eCryptfs: Remove mmap from directory operations
[linux/fpc-iii.git] / fs / ubifs / super.c
blob43f9d19a6f3313ec3df7f358138e153703d4895b
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
45 #define UBIFS_KMALLOC_OK (128*1024)
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 .shrink = ubifs_shrinker,
53 .seeks = DEFAULT_SEEKS,
56 /**
57 * validate_inode - validate inode.
58 * @c: UBIFS file-system description object
59 * @inode: the inode to validate
61 * This is a helper function for 'ubifs_iget()' which validates various fields
62 * of a newly built inode to make sure they contain sane values and prevent
63 * possible vulnerabilities. Returns zero if the inode is all right and
64 * a non-zero error code if not.
66 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 int err;
69 const struct ubifs_inode *ui = ubifs_inode(inode);
71 if (inode->i_size > c->max_inode_sz) {
72 ubifs_err("inode is too large (%lld)",
73 (long long)inode->i_size);
74 return 1;
77 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78 ubifs_err("unknown compression type %d", ui->compr_type);
79 return 2;
82 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
83 return 3;
85 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
86 return 4;
88 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
89 return 5;
91 if (!ubifs_compr_present(ui->compr_type)) {
92 ubifs_warn("inode %lu uses '%s' compression, but it was not "
93 "compiled in", inode->i_ino,
94 ubifs_compr_name(ui->compr_type));
97 err = dbg_check_dir_size(c, inode);
98 return err;
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
103 int err;
104 union ubifs_key key;
105 struct ubifs_ino_node *ino;
106 struct ubifs_info *c = sb->s_fs_info;
107 struct inode *inode;
108 struct ubifs_inode *ui;
110 dbg_gen("inode %lu", inum);
112 inode = iget_locked(sb, inum);
113 if (!inode)
114 return ERR_PTR(-ENOMEM);
115 if (!(inode->i_state & I_NEW))
116 return inode;
117 ui = ubifs_inode(inode);
119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 if (!ino) {
121 err = -ENOMEM;
122 goto out;
125 ino_key_init(c, &key, inode->i_ino);
127 err = ubifs_tnc_lookup(c, &key, ino);
128 if (err)
129 goto out_ino;
131 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 inode->i_nlink = le32_to_cpu(ino->nlink);
133 inode->i_uid = le32_to_cpu(ino->uid);
134 inode->i_gid = le32_to_cpu(ino->gid);
135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 inode->i_mode = le32_to_cpu(ino->mode);
142 inode->i_size = le64_to_cpu(ino->size);
144 ui->data_len = le32_to_cpu(ino->data_len);
145 ui->flags = le32_to_cpu(ino->flags);
146 ui->compr_type = le16_to_cpu(ino->compr_type);
147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
149 ui->xattr_size = le32_to_cpu(ino->xattr_size);
150 ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 ui->synced_i_size = ui->ui_size = inode->i_size;
153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
155 err = validate_inode(c, inode);
156 if (err)
157 goto out_invalid;
159 /* Disable read-ahead */
160 inode->i_mapping->backing_dev_info = &c->bdi;
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFREG:
164 inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 inode->i_op = &ubifs_file_inode_operations;
166 inode->i_fop = &ubifs_file_operations;
167 if (ui->xattr) {
168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 if (!ui->data) {
170 err = -ENOMEM;
171 goto out_ino;
173 memcpy(ui->data, ino->data, ui->data_len);
174 ((char *)ui->data)[ui->data_len] = '\0';
175 } else if (ui->data_len != 0) {
176 err = 10;
177 goto out_invalid;
179 break;
180 case S_IFDIR:
181 inode->i_op = &ubifs_dir_inode_operations;
182 inode->i_fop = &ubifs_dir_operations;
183 if (ui->data_len != 0) {
184 err = 11;
185 goto out_invalid;
187 break;
188 case S_IFLNK:
189 inode->i_op = &ubifs_symlink_inode_operations;
190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 err = 12;
192 goto out_invalid;
194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 if (!ui->data) {
196 err = -ENOMEM;
197 goto out_ino;
199 memcpy(ui->data, ino->data, ui->data_len);
200 ((char *)ui->data)[ui->data_len] = '\0';
201 break;
202 case S_IFBLK:
203 case S_IFCHR:
205 dev_t rdev;
206 union ubifs_dev_desc *dev;
208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 if (!ui->data) {
210 err = -ENOMEM;
211 goto out_ino;
214 dev = (union ubifs_dev_desc *)ino->data;
215 if (ui->data_len == sizeof(dev->new))
216 rdev = new_decode_dev(le32_to_cpu(dev->new));
217 else if (ui->data_len == sizeof(dev->huge))
218 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 else {
220 err = 13;
221 goto out_invalid;
223 memcpy(ui->data, ino->data, ui->data_len);
224 inode->i_op = &ubifs_file_inode_operations;
225 init_special_inode(inode, inode->i_mode, rdev);
226 break;
228 case S_IFSOCK:
229 case S_IFIFO:
230 inode->i_op = &ubifs_file_inode_operations;
231 init_special_inode(inode, inode->i_mode, 0);
232 if (ui->data_len != 0) {
233 err = 14;
234 goto out_invalid;
236 break;
237 default:
238 err = 15;
239 goto out_invalid;
242 kfree(ino);
243 ubifs_set_inode_flags(inode);
244 unlock_new_inode(inode);
245 return inode;
247 out_invalid:
248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249 dbg_dump_node(c, ino);
250 dbg_dump_inode(c, inode);
251 err = -EINVAL;
252 out_ino:
253 kfree(ino);
254 out:
255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
256 iget_failed(inode);
257 return ERR_PTR(err);
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
262 struct ubifs_inode *ui;
264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 if (!ui)
266 return NULL;
268 memset((void *)ui + sizeof(struct inode), 0,
269 sizeof(struct ubifs_inode) - sizeof(struct inode));
270 mutex_init(&ui->ui_mutex);
271 spin_lock_init(&ui->ui_lock);
272 return &ui->vfs_inode;
275 static void ubifs_destroy_inode(struct inode *inode)
277 struct ubifs_inode *ui = ubifs_inode(inode);
279 kfree(ui->data);
280 kmem_cache_free(ubifs_inode_slab, inode);
284 * Note, Linux write-back code calls this without 'i_mutex'.
286 static int ubifs_write_inode(struct inode *inode, int wait)
288 int err = 0;
289 struct ubifs_info *c = inode->i_sb->s_fs_info;
290 struct ubifs_inode *ui = ubifs_inode(inode);
292 ubifs_assert(!ui->xattr);
293 if (is_bad_inode(inode))
294 return 0;
296 mutex_lock(&ui->ui_mutex);
298 * Due to races between write-back forced by budgeting
299 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
300 * have already been synchronized, do not do this again. This might
301 * also happen if it was synchronized in an VFS operation, e.g.
302 * 'ubifs_link()'.
304 if (!ui->dirty) {
305 mutex_unlock(&ui->ui_mutex);
306 return 0;
310 * As an optimization, do not write orphan inodes to the media just
311 * because this is not needed.
313 dbg_gen("inode %lu, mode %#x, nlink %u",
314 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
315 if (inode->i_nlink) {
316 err = ubifs_jnl_write_inode(c, inode);
317 if (err)
318 ubifs_err("can't write inode %lu, error %d",
319 inode->i_ino, err);
320 else
321 err = dbg_check_inode_size(c, inode, ui->ui_size);
324 ui->dirty = 0;
325 mutex_unlock(&ui->ui_mutex);
326 ubifs_release_dirty_inode_budget(c, ui);
327 return err;
330 static void ubifs_delete_inode(struct inode *inode)
332 int err;
333 struct ubifs_info *c = inode->i_sb->s_fs_info;
334 struct ubifs_inode *ui = ubifs_inode(inode);
336 if (ui->xattr)
338 * Extended attribute inode deletions are fully handled in
339 * 'ubifs_removexattr()'. These inodes are special and have
340 * limited usage, so there is nothing to do here.
342 goto out;
344 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
345 ubifs_assert(!atomic_read(&inode->i_count));
346 ubifs_assert(inode->i_nlink == 0);
348 truncate_inode_pages(&inode->i_data, 0);
349 if (is_bad_inode(inode))
350 goto out;
352 ui->ui_size = inode->i_size = 0;
353 err = ubifs_jnl_delete_inode(c, inode);
354 if (err)
356 * Worst case we have a lost orphan inode wasting space, so a
357 * simple error message is OK here.
359 ubifs_err("can't delete inode %lu, error %d",
360 inode->i_ino, err);
362 out:
363 if (ui->dirty)
364 ubifs_release_dirty_inode_budget(c, ui);
365 else {
366 /* We've deleted something - clean the "no space" flags */
367 c->nospace = c->nospace_rp = 0;
368 smp_wmb();
370 clear_inode(inode);
373 static void ubifs_dirty_inode(struct inode *inode)
375 struct ubifs_inode *ui = ubifs_inode(inode);
377 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
378 if (!ui->dirty) {
379 ui->dirty = 1;
380 dbg_gen("inode %lu", inode->i_ino);
384 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
386 struct ubifs_info *c = dentry->d_sb->s_fs_info;
387 unsigned long long free;
388 __le32 *uuid = (__le32 *)c->uuid;
390 free = ubifs_get_free_space(c);
391 dbg_gen("free space %lld bytes (%lld blocks)",
392 free, free >> UBIFS_BLOCK_SHIFT);
394 buf->f_type = UBIFS_SUPER_MAGIC;
395 buf->f_bsize = UBIFS_BLOCK_SIZE;
396 buf->f_blocks = c->block_cnt;
397 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
398 if (free > c->report_rp_size)
399 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
400 else
401 buf->f_bavail = 0;
402 buf->f_files = 0;
403 buf->f_ffree = 0;
404 buf->f_namelen = UBIFS_MAX_NLEN;
405 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
406 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
407 ubifs_assert(buf->f_bfree <= c->block_cnt);
408 return 0;
411 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
413 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
415 if (c->mount_opts.unmount_mode == 2)
416 seq_printf(s, ",fast_unmount");
417 else if (c->mount_opts.unmount_mode == 1)
418 seq_printf(s, ",norm_unmount");
420 if (c->mount_opts.bulk_read == 2)
421 seq_printf(s, ",bulk_read");
422 else if (c->mount_opts.bulk_read == 1)
423 seq_printf(s, ",no_bulk_read");
425 if (c->mount_opts.chk_data_crc == 2)
426 seq_printf(s, ",chk_data_crc");
427 else if (c->mount_opts.chk_data_crc == 1)
428 seq_printf(s, ",no_chk_data_crc");
430 if (c->mount_opts.override_compr) {
431 seq_printf(s, ",compr=%s",
432 ubifs_compr_name(c->mount_opts.compr_type));
435 return 0;
438 static int ubifs_sync_fs(struct super_block *sb, int wait)
440 int i, err;
441 struct ubifs_info *c = sb->s_fs_info;
444 * Zero @wait is just an advisory thing to help the file system shove
445 * lots of data into the queues, and there will be the second
446 * '->sync_fs()' call, with non-zero @wait.
448 if (!wait)
449 return 0;
452 * Synchronize write buffers, because 'ubifs_run_commit()' does not
453 * do this if it waits for an already running commit.
455 for (i = 0; i < c->jhead_cnt; i++) {
456 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
457 if (err)
458 return err;
462 * Strictly speaking, it is not necessary to commit the journal here,
463 * synchronizing write-buffers would be enough. But committing makes
464 * UBIFS free space predictions much more accurate, so we want to let
465 * the user be able to get more accurate results of 'statfs()' after
466 * they synchronize the file system.
468 err = ubifs_run_commit(c);
469 if (err)
470 return err;
472 return ubi_sync(c->vi.ubi_num);
476 * init_constants_early - initialize UBIFS constants.
477 * @c: UBIFS file-system description object
479 * This function initialize UBIFS constants which do not need the superblock to
480 * be read. It also checks that the UBI volume satisfies basic UBIFS
481 * requirements. Returns zero in case of success and a negative error code in
482 * case of failure.
484 static int init_constants_early(struct ubifs_info *c)
486 if (c->vi.corrupted) {
487 ubifs_warn("UBI volume is corrupted - read-only mode");
488 c->ro_media = 1;
491 if (c->di.ro_mode) {
492 ubifs_msg("read-only UBI device");
493 c->ro_media = 1;
496 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
497 ubifs_msg("static UBI volume - read-only mode");
498 c->ro_media = 1;
501 c->leb_cnt = c->vi.size;
502 c->leb_size = c->vi.usable_leb_size;
503 c->half_leb_size = c->leb_size / 2;
504 c->min_io_size = c->di.min_io_size;
505 c->min_io_shift = fls(c->min_io_size) - 1;
507 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
508 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
509 c->leb_size, UBIFS_MIN_LEB_SZ);
510 return -EINVAL;
513 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
514 ubifs_err("too few LEBs (%d), min. is %d",
515 c->leb_cnt, UBIFS_MIN_LEB_CNT);
516 return -EINVAL;
519 if (!is_power_of_2(c->min_io_size)) {
520 ubifs_err("bad min. I/O size %d", c->min_io_size);
521 return -EINVAL;
525 * UBIFS aligns all node to 8-byte boundary, so to make function in
526 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
527 * less than 8.
529 if (c->min_io_size < 8) {
530 c->min_io_size = 8;
531 c->min_io_shift = 3;
534 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
535 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
538 * Initialize node length ranges which are mostly needed for node
539 * length validation.
541 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
542 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
543 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
544 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
545 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
546 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
548 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
549 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
550 c->ranges[UBIFS_ORPH_NODE].min_len =
551 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
552 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
553 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
554 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
555 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
556 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
557 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
558 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
560 * Minimum indexing node size is amended later when superblock is
561 * read and the key length is known.
563 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
565 * Maximum indexing node size is amended later when superblock is
566 * read and the fanout is known.
568 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
571 * Initialize dead and dark LEB space watermarks. See gc.c for comments
572 * about these values.
574 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
575 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
578 * Calculate how many bytes would be wasted at the end of LEB if it was
579 * fully filled with data nodes of maximum size. This is used in
580 * calculations when reporting free space.
582 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
584 /* Buffer size for bulk-reads */
585 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
586 if (c->max_bu_buf_len > c->leb_size)
587 c->max_bu_buf_len = c->leb_size;
588 return 0;
592 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
593 * @c: UBIFS file-system description object
594 * @lnum: LEB the write-buffer was synchronized to
595 * @free: how many free bytes left in this LEB
596 * @pad: how many bytes were padded
598 * This is a callback function which is called by the I/O unit when the
599 * write-buffer is synchronized. We need this to correctly maintain space
600 * accounting in bud logical eraseblocks. This function returns zero in case of
601 * success and a negative error code in case of failure.
603 * This function actually belongs to the journal, but we keep it here because
604 * we want to keep it static.
606 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
608 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
612 * init_constants_sb - initialize UBIFS constants.
613 * @c: UBIFS file-system description object
615 * This is a helper function which initializes various UBIFS constants after
616 * the superblock has been read. It also checks various UBIFS parameters and
617 * makes sure they are all right. Returns zero in case of success and a
618 * negative error code in case of failure.
620 static int init_constants_sb(struct ubifs_info *c)
622 int tmp, err;
623 long long tmp64;
625 c->main_bytes = (long long)c->main_lebs * c->leb_size;
626 c->max_znode_sz = sizeof(struct ubifs_znode) +
627 c->fanout * sizeof(struct ubifs_zbranch);
629 tmp = ubifs_idx_node_sz(c, 1);
630 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
631 c->min_idx_node_sz = ALIGN(tmp, 8);
633 tmp = ubifs_idx_node_sz(c, c->fanout);
634 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
635 c->max_idx_node_sz = ALIGN(tmp, 8);
637 /* Make sure LEB size is large enough to fit full commit */
638 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
639 tmp = ALIGN(tmp, c->min_io_size);
640 if (tmp > c->leb_size) {
641 dbg_err("too small LEB size %d, at least %d needed",
642 c->leb_size, tmp);
643 return -EINVAL;
647 * Make sure that the log is large enough to fit reference nodes for
648 * all buds plus one reserved LEB.
650 tmp64 = c->max_bud_bytes + c->leb_size - 1;
651 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
652 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
653 tmp /= c->leb_size;
654 tmp += 1;
655 if (c->log_lebs < tmp) {
656 dbg_err("too small log %d LEBs, required min. %d LEBs",
657 c->log_lebs, tmp);
658 return -EINVAL;
662 * When budgeting we assume worst-case scenarios when the pages are not
663 * be compressed and direntries are of the maximum size.
665 * Note, data, which may be stored in inodes is budgeted separately, so
666 * it is not included into 'c->inode_budget'.
668 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
669 c->inode_budget = UBIFS_INO_NODE_SZ;
670 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
673 * When the amount of flash space used by buds becomes
674 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
675 * The writers are unblocked when the commit is finished. To avoid
676 * writers to be blocked UBIFS initiates background commit in advance,
677 * when number of bud bytes becomes above the limit defined below.
679 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
682 * Ensure minimum journal size. All the bytes in the journal heads are
683 * considered to be used, when calculating the current journal usage.
684 * Consequently, if the journal is too small, UBIFS will treat it as
685 * always full.
687 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
688 if (c->bg_bud_bytes < tmp64)
689 c->bg_bud_bytes = tmp64;
690 if (c->max_bud_bytes < tmp64 + c->leb_size)
691 c->max_bud_bytes = tmp64 + c->leb_size;
693 err = ubifs_calc_lpt_geom(c);
694 if (err)
695 return err;
697 /* Initialize effective LEB size used in budgeting calculations */
698 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
699 return 0;
703 * init_constants_master - initialize UBIFS constants.
704 * @c: UBIFS file-system description object
706 * This is a helper function which initializes various UBIFS constants after
707 * the master node has been read. It also checks various UBIFS parameters and
708 * makes sure they are all right.
710 static void init_constants_master(struct ubifs_info *c)
712 long long tmp64;
714 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
715 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
718 * Calculate total amount of FS blocks. This number is not used
719 * internally because it does not make much sense for UBIFS, but it is
720 * necessary to report something for the 'statfs()' call.
722 * Subtract the LEB reserved for GC, the LEB which is reserved for
723 * deletions, minimum LEBs for the index, and assume only one journal
724 * head is available.
726 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
727 tmp64 *= (long long)c->leb_size - c->leb_overhead;
728 tmp64 = ubifs_reported_space(c, tmp64);
729 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
733 * take_gc_lnum - reserve GC LEB.
734 * @c: UBIFS file-system description object
736 * This function ensures that the LEB reserved for garbage collection is marked
737 * as "taken" in lprops. We also have to set free space to LEB size and dirty
738 * space to zero, because lprops may contain out-of-date information if the
739 * file-system was un-mounted before it has been committed. This function
740 * returns zero in case of success and a negative error code in case of
741 * failure.
743 static int take_gc_lnum(struct ubifs_info *c)
745 int err;
747 if (c->gc_lnum == -1) {
748 ubifs_err("no LEB for GC");
749 return -EINVAL;
752 /* And we have to tell lprops that this LEB is taken */
753 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
754 LPROPS_TAKEN, 0, 0);
755 return err;
759 * alloc_wbufs - allocate write-buffers.
760 * @c: UBIFS file-system description object
762 * This helper function allocates and initializes UBIFS write-buffers. Returns
763 * zero in case of success and %-ENOMEM in case of failure.
765 static int alloc_wbufs(struct ubifs_info *c)
767 int i, err;
769 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
770 GFP_KERNEL);
771 if (!c->jheads)
772 return -ENOMEM;
774 /* Initialize journal heads */
775 for (i = 0; i < c->jhead_cnt; i++) {
776 INIT_LIST_HEAD(&c->jheads[i].buds_list);
777 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
778 if (err)
779 return err;
781 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
782 c->jheads[i].wbuf.jhead = i;
785 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
787 * Garbage Collector head likely contains long-term data and
788 * does not need to be synchronized by timer.
790 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
791 c->jheads[GCHD].wbuf.no_timer = 1;
793 return 0;
797 * free_wbufs - free write-buffers.
798 * @c: UBIFS file-system description object
800 static void free_wbufs(struct ubifs_info *c)
802 int i;
804 if (c->jheads) {
805 for (i = 0; i < c->jhead_cnt; i++) {
806 kfree(c->jheads[i].wbuf.buf);
807 kfree(c->jheads[i].wbuf.inodes);
809 kfree(c->jheads);
810 c->jheads = NULL;
815 * free_orphans - free orphans.
816 * @c: UBIFS file-system description object
818 static void free_orphans(struct ubifs_info *c)
820 struct ubifs_orphan *orph;
822 while (c->orph_dnext) {
823 orph = c->orph_dnext;
824 c->orph_dnext = orph->dnext;
825 list_del(&orph->list);
826 kfree(orph);
829 while (!list_empty(&c->orph_list)) {
830 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
831 list_del(&orph->list);
832 kfree(orph);
833 dbg_err("orphan list not empty at unmount");
836 vfree(c->orph_buf);
837 c->orph_buf = NULL;
841 * free_buds - free per-bud objects.
842 * @c: UBIFS file-system description object
844 static void free_buds(struct ubifs_info *c)
846 struct rb_node *this = c->buds.rb_node;
847 struct ubifs_bud *bud;
849 while (this) {
850 if (this->rb_left)
851 this = this->rb_left;
852 else if (this->rb_right)
853 this = this->rb_right;
854 else {
855 bud = rb_entry(this, struct ubifs_bud, rb);
856 this = rb_parent(this);
857 if (this) {
858 if (this->rb_left == &bud->rb)
859 this->rb_left = NULL;
860 else
861 this->rb_right = NULL;
863 kfree(bud);
869 * check_volume_empty - check if the UBI volume is empty.
870 * @c: UBIFS file-system description object
872 * This function checks if the UBIFS volume is empty by looking if its LEBs are
873 * mapped or not. The result of checking is stored in the @c->empty variable.
874 * Returns zero in case of success and a negative error code in case of
875 * failure.
877 static int check_volume_empty(struct ubifs_info *c)
879 int lnum, err;
881 c->empty = 1;
882 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
883 err = ubi_is_mapped(c->ubi, lnum);
884 if (unlikely(err < 0))
885 return err;
886 if (err == 1) {
887 c->empty = 0;
888 break;
891 cond_resched();
894 return 0;
898 * UBIFS mount options.
900 * Opt_fast_unmount: do not run a journal commit before un-mounting
901 * Opt_norm_unmount: run a journal commit before un-mounting
902 * Opt_bulk_read: enable bulk-reads
903 * Opt_no_bulk_read: disable bulk-reads
904 * Opt_chk_data_crc: check CRCs when reading data nodes
905 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
906 * Opt_override_compr: override default compressor
907 * Opt_err: just end of array marker
909 enum {
910 Opt_fast_unmount,
911 Opt_norm_unmount,
912 Opt_bulk_read,
913 Opt_no_bulk_read,
914 Opt_chk_data_crc,
915 Opt_no_chk_data_crc,
916 Opt_override_compr,
917 Opt_err,
920 static const match_table_t tokens = {
921 {Opt_fast_unmount, "fast_unmount"},
922 {Opt_norm_unmount, "norm_unmount"},
923 {Opt_bulk_read, "bulk_read"},
924 {Opt_no_bulk_read, "no_bulk_read"},
925 {Opt_chk_data_crc, "chk_data_crc"},
926 {Opt_no_chk_data_crc, "no_chk_data_crc"},
927 {Opt_override_compr, "compr=%s"},
928 {Opt_err, NULL},
932 * parse_standard_option - parse a standard mount option.
933 * @option: the option to parse
935 * Normally, standard mount options like "sync" are passed to file-systems as
936 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
937 * be present in the options string. This function tries to deal with this
938 * situation and parse standard options. Returns 0 if the option was not
939 * recognized, and the corresponding integer flag if it was.
941 * UBIFS is only interested in the "sync" option, so do not check for anything
942 * else.
944 static int parse_standard_option(const char *option)
946 ubifs_msg("parse %s", option);
947 if (!strcmp(option, "sync"))
948 return MS_SYNCHRONOUS;
949 return 0;
953 * ubifs_parse_options - parse mount parameters.
954 * @c: UBIFS file-system description object
955 * @options: parameters to parse
956 * @is_remount: non-zero if this is FS re-mount
958 * This function parses UBIFS mount options and returns zero in case success
959 * and a negative error code in case of failure.
961 static int ubifs_parse_options(struct ubifs_info *c, char *options,
962 int is_remount)
964 char *p;
965 substring_t args[MAX_OPT_ARGS];
967 if (!options)
968 return 0;
970 while ((p = strsep(&options, ","))) {
971 int token;
973 if (!*p)
974 continue;
976 token = match_token(p, tokens, args);
977 switch (token) {
979 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
980 * We accept them in order to be backward-compatible. But this
981 * should be removed at some point.
983 case Opt_fast_unmount:
984 c->mount_opts.unmount_mode = 2;
985 break;
986 case Opt_norm_unmount:
987 c->mount_opts.unmount_mode = 1;
988 break;
989 case Opt_bulk_read:
990 c->mount_opts.bulk_read = 2;
991 c->bulk_read = 1;
992 break;
993 case Opt_no_bulk_read:
994 c->mount_opts.bulk_read = 1;
995 c->bulk_read = 0;
996 break;
997 case Opt_chk_data_crc:
998 c->mount_opts.chk_data_crc = 2;
999 c->no_chk_data_crc = 0;
1000 break;
1001 case Opt_no_chk_data_crc:
1002 c->mount_opts.chk_data_crc = 1;
1003 c->no_chk_data_crc = 1;
1004 break;
1005 case Opt_override_compr:
1007 char *name = match_strdup(&args[0]);
1009 if (!name)
1010 return -ENOMEM;
1011 if (!strcmp(name, "none"))
1012 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1013 else if (!strcmp(name, "lzo"))
1014 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1015 else if (!strcmp(name, "zlib"))
1016 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1017 else {
1018 ubifs_err("unknown compressor \"%s\"", name);
1019 kfree(name);
1020 return -EINVAL;
1022 kfree(name);
1023 c->mount_opts.override_compr = 1;
1024 c->default_compr = c->mount_opts.compr_type;
1025 break;
1027 default:
1029 unsigned long flag;
1030 struct super_block *sb = c->vfs_sb;
1032 flag = parse_standard_option(p);
1033 if (!flag) {
1034 ubifs_err("unrecognized mount option \"%s\" "
1035 "or missing value", p);
1036 return -EINVAL;
1038 sb->s_flags |= flag;
1039 break;
1044 return 0;
1048 * destroy_journal - destroy journal data structures.
1049 * @c: UBIFS file-system description object
1051 * This function destroys journal data structures including those that may have
1052 * been created by recovery functions.
1054 static void destroy_journal(struct ubifs_info *c)
1056 while (!list_empty(&c->unclean_leb_list)) {
1057 struct ubifs_unclean_leb *ucleb;
1059 ucleb = list_entry(c->unclean_leb_list.next,
1060 struct ubifs_unclean_leb, list);
1061 list_del(&ucleb->list);
1062 kfree(ucleb);
1064 while (!list_empty(&c->old_buds)) {
1065 struct ubifs_bud *bud;
1067 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1068 list_del(&bud->list);
1069 kfree(bud);
1071 ubifs_destroy_idx_gc(c);
1072 ubifs_destroy_size_tree(c);
1073 ubifs_tnc_close(c);
1074 free_buds(c);
1078 * bu_init - initialize bulk-read information.
1079 * @c: UBIFS file-system description object
1081 static void bu_init(struct ubifs_info *c)
1083 ubifs_assert(c->bulk_read == 1);
1085 if (c->bu.buf)
1086 return; /* Already initialized */
1088 again:
1089 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1090 if (!c->bu.buf) {
1091 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1092 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1093 goto again;
1096 /* Just disable bulk-read */
1097 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1098 "disabling it", c->max_bu_buf_len);
1099 c->mount_opts.bulk_read = 1;
1100 c->bulk_read = 0;
1101 return;
1106 * check_free_space - check if there is enough free space to mount.
1107 * @c: UBIFS file-system description object
1109 * This function makes sure UBIFS has enough free space to be mounted in
1110 * read/write mode. UBIFS must always have some free space to allow deletions.
1112 static int check_free_space(struct ubifs_info *c)
1114 ubifs_assert(c->dark_wm > 0);
1115 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1116 ubifs_err("insufficient free space to mount in read/write mode");
1117 dbg_dump_budg(c);
1118 dbg_dump_lprops(c);
1119 return -ENOSPC;
1121 return 0;
1125 * mount_ubifs - mount UBIFS file-system.
1126 * @c: UBIFS file-system description object
1128 * This function mounts UBIFS file system. Returns zero in case of success and
1129 * a negative error code in case of failure.
1131 * Note, the function does not de-allocate resources it it fails half way
1132 * through, and the caller has to do this instead.
1134 static int mount_ubifs(struct ubifs_info *c)
1136 struct super_block *sb = c->vfs_sb;
1137 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1138 long long x;
1139 size_t sz;
1141 err = init_constants_early(c);
1142 if (err)
1143 return err;
1145 err = ubifs_debugging_init(c);
1146 if (err)
1147 return err;
1149 err = check_volume_empty(c);
1150 if (err)
1151 goto out_free;
1153 if (c->empty && (mounted_read_only || c->ro_media)) {
1155 * This UBI volume is empty, and read-only, or the file system
1156 * is mounted read-only - we cannot format it.
1158 ubifs_err("can't format empty UBI volume: read-only %s",
1159 c->ro_media ? "UBI volume" : "mount");
1160 err = -EROFS;
1161 goto out_free;
1164 if (c->ro_media && !mounted_read_only) {
1165 ubifs_err("cannot mount read-write - read-only media");
1166 err = -EROFS;
1167 goto out_free;
1171 * The requirement for the buffer is that it should fit indexing B-tree
1172 * height amount of integers. We assume the height if the TNC tree will
1173 * never exceed 64.
1175 err = -ENOMEM;
1176 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1177 if (!c->bottom_up_buf)
1178 goto out_free;
1180 c->sbuf = vmalloc(c->leb_size);
1181 if (!c->sbuf)
1182 goto out_free;
1184 if (!mounted_read_only) {
1185 c->ileb_buf = vmalloc(c->leb_size);
1186 if (!c->ileb_buf)
1187 goto out_free;
1190 if (c->bulk_read == 1)
1191 bu_init(c);
1194 * We have to check all CRCs, even for data nodes, when we mount the FS
1195 * (specifically, when we are replaying).
1197 c->always_chk_crc = 1;
1199 err = ubifs_read_superblock(c);
1200 if (err)
1201 goto out_free;
1204 * Make sure the compressor which is set as default in the superblock
1205 * or overridden by mount options is actually compiled in.
1207 if (!ubifs_compr_present(c->default_compr)) {
1208 ubifs_err("'compressor \"%s\" is not compiled in",
1209 ubifs_compr_name(c->default_compr));
1210 err = -ENOTSUPP;
1211 goto out_free;
1214 err = init_constants_sb(c);
1215 if (err)
1216 goto out_free;
1218 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1219 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1220 c->cbuf = kmalloc(sz, GFP_NOFS);
1221 if (!c->cbuf) {
1222 err = -ENOMEM;
1223 goto out_free;
1226 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1227 if (!mounted_read_only) {
1228 err = alloc_wbufs(c);
1229 if (err)
1230 goto out_cbuf;
1232 /* Create background thread */
1233 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1234 if (IS_ERR(c->bgt)) {
1235 err = PTR_ERR(c->bgt);
1236 c->bgt = NULL;
1237 ubifs_err("cannot spawn \"%s\", error %d",
1238 c->bgt_name, err);
1239 goto out_wbufs;
1241 wake_up_process(c->bgt);
1244 err = ubifs_read_master(c);
1245 if (err)
1246 goto out_master;
1248 init_constants_master(c);
1250 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1251 ubifs_msg("recovery needed");
1252 c->need_recovery = 1;
1253 if (!mounted_read_only) {
1254 err = ubifs_recover_inl_heads(c, c->sbuf);
1255 if (err)
1256 goto out_master;
1258 } else if (!mounted_read_only) {
1260 * Set the "dirty" flag so that if we reboot uncleanly we
1261 * will notice this immediately on the next mount.
1263 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1264 err = ubifs_write_master(c);
1265 if (err)
1266 goto out_master;
1269 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1270 if (err)
1271 goto out_lpt;
1273 err = dbg_check_idx_size(c, c->old_idx_sz);
1274 if (err)
1275 goto out_lpt;
1277 err = ubifs_replay_journal(c);
1278 if (err)
1279 goto out_journal;
1281 /* Calculate 'min_idx_lebs' after journal replay */
1282 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1284 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1285 if (err)
1286 goto out_orphans;
1288 if (!mounted_read_only) {
1289 int lnum;
1291 err = check_free_space(c);
1292 if (err)
1293 goto out_orphans;
1295 /* Check for enough log space */
1296 lnum = c->lhead_lnum + 1;
1297 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1298 lnum = UBIFS_LOG_LNUM;
1299 if (lnum == c->ltail_lnum) {
1300 err = ubifs_consolidate_log(c);
1301 if (err)
1302 goto out_orphans;
1305 if (c->need_recovery) {
1306 err = ubifs_recover_size(c);
1307 if (err)
1308 goto out_orphans;
1309 err = ubifs_rcvry_gc_commit(c);
1310 } else {
1311 err = take_gc_lnum(c);
1312 if (err)
1313 goto out_orphans;
1316 * GC LEB may contain garbage if there was an unclean
1317 * reboot, and it should be un-mapped.
1319 err = ubifs_leb_unmap(c, c->gc_lnum);
1320 if (err)
1321 return err;
1324 err = dbg_check_lprops(c);
1325 if (err)
1326 goto out_orphans;
1327 } else if (c->need_recovery) {
1328 err = ubifs_recover_size(c);
1329 if (err)
1330 goto out_orphans;
1331 } else {
1333 * Even if we mount read-only, we have to set space in GC LEB
1334 * to proper value because this affects UBIFS free space
1335 * reporting. We do not want to have a situation when
1336 * re-mounting from R/O to R/W changes amount of free space.
1338 err = take_gc_lnum(c);
1339 if (err)
1340 goto out_orphans;
1343 spin_lock(&ubifs_infos_lock);
1344 list_add_tail(&c->infos_list, &ubifs_infos);
1345 spin_unlock(&ubifs_infos_lock);
1347 if (c->need_recovery) {
1348 if (mounted_read_only)
1349 ubifs_msg("recovery deferred");
1350 else {
1351 c->need_recovery = 0;
1352 ubifs_msg("recovery completed");
1354 * GC LEB has to be empty and taken at this point. But
1355 * the journal head LEBs may also be accounted as
1356 * "empty taken" if they are empty.
1358 ubifs_assert(c->lst.taken_empty_lebs > 0);
1360 } else
1361 ubifs_assert(c->lst.taken_empty_lebs > 0);
1363 err = dbg_check_filesystem(c);
1364 if (err)
1365 goto out_infos;
1367 err = dbg_debugfs_init_fs(c);
1368 if (err)
1369 goto out_infos;
1371 c->always_chk_crc = 0;
1373 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1374 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1375 if (mounted_read_only)
1376 ubifs_msg("mounted read-only");
1377 x = (long long)c->main_lebs * c->leb_size;
1378 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1379 "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1380 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1381 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1382 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1383 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)",
1384 c->fmt_version, c->ro_compat_version,
1385 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1386 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1387 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1388 c->report_rp_size, c->report_rp_size >> 10);
1390 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1391 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1392 dbg_msg("LEB size: %d bytes (%d KiB)",
1393 c->leb_size, c->leb_size >> 10);
1394 dbg_msg("data journal heads: %d",
1395 c->jhead_cnt - NONDATA_JHEADS_CNT);
1396 dbg_msg("UUID: %pUB", c->uuid);
1397 dbg_msg("big_lpt %d", c->big_lpt);
1398 dbg_msg("log LEBs: %d (%d - %d)",
1399 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1400 dbg_msg("LPT area LEBs: %d (%d - %d)",
1401 c->lpt_lebs, c->lpt_first, c->lpt_last);
1402 dbg_msg("orphan area LEBs: %d (%d - %d)",
1403 c->orph_lebs, c->orph_first, c->orph_last);
1404 dbg_msg("main area LEBs: %d (%d - %d)",
1405 c->main_lebs, c->main_first, c->leb_cnt - 1);
1406 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1407 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1408 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1409 dbg_msg("key hash type: %d", c->key_hash_type);
1410 dbg_msg("tree fanout: %d", c->fanout);
1411 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1412 dbg_msg("first main LEB: %d", c->main_first);
1413 dbg_msg("max. znode size %d", c->max_znode_sz);
1414 dbg_msg("max. index node size %d", c->max_idx_node_sz);
1415 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu",
1416 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1417 dbg_msg("node sizes: trun %zu, sb %zu, master %zu",
1418 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1419 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu",
1420 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1421 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu",
1422 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1423 UBIFS_MAX_DENT_NODE_SZ);
1424 dbg_msg("dead watermark: %d", c->dead_wm);
1425 dbg_msg("dark watermark: %d", c->dark_wm);
1426 dbg_msg("LEB overhead: %d", c->leb_overhead);
1427 x = (long long)c->main_lebs * c->dark_wm;
1428 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1429 x, x >> 10, x >> 20);
1430 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1431 c->max_bud_bytes, c->max_bud_bytes >> 10,
1432 c->max_bud_bytes >> 20);
1433 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1434 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1435 c->bg_bud_bytes >> 20);
1436 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1437 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1438 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1439 dbg_msg("commit number: %llu", c->cmt_no);
1441 return 0;
1443 out_infos:
1444 spin_lock(&ubifs_infos_lock);
1445 list_del(&c->infos_list);
1446 spin_unlock(&ubifs_infos_lock);
1447 out_orphans:
1448 free_orphans(c);
1449 out_journal:
1450 destroy_journal(c);
1451 out_lpt:
1452 ubifs_lpt_free(c, 0);
1453 out_master:
1454 kfree(c->mst_node);
1455 kfree(c->rcvrd_mst_node);
1456 if (c->bgt)
1457 kthread_stop(c->bgt);
1458 out_wbufs:
1459 free_wbufs(c);
1460 out_cbuf:
1461 kfree(c->cbuf);
1462 out_free:
1463 kfree(c->bu.buf);
1464 vfree(c->ileb_buf);
1465 vfree(c->sbuf);
1466 kfree(c->bottom_up_buf);
1467 ubifs_debugging_exit(c);
1468 return err;
1472 * ubifs_umount - un-mount UBIFS file-system.
1473 * @c: UBIFS file-system description object
1475 * Note, this function is called to free allocated resourced when un-mounting,
1476 * as well as free resources when an error occurred while we were half way
1477 * through mounting (error path cleanup function). So it has to make sure the
1478 * resource was actually allocated before freeing it.
1480 static void ubifs_umount(struct ubifs_info *c)
1482 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1483 c->vi.vol_id);
1485 dbg_debugfs_exit_fs(c);
1486 spin_lock(&ubifs_infos_lock);
1487 list_del(&c->infos_list);
1488 spin_unlock(&ubifs_infos_lock);
1490 if (c->bgt)
1491 kthread_stop(c->bgt);
1493 destroy_journal(c);
1494 free_wbufs(c);
1495 free_orphans(c);
1496 ubifs_lpt_free(c, 0);
1498 kfree(c->cbuf);
1499 kfree(c->rcvrd_mst_node);
1500 kfree(c->mst_node);
1501 kfree(c->bu.buf);
1502 vfree(c->ileb_buf);
1503 vfree(c->sbuf);
1504 kfree(c->bottom_up_buf);
1505 ubifs_debugging_exit(c);
1509 * ubifs_remount_rw - re-mount in read-write mode.
1510 * @c: UBIFS file-system description object
1512 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1513 * mode. This function allocates the needed resources and re-mounts UBIFS in
1514 * read-write mode.
1516 static int ubifs_remount_rw(struct ubifs_info *c)
1518 int err, lnum;
1520 if (c->rw_incompat) {
1521 ubifs_err("the file-system is not R/W-compatible");
1522 ubifs_msg("on-flash format version is w%d/r%d, but software "
1523 "only supports up to version w%d/r%d", c->fmt_version,
1524 c->ro_compat_version, UBIFS_FORMAT_VERSION,
1525 UBIFS_RO_COMPAT_VERSION);
1526 return -EROFS;
1529 mutex_lock(&c->umount_mutex);
1530 dbg_save_space_info(c);
1531 c->remounting_rw = 1;
1532 c->always_chk_crc = 1;
1534 err = check_free_space(c);
1535 if (err)
1536 goto out;
1538 if (c->old_leb_cnt != c->leb_cnt) {
1539 struct ubifs_sb_node *sup;
1541 sup = ubifs_read_sb_node(c);
1542 if (IS_ERR(sup)) {
1543 err = PTR_ERR(sup);
1544 goto out;
1546 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1547 err = ubifs_write_sb_node(c, sup);
1548 if (err)
1549 goto out;
1552 if (c->need_recovery) {
1553 ubifs_msg("completing deferred recovery");
1554 err = ubifs_write_rcvrd_mst_node(c);
1555 if (err)
1556 goto out;
1557 err = ubifs_recover_size(c);
1558 if (err)
1559 goto out;
1560 err = ubifs_clean_lebs(c, c->sbuf);
1561 if (err)
1562 goto out;
1563 err = ubifs_recover_inl_heads(c, c->sbuf);
1564 if (err)
1565 goto out;
1566 } else {
1567 /* A readonly mount is not allowed to have orphans */
1568 ubifs_assert(c->tot_orphans == 0);
1569 err = ubifs_clear_orphans(c);
1570 if (err)
1571 goto out;
1574 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1575 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1576 err = ubifs_write_master(c);
1577 if (err)
1578 goto out;
1581 c->ileb_buf = vmalloc(c->leb_size);
1582 if (!c->ileb_buf) {
1583 err = -ENOMEM;
1584 goto out;
1587 err = ubifs_lpt_init(c, 0, 1);
1588 if (err)
1589 goto out;
1591 err = alloc_wbufs(c);
1592 if (err)
1593 goto out;
1595 ubifs_create_buds_lists(c);
1597 /* Create background thread */
1598 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1599 if (IS_ERR(c->bgt)) {
1600 err = PTR_ERR(c->bgt);
1601 c->bgt = NULL;
1602 ubifs_err("cannot spawn \"%s\", error %d",
1603 c->bgt_name, err);
1604 goto out;
1606 wake_up_process(c->bgt);
1608 c->orph_buf = vmalloc(c->leb_size);
1609 if (!c->orph_buf) {
1610 err = -ENOMEM;
1611 goto out;
1614 /* Check for enough log space */
1615 lnum = c->lhead_lnum + 1;
1616 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1617 lnum = UBIFS_LOG_LNUM;
1618 if (lnum == c->ltail_lnum) {
1619 err = ubifs_consolidate_log(c);
1620 if (err)
1621 goto out;
1624 if (c->need_recovery)
1625 err = ubifs_rcvry_gc_commit(c);
1626 else
1627 err = ubifs_leb_unmap(c, c->gc_lnum);
1628 if (err)
1629 goto out;
1631 if (c->need_recovery) {
1632 c->need_recovery = 0;
1633 ubifs_msg("deferred recovery completed");
1636 dbg_gen("re-mounted read-write");
1637 c->vfs_sb->s_flags &= ~MS_RDONLY;
1638 c->remounting_rw = 0;
1639 c->always_chk_crc = 0;
1640 err = dbg_check_space_info(c);
1641 mutex_unlock(&c->umount_mutex);
1642 return err;
1644 out:
1645 vfree(c->orph_buf);
1646 c->orph_buf = NULL;
1647 if (c->bgt) {
1648 kthread_stop(c->bgt);
1649 c->bgt = NULL;
1651 free_wbufs(c);
1652 vfree(c->ileb_buf);
1653 c->ileb_buf = NULL;
1654 ubifs_lpt_free(c, 1);
1655 c->remounting_rw = 0;
1656 c->always_chk_crc = 0;
1657 mutex_unlock(&c->umount_mutex);
1658 return err;
1662 * ubifs_remount_ro - re-mount in read-only mode.
1663 * @c: UBIFS file-system description object
1665 * We assume VFS has stopped writing. Possibly the background thread could be
1666 * running a commit, however kthread_stop will wait in that case.
1668 static void ubifs_remount_ro(struct ubifs_info *c)
1670 int i, err;
1672 ubifs_assert(!c->need_recovery);
1673 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
1675 mutex_lock(&c->umount_mutex);
1676 if (c->bgt) {
1677 kthread_stop(c->bgt);
1678 c->bgt = NULL;
1681 dbg_save_space_info(c);
1683 for (i = 0; i < c->jhead_cnt; i++) {
1684 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1685 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1688 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1689 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1690 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1691 err = ubifs_write_master(c);
1692 if (err)
1693 ubifs_ro_mode(c, err);
1695 free_wbufs(c);
1696 vfree(c->orph_buf);
1697 c->orph_buf = NULL;
1698 vfree(c->ileb_buf);
1699 c->ileb_buf = NULL;
1700 ubifs_lpt_free(c, 1);
1701 err = dbg_check_space_info(c);
1702 if (err)
1703 ubifs_ro_mode(c, err);
1704 mutex_unlock(&c->umount_mutex);
1707 static void ubifs_put_super(struct super_block *sb)
1709 int i;
1710 struct ubifs_info *c = sb->s_fs_info;
1712 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1713 c->vi.vol_id);
1716 * The following asserts are only valid if there has not been a failure
1717 * of the media. For example, there will be dirty inodes if we failed
1718 * to write them back because of I/O errors.
1720 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1721 ubifs_assert(c->budg_idx_growth == 0);
1722 ubifs_assert(c->budg_dd_growth == 0);
1723 ubifs_assert(c->budg_data_growth == 0);
1726 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1727 * and file system un-mount. Namely, it prevents the shrinker from
1728 * picking this superblock for shrinking - it will be just skipped if
1729 * the mutex is locked.
1731 mutex_lock(&c->umount_mutex);
1732 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1734 * First of all kill the background thread to make sure it does
1735 * not interfere with un-mounting and freeing resources.
1737 if (c->bgt) {
1738 kthread_stop(c->bgt);
1739 c->bgt = NULL;
1742 /* Synchronize write-buffers */
1743 if (c->jheads)
1744 for (i = 0; i < c->jhead_cnt; i++)
1745 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1748 * On fatal errors c->ro_media is set to 1, in which case we do
1749 * not write the master node.
1751 if (!c->ro_media) {
1753 * We are being cleanly unmounted which means the
1754 * orphans were killed - indicate this in the master
1755 * node. Also save the reserved GC LEB number.
1757 int err;
1759 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1760 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1761 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1762 err = ubifs_write_master(c);
1763 if (err)
1765 * Recovery will attempt to fix the master area
1766 * next mount, so we just print a message and
1767 * continue to unmount normally.
1769 ubifs_err("failed to write master node, "
1770 "error %d", err);
1774 ubifs_umount(c);
1775 bdi_destroy(&c->bdi);
1776 ubi_close_volume(c->ubi);
1777 mutex_unlock(&c->umount_mutex);
1778 kfree(c);
1781 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1783 int err;
1784 struct ubifs_info *c = sb->s_fs_info;
1786 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1788 err = ubifs_parse_options(c, data, 1);
1789 if (err) {
1790 ubifs_err("invalid or unknown remount parameter");
1791 return err;
1794 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1795 if (c->ro_media) {
1796 ubifs_msg("cannot re-mount due to prior errors");
1797 return -EROFS;
1799 err = ubifs_remount_rw(c);
1800 if (err)
1801 return err;
1802 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
1803 if (c->ro_media) {
1804 ubifs_msg("cannot re-mount due to prior errors");
1805 return -EROFS;
1807 ubifs_remount_ro(c);
1810 if (c->bulk_read == 1)
1811 bu_init(c);
1812 else {
1813 dbg_gen("disable bulk-read");
1814 kfree(c->bu.buf);
1815 c->bu.buf = NULL;
1818 ubifs_assert(c->lst.taken_empty_lebs > 0);
1819 return 0;
1822 const struct super_operations ubifs_super_operations = {
1823 .alloc_inode = ubifs_alloc_inode,
1824 .destroy_inode = ubifs_destroy_inode,
1825 .put_super = ubifs_put_super,
1826 .write_inode = ubifs_write_inode,
1827 .delete_inode = ubifs_delete_inode,
1828 .statfs = ubifs_statfs,
1829 .dirty_inode = ubifs_dirty_inode,
1830 .remount_fs = ubifs_remount_fs,
1831 .show_options = ubifs_show_options,
1832 .sync_fs = ubifs_sync_fs,
1836 * open_ubi - parse UBI device name string and open the UBI device.
1837 * @name: UBI volume name
1838 * @mode: UBI volume open mode
1840 * The primary method of mounting UBIFS is by specifying the UBI volume
1841 * character device node path. However, UBIFS may also be mounted withoug any
1842 * character device node using one of the following methods:
1844 * o ubiX_Y - mount UBI device number X, volume Y;
1845 * o ubiY - mount UBI device number 0, volume Y;
1846 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1847 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1849 * Alternative '!' separator may be used instead of ':' (because some shells
1850 * like busybox may interpret ':' as an NFS host name separator). This function
1851 * returns UBI volume description object in case of success and a negative
1852 * error code in case of failure.
1854 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1856 struct ubi_volume_desc *ubi;
1857 int dev, vol;
1858 char *endptr;
1860 /* First, try to open using the device node path method */
1861 ubi = ubi_open_volume_path(name, mode);
1862 if (!IS_ERR(ubi))
1863 return ubi;
1865 /* Try the "nodev" method */
1866 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1867 return ERR_PTR(-EINVAL);
1869 /* ubi:NAME method */
1870 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1871 return ubi_open_volume_nm(0, name + 4, mode);
1873 if (!isdigit(name[3]))
1874 return ERR_PTR(-EINVAL);
1876 dev = simple_strtoul(name + 3, &endptr, 0);
1878 /* ubiY method */
1879 if (*endptr == '\0')
1880 return ubi_open_volume(0, dev, mode);
1882 /* ubiX_Y method */
1883 if (*endptr == '_' && isdigit(endptr[1])) {
1884 vol = simple_strtoul(endptr + 1, &endptr, 0);
1885 if (*endptr != '\0')
1886 return ERR_PTR(-EINVAL);
1887 return ubi_open_volume(dev, vol, mode);
1890 /* ubiX:NAME method */
1891 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1892 return ubi_open_volume_nm(dev, ++endptr, mode);
1894 return ERR_PTR(-EINVAL);
1897 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1899 struct ubi_volume_desc *ubi = sb->s_fs_info;
1900 struct ubifs_info *c;
1901 struct inode *root;
1902 int err;
1904 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1905 if (!c)
1906 return -ENOMEM;
1908 spin_lock_init(&c->cnt_lock);
1909 spin_lock_init(&c->cs_lock);
1910 spin_lock_init(&c->buds_lock);
1911 spin_lock_init(&c->space_lock);
1912 spin_lock_init(&c->orphan_lock);
1913 init_rwsem(&c->commit_sem);
1914 mutex_init(&c->lp_mutex);
1915 mutex_init(&c->tnc_mutex);
1916 mutex_init(&c->log_mutex);
1917 mutex_init(&c->mst_mutex);
1918 mutex_init(&c->umount_mutex);
1919 mutex_init(&c->bu_mutex);
1920 init_waitqueue_head(&c->cmt_wq);
1921 c->buds = RB_ROOT;
1922 c->old_idx = RB_ROOT;
1923 c->size_tree = RB_ROOT;
1924 c->orph_tree = RB_ROOT;
1925 INIT_LIST_HEAD(&c->infos_list);
1926 INIT_LIST_HEAD(&c->idx_gc);
1927 INIT_LIST_HEAD(&c->replay_list);
1928 INIT_LIST_HEAD(&c->replay_buds);
1929 INIT_LIST_HEAD(&c->uncat_list);
1930 INIT_LIST_HEAD(&c->empty_list);
1931 INIT_LIST_HEAD(&c->freeable_list);
1932 INIT_LIST_HEAD(&c->frdi_idx_list);
1933 INIT_LIST_HEAD(&c->unclean_leb_list);
1934 INIT_LIST_HEAD(&c->old_buds);
1935 INIT_LIST_HEAD(&c->orph_list);
1936 INIT_LIST_HEAD(&c->orph_new);
1938 c->vfs_sb = sb;
1939 c->highest_inum = UBIFS_FIRST_INO;
1940 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1942 ubi_get_volume_info(ubi, &c->vi);
1943 ubi_get_device_info(c->vi.ubi_num, &c->di);
1945 /* Re-open the UBI device in read-write mode */
1946 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1947 if (IS_ERR(c->ubi)) {
1948 err = PTR_ERR(c->ubi);
1949 goto out_free;
1953 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1954 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1955 * which means the user would have to wait not just for their own I/O
1956 * but the read-ahead I/O as well i.e. completely pointless.
1958 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1960 c->bdi.name = "ubifs",
1961 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1962 c->bdi.unplug_io_fn = default_unplug_io_fn;
1963 err = bdi_init(&c->bdi);
1964 if (err)
1965 goto out_close;
1966 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
1967 c->vi.ubi_num, c->vi.vol_id);
1968 if (err)
1969 goto out_bdi;
1971 err = ubifs_parse_options(c, data, 0);
1972 if (err)
1973 goto out_bdi;
1975 sb->s_bdi = &c->bdi;
1976 sb->s_fs_info = c;
1977 sb->s_magic = UBIFS_SUPER_MAGIC;
1978 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1979 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1980 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1981 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1982 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1983 sb->s_op = &ubifs_super_operations;
1985 mutex_lock(&c->umount_mutex);
1986 err = mount_ubifs(c);
1987 if (err) {
1988 ubifs_assert(err < 0);
1989 goto out_unlock;
1992 /* Read the root inode */
1993 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1994 if (IS_ERR(root)) {
1995 err = PTR_ERR(root);
1996 goto out_umount;
1999 sb->s_root = d_alloc_root(root);
2000 if (!sb->s_root)
2001 goto out_iput;
2003 mutex_unlock(&c->umount_mutex);
2004 return 0;
2006 out_iput:
2007 iput(root);
2008 out_umount:
2009 ubifs_umount(c);
2010 out_unlock:
2011 mutex_unlock(&c->umount_mutex);
2012 out_bdi:
2013 bdi_destroy(&c->bdi);
2014 out_close:
2015 ubi_close_volume(c->ubi);
2016 out_free:
2017 kfree(c);
2018 return err;
2021 static int sb_test(struct super_block *sb, void *data)
2023 dev_t *dev = data;
2024 struct ubifs_info *c = sb->s_fs_info;
2026 return c->vi.cdev == *dev;
2029 static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
2030 const char *name, void *data, struct vfsmount *mnt)
2032 struct ubi_volume_desc *ubi;
2033 struct ubi_volume_info vi;
2034 struct super_block *sb;
2035 int err;
2037 dbg_gen("name %s, flags %#x", name, flags);
2040 * Get UBI device number and volume ID. Mount it read-only so far
2041 * because this might be a new mount point, and UBI allows only one
2042 * read-write user at a time.
2044 ubi = open_ubi(name, UBI_READONLY);
2045 if (IS_ERR(ubi)) {
2046 ubifs_err("cannot open \"%s\", error %d",
2047 name, (int)PTR_ERR(ubi));
2048 return PTR_ERR(ubi);
2050 ubi_get_volume_info(ubi, &vi);
2052 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
2054 sb = sget(fs_type, &sb_test, &set_anon_super, &vi.cdev);
2055 if (IS_ERR(sb)) {
2056 err = PTR_ERR(sb);
2057 goto out_close;
2060 if (sb->s_root) {
2061 /* A new mount point for already mounted UBIFS */
2062 dbg_gen("this ubi volume is already mounted");
2063 if ((flags ^ sb->s_flags) & MS_RDONLY) {
2064 err = -EBUSY;
2065 goto out_deact;
2067 } else {
2068 sb->s_flags = flags;
2070 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2071 * replaced by 'c'.
2073 sb->s_fs_info = ubi;
2074 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2075 if (err)
2076 goto out_deact;
2077 /* We do not support atime */
2078 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2081 /* 'fill_super()' opens ubi again so we must close it here */
2082 ubi_close_volume(ubi);
2084 simple_set_mnt(mnt, sb);
2085 return 0;
2087 out_deact:
2088 deactivate_locked_super(sb);
2089 out_close:
2090 ubi_close_volume(ubi);
2091 return err;
2094 static struct file_system_type ubifs_fs_type = {
2095 .name = "ubifs",
2096 .owner = THIS_MODULE,
2097 .get_sb = ubifs_get_sb,
2098 .kill_sb = kill_anon_super,
2102 * Inode slab cache constructor.
2104 static void inode_slab_ctor(void *obj)
2106 struct ubifs_inode *ui = obj;
2107 inode_init_once(&ui->vfs_inode);
2110 static int __init ubifs_init(void)
2112 int err;
2114 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2116 /* Make sure node sizes are 8-byte aligned */
2117 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2118 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2119 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2120 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2121 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2122 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2123 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2124 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2125 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2126 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2127 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2129 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2130 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2131 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2132 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2133 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2134 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2136 /* Check min. node size */
2137 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2138 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2139 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2140 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2142 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2143 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2144 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2145 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2147 /* Defined node sizes */
2148 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2149 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2150 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2151 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2154 * We use 2 bit wide bit-fields to store compression type, which should
2155 * be amended if more compressors are added. The bit-fields are:
2156 * @compr_type in 'struct ubifs_inode', @default_compr in
2157 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2159 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2162 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2163 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2165 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2166 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2167 " at least 4096 bytes",
2168 (unsigned int)PAGE_CACHE_SIZE);
2169 return -EINVAL;
2172 err = register_filesystem(&ubifs_fs_type);
2173 if (err) {
2174 ubifs_err("cannot register file system, error %d", err);
2175 return err;
2178 err = -ENOMEM;
2179 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2180 sizeof(struct ubifs_inode), 0,
2181 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2182 &inode_slab_ctor);
2183 if (!ubifs_inode_slab)
2184 goto out_reg;
2186 register_shrinker(&ubifs_shrinker_info);
2188 err = ubifs_compressors_init();
2189 if (err)
2190 goto out_shrinker;
2192 err = dbg_debugfs_init();
2193 if (err)
2194 goto out_compr;
2196 return 0;
2198 out_compr:
2199 ubifs_compressors_exit();
2200 out_shrinker:
2201 unregister_shrinker(&ubifs_shrinker_info);
2202 kmem_cache_destroy(ubifs_inode_slab);
2203 out_reg:
2204 unregister_filesystem(&ubifs_fs_type);
2205 return err;
2207 /* late_initcall to let compressors initialize first */
2208 late_initcall(ubifs_init);
2210 static void __exit ubifs_exit(void)
2212 ubifs_assert(list_empty(&ubifs_infos));
2213 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2215 dbg_debugfs_exit();
2216 ubifs_compressors_exit();
2217 unregister_shrinker(&ubifs_shrinker_info);
2218 kmem_cache_destroy(ubifs_inode_slab);
2219 unregister_filesystem(&ubifs_fs_type);
2221 module_exit(ubifs_exit);
2223 MODULE_LICENSE("GPL");
2224 MODULE_VERSION(__stringify(UBIFS_VERSION));
2225 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2226 MODULE_DESCRIPTION("UBIFS - UBI File System");