eCryptfs: Remove mmap from directory operations
[linux/fpc-iii.git] / fs / ext2 / inode.c
blob71b032c65a0220d6e9e6cea12d4621b61acca89b
1 /*
2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/smp_lock.h>
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/quotaops.h>
30 #include <linux/module.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
34 #include <linux/fiemap.h>
35 #include <linux/namei.h>
36 #include "ext2.h"
37 #include "acl.h"
38 #include "xip.h"
40 MODULE_AUTHOR("Remy Card and others");
41 MODULE_DESCRIPTION("Second Extended Filesystem");
42 MODULE_LICENSE("GPL");
45 * Test whether an inode is a fast symlink.
47 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49 int ea_blocks = EXT2_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
52 return (S_ISLNK(inode->i_mode) &&
53 inode->i_blocks - ea_blocks == 0);
57 * Called at the last iput() if i_nlink is zero.
59 void ext2_delete_inode (struct inode * inode)
61 truncate_inode_pages(&inode->i_data, 0);
63 if (is_bad_inode(inode))
64 goto no_delete;
65 EXT2_I(inode)->i_dtime = get_seconds();
66 mark_inode_dirty(inode);
67 ext2_write_inode(inode, inode_needs_sync(inode));
69 inode->i_size = 0;
70 if (inode->i_blocks)
71 ext2_truncate (inode);
72 ext2_free_inode (inode);
74 return;
75 no_delete:
76 clear_inode(inode); /* We must guarantee clearing of inode... */
79 typedef struct {
80 __le32 *p;
81 __le32 key;
82 struct buffer_head *bh;
83 } Indirect;
85 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
87 p->key = *(p->p = v);
88 p->bh = bh;
91 static inline int verify_chain(Indirect *from, Indirect *to)
93 while (from <= to && from->key == *from->p)
94 from++;
95 return (from > to);
98 /**
99 * ext2_block_to_path - parse the block number into array of offsets
100 * @inode: inode in question (we are only interested in its superblock)
101 * @i_block: block number to be parsed
102 * @offsets: array to store the offsets in
103 * @boundary: set this non-zero if the referred-to block is likely to be
104 * followed (on disk) by an indirect block.
105 * To store the locations of file's data ext2 uses a data structure common
106 * for UNIX filesystems - tree of pointers anchored in the inode, with
107 * data blocks at leaves and indirect blocks in intermediate nodes.
108 * This function translates the block number into path in that tree -
109 * return value is the path length and @offsets[n] is the offset of
110 * pointer to (n+1)th node in the nth one. If @block is out of range
111 * (negative or too large) warning is printed and zero returned.
113 * Note: function doesn't find node addresses, so no IO is needed. All
114 * we need to know is the capacity of indirect blocks (taken from the
115 * inode->i_sb).
119 * Portability note: the last comparison (check that we fit into triple
120 * indirect block) is spelled differently, because otherwise on an
121 * architecture with 32-bit longs and 8Kb pages we might get into trouble
122 * if our filesystem had 8Kb blocks. We might use long long, but that would
123 * kill us on x86. Oh, well, at least the sign propagation does not matter -
124 * i_block would have to be negative in the very beginning, so we would not
125 * get there at all.
128 static int ext2_block_to_path(struct inode *inode,
129 long i_block, int offsets[4], int *boundary)
131 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
132 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
133 const long direct_blocks = EXT2_NDIR_BLOCKS,
134 indirect_blocks = ptrs,
135 double_blocks = (1 << (ptrs_bits * 2));
136 int n = 0;
137 int final = 0;
139 if (i_block < 0) {
140 ext2_msg(inode->i_sb, KERN_WARNING,
141 "warning: %s: block < 0", __func__);
142 } else if (i_block < direct_blocks) {
143 offsets[n++] = i_block;
144 final = direct_blocks;
145 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
146 offsets[n++] = EXT2_IND_BLOCK;
147 offsets[n++] = i_block;
148 final = ptrs;
149 } else if ((i_block -= indirect_blocks) < double_blocks) {
150 offsets[n++] = EXT2_DIND_BLOCK;
151 offsets[n++] = i_block >> ptrs_bits;
152 offsets[n++] = i_block & (ptrs - 1);
153 final = ptrs;
154 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
155 offsets[n++] = EXT2_TIND_BLOCK;
156 offsets[n++] = i_block >> (ptrs_bits * 2);
157 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
158 offsets[n++] = i_block & (ptrs - 1);
159 final = ptrs;
160 } else {
161 ext2_msg(inode->i_sb, KERN_WARNING,
162 "warning: %s: block is too big", __func__);
164 if (boundary)
165 *boundary = final - 1 - (i_block & (ptrs - 1));
167 return n;
171 * ext2_get_branch - read the chain of indirect blocks leading to data
172 * @inode: inode in question
173 * @depth: depth of the chain (1 - direct pointer, etc.)
174 * @offsets: offsets of pointers in inode/indirect blocks
175 * @chain: place to store the result
176 * @err: here we store the error value
178 * Function fills the array of triples <key, p, bh> and returns %NULL
179 * if everything went OK or the pointer to the last filled triple
180 * (incomplete one) otherwise. Upon the return chain[i].key contains
181 * the number of (i+1)-th block in the chain (as it is stored in memory,
182 * i.e. little-endian 32-bit), chain[i].p contains the address of that
183 * number (it points into struct inode for i==0 and into the bh->b_data
184 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
185 * block for i>0 and NULL for i==0. In other words, it holds the block
186 * numbers of the chain, addresses they were taken from (and where we can
187 * verify that chain did not change) and buffer_heads hosting these
188 * numbers.
190 * Function stops when it stumbles upon zero pointer (absent block)
191 * (pointer to last triple returned, *@err == 0)
192 * or when it gets an IO error reading an indirect block
193 * (ditto, *@err == -EIO)
194 * or when it notices that chain had been changed while it was reading
195 * (ditto, *@err == -EAGAIN)
196 * or when it reads all @depth-1 indirect blocks successfully and finds
197 * the whole chain, all way to the data (returns %NULL, *err == 0).
199 static Indirect *ext2_get_branch(struct inode *inode,
200 int depth,
201 int *offsets,
202 Indirect chain[4],
203 int *err)
205 struct super_block *sb = inode->i_sb;
206 Indirect *p = chain;
207 struct buffer_head *bh;
209 *err = 0;
210 /* i_data is not going away, no lock needed */
211 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
212 if (!p->key)
213 goto no_block;
214 while (--depth) {
215 bh = sb_bread(sb, le32_to_cpu(p->key));
216 if (!bh)
217 goto failure;
218 read_lock(&EXT2_I(inode)->i_meta_lock);
219 if (!verify_chain(chain, p))
220 goto changed;
221 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
222 read_unlock(&EXT2_I(inode)->i_meta_lock);
223 if (!p->key)
224 goto no_block;
226 return NULL;
228 changed:
229 read_unlock(&EXT2_I(inode)->i_meta_lock);
230 brelse(bh);
231 *err = -EAGAIN;
232 goto no_block;
233 failure:
234 *err = -EIO;
235 no_block:
236 return p;
240 * ext2_find_near - find a place for allocation with sufficient locality
241 * @inode: owner
242 * @ind: descriptor of indirect block.
244 * This function returns the preferred place for block allocation.
245 * It is used when heuristic for sequential allocation fails.
246 * Rules are:
247 * + if there is a block to the left of our position - allocate near it.
248 * + if pointer will live in indirect block - allocate near that block.
249 * + if pointer will live in inode - allocate in the same cylinder group.
251 * In the latter case we colour the starting block by the callers PID to
252 * prevent it from clashing with concurrent allocations for a different inode
253 * in the same block group. The PID is used here so that functionally related
254 * files will be close-by on-disk.
256 * Caller must make sure that @ind is valid and will stay that way.
259 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
261 struct ext2_inode_info *ei = EXT2_I(inode);
262 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
263 __le32 *p;
264 ext2_fsblk_t bg_start;
265 ext2_fsblk_t colour;
267 /* Try to find previous block */
268 for (p = ind->p - 1; p >= start; p--)
269 if (*p)
270 return le32_to_cpu(*p);
272 /* No such thing, so let's try location of indirect block */
273 if (ind->bh)
274 return ind->bh->b_blocknr;
277 * It is going to be refered from inode itself? OK, just put it into
278 * the same cylinder group then.
280 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
281 colour = (current->pid % 16) *
282 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
283 return bg_start + colour;
287 * ext2_find_goal - find a preferred place for allocation.
288 * @inode: owner
289 * @block: block we want
290 * @partial: pointer to the last triple within a chain
292 * Returns preferred place for a block (the goal).
295 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
296 Indirect *partial)
298 struct ext2_block_alloc_info *block_i;
300 block_i = EXT2_I(inode)->i_block_alloc_info;
303 * try the heuristic for sequential allocation,
304 * failing that at least try to get decent locality.
306 if (block_i && (block == block_i->last_alloc_logical_block + 1)
307 && (block_i->last_alloc_physical_block != 0)) {
308 return block_i->last_alloc_physical_block + 1;
311 return ext2_find_near(inode, partial);
315 * ext2_blks_to_allocate: Look up the block map and count the number
316 * of direct blocks need to be allocated for the given branch.
318 * @branch: chain of indirect blocks
319 * @k: number of blocks need for indirect blocks
320 * @blks: number of data blocks to be mapped.
321 * @blocks_to_boundary: the offset in the indirect block
323 * return the total number of blocks to be allocate, including the
324 * direct and indirect blocks.
326 static int
327 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
328 int blocks_to_boundary)
330 unsigned long count = 0;
333 * Simple case, [t,d]Indirect block(s) has not allocated yet
334 * then it's clear blocks on that path have not allocated
336 if (k > 0) {
337 /* right now don't hanel cross boundary allocation */
338 if (blks < blocks_to_boundary + 1)
339 count += blks;
340 else
341 count += blocks_to_boundary + 1;
342 return count;
345 count++;
346 while (count < blks && count <= blocks_to_boundary
347 && le32_to_cpu(*(branch[0].p + count)) == 0) {
348 count++;
350 return count;
354 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
355 * @indirect_blks: the number of blocks need to allocate for indirect
356 * blocks
358 * @new_blocks: on return it will store the new block numbers for
359 * the indirect blocks(if needed) and the first direct block,
360 * @blks: on return it will store the total number of allocated
361 * direct blocks
363 static int ext2_alloc_blocks(struct inode *inode,
364 ext2_fsblk_t goal, int indirect_blks, int blks,
365 ext2_fsblk_t new_blocks[4], int *err)
367 int target, i;
368 unsigned long count = 0;
369 int index = 0;
370 ext2_fsblk_t current_block = 0;
371 int ret = 0;
374 * Here we try to allocate the requested multiple blocks at once,
375 * on a best-effort basis.
376 * To build a branch, we should allocate blocks for
377 * the indirect blocks(if not allocated yet), and at least
378 * the first direct block of this branch. That's the
379 * minimum number of blocks need to allocate(required)
381 target = blks + indirect_blks;
383 while (1) {
384 count = target;
385 /* allocating blocks for indirect blocks and direct blocks */
386 current_block = ext2_new_blocks(inode,goal,&count,err);
387 if (*err)
388 goto failed_out;
390 target -= count;
391 /* allocate blocks for indirect blocks */
392 while (index < indirect_blks && count) {
393 new_blocks[index++] = current_block++;
394 count--;
397 if (count > 0)
398 break;
401 /* save the new block number for the first direct block */
402 new_blocks[index] = current_block;
404 /* total number of blocks allocated for direct blocks */
405 ret = count;
406 *err = 0;
407 return ret;
408 failed_out:
409 for (i = 0; i <index; i++)
410 ext2_free_blocks(inode, new_blocks[i], 1);
411 return ret;
415 * ext2_alloc_branch - allocate and set up a chain of blocks.
416 * @inode: owner
417 * @num: depth of the chain (number of blocks to allocate)
418 * @offsets: offsets (in the blocks) to store the pointers to next.
419 * @branch: place to store the chain in.
421 * This function allocates @num blocks, zeroes out all but the last one,
422 * links them into chain and (if we are synchronous) writes them to disk.
423 * In other words, it prepares a branch that can be spliced onto the
424 * inode. It stores the information about that chain in the branch[], in
425 * the same format as ext2_get_branch() would do. We are calling it after
426 * we had read the existing part of chain and partial points to the last
427 * triple of that (one with zero ->key). Upon the exit we have the same
428 * picture as after the successful ext2_get_block(), excpet that in one
429 * place chain is disconnected - *branch->p is still zero (we did not
430 * set the last link), but branch->key contains the number that should
431 * be placed into *branch->p to fill that gap.
433 * If allocation fails we free all blocks we've allocated (and forget
434 * their buffer_heads) and return the error value the from failed
435 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
436 * as described above and return 0.
439 static int ext2_alloc_branch(struct inode *inode,
440 int indirect_blks, int *blks, ext2_fsblk_t goal,
441 int *offsets, Indirect *branch)
443 int blocksize = inode->i_sb->s_blocksize;
444 int i, n = 0;
445 int err = 0;
446 struct buffer_head *bh;
447 int num;
448 ext2_fsblk_t new_blocks[4];
449 ext2_fsblk_t current_block;
451 num = ext2_alloc_blocks(inode, goal, indirect_blks,
452 *blks, new_blocks, &err);
453 if (err)
454 return err;
456 branch[0].key = cpu_to_le32(new_blocks[0]);
458 * metadata blocks and data blocks are allocated.
460 for (n = 1; n <= indirect_blks; n++) {
462 * Get buffer_head for parent block, zero it out
463 * and set the pointer to new one, then send
464 * parent to disk.
466 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
467 branch[n].bh = bh;
468 lock_buffer(bh);
469 memset(bh->b_data, 0, blocksize);
470 branch[n].p = (__le32 *) bh->b_data + offsets[n];
471 branch[n].key = cpu_to_le32(new_blocks[n]);
472 *branch[n].p = branch[n].key;
473 if ( n == indirect_blks) {
474 current_block = new_blocks[n];
476 * End of chain, update the last new metablock of
477 * the chain to point to the new allocated
478 * data blocks numbers
480 for (i=1; i < num; i++)
481 *(branch[n].p + i) = cpu_to_le32(++current_block);
483 set_buffer_uptodate(bh);
484 unlock_buffer(bh);
485 mark_buffer_dirty_inode(bh, inode);
486 /* We used to sync bh here if IS_SYNC(inode).
487 * But we now rely upon generic_write_sync()
488 * and b_inode_buffers. But not for directories.
490 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
491 sync_dirty_buffer(bh);
493 *blks = num;
494 return err;
498 * ext2_splice_branch - splice the allocated branch onto inode.
499 * @inode: owner
500 * @block: (logical) number of block we are adding
501 * @where: location of missing link
502 * @num: number of indirect blocks we are adding
503 * @blks: number of direct blocks we are adding
505 * This function fills the missing link and does all housekeeping needed in
506 * inode (->i_blocks, etc.). In case of success we end up with the full
507 * chain to new block and return 0.
509 static void ext2_splice_branch(struct inode *inode,
510 long block, Indirect *where, int num, int blks)
512 int i;
513 struct ext2_block_alloc_info *block_i;
514 ext2_fsblk_t current_block;
516 block_i = EXT2_I(inode)->i_block_alloc_info;
518 /* XXX LOCKING probably should have i_meta_lock ?*/
519 /* That's it */
521 *where->p = where->key;
524 * Update the host buffer_head or inode to point to more just allocated
525 * direct blocks blocks
527 if (num == 0 && blks > 1) {
528 current_block = le32_to_cpu(where->key) + 1;
529 for (i = 1; i < blks; i++)
530 *(where->p + i ) = cpu_to_le32(current_block++);
534 * update the most recently allocated logical & physical block
535 * in i_block_alloc_info, to assist find the proper goal block for next
536 * allocation
538 if (block_i) {
539 block_i->last_alloc_logical_block = block + blks - 1;
540 block_i->last_alloc_physical_block =
541 le32_to_cpu(where[num].key) + blks - 1;
544 /* We are done with atomic stuff, now do the rest of housekeeping */
546 /* had we spliced it onto indirect block? */
547 if (where->bh)
548 mark_buffer_dirty_inode(where->bh, inode);
550 inode->i_ctime = CURRENT_TIME_SEC;
551 mark_inode_dirty(inode);
555 * Allocation strategy is simple: if we have to allocate something, we will
556 * have to go the whole way to leaf. So let's do it before attaching anything
557 * to tree, set linkage between the newborn blocks, write them if sync is
558 * required, recheck the path, free and repeat if check fails, otherwise
559 * set the last missing link (that will protect us from any truncate-generated
560 * removals - all blocks on the path are immune now) and possibly force the
561 * write on the parent block.
562 * That has a nice additional property: no special recovery from the failed
563 * allocations is needed - we simply release blocks and do not touch anything
564 * reachable from inode.
566 * `handle' can be NULL if create == 0.
568 * return > 0, # of blocks mapped or allocated.
569 * return = 0, if plain lookup failed.
570 * return < 0, error case.
572 static int ext2_get_blocks(struct inode *inode,
573 sector_t iblock, unsigned long maxblocks,
574 struct buffer_head *bh_result,
575 int create)
577 int err = -EIO;
578 int offsets[4];
579 Indirect chain[4];
580 Indirect *partial;
581 ext2_fsblk_t goal;
582 int indirect_blks;
583 int blocks_to_boundary = 0;
584 int depth;
585 struct ext2_inode_info *ei = EXT2_I(inode);
586 int count = 0;
587 ext2_fsblk_t first_block = 0;
589 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
591 if (depth == 0)
592 return (err);
594 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
595 /* Simplest case - block found, no allocation needed */
596 if (!partial) {
597 first_block = le32_to_cpu(chain[depth - 1].key);
598 clear_buffer_new(bh_result); /* What's this do? */
599 count++;
600 /*map more blocks*/
601 while (count < maxblocks && count <= blocks_to_boundary) {
602 ext2_fsblk_t blk;
604 if (!verify_chain(chain, chain + depth - 1)) {
606 * Indirect block might be removed by
607 * truncate while we were reading it.
608 * Handling of that case: forget what we've
609 * got now, go to reread.
611 err = -EAGAIN;
612 count = 0;
613 break;
615 blk = le32_to_cpu(*(chain[depth-1].p + count));
616 if (blk == first_block + count)
617 count++;
618 else
619 break;
621 if (err != -EAGAIN)
622 goto got_it;
625 /* Next simple case - plain lookup or failed read of indirect block */
626 if (!create || err == -EIO)
627 goto cleanup;
629 mutex_lock(&ei->truncate_mutex);
631 * If the indirect block is missing while we are reading
632 * the chain(ext3_get_branch() returns -EAGAIN err), or
633 * if the chain has been changed after we grab the semaphore,
634 * (either because another process truncated this branch, or
635 * another get_block allocated this branch) re-grab the chain to see if
636 * the request block has been allocated or not.
638 * Since we already block the truncate/other get_block
639 * at this point, we will have the current copy of the chain when we
640 * splice the branch into the tree.
642 if (err == -EAGAIN || !verify_chain(chain, partial)) {
643 while (partial > chain) {
644 brelse(partial->bh);
645 partial--;
647 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
648 if (!partial) {
649 count++;
650 mutex_unlock(&ei->truncate_mutex);
651 if (err)
652 goto cleanup;
653 clear_buffer_new(bh_result);
654 goto got_it;
659 * Okay, we need to do block allocation. Lazily initialize the block
660 * allocation info here if necessary
662 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
663 ext2_init_block_alloc_info(inode);
665 goal = ext2_find_goal(inode, iblock, partial);
667 /* the number of blocks need to allocate for [d,t]indirect blocks */
668 indirect_blks = (chain + depth) - partial - 1;
670 * Next look up the indirect map to count the totoal number of
671 * direct blocks to allocate for this branch.
673 count = ext2_blks_to_allocate(partial, indirect_blks,
674 maxblocks, blocks_to_boundary);
676 * XXX ???? Block out ext2_truncate while we alter the tree
678 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
679 offsets + (partial - chain), partial);
681 if (err) {
682 mutex_unlock(&ei->truncate_mutex);
683 goto cleanup;
686 if (ext2_use_xip(inode->i_sb)) {
688 * we need to clear the block
690 err = ext2_clear_xip_target (inode,
691 le32_to_cpu(chain[depth-1].key));
692 if (err) {
693 mutex_unlock(&ei->truncate_mutex);
694 goto cleanup;
698 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
699 mutex_unlock(&ei->truncate_mutex);
700 set_buffer_new(bh_result);
701 got_it:
702 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
703 if (count > blocks_to_boundary)
704 set_buffer_boundary(bh_result);
705 err = count;
706 /* Clean up and exit */
707 partial = chain + depth - 1; /* the whole chain */
708 cleanup:
709 while (partial > chain) {
710 brelse(partial->bh);
711 partial--;
713 return err;
716 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
718 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
719 int ret = ext2_get_blocks(inode, iblock, max_blocks,
720 bh_result, create);
721 if (ret > 0) {
722 bh_result->b_size = (ret << inode->i_blkbits);
723 ret = 0;
725 return ret;
729 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
730 u64 start, u64 len)
732 return generic_block_fiemap(inode, fieinfo, start, len,
733 ext2_get_block);
736 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
738 return block_write_full_page(page, ext2_get_block, wbc);
741 static int ext2_readpage(struct file *file, struct page *page)
743 return mpage_readpage(page, ext2_get_block);
746 static int
747 ext2_readpages(struct file *file, struct address_space *mapping,
748 struct list_head *pages, unsigned nr_pages)
750 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
753 int __ext2_write_begin(struct file *file, struct address_space *mapping,
754 loff_t pos, unsigned len, unsigned flags,
755 struct page **pagep, void **fsdata)
757 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
758 ext2_get_block);
761 static int
762 ext2_write_begin(struct file *file, struct address_space *mapping,
763 loff_t pos, unsigned len, unsigned flags,
764 struct page **pagep, void **fsdata)
766 *pagep = NULL;
767 return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
770 static int
771 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
772 loff_t pos, unsigned len, unsigned flags,
773 struct page **pagep, void **fsdata)
776 * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
777 * directory handling code to pass around offsets rather than struct
778 * pages in order to make this work easily.
780 return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
781 ext2_get_block);
784 static int ext2_nobh_writepage(struct page *page,
785 struct writeback_control *wbc)
787 return nobh_writepage(page, ext2_get_block, wbc);
790 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
792 return generic_block_bmap(mapping,block,ext2_get_block);
795 static ssize_t
796 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
797 loff_t offset, unsigned long nr_segs)
799 struct file *file = iocb->ki_filp;
800 struct inode *inode = file->f_mapping->host;
802 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
803 offset, nr_segs, ext2_get_block, NULL);
806 static int
807 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
809 return mpage_writepages(mapping, wbc, ext2_get_block);
812 const struct address_space_operations ext2_aops = {
813 .readpage = ext2_readpage,
814 .readpages = ext2_readpages,
815 .writepage = ext2_writepage,
816 .sync_page = block_sync_page,
817 .write_begin = ext2_write_begin,
818 .write_end = generic_write_end,
819 .bmap = ext2_bmap,
820 .direct_IO = ext2_direct_IO,
821 .writepages = ext2_writepages,
822 .migratepage = buffer_migrate_page,
823 .is_partially_uptodate = block_is_partially_uptodate,
824 .error_remove_page = generic_error_remove_page,
827 const struct address_space_operations ext2_aops_xip = {
828 .bmap = ext2_bmap,
829 .get_xip_mem = ext2_get_xip_mem,
832 const struct address_space_operations ext2_nobh_aops = {
833 .readpage = ext2_readpage,
834 .readpages = ext2_readpages,
835 .writepage = ext2_nobh_writepage,
836 .sync_page = block_sync_page,
837 .write_begin = ext2_nobh_write_begin,
838 .write_end = nobh_write_end,
839 .bmap = ext2_bmap,
840 .direct_IO = ext2_direct_IO,
841 .writepages = ext2_writepages,
842 .migratepage = buffer_migrate_page,
843 .error_remove_page = generic_error_remove_page,
847 * Probably it should be a library function... search for first non-zero word
848 * or memcmp with zero_page, whatever is better for particular architecture.
849 * Linus?
851 static inline int all_zeroes(__le32 *p, __le32 *q)
853 while (p < q)
854 if (*p++)
855 return 0;
856 return 1;
860 * ext2_find_shared - find the indirect blocks for partial truncation.
861 * @inode: inode in question
862 * @depth: depth of the affected branch
863 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
864 * @chain: place to store the pointers to partial indirect blocks
865 * @top: place to the (detached) top of branch
867 * This is a helper function used by ext2_truncate().
869 * When we do truncate() we may have to clean the ends of several indirect
870 * blocks but leave the blocks themselves alive. Block is partially
871 * truncated if some data below the new i_size is refered from it (and
872 * it is on the path to the first completely truncated data block, indeed).
873 * We have to free the top of that path along with everything to the right
874 * of the path. Since no allocation past the truncation point is possible
875 * until ext2_truncate() finishes, we may safely do the latter, but top
876 * of branch may require special attention - pageout below the truncation
877 * point might try to populate it.
879 * We atomically detach the top of branch from the tree, store the block
880 * number of its root in *@top, pointers to buffer_heads of partially
881 * truncated blocks - in @chain[].bh and pointers to their last elements
882 * that should not be removed - in @chain[].p. Return value is the pointer
883 * to last filled element of @chain.
885 * The work left to caller to do the actual freeing of subtrees:
886 * a) free the subtree starting from *@top
887 * b) free the subtrees whose roots are stored in
888 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
889 * c) free the subtrees growing from the inode past the @chain[0].p
890 * (no partially truncated stuff there).
893 static Indirect *ext2_find_shared(struct inode *inode,
894 int depth,
895 int offsets[4],
896 Indirect chain[4],
897 __le32 *top)
899 Indirect *partial, *p;
900 int k, err;
902 *top = 0;
903 for (k = depth; k > 1 && !offsets[k-1]; k--)
905 partial = ext2_get_branch(inode, k, offsets, chain, &err);
906 if (!partial)
907 partial = chain + k-1;
909 * If the branch acquired continuation since we've looked at it -
910 * fine, it should all survive and (new) top doesn't belong to us.
912 write_lock(&EXT2_I(inode)->i_meta_lock);
913 if (!partial->key && *partial->p) {
914 write_unlock(&EXT2_I(inode)->i_meta_lock);
915 goto no_top;
917 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
920 * OK, we've found the last block that must survive. The rest of our
921 * branch should be detached before unlocking. However, if that rest
922 * of branch is all ours and does not grow immediately from the inode
923 * it's easier to cheat and just decrement partial->p.
925 if (p == chain + k - 1 && p > chain) {
926 p->p--;
927 } else {
928 *top = *p->p;
929 *p->p = 0;
931 write_unlock(&EXT2_I(inode)->i_meta_lock);
933 while(partial > p)
935 brelse(partial->bh);
936 partial--;
938 no_top:
939 return partial;
943 * ext2_free_data - free a list of data blocks
944 * @inode: inode we are dealing with
945 * @p: array of block numbers
946 * @q: points immediately past the end of array
948 * We are freeing all blocks refered from that array (numbers are
949 * stored as little-endian 32-bit) and updating @inode->i_blocks
950 * appropriately.
952 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
954 unsigned long block_to_free = 0, count = 0;
955 unsigned long nr;
957 for ( ; p < q ; p++) {
958 nr = le32_to_cpu(*p);
959 if (nr) {
960 *p = 0;
961 /* accumulate blocks to free if they're contiguous */
962 if (count == 0)
963 goto free_this;
964 else if (block_to_free == nr - count)
965 count++;
966 else {
967 mark_inode_dirty(inode);
968 ext2_free_blocks (inode, block_to_free, count);
969 free_this:
970 block_to_free = nr;
971 count = 1;
975 if (count > 0) {
976 mark_inode_dirty(inode);
977 ext2_free_blocks (inode, block_to_free, count);
982 * ext2_free_branches - free an array of branches
983 * @inode: inode we are dealing with
984 * @p: array of block numbers
985 * @q: pointer immediately past the end of array
986 * @depth: depth of the branches to free
988 * We are freeing all blocks refered from these branches (numbers are
989 * stored as little-endian 32-bit) and updating @inode->i_blocks
990 * appropriately.
992 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
994 struct buffer_head * bh;
995 unsigned long nr;
997 if (depth--) {
998 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
999 for ( ; p < q ; p++) {
1000 nr = le32_to_cpu(*p);
1001 if (!nr)
1002 continue;
1003 *p = 0;
1004 bh = sb_bread(inode->i_sb, nr);
1006 * A read failure? Report error and clear slot
1007 * (should be rare).
1009 if (!bh) {
1010 ext2_error(inode->i_sb, "ext2_free_branches",
1011 "Read failure, inode=%ld, block=%ld",
1012 inode->i_ino, nr);
1013 continue;
1015 ext2_free_branches(inode,
1016 (__le32*)bh->b_data,
1017 (__le32*)bh->b_data + addr_per_block,
1018 depth);
1019 bforget(bh);
1020 ext2_free_blocks(inode, nr, 1);
1021 mark_inode_dirty(inode);
1023 } else
1024 ext2_free_data(inode, p, q);
1027 void ext2_truncate(struct inode *inode)
1029 __le32 *i_data = EXT2_I(inode)->i_data;
1030 struct ext2_inode_info *ei = EXT2_I(inode);
1031 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1032 int offsets[4];
1033 Indirect chain[4];
1034 Indirect *partial;
1035 __le32 nr = 0;
1036 int n;
1037 long iblock;
1038 unsigned blocksize;
1040 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1041 S_ISLNK(inode->i_mode)))
1042 return;
1043 if (ext2_inode_is_fast_symlink(inode))
1044 return;
1045 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1046 return;
1048 blocksize = inode->i_sb->s_blocksize;
1049 iblock = (inode->i_size + blocksize-1)
1050 >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1052 if (mapping_is_xip(inode->i_mapping))
1053 xip_truncate_page(inode->i_mapping, inode->i_size);
1054 else if (test_opt(inode->i_sb, NOBH))
1055 nobh_truncate_page(inode->i_mapping,
1056 inode->i_size, ext2_get_block);
1057 else
1058 block_truncate_page(inode->i_mapping,
1059 inode->i_size, ext2_get_block);
1061 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1062 if (n == 0)
1063 return;
1066 * From here we block out all ext2_get_block() callers who want to
1067 * modify the block allocation tree.
1069 mutex_lock(&ei->truncate_mutex);
1071 if (n == 1) {
1072 ext2_free_data(inode, i_data+offsets[0],
1073 i_data + EXT2_NDIR_BLOCKS);
1074 goto do_indirects;
1077 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1078 /* Kill the top of shared branch (already detached) */
1079 if (nr) {
1080 if (partial == chain)
1081 mark_inode_dirty(inode);
1082 else
1083 mark_buffer_dirty_inode(partial->bh, inode);
1084 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1086 /* Clear the ends of indirect blocks on the shared branch */
1087 while (partial > chain) {
1088 ext2_free_branches(inode,
1089 partial->p + 1,
1090 (__le32*)partial->bh->b_data+addr_per_block,
1091 (chain+n-1) - partial);
1092 mark_buffer_dirty_inode(partial->bh, inode);
1093 brelse (partial->bh);
1094 partial--;
1096 do_indirects:
1097 /* Kill the remaining (whole) subtrees */
1098 switch (offsets[0]) {
1099 default:
1100 nr = i_data[EXT2_IND_BLOCK];
1101 if (nr) {
1102 i_data[EXT2_IND_BLOCK] = 0;
1103 mark_inode_dirty(inode);
1104 ext2_free_branches(inode, &nr, &nr+1, 1);
1106 case EXT2_IND_BLOCK:
1107 nr = i_data[EXT2_DIND_BLOCK];
1108 if (nr) {
1109 i_data[EXT2_DIND_BLOCK] = 0;
1110 mark_inode_dirty(inode);
1111 ext2_free_branches(inode, &nr, &nr+1, 2);
1113 case EXT2_DIND_BLOCK:
1114 nr = i_data[EXT2_TIND_BLOCK];
1115 if (nr) {
1116 i_data[EXT2_TIND_BLOCK] = 0;
1117 mark_inode_dirty(inode);
1118 ext2_free_branches(inode, &nr, &nr+1, 3);
1120 case EXT2_TIND_BLOCK:
1124 ext2_discard_reservation(inode);
1126 mutex_unlock(&ei->truncate_mutex);
1127 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1128 if (inode_needs_sync(inode)) {
1129 sync_mapping_buffers(inode->i_mapping);
1130 ext2_sync_inode (inode);
1131 } else {
1132 mark_inode_dirty(inode);
1136 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1137 struct buffer_head **p)
1139 struct buffer_head * bh;
1140 unsigned long block_group;
1141 unsigned long block;
1142 unsigned long offset;
1143 struct ext2_group_desc * gdp;
1145 *p = NULL;
1146 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1147 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1148 goto Einval;
1150 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1151 gdp = ext2_get_group_desc(sb, block_group, NULL);
1152 if (!gdp)
1153 goto Egdp;
1155 * Figure out the offset within the block group inode table
1157 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1158 block = le32_to_cpu(gdp->bg_inode_table) +
1159 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1160 if (!(bh = sb_bread(sb, block)))
1161 goto Eio;
1163 *p = bh;
1164 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1165 return (struct ext2_inode *) (bh->b_data + offset);
1167 Einval:
1168 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1169 (unsigned long) ino);
1170 return ERR_PTR(-EINVAL);
1171 Eio:
1172 ext2_error(sb, "ext2_get_inode",
1173 "unable to read inode block - inode=%lu, block=%lu",
1174 (unsigned long) ino, block);
1175 Egdp:
1176 return ERR_PTR(-EIO);
1179 void ext2_set_inode_flags(struct inode *inode)
1181 unsigned int flags = EXT2_I(inode)->i_flags;
1183 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1184 if (flags & EXT2_SYNC_FL)
1185 inode->i_flags |= S_SYNC;
1186 if (flags & EXT2_APPEND_FL)
1187 inode->i_flags |= S_APPEND;
1188 if (flags & EXT2_IMMUTABLE_FL)
1189 inode->i_flags |= S_IMMUTABLE;
1190 if (flags & EXT2_NOATIME_FL)
1191 inode->i_flags |= S_NOATIME;
1192 if (flags & EXT2_DIRSYNC_FL)
1193 inode->i_flags |= S_DIRSYNC;
1196 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1197 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1199 unsigned int flags = ei->vfs_inode.i_flags;
1201 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1202 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1203 if (flags & S_SYNC)
1204 ei->i_flags |= EXT2_SYNC_FL;
1205 if (flags & S_APPEND)
1206 ei->i_flags |= EXT2_APPEND_FL;
1207 if (flags & S_IMMUTABLE)
1208 ei->i_flags |= EXT2_IMMUTABLE_FL;
1209 if (flags & S_NOATIME)
1210 ei->i_flags |= EXT2_NOATIME_FL;
1211 if (flags & S_DIRSYNC)
1212 ei->i_flags |= EXT2_DIRSYNC_FL;
1215 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1217 struct ext2_inode_info *ei;
1218 struct buffer_head * bh;
1219 struct ext2_inode *raw_inode;
1220 struct inode *inode;
1221 long ret = -EIO;
1222 int n;
1224 inode = iget_locked(sb, ino);
1225 if (!inode)
1226 return ERR_PTR(-ENOMEM);
1227 if (!(inode->i_state & I_NEW))
1228 return inode;
1230 ei = EXT2_I(inode);
1231 ei->i_block_alloc_info = NULL;
1233 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1234 if (IS_ERR(raw_inode)) {
1235 ret = PTR_ERR(raw_inode);
1236 goto bad_inode;
1239 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1240 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1241 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1242 if (!(test_opt (inode->i_sb, NO_UID32))) {
1243 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1244 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1246 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1247 inode->i_size = le32_to_cpu(raw_inode->i_size);
1248 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1249 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1250 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1251 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1252 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1253 /* We now have enough fields to check if the inode was active or not.
1254 * This is needed because nfsd might try to access dead inodes
1255 * the test is that same one that e2fsck uses
1256 * NeilBrown 1999oct15
1258 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1259 /* this inode is deleted */
1260 brelse (bh);
1261 ret = -ESTALE;
1262 goto bad_inode;
1264 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1265 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1266 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1267 ei->i_frag_no = raw_inode->i_frag;
1268 ei->i_frag_size = raw_inode->i_fsize;
1269 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1270 ei->i_dir_acl = 0;
1271 if (S_ISREG(inode->i_mode))
1272 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1273 else
1274 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1275 ei->i_dtime = 0;
1276 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1277 ei->i_state = 0;
1278 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1279 ei->i_dir_start_lookup = 0;
1282 * NOTE! The in-memory inode i_data array is in little-endian order
1283 * even on big-endian machines: we do NOT byteswap the block numbers!
1285 for (n = 0; n < EXT2_N_BLOCKS; n++)
1286 ei->i_data[n] = raw_inode->i_block[n];
1288 if (S_ISREG(inode->i_mode)) {
1289 inode->i_op = &ext2_file_inode_operations;
1290 if (ext2_use_xip(inode->i_sb)) {
1291 inode->i_mapping->a_ops = &ext2_aops_xip;
1292 inode->i_fop = &ext2_xip_file_operations;
1293 } else if (test_opt(inode->i_sb, NOBH)) {
1294 inode->i_mapping->a_ops = &ext2_nobh_aops;
1295 inode->i_fop = &ext2_file_operations;
1296 } else {
1297 inode->i_mapping->a_ops = &ext2_aops;
1298 inode->i_fop = &ext2_file_operations;
1300 } else if (S_ISDIR(inode->i_mode)) {
1301 inode->i_op = &ext2_dir_inode_operations;
1302 inode->i_fop = &ext2_dir_operations;
1303 if (test_opt(inode->i_sb, NOBH))
1304 inode->i_mapping->a_ops = &ext2_nobh_aops;
1305 else
1306 inode->i_mapping->a_ops = &ext2_aops;
1307 } else if (S_ISLNK(inode->i_mode)) {
1308 if (ext2_inode_is_fast_symlink(inode)) {
1309 inode->i_op = &ext2_fast_symlink_inode_operations;
1310 nd_terminate_link(ei->i_data, inode->i_size,
1311 sizeof(ei->i_data) - 1);
1312 } else {
1313 inode->i_op = &ext2_symlink_inode_operations;
1314 if (test_opt(inode->i_sb, NOBH))
1315 inode->i_mapping->a_ops = &ext2_nobh_aops;
1316 else
1317 inode->i_mapping->a_ops = &ext2_aops;
1319 } else {
1320 inode->i_op = &ext2_special_inode_operations;
1321 if (raw_inode->i_block[0])
1322 init_special_inode(inode, inode->i_mode,
1323 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1324 else
1325 init_special_inode(inode, inode->i_mode,
1326 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1328 brelse (bh);
1329 ext2_set_inode_flags(inode);
1330 unlock_new_inode(inode);
1331 return inode;
1333 bad_inode:
1334 iget_failed(inode);
1335 return ERR_PTR(ret);
1338 int ext2_write_inode(struct inode *inode, int do_sync)
1340 struct ext2_inode_info *ei = EXT2_I(inode);
1341 struct super_block *sb = inode->i_sb;
1342 ino_t ino = inode->i_ino;
1343 uid_t uid = inode->i_uid;
1344 gid_t gid = inode->i_gid;
1345 struct buffer_head * bh;
1346 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1347 int n;
1348 int err = 0;
1350 if (IS_ERR(raw_inode))
1351 return -EIO;
1353 /* For fields not not tracking in the in-memory inode,
1354 * initialise them to zero for new inodes. */
1355 if (ei->i_state & EXT2_STATE_NEW)
1356 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1358 ext2_get_inode_flags(ei);
1359 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1360 if (!(test_opt(sb, NO_UID32))) {
1361 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1362 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1364 * Fix up interoperability with old kernels. Otherwise, old inodes get
1365 * re-used with the upper 16 bits of the uid/gid intact
1367 if (!ei->i_dtime) {
1368 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1369 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1370 } else {
1371 raw_inode->i_uid_high = 0;
1372 raw_inode->i_gid_high = 0;
1374 } else {
1375 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1376 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1377 raw_inode->i_uid_high = 0;
1378 raw_inode->i_gid_high = 0;
1380 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1381 raw_inode->i_size = cpu_to_le32(inode->i_size);
1382 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1383 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1384 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1386 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1387 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1388 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1389 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1390 raw_inode->i_frag = ei->i_frag_no;
1391 raw_inode->i_fsize = ei->i_frag_size;
1392 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1393 if (!S_ISREG(inode->i_mode))
1394 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1395 else {
1396 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1397 if (inode->i_size > 0x7fffffffULL) {
1398 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1399 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1400 EXT2_SB(sb)->s_es->s_rev_level ==
1401 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1402 /* If this is the first large file
1403 * created, add a flag to the superblock.
1405 lock_kernel();
1406 ext2_update_dynamic_rev(sb);
1407 EXT2_SET_RO_COMPAT_FEATURE(sb,
1408 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1409 unlock_kernel();
1410 ext2_write_super(sb);
1415 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1416 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1417 if (old_valid_dev(inode->i_rdev)) {
1418 raw_inode->i_block[0] =
1419 cpu_to_le32(old_encode_dev(inode->i_rdev));
1420 raw_inode->i_block[1] = 0;
1421 } else {
1422 raw_inode->i_block[0] = 0;
1423 raw_inode->i_block[1] =
1424 cpu_to_le32(new_encode_dev(inode->i_rdev));
1425 raw_inode->i_block[2] = 0;
1427 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1428 raw_inode->i_block[n] = ei->i_data[n];
1429 mark_buffer_dirty(bh);
1430 if (do_sync) {
1431 sync_dirty_buffer(bh);
1432 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1433 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1434 sb->s_id, (unsigned long) ino);
1435 err = -EIO;
1438 ei->i_state &= ~EXT2_STATE_NEW;
1439 brelse (bh);
1440 return err;
1443 int ext2_sync_inode(struct inode *inode)
1445 struct writeback_control wbc = {
1446 .sync_mode = WB_SYNC_ALL,
1447 .nr_to_write = 0, /* sys_fsync did this */
1449 return sync_inode(inode, &wbc);
1452 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1454 struct inode *inode = dentry->d_inode;
1455 int error;
1457 error = inode_change_ok(inode, iattr);
1458 if (error)
1459 return error;
1460 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1461 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1462 error = vfs_dq_transfer(inode, iattr) ? -EDQUOT : 0;
1463 if (error)
1464 return error;
1466 error = inode_setattr(inode, iattr);
1467 if (!error && (iattr->ia_valid & ATTR_MODE))
1468 error = ext2_acl_chmod(inode);
1469 return error;