frequency.
45 * level 0 --> 1st Max Freq
46 * level 1 --> 2nd Max Freq
51 * struct power_table - frequency to power conversion
52 * @frequency: frequency in KHz
55 * This structure is built when the cooling device registers and helps
56 * in translating frequency to power and viceversa.
64 * struct cpufreq_cooling_device - data for cooling device with cpufreq
65 * @id: unique integer value corresponding to each cpufreq_cooling_device
67 * @cool_dev: thermal_cooling_device pointer to keep track of the
68 * registered cooling device.
69 * @cpufreq_state: integer value representing the current state of cpufreq
71 * @clipped_freq: integer value representing the absolute value of the clipped
73 * @max_level: maximum cooling level. One less than total number of valid
74 * cpufreq frequencies.
75 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
76 * @node: list_head to link all cpufreq_cooling_device together.
77 * @last_load: load measured by the latest call to cpufreq_get_actual_power()
78 * @time_in_idle: previous reading of the absolute time that this cpu was idle
79 * @time_in_idle_timestamp: wall time of the last invocation of
80 * get_cpu_idle_time_us()
81 * @dyn_power_table: array of struct power_table for frequency to power
82 * conversion, sorted in ascending order.
83 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85 * @plat_get_static_power: callback to calculate the static power
87 * This structure is required for keeping information of each registered
88 * cpufreq_cooling_device.
90 struct cpufreq_cooling_device
{
92 struct thermal_cooling_device
*cool_dev
;
93 unsigned int cpufreq_state
;
94 unsigned int clipped_freq
;
95 unsigned int max_level
;
96 unsigned int *freq_table
; /* In descending order */
97 struct cpumask allowed_cpus
;
98 struct list_head node
;
101 u64
*time_in_idle_timestamp
;
102 struct power_table
*dyn_power_table
;
103 int dyn_power_table_entries
;
104 struct device
*cpu_dev
;
105 get_static_t plat_get_static_power
;
107 static DEFINE_IDR(cpufreq_idr
);
108 static DEFINE_MUTEX(cooling_cpufreq_lock
);
110 static unsigned int cpufreq_dev_count
;
112 static DEFINE_MUTEX(cooling_list_lock
);
113 static LIST_HEAD(cpufreq_dev_list
);
116 * get_idr - function to get a unique id.
117 * @idr: struct idr * handle used to create a id.
118 * @id: int * value generated by this function.
120 * This function will populate @id with an unique
121 * id, using the idr API.
123 * Return: 0 on success, an error code on failure.
125 static int get_idr(struct idr
*idr
, int *id
)
129 mutex_lock(&cooling_cpufreq_lock
);
130 ret
= idr_alloc(idr
, NULL
, 0, 0, GFP_KERNEL
);
131 mutex_unlock(&cooling_cpufreq_lock
);
132 if (unlikely(ret
< 0))
140 * release_idr - function to free the unique id.
141 * @idr: struct idr * handle used for creating the id.
142 * @id: int value representing the unique id.
144 static void release_idr(struct idr
*idr
, int id
)
146 mutex_lock(&cooling_cpufreq_lock
);
148 mutex_unlock(&cooling_cpufreq_lock
);
151 /* Below code defines functions to be used for cpufreq as cooling device */
154 * get_level: Find the level for a particular frequency
155 * @cpufreq_dev: cpufreq_dev for which the property is required
158 * Return: level on success, THERMAL_CSTATE_INVALID on error.
160 static unsigned long get_level(struct cpufreq_cooling_device
*cpufreq_dev
,
165 for (level
= 0; level
<= cpufreq_dev
->max_level
; level
++) {
166 if (freq
== cpufreq_dev
->freq_table
[level
])
169 if (freq
> cpufreq_dev
->freq_table
[level
])
173 return THERMAL_CSTATE_INVALID
;
177 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
178 * @cpu: cpu for which the level is required
179 * @freq: the frequency of interest
181 * This function will match the cooling level corresponding to the
182 * requested @freq and return it.
184 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
187 unsigned long cpufreq_cooling_get_level(unsigned int cpu
, unsigned int freq
)
189 struct cpufreq_cooling_device
*cpufreq_dev
;
191 mutex_lock(&cooling_list_lock
);
192 list_for_each_entry(cpufreq_dev
, &cpufreq_dev_list
, node
) {
193 if (cpumask_test_cpu(cpu
, &cpufreq_dev
->allowed_cpus
)) {
194 mutex_unlock(&cooling_list_lock
);
195 return get_level(cpufreq_dev
, freq
);
198 mutex_unlock(&cooling_list_lock
);
200 pr_err("%s: cpu:%d not part of any cooling device\n", __func__
, cpu
);
201 return THERMAL_CSTATE_INVALID
;
203 EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level
);
206 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
207 * @nb: struct notifier_block * with callback info.
208 * @event: value showing cpufreq event for which this function invoked.
209 * @data: callback-specific data
211 * Callback to hijack the notification on cpufreq policy transition.
212 * Every time there is a change in policy, we will intercept and
213 * update the cpufreq policy with thermal constraints.
215 * Return: 0 (success)
217 static int cpufreq_thermal_notifier(struct notifier_block
*nb
,
218 unsigned long event
, void *data
)
220 struct cpufreq_policy
*policy
= data
;
221 unsigned long clipped_freq
;
222 struct cpufreq_cooling_device
*cpufreq_dev
;
224 if (event
!= CPUFREQ_ADJUST
)
227 mutex_lock(&cooling_list_lock
);
228 list_for_each_entry(cpufreq_dev
, &cpufreq_dev_list
, node
) {
229 if (!cpumask_test_cpu(policy
->cpu
, &cpufreq_dev
->allowed_cpus
))
233 * policy->max is the maximum allowed frequency defined by user
234 * and clipped_freq is the maximum that thermal constraints
237 * If clipped_freq is lower than policy->max, then we need to
238 * readjust policy->max.
240 * But, if clipped_freq is greater than policy->max, we don't
241 * need to do anything.
243 clipped_freq
= cpufreq_dev
->clipped_freq
;
245 if (policy
->max
> clipped_freq
)
246 cpufreq_verify_within_limits(policy
, 0, clipped_freq
);
249 mutex_unlock(&cooling_list_lock
);
255 * build_dyn_power_table() - create a dynamic power to frequency table
256 * @cpufreq_device: the cpufreq cooling device in which to store the table
257 * @capacitance: dynamic power coefficient for these cpus
259 * Build a dynamic power to frequency table for this cpu and store it
260 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
261 * cpu_freq_to_power() to convert between power and frequency
262 * efficiently. Power is stored in mW, frequency in KHz. The
263 * resulting table is in ascending order.
265 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
266 * -ENOMEM if we run out of memory or -EAGAIN if an OPP was
267 * added/enabled while the function was executing.
269 static int build_dyn_power_table(struct cpufreq_cooling_device
*cpufreq_device
,
272 struct power_table
*power_table
;
273 struct dev_pm_opp
*opp
;
274 struct device
*dev
= NULL
;
275 int num_opps
= 0, cpu
, i
, ret
= 0;
278 for_each_cpu(cpu
, &cpufreq_device
->allowed_cpus
) {
279 dev
= get_cpu_device(cpu
);
281 dev_warn(&cpufreq_device
->cool_dev
->device
,
282 "No cpu device for cpu %d\n", cpu
);
286 num_opps
= dev_pm_opp_get_opp_count(dev
);
289 else if (num_opps
< 0)
296 power_table
= kcalloc(num_opps
, sizeof(*power_table
), GFP_KERNEL
);
302 for (freq
= 0, i
= 0;
303 opp
= dev_pm_opp_find_freq_ceil(dev
, &freq
), !IS_ERR(opp
);
305 u32 freq_mhz
, voltage_mv
;
311 goto free_power_table
;
314 freq_mhz
= freq
/ 1000000;
315 voltage_mv
= dev_pm_opp_get_voltage(opp
) / 1000;
318 * Do the multiplication with MHz and millivolt so as
321 power
= (u64
)capacitance
* freq_mhz
* voltage_mv
* voltage_mv
;
322 do_div(power
, 1000000000);
324 /* frequency is stored in power_table in KHz */
325 power_table
[i
].frequency
= freq
/ 1000;
327 /* power is stored in mW */
328 power_table
[i
].power
= power
;
335 goto free_power_table
;
338 cpufreq_device
->cpu_dev
= dev
;
339 cpufreq_device
->dyn_power_table
= power_table
;
340 cpufreq_device
->dyn_power_table_entries
= i
;
350 static u32
cpu_freq_to_power(struct cpufreq_cooling_device
*cpufreq_device
,
354 struct power_table
*pt
= cpufreq_device
->dyn_power_table
;
356 for (i
= 1; i
< cpufreq_device
->dyn_power_table_entries
; i
++)
357 if (freq
< pt
[i
].frequency
)
360 return pt
[i
- 1].power
;
363 static u32
cpu_power_to_freq(struct cpufreq_cooling_device
*cpufreq_device
,
367 struct power_table
*pt
= cpufreq_device
->dyn_power_table
;
369 for (i
= 1; i
< cpufreq_device
->dyn_power_table_entries
; i
++)
370 if (power
< pt
[i
].power
)
373 return pt
[i
- 1].frequency
;
377 * get_load() - get load for a cpu since last updated
378 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
380 * @cpu_idx: index of the cpu in cpufreq_device->allowed_cpus
382 * Return: The average load of cpu @cpu in percentage since this
383 * function was last called.
385 static u32
get_load(struct cpufreq_cooling_device
*cpufreq_device
, int cpu
,
389 u64 now
, now_idle
, delta_time
, delta_idle
;
391 now_idle
= get_cpu_idle_time(cpu
, &now
, 0);
392 delta_idle
= now_idle
- cpufreq_device
->time_in_idle
[cpu_idx
];
393 delta_time
= now
- cpufreq_device
->time_in_idle_timestamp
[cpu_idx
];
395 if (delta_time
<= delta_idle
)
398 load
= div64_u64(100 * (delta_time
- delta_idle
), delta_time
);
400 cpufreq_device
->time_in_idle
[cpu_idx
] = now_idle
;
401 cpufreq_device
->time_in_idle_timestamp
[cpu_idx
] = now
;
407 * get_static_power() - calculate the static power consumed by the cpus
408 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
409 * @tz: thermal zone device in which we're operating
410 * @freq: frequency in KHz
411 * @power: pointer in which to store the calculated static power
413 * Calculate the static power consumed by the cpus described by
414 * @cpu_actor running at frequency @freq. This function relies on a
415 * platform specific function that should have been provided when the
416 * actor was registered. If it wasn't, the static power is assumed to
417 * be negligible. The calculated static power is stored in @power.
419 * Return: 0 on success, -E* on failure.
421 static int get_static_power(struct cpufreq_cooling_device
*cpufreq_device
,
422 struct thermal_zone_device
*tz
, unsigned long freq
,
425 struct dev_pm_opp
*opp
;
426 unsigned long voltage
;
427 struct cpumask
*cpumask
= &cpufreq_device
->allowed_cpus
;
428 unsigned long freq_hz
= freq
* 1000;
430 if (!cpufreq_device
->plat_get_static_power
||
431 !cpufreq_device
->cpu_dev
) {
438 opp
= dev_pm_opp_find_freq_exact(cpufreq_device
->cpu_dev
, freq_hz
,
440 voltage
= dev_pm_opp_get_voltage(opp
);
445 dev_warn_ratelimited(cpufreq_device
->cpu_dev
,
446 "Failed to get voltage for frequency %lu: %ld\n",
447 freq_hz
, IS_ERR(opp
) ? PTR_ERR(opp
) : 0);
451 return cpufreq_device
->plat_get_static_power(cpumask
, tz
->passive_delay
,
456 * get_dynamic_power() - calculate the dynamic power
457 * @cpufreq_device: &cpufreq_cooling_device for this cdev
458 * @freq: current frequency
460 * Return: the dynamic power consumed by the cpus described by
463 static u32
get_dynamic_power(struct cpufreq_cooling_device
*cpufreq_device
,
468 raw_cpu_power
= cpu_freq_to_power(cpufreq_device
, freq
);
469 return (raw_cpu_power
* cpufreq_device
->last_load
) / 100;
472 /* cpufreq cooling device callback functions are defined below */
475 * cpufreq_get_max_state - callback function to get the max cooling state.
476 * @cdev: thermal cooling device pointer.
477 * @state: fill this variable with the max cooling state.
479 * Callback for the thermal cooling device to return the cpufreq
482 * Return: 0 on success, an error code otherwise.
484 static int cpufreq_get_max_state(struct thermal_cooling_device
*cdev
,
485 unsigned long *state
)
487 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
489 *state
= cpufreq_device
->max_level
;
494 * cpufreq_get_cur_state - callback function to get the current cooling state.
495 * @cdev: thermal cooling device pointer.
496 * @state: fill this variable with the current cooling state.
498 * Callback for the thermal cooling device to return the cpufreq
499 * current cooling state.
501 * Return: 0 on success, an error code otherwise.
503 static int cpufreq_get_cur_state(struct thermal_cooling_device
*cdev
,
504 unsigned long *state
)
506 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
508 *state
= cpufreq_device
->cpufreq_state
;
514 * cpufreq_set_cur_state - callback function to set the current cooling state.
515 * @cdev: thermal cooling device pointer.
516 * @state: set this variable to the current cooling state.
518 * Callback for the thermal cooling device to change the cpufreq
519 * current cooling state.
521 * Return: 0 on success, an error code otherwise.
523 static int cpufreq_set_cur_state(struct thermal_cooling_device
*cdev
,
526 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
527 unsigned int cpu
= cpumask_any(&cpufreq_device
->allowed_cpus
);
528 unsigned int clip_freq
;
530 /* Request state should be less than max_level */
531 if (WARN_ON(state
> cpufreq_device
->max_level
))
534 /* Check if the old cooling action is same as new cooling action */
535 if (cpufreq_device
->cpufreq_state
== state
)
538 clip_freq
= cpufreq_device
->freq_table
[state
];
539 cpufreq_device
->cpufreq_state
= state
;
540 cpufreq_device
->clipped_freq
= clip_freq
;
542 cpufreq_update_policy(cpu
);
548 * cpufreq_get_requested_power() - get the current power
549 * @cdev: &thermal_cooling_device pointer
550 * @tz: a valid thermal zone device pointer
551 * @power: pointer in which to store the resulting power
553 * Calculate the current power consumption of the cpus in milliwatts
554 * and store it in @power. This function should actually calculate
555 * the requested power, but it's hard to get the frequency that
556 * cpufreq would have assigned if there were no thermal limits.
557 * Instead, we calculate the current power on the assumption that the
558 * immediate future will look like the immediate past.
560 * We use the current frequency and the average load since this
561 * function was last called. In reality, there could have been
562 * multiple opps since this function was last called and that affects
563 * the load calculation. While it's not perfectly accurate, this
564 * simplification is good enough and works. REVISIT this, as more
565 * complex code may be needed if experiments show that it's not
568 * Return: 0 on success, -E* if getting the static power failed.
570 static int cpufreq_get_requested_power(struct thermal_cooling_device
*cdev
,
571 struct thermal_zone_device
*tz
,
576 u32 static_power
, dynamic_power
, total_load
= 0;
577 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
578 u32
*load_cpu
= NULL
;
580 cpu
= cpumask_any_and(&cpufreq_device
->allowed_cpus
, cpu_online_mask
);
583 * All the CPUs are offline, thus the requested power by
586 if (cpu
>= nr_cpu_ids
) {
591 freq
= cpufreq_quick_get(cpu
);
593 if (trace_thermal_power_cpu_get_power_enabled()) {
594 u32 ncpus
= cpumask_weight(&cpufreq_device
->allowed_cpus
);
596 load_cpu
= kcalloc(ncpus
, sizeof(*load_cpu
), GFP_KERNEL
);
599 for_each_cpu(cpu
, &cpufreq_device
->allowed_cpus
) {
603 load
= get_load(cpufreq_device
, cpu
, i
);
608 if (trace_thermal_power_cpu_limit_enabled() && load_cpu
)
614 cpufreq_device
->last_load
= total_load
;
616 dynamic_power
= get_dynamic_power(cpufreq_device
, freq
);
617 ret
= get_static_power(cpufreq_device
, tz
, freq
, &static_power
);
624 trace_thermal_power_cpu_get_power(
625 &cpufreq_device
->allowed_cpus
,
626 freq
, load_cpu
, i
, dynamic_power
, static_power
);
631 *power
= static_power
+ dynamic_power
;
636 * cpufreq_state2power() - convert a cpu cdev state to power consumed
637 * @cdev: &thermal_cooling_device pointer
638 * @tz: a valid thermal zone device pointer
639 * @state: cooling device state to be converted
640 * @power: pointer in which to store the resulting power
642 * Convert cooling device state @state into power consumption in
643 * milliwatts assuming 100% load. Store the calculated power in
646 * Return: 0 on success, -EINVAL if the cooling device state could not
647 * be converted into a frequency or other -E* if there was an error
648 * when calculating the static power.
650 static int cpufreq_state2power(struct thermal_cooling_device
*cdev
,
651 struct thermal_zone_device
*tz
,
652 unsigned long state
, u32
*power
)
654 unsigned int freq
, num_cpus
;
656 u32 static_power
, dynamic_power
;
658 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
660 cpumask_and(&cpumask
, &cpufreq_device
->allowed_cpus
, cpu_online_mask
);
661 num_cpus
= cpumask_weight(&cpumask
);
663 /* None of our cpus are online, so no power */
669 freq
= cpufreq_device
->freq_table
[state
];
673 dynamic_power
= cpu_freq_to_power(cpufreq_device
, freq
) * num_cpus
;
674 ret
= get_static_power(cpufreq_device
, tz
, freq
, &static_power
);
678 *power
= static_power
+ dynamic_power
;
683 * cpufreq_power2state() - convert power to a cooling device state
684 * @cdev: &thermal_cooling_device pointer
685 * @tz: a valid thermal zone device pointer
686 * @power: power in milliwatts to be converted
687 * @state: pointer in which to store the resulting state
689 * Calculate a cooling device state for the cpus described by @cdev
690 * that would allow them to consume at most @power mW and store it in
691 * @state. Note that this calculation depends on external factors
692 * such as the cpu load or the current static power. Calling this
693 * function with the same power as input can yield different cooling
694 * device states depending on those external factors.
696 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
697 * the calculated frequency could not be converted to a valid state.
698 * The latter should not happen unless the frequencies available to
699 * cpufreq have changed since the initialization of the cpu cooling
702 static int cpufreq_power2state(struct thermal_cooling_device
*cdev
,
703 struct thermal_zone_device
*tz
, u32 power
,
704 unsigned long *state
)
706 unsigned int cpu
, cur_freq
, target_freq
;
709 u32 last_load
, normalised_power
, static_power
;
710 struct cpufreq_cooling_device
*cpufreq_device
= cdev
->devdata
;
712 cpu
= cpumask_any_and(&cpufreq_device
->allowed_cpus
, cpu_online_mask
);
714 /* None of our cpus are online */
715 if (cpu
>= nr_cpu_ids
)
718 cur_freq
= cpufreq_quick_get(cpu
);
719 ret
= get_static_power(cpufreq_device
, tz
, cur_freq
, &static_power
);
723 dyn_power
= power
- static_power
;
724 dyn_power
= dyn_power
> 0 ? dyn_power
: 0;
725 last_load
= cpufreq_device
->last_load
?: 1;
726 normalised_power
= (dyn_power
* 100) / last_load
;
727 target_freq
= cpu_power_to_freq(cpufreq_device
, normalised_power
);
729 *state
= cpufreq_cooling_get_level(cpu
, target_freq
);
730 if (*state
== THERMAL_CSTATE_INVALID
) {
731 dev_warn_ratelimited(&cdev
->device
,
732 "Failed to convert %dKHz for cpu %d into a cdev state\n",
737 trace_thermal_power_cpu_limit(&cpufreq_device
->allowed_cpus
,
738 target_freq
, *state
, power
);
742 /* Bind cpufreq callbacks to thermal cooling device ops */
743 static struct thermal_cooling_device_ops cpufreq_cooling_ops
= {
744 .get_max_state
= cpufreq_get_max_state
,
745 .get_cur_state
= cpufreq_get_cur_state
,
746 .set_cur_state
= cpufreq_set_cur_state
,
749 /* Notifier for cpufreq policy change */
750 static struct notifier_block thermal_cpufreq_notifier_block
= {
751 .notifier_call
= cpufreq_thermal_notifier
,
754 static unsigned int find_next_max(struct cpufreq_frequency_table
*table
,
755 unsigned int prev_max
)
757 struct cpufreq_frequency_table
*pos
;
758 unsigned int max
= 0;
760 cpufreq_for_each_valid_entry(pos
, table
) {
761 if (pos
->frequency
> max
&& pos
->frequency
< prev_max
)
762 max
= pos
->frequency
;
769 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
770 * @np: a valid struct device_node to the cooling device device tree node
771 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
772 * Normally this should be same as cpufreq policy->related_cpus.
773 * @capacitance: dynamic power coefficient for these cpus
774 * @plat_static_func: function to calculate the static power consumed by these
777 * This interface function registers the cpufreq cooling device with the name
778 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
779 * cooling devices. It also gives the opportunity to link the cooling device
780 * with a device tree node, in order to bind it via the thermal DT code.
782 * Return: a valid struct thermal_cooling_device pointer on success,
783 * on failure, it returns a corresponding ERR_PTR().
785 static struct thermal_cooling_device
*
786 __cpufreq_cooling_register(struct device_node
*np
,
787 const struct cpumask
*clip_cpus
, u32 capacitance
,
788 get_static_t plat_static_func
)
790 struct thermal_cooling_device
*cool_dev
;
791 struct cpufreq_cooling_device
*cpufreq_dev
;
792 char dev_name
[THERMAL_NAME_LENGTH
];
793 struct cpufreq_frequency_table
*pos
, *table
;
794 unsigned int freq
, i
, num_cpus
;
797 table
= cpufreq_frequency_get_table(cpumask_first(clip_cpus
));
799 pr_debug("%s: CPUFreq table not found\n", __func__
);
800 return ERR_PTR(-EPROBE_DEFER
);
803 cpufreq_dev
= kzalloc(sizeof(*cpufreq_dev
), GFP_KERNEL
);
805 return ERR_PTR(-ENOMEM
);
807 num_cpus
= cpumask_weight(clip_cpus
);
808 cpufreq_dev
->time_in_idle
= kcalloc(num_cpus
,
809 sizeof(*cpufreq_dev
->time_in_idle
),
811 if (!cpufreq_dev
->time_in_idle
) {
812 cool_dev
= ERR_PTR(-ENOMEM
);
816 cpufreq_dev
->time_in_idle_timestamp
=
817 kcalloc(num_cpus
, sizeof(*cpufreq_dev
->time_in_idle_timestamp
),
819 if (!cpufreq_dev
->time_in_idle_timestamp
) {
820 cool_dev
= ERR_PTR(-ENOMEM
);
821 goto free_time_in_idle
;
824 /* Find max levels */
825 cpufreq_for_each_valid_entry(pos
, table
)
826 cpufreq_dev
->max_level
++;
828 cpufreq_dev
->freq_table
= kmalloc(sizeof(*cpufreq_dev
->freq_table
) *
829 cpufreq_dev
->max_level
, GFP_KERNEL
);
830 if (!cpufreq_dev
->freq_table
) {
831 cool_dev
= ERR_PTR(-ENOMEM
);
832 goto free_time_in_idle_timestamp
;
835 /* max_level is an index, not a counter */
836 cpufreq_dev
->max_level
--;
838 cpumask_copy(&cpufreq_dev
->allowed_cpus
, clip_cpus
);
841 cpufreq_cooling_ops
.get_requested_power
=
842 cpufreq_get_requested_power
;
843 cpufreq_cooling_ops
.state2power
= cpufreq_state2power
;
844 cpufreq_cooling_ops
.power2state
= cpufreq_power2state
;
845 cpufreq_dev
->plat_get_static_power
= plat_static_func
;
847 ret
= build_dyn_power_table(cpufreq_dev
, capacitance
);
849 cool_dev
= ERR_PTR(ret
);
854 ret
= get_idr(&cpufreq_idr
, &cpufreq_dev
->id
);
856 cool_dev
= ERR_PTR(ret
);
857 goto free_power_table
;
860 /* Fill freq-table in descending order of frequencies */
861 for (i
= 0, freq
= -1; i
<= cpufreq_dev
->max_level
; i
++) {
862 freq
= find_next_max(table
, freq
);
863 cpufreq_dev
->freq_table
[i
] = freq
;
865 /* Warn for duplicate entries */
867 pr_warn("%s: table has duplicate entries\n", __func__
);
869 pr_debug("%s: freq:%u KHz\n", __func__
, freq
);
872 snprintf(dev_name
, sizeof(dev_name
), "thermal-cpufreq-%d",
875 cool_dev
= thermal_of_cooling_device_register(np
, dev_name
, cpufreq_dev
,
876 &cpufreq_cooling_ops
);
877 if (IS_ERR(cool_dev
))
880 cpufreq_dev
->clipped_freq
= cpufreq_dev
->freq_table
[0];
881 cpufreq_dev
->cool_dev
= cool_dev
;
883 mutex_lock(&cooling_cpufreq_lock
);
885 mutex_lock(&cooling_list_lock
);
886 list_add(&cpufreq_dev
->node
, &cpufreq_dev_list
);
887 mutex_unlock(&cooling_list_lock
);
889 /* Register the notifier for first cpufreq cooling device */
890 if (!cpufreq_dev_count
++)
891 cpufreq_register_notifier(&thermal_cpufreq_notifier_block
,
892 CPUFREQ_POLICY_NOTIFIER
);
893 mutex_unlock(&cooling_cpufreq_lock
);
898 release_idr(&cpufreq_idr
, cpufreq_dev
->id
);
900 kfree(cpufreq_dev
->dyn_power_table
);
902 kfree(cpufreq_dev
->freq_table
);
903 free_time_in_idle_timestamp
:
904 kfree(cpufreq_dev
->time_in_idle_timestamp
);
906 kfree(cpufreq_dev
->time_in_idle
);
914 * cpufreq_cooling_register - function to create cpufreq cooling device.
915 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
917 * This interface function registers the cpufreq cooling device with the name
918 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
921 * Return: a valid struct thermal_cooling_device pointer on success,
922 * on failure, it returns a corresponding ERR_PTR().
924 struct thermal_cooling_device
*
925 cpufreq_cooling_register(const struct cpumask
*clip_cpus
)
927 return __cpufreq_cooling_register(NULL
, clip_cpus
, 0, NULL
);
929 EXPORT_SYMBOL_GPL(cpufreq_cooling_register
);
932 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
933 * @np: a valid struct device_node to the cooling device device tree node
934 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
936 * This interface function registers the cpufreq cooling device with the name
937 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
938 * cooling devices. Using this API, the cpufreq cooling device will be
939 * linked to the device tree node provided.
941 * Return: a valid struct thermal_cooling_device pointer on success,
942 * on failure, it returns a corresponding ERR_PTR().
944 struct thermal_cooling_device
*
945 of_cpufreq_cooling_register(struct device_node
*np
,
946 const struct cpumask
*clip_cpus
)
949 return ERR_PTR(-EINVAL
);
951 return __cpufreq_cooling_register(np
, clip_cpus
, 0, NULL
);
953 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register
);
956 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
957 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
958 * @capacitance: dynamic power coefficient for these cpus
959 * @plat_static_func: function to calculate the static power consumed by these
962 * This interface function registers the cpufreq cooling device with
963 * the name "thermal-cpufreq-%x". This api can support multiple
964 * instances of cpufreq cooling devices. Using this function, the
965 * cooling device will implement the power extensions by using a
966 * simple cpu power model. The cpus must have registered their OPPs
967 * using the OPP library.
969 * An optional @plat_static_func may be provided to calculate the
970 * static power consumed by these cpus. If the platform's static
971 * power consumption is unknown or negligible, make it NULL.
973 * Return: a valid struct thermal_cooling_device pointer on success,
974 * on failure, it returns a corresponding ERR_PTR().
976 struct thermal_cooling_device
*
977 cpufreq_power_cooling_register(const struct cpumask
*clip_cpus
, u32 capacitance
,
978 get_static_t plat_static_func
)
980 return __cpufreq_cooling_register(NULL
, clip_cpus
, capacitance
,
983 EXPORT_SYMBOL(cpufreq_power_cooling_register
);
986 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
987 * @np: a valid struct device_node to the cooling device device tree node
988 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
989 * @capacitance: dynamic power coefficient for these cpus
990 * @plat_static_func: function to calculate the static power consumed by these
993 * This interface function registers the cpufreq cooling device with
994 * the name "thermal-cpufreq-%x". This api can support multiple
995 * instances of cpufreq cooling devices. Using this API, the cpufreq
996 * cooling device will be linked to the device tree node provided.
997 * Using this function, the cooling device will implement the power
998 * extensions by using a simple cpu power model. The cpus must have
999 * registered their OPPs using the OPP library.
1001 * An optional @plat_static_func may be provided to calculate the
1002 * static power consumed by these cpus. If the platform's static
1003 * power consumption is unknown or negligible, make it NULL.
1005 * Return: a valid struct thermal_cooling_device pointer on success,
1006 * on failure, it returns a corresponding ERR_PTR().
1008 struct thermal_cooling_device
*
1009 of_cpufreq_power_cooling_register(struct device_node
*np
,
1010 const struct cpumask
*clip_cpus
,
1012 get_static_t plat_static_func
)
1015 return ERR_PTR(-EINVAL
);
1017 return __cpufreq_cooling_register(np
, clip_cpus
, capacitance
,
1020 EXPORT_SYMBOL(of_cpufreq_power_cooling_register
);
1023 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1024 * @cdev: thermal cooling device pointer.
1026 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
1028 void cpufreq_cooling_unregister(struct thermal_cooling_device
*cdev
)
1030 struct cpufreq_cooling_device
*cpufreq_dev
;
1035 cpufreq_dev
= cdev
->devdata
;
1037 /* Unregister the notifier for the last cpufreq cooling device */
1038 mutex_lock(&cooling_cpufreq_lock
);
1039 if (!--cpufreq_dev_count
)
1040 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block
,
1041 CPUFREQ_POLICY_NOTIFIER
);
1043 mutex_lock(&cooling_list_lock
);
1044 list_del(&cpufreq_dev
->node
);
1045 mutex_unlock(&cooling_list_lock
);
1047 mutex_unlock(&cooling_cpufreq_lock
);
1049 thermal_cooling_device_unregister(cpufreq_dev
->cool_dev
);
1050 release_idr(&cpufreq_idr
, cpufreq_dev
->id
);
1051 kfree(cpufreq_dev
->dyn_power_table
);
1052 kfree(cpufreq_dev
->time_in_idle_timestamp
);
1053 kfree(cpufreq_dev
->time_in_idle
);
1054 kfree(cpufreq_dev
->freq_table
);
1057 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister
);