eCryptfs: Remove mmap from directory operations
[linux/fpc-iii.git] / fs / ubifs / gc.c
blobe5a3d8e96bb706d1d03ab393cb9e84d5855f4e51
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements garbage collection. The procedure for garbage collection
25 * is different depending on whether a LEB as an index LEB (contains index
26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28 * nodes to the journal, at which point the garbage-collected LEB is free to be
29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31 * to be reused. Garbage collection will cause the number of dirty index nodes
32 * to grow, however sufficient space is reserved for the index to ensure the
33 * commit will never run out of space.
35 * Notes about dead watermark. At current UBIFS implementation we assume that
36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39 * Garbage Collector has to synchronize the GC head's write buffer before
40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41 * actually reclaim even very small pieces of dirty space by garbage collecting
42 * enough dirty LEBs, but we do not bother doing this at this implementation.
44 * Notes about dark watermark. The results of GC work depends on how big are
45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47 * have to waste large pieces of free space at the end of LEB B, because nodes
48 * from LEB A would not fit. And the worst situation is when all nodes are of
49 * maximum size. So dark watermark is the amount of free + dirty space in LEB
50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
53 * good, and GC takes extra care when moving them.
56 #include <linux/pagemap.h>
57 #include <linux/list_sort.h>
58 #include "ubifs.h"
61 * GC may need to move more than one LEB to make progress. The below constants
62 * define "soft" and "hard" limits on the number of LEBs the garbage collector
63 * may move.
65 #define SOFT_LEBS_LIMIT 4
66 #define HARD_LEBS_LIMIT 32
68 /**
69 * switch_gc_head - switch the garbage collection journal head.
70 * @c: UBIFS file-system description object
71 * @buf: buffer to write
72 * @len: length of the buffer to write
73 * @lnum: LEB number written is returned here
74 * @offs: offset written is returned here
76 * This function switch the GC head to the next LEB which is reserved in
77 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
78 * and other negative error code in case of failures.
80 static int switch_gc_head(struct ubifs_info *c)
82 int err, gc_lnum = c->gc_lnum;
83 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
85 ubifs_assert(gc_lnum != -1);
86 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
87 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
88 c->leb_size - wbuf->offs - wbuf->used);
90 err = ubifs_wbuf_sync_nolock(wbuf);
91 if (err)
92 return err;
95 * The GC write-buffer was synchronized, we may safely unmap
96 * 'c->gc_lnum'.
98 err = ubifs_leb_unmap(c, gc_lnum);
99 if (err)
100 return err;
102 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
103 if (err)
104 return err;
106 c->gc_lnum = -1;
107 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
108 return err;
112 * data_nodes_cmp - compare 2 data nodes.
113 * @priv: UBIFS file-system description object
114 * @a: first data node
115 * @a: second data node
117 * This function compares data nodes @a and @b. Returns %1 if @a has greater
118 * inode or block number, and %-1 otherwise.
120 int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
122 ino_t inuma, inumb;
123 struct ubifs_info *c = priv;
124 struct ubifs_scan_node *sa, *sb;
126 cond_resched();
127 sa = list_entry(a, struct ubifs_scan_node, list);
128 sb = list_entry(b, struct ubifs_scan_node, list);
129 ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
130 ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
132 inuma = key_inum(c, &sa->key);
133 inumb = key_inum(c, &sb->key);
135 if (inuma == inumb) {
136 unsigned int blka = key_block(c, &sa->key);
137 unsigned int blkb = key_block(c, &sb->key);
139 if (blka <= blkb)
140 return -1;
141 } else if (inuma <= inumb)
142 return -1;
144 return 1;
148 * nondata_nodes_cmp - compare 2 non-data nodes.
149 * @priv: UBIFS file-system description object
150 * @a: first node
151 * @a: second node
153 * This function compares nodes @a and @b. It makes sure that inode nodes go
154 * first and sorted by length in descending order. Directory entry nodes go
155 * after inode nodes and are sorted in ascending hash valuer order.
157 int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
159 int typea, typeb;
160 ino_t inuma, inumb;
161 struct ubifs_info *c = priv;
162 struct ubifs_scan_node *sa, *sb;
164 cond_resched();
165 sa = list_entry(a, struct ubifs_scan_node, list);
166 sb = list_entry(b, struct ubifs_scan_node, list);
167 typea = key_type(c, &sa->key);
168 typeb = key_type(c, &sb->key);
169 ubifs_assert(typea != UBIFS_DATA_KEY && typeb != UBIFS_DATA_KEY);
171 /* Inodes go before directory entries */
172 if (typea == UBIFS_INO_KEY) {
173 if (typeb == UBIFS_INO_KEY)
174 return sb->len - sa->len;
175 return -1;
177 if (typeb == UBIFS_INO_KEY)
178 return 1;
180 ubifs_assert(typea == UBIFS_DENT_KEY && typeb == UBIFS_DENT_KEY);
181 inuma = key_inum(c, &sa->key);
182 inumb = key_inum(c, &sb->key);
184 if (inuma == inumb) {
185 uint32_t hasha = key_hash(c, &sa->key);
186 uint32_t hashb = key_hash(c, &sb->key);
188 if (hasha <= hashb)
189 return -1;
190 } else if (inuma <= inumb)
191 return -1;
193 return 1;
197 * sort_nodes - sort nodes for GC.
198 * @c: UBIFS file-system description object
199 * @sleb: describes nodes to sort and contains the result on exit
200 * @nondata: contains non-data nodes on exit
201 * @min: minimum node size is returned here
203 * This function sorts the list of inodes to garbage collect. First of all, it
204 * kills obsolete nodes and separates data and non-data nodes to the
205 * @sleb->nodes and @nondata lists correspondingly.
207 * Data nodes are then sorted in block number order - this is important for
208 * bulk-read; data nodes with lower inode number go before data nodes with
209 * higher inode number, and data nodes with lower block number go before data
210 * nodes with higher block number;
212 * Non-data nodes are sorted as follows.
213 * o First go inode nodes - they are sorted in descending length order.
214 * o Then go directory entry nodes - they are sorted in hash order, which
215 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
216 * inode number go before direntry nodes with higher parent inode number,
217 * and direntry nodes with lower name hash values go before direntry nodes
218 * with higher name hash values.
220 * This function returns zero in case of success and a negative error code in
221 * case of failure.
223 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
224 struct list_head *nondata, int *min)
226 struct ubifs_scan_node *snod, *tmp;
228 *min = INT_MAX;
230 /* Separate data nodes and non-data nodes */
231 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
232 int err;
234 ubifs_assert(snod->type != UBIFS_IDX_NODE);
235 ubifs_assert(snod->type != UBIFS_REF_NODE);
236 ubifs_assert(snod->type != UBIFS_CS_NODE);
238 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
239 snod->offs, 0);
240 if (err < 0)
241 return err;
243 if (!err) {
244 /* The node is obsolete, remove it from the list */
245 list_del(&snod->list);
246 kfree(snod);
247 continue;
250 if (snod->len < *min)
251 *min = snod->len;
253 if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
254 list_move_tail(&snod->list, nondata);
257 /* Sort data and non-data nodes */
258 list_sort(c, &sleb->nodes, &data_nodes_cmp);
259 list_sort(c, nondata, &nondata_nodes_cmp);
260 return 0;
264 * move_node - move a node.
265 * @c: UBIFS file-system description object
266 * @sleb: describes the LEB to move nodes from
267 * @snod: the mode to move
268 * @wbuf: write-buffer to move node to
270 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
271 * destroys @snod. Returns zero in case of success and a negative error code in
272 * case of failure.
274 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
275 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
277 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
279 cond_resched();
280 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
281 if (err)
282 return err;
284 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
285 snod->offs, new_lnum, new_offs,
286 snod->len);
287 list_del(&snod->list);
288 kfree(snod);
289 return err;
293 * move_nodes - move nodes.
294 * @c: UBIFS file-system description object
295 * @sleb: describes the LEB to move nodes from
297 * This function moves valid nodes from data LEB described by @sleb to the GC
298 * journal head. This function returns zero in case of success, %-EAGAIN if
299 * commit is required, and other negative error codes in case of other
300 * failures.
302 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
304 int err, min;
305 LIST_HEAD(nondata);
306 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
308 if (wbuf->lnum == -1) {
310 * The GC journal head is not set, because it is the first GC
311 * invocation since mount.
313 err = switch_gc_head(c);
314 if (err)
315 return err;
318 err = sort_nodes(c, sleb, &nondata, &min);
319 if (err)
320 goto out;
322 /* Write nodes to their new location. Use the first-fit strategy */
323 while (1) {
324 int avail;
325 struct ubifs_scan_node *snod, *tmp;
327 /* Move data nodes */
328 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
329 avail = c->leb_size - wbuf->offs - wbuf->used;
330 if (snod->len > avail)
332 * Do not skip data nodes in order to optimize
333 * bulk-read.
335 break;
337 err = move_node(c, sleb, snod, wbuf);
338 if (err)
339 goto out;
342 /* Move non-data nodes */
343 list_for_each_entry_safe(snod, tmp, &nondata, list) {
344 avail = c->leb_size - wbuf->offs - wbuf->used;
345 if (avail < min)
346 break;
348 if (snod->len > avail) {
350 * Keep going only if this is an inode with
351 * some data. Otherwise stop and switch the GC
352 * head. IOW, we assume that data-less inode
353 * nodes and direntry nodes are roughly of the
354 * same size.
356 if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
357 snod->len == UBIFS_INO_NODE_SZ)
358 break;
359 continue;
362 err = move_node(c, sleb, snod, wbuf);
363 if (err)
364 goto out;
367 if (list_empty(&sleb->nodes) && list_empty(&nondata))
368 break;
371 * Waste the rest of the space in the LEB and switch to the
372 * next LEB.
374 err = switch_gc_head(c);
375 if (err)
376 goto out;
379 return 0;
381 out:
382 list_splice_tail(&nondata, &sleb->nodes);
383 return err;
387 * gc_sync_wbufs - sync write-buffers for GC.
388 * @c: UBIFS file-system description object
390 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
391 * be in a write-buffer instead. That is, a node could be written to a
392 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
393 * erased before the write-buffer is sync'd and then there is an unclean
394 * unmount, then an existing node is lost. To avoid this, we sync all
395 * write-buffers.
397 * This function returns %0 on success or a negative error code on failure.
399 static int gc_sync_wbufs(struct ubifs_info *c)
401 int err, i;
403 for (i = 0; i < c->jhead_cnt; i++) {
404 if (i == GCHD)
405 continue;
406 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
407 if (err)
408 return err;
410 return 0;
414 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
415 * @c: UBIFS file-system description object
416 * @lp: describes the LEB to garbage collect
418 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
419 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
420 * required, and other negative error codes in case of failures.
422 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
424 struct ubifs_scan_leb *sleb;
425 struct ubifs_scan_node *snod;
426 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
427 int err = 0, lnum = lp->lnum;
429 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
430 c->need_recovery);
431 ubifs_assert(c->gc_lnum != lnum);
432 ubifs_assert(wbuf->lnum != lnum);
435 * We scan the entire LEB even though we only really need to scan up to
436 * (c->leb_size - lp->free).
438 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
439 if (IS_ERR(sleb))
440 return PTR_ERR(sleb);
442 ubifs_assert(!list_empty(&sleb->nodes));
443 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
445 if (snod->type == UBIFS_IDX_NODE) {
446 struct ubifs_gced_idx_leb *idx_gc;
448 dbg_gc("indexing LEB %d (free %d, dirty %d)",
449 lnum, lp->free, lp->dirty);
450 list_for_each_entry(snod, &sleb->nodes, list) {
451 struct ubifs_idx_node *idx = snod->node;
452 int level = le16_to_cpu(idx->level);
454 ubifs_assert(snod->type == UBIFS_IDX_NODE);
455 key_read(c, ubifs_idx_key(c, idx), &snod->key);
456 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
457 snod->offs);
458 if (err)
459 goto out;
462 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
463 if (!idx_gc) {
464 err = -ENOMEM;
465 goto out;
468 idx_gc->lnum = lnum;
469 idx_gc->unmap = 0;
470 list_add(&idx_gc->list, &c->idx_gc);
473 * Don't release the LEB until after the next commit, because
474 * it may contain data which is needed for recovery. So
475 * although we freed this LEB, it will become usable only after
476 * the commit.
478 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
479 LPROPS_INDEX, 1);
480 if (err)
481 goto out;
482 err = LEB_FREED_IDX;
483 } else {
484 dbg_gc("data LEB %d (free %d, dirty %d)",
485 lnum, lp->free, lp->dirty);
487 err = move_nodes(c, sleb);
488 if (err)
489 goto out_inc_seq;
491 err = gc_sync_wbufs(c);
492 if (err)
493 goto out_inc_seq;
495 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
496 if (err)
497 goto out_inc_seq;
499 /* Allow for races with TNC */
500 c->gced_lnum = lnum;
501 smp_wmb();
502 c->gc_seq += 1;
503 smp_wmb();
505 if (c->gc_lnum == -1) {
506 c->gc_lnum = lnum;
507 err = LEB_RETAINED;
508 } else {
509 err = ubifs_wbuf_sync_nolock(wbuf);
510 if (err)
511 goto out;
513 err = ubifs_leb_unmap(c, lnum);
514 if (err)
515 goto out;
517 err = LEB_FREED;
521 out:
522 ubifs_scan_destroy(sleb);
523 return err;
525 out_inc_seq:
526 /* We may have moved at least some nodes so allow for races with TNC */
527 c->gced_lnum = lnum;
528 smp_wmb();
529 c->gc_seq += 1;
530 smp_wmb();
531 goto out;
535 * ubifs_garbage_collect - UBIFS garbage collector.
536 * @c: UBIFS file-system description object
537 * @anyway: do GC even if there are free LEBs
539 * This function does out-of-place garbage collection. The return codes are:
540 * o positive LEB number if the LEB has been freed and may be used;
541 * o %-EAGAIN if the caller has to run commit;
542 * o %-ENOSPC if GC failed to make any progress;
543 * o other negative error codes in case of other errors.
545 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
546 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
547 * commit may be required. But commit cannot be run from inside GC, because the
548 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
549 * And this error code means that the caller has to run commit, and re-run GC
550 * if there is still no free space.
552 * There are many reasons why this function may return %-EAGAIN:
553 * o the log is full and there is no space to write an LEB reference for
554 * @c->gc_lnum;
555 * o the journal is too large and exceeds size limitations;
556 * o GC moved indexing LEBs, but they can be used only after the commit;
557 * o the shrinker fails to find clean znodes to free and requests the commit;
558 * o etc.
560 * Note, if the file-system is close to be full, this function may return
561 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
562 * the function. E.g., this happens if the limits on the journal size are too
563 * tough and GC writes too much to the journal before an LEB is freed. This
564 * might also mean that the journal is too large, and the TNC becomes to big,
565 * so that the shrinker is constantly called, finds not clean znodes to free,
566 * and requests commit. Well, this may also happen if the journal is all right,
567 * but another kernel process consumes too much memory. Anyway, infinite
568 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
570 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
572 int i, err, ret, min_space = c->dead_wm;
573 struct ubifs_lprops lp;
574 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
576 ubifs_assert_cmt_locked(c);
578 if (ubifs_gc_should_commit(c))
579 return -EAGAIN;
581 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
583 if (c->ro_media) {
584 ret = -EROFS;
585 goto out_unlock;
588 /* We expect the write-buffer to be empty on entry */
589 ubifs_assert(!wbuf->used);
591 for (i = 0; ; i++) {
592 int space_before = c->leb_size - wbuf->offs - wbuf->used;
593 int space_after;
595 cond_resched();
597 /* Give the commit an opportunity to run */
598 if (ubifs_gc_should_commit(c)) {
599 ret = -EAGAIN;
600 break;
603 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
605 * We've done enough iterations. Indexing LEBs were
606 * moved and will be available after the commit.
608 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
609 ubifs_commit_required(c);
610 ret = -EAGAIN;
611 break;
614 if (i > HARD_LEBS_LIMIT) {
616 * We've moved too many LEBs and have not made
617 * progress, give up.
619 dbg_gc("hard limit, -ENOSPC");
620 ret = -ENOSPC;
621 break;
625 * Empty and freeable LEBs can turn up while we waited for
626 * the wbuf lock, or while we have been running GC. In that
627 * case, we should just return one of those instead of
628 * continuing to GC dirty LEBs. Hence we request
629 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
631 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
632 if (ret) {
633 if (ret == -ENOSPC)
634 dbg_gc("no more dirty LEBs");
635 break;
638 dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
639 "(min. space %d)", lp.lnum, lp.free, lp.dirty,
640 lp.free + lp.dirty, min_space);
642 if (lp.free + lp.dirty == c->leb_size) {
643 /* An empty LEB was returned */
644 dbg_gc("LEB %d is free, return it", lp.lnum);
646 * ubifs_find_dirty_leb() doesn't return freeable index
647 * LEBs.
649 ubifs_assert(!(lp.flags & LPROPS_INDEX));
650 if (lp.free != c->leb_size) {
652 * Write buffers must be sync'd before
653 * unmapping freeable LEBs, because one of them
654 * may contain data which obsoletes something
655 * in 'lp.pnum'.
657 ret = gc_sync_wbufs(c);
658 if (ret)
659 goto out;
660 ret = ubifs_change_one_lp(c, lp.lnum,
661 c->leb_size, 0, 0, 0,
663 if (ret)
664 goto out;
666 ret = ubifs_leb_unmap(c, lp.lnum);
667 if (ret)
668 goto out;
669 ret = lp.lnum;
670 break;
673 space_before = c->leb_size - wbuf->offs - wbuf->used;
674 if (wbuf->lnum == -1)
675 space_before = 0;
677 ret = ubifs_garbage_collect_leb(c, &lp);
678 if (ret < 0) {
679 if (ret == -EAGAIN || ret == -ENOSPC) {
681 * These codes are not errors, so we have to
682 * return the LEB to lprops. But if the
683 * 'ubifs_return_leb()' function fails, its
684 * failure code is propagated to the caller
685 * instead of the original '-EAGAIN' or
686 * '-ENOSPC'.
688 err = ubifs_return_leb(c, lp.lnum);
689 if (err)
690 ret = err;
691 break;
693 goto out;
696 if (ret == LEB_FREED) {
697 /* An LEB has been freed and is ready for use */
698 dbg_gc("LEB %d freed, return", lp.lnum);
699 ret = lp.lnum;
700 break;
703 if (ret == LEB_FREED_IDX) {
705 * This was an indexing LEB and it cannot be
706 * immediately used. And instead of requesting the
707 * commit straight away, we try to garbage collect some
708 * more.
710 dbg_gc("indexing LEB %d freed, continue", lp.lnum);
711 continue;
714 ubifs_assert(ret == LEB_RETAINED);
715 space_after = c->leb_size - wbuf->offs - wbuf->used;
716 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
717 space_after - space_before);
719 if (space_after > space_before) {
720 /* GC makes progress, keep working */
721 min_space >>= 1;
722 if (min_space < c->dead_wm)
723 min_space = c->dead_wm;
724 continue;
727 dbg_gc("did not make progress");
730 * GC moved an LEB bud have not done any progress. This means
731 * that the previous GC head LEB contained too few free space
732 * and the LEB which was GC'ed contained only large nodes which
733 * did not fit that space.
735 * We can do 2 things:
736 * 1. pick another LEB in a hope it'll contain a small node
737 * which will fit the space we have at the end of current GC
738 * head LEB, but there is no guarantee, so we try this out
739 * unless we have already been working for too long;
740 * 2. request an LEB with more dirty space, which will force
741 * 'ubifs_find_dirty_leb()' to start scanning the lprops
742 * table, instead of just picking one from the heap
743 * (previously it already picked the dirtiest LEB).
745 if (i < SOFT_LEBS_LIMIT) {
746 dbg_gc("try again");
747 continue;
750 min_space <<= 1;
751 if (min_space > c->dark_wm)
752 min_space = c->dark_wm;
753 dbg_gc("set min. space to %d", min_space);
756 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
757 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
758 ubifs_commit_required(c);
759 ret = -EAGAIN;
762 err = ubifs_wbuf_sync_nolock(wbuf);
763 if (!err)
764 err = ubifs_leb_unmap(c, c->gc_lnum);
765 if (err) {
766 ret = err;
767 goto out;
769 out_unlock:
770 mutex_unlock(&wbuf->io_mutex);
771 return ret;
773 out:
774 ubifs_assert(ret < 0);
775 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
776 ubifs_ro_mode(c, ret);
777 ubifs_wbuf_sync_nolock(wbuf);
778 mutex_unlock(&wbuf->io_mutex);
779 ubifs_return_leb(c, lp.lnum);
780 return ret;
784 * ubifs_gc_start_commit - garbage collection at start of commit.
785 * @c: UBIFS file-system description object
787 * If a LEB has only dirty and free space, then we may safely unmap it and make
788 * it free. Note, we cannot do this with indexing LEBs because dirty space may
789 * correspond index nodes that are required for recovery. In that case, the
790 * LEB cannot be unmapped until after the next commit.
792 * This function returns %0 upon success and a negative error code upon failure.
794 int ubifs_gc_start_commit(struct ubifs_info *c)
796 struct ubifs_gced_idx_leb *idx_gc;
797 const struct ubifs_lprops *lp;
798 int err = 0, flags;
800 ubifs_get_lprops(c);
803 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
804 * wbufs are sync'd before this, which is done in 'do_commit()'.
806 while (1) {
807 lp = ubifs_fast_find_freeable(c);
808 if (IS_ERR(lp)) {
809 err = PTR_ERR(lp);
810 goto out;
812 if (!lp)
813 break;
814 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
815 ubifs_assert(!(lp->flags & LPROPS_INDEX));
816 err = ubifs_leb_unmap(c, lp->lnum);
817 if (err)
818 goto out;
819 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
820 if (IS_ERR(lp)) {
821 err = PTR_ERR(lp);
822 goto out;
824 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
825 ubifs_assert(!(lp->flags & LPROPS_INDEX));
828 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
829 list_for_each_entry(idx_gc, &c->idx_gc, list)
830 idx_gc->unmap = 1;
832 /* Record index freeable LEBs for unmapping after commit */
833 while (1) {
834 lp = ubifs_fast_find_frdi_idx(c);
835 if (IS_ERR(lp)) {
836 err = PTR_ERR(lp);
837 goto out;
839 if (!lp)
840 break;
841 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
842 if (!idx_gc) {
843 err = -ENOMEM;
844 goto out;
846 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
847 ubifs_assert(lp->flags & LPROPS_INDEX);
848 /* Don't release the LEB until after the next commit */
849 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
850 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
851 if (IS_ERR(lp)) {
852 err = PTR_ERR(lp);
853 kfree(idx_gc);
854 goto out;
856 ubifs_assert(lp->flags & LPROPS_TAKEN);
857 ubifs_assert(!(lp->flags & LPROPS_INDEX));
858 idx_gc->lnum = lp->lnum;
859 idx_gc->unmap = 1;
860 list_add(&idx_gc->list, &c->idx_gc);
862 out:
863 ubifs_release_lprops(c);
864 return err;
868 * ubifs_gc_end_commit - garbage collection at end of commit.
869 * @c: UBIFS file-system description object
871 * This function completes out-of-place garbage collection of index LEBs.
873 int ubifs_gc_end_commit(struct ubifs_info *c)
875 struct ubifs_gced_idx_leb *idx_gc, *tmp;
876 struct ubifs_wbuf *wbuf;
877 int err = 0;
879 wbuf = &c->jheads[GCHD].wbuf;
880 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
881 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
882 if (idx_gc->unmap) {
883 dbg_gc("LEB %d", idx_gc->lnum);
884 err = ubifs_leb_unmap(c, idx_gc->lnum);
885 if (err)
886 goto out;
887 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
888 LPROPS_NC, 0, LPROPS_TAKEN, -1);
889 if (err)
890 goto out;
891 list_del(&idx_gc->list);
892 kfree(idx_gc);
894 out:
895 mutex_unlock(&wbuf->io_mutex);
896 return err;
900 * ubifs_destroy_idx_gc - destroy idx_gc list.
901 * @c: UBIFS file-system description object
903 * This function destroys the @c->idx_gc list. It is called when unmounting
904 * so locks are not needed. Returns zero in case of success and a negative
905 * error code in case of failure.
907 void ubifs_destroy_idx_gc(struct ubifs_info *c)
909 while (!list_empty(&c->idx_gc)) {
910 struct ubifs_gced_idx_leb *idx_gc;
912 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
913 list);
914 c->idx_gc_cnt -= 1;
915 list_del(&idx_gc->list);
916 kfree(idx_gc);
921 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
922 * @c: UBIFS file-system description object
924 * Called during start commit so locks are not needed.
926 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
928 struct ubifs_gced_idx_leb *idx_gc;
929 int lnum;
931 if (list_empty(&c->idx_gc))
932 return -ENOSPC;
933 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
934 lnum = idx_gc->lnum;
935 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
936 list_del(&idx_gc->list);
937 kfree(idx_gc);
938 return lnum;