2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include "xfs_trace.h"
42 #include <linux/mpage.h>
43 #include <linux/pagevec.h>
44 #include <linux/writeback.h>
48 * Prime number of hash buckets since address is used as the key.
51 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
52 static wait_queue_head_t xfs_ioend_wq
[NVSYNC
];
59 for (i
= 0; i
< NVSYNC
; i
++)
60 init_waitqueue_head(&xfs_ioend_wq
[i
]);
67 wait_queue_head_t
*wq
= to_ioend_wq(ip
);
69 wait_event(*wq
, (atomic_read(&ip
->i_iocount
) == 0));
76 if (atomic_dec_and_test(&ip
->i_iocount
))
77 wake_up(to_ioend_wq(ip
));
87 struct buffer_head
*bh
, *head
;
89 *delalloc
= *unmapped
= *unwritten
= 0;
91 bh
= head
= page_buffers(page
);
93 if (buffer_uptodate(bh
) && !buffer_mapped(bh
))
95 else if (buffer_unwritten(bh
))
97 else if (buffer_delay(bh
))
99 } while ((bh
= bh
->b_this_page
) != head
);
102 STATIC
struct block_device
*
103 xfs_find_bdev_for_inode(
104 struct xfs_inode
*ip
)
106 struct xfs_mount
*mp
= ip
->i_mount
;
108 if (XFS_IS_REALTIME_INODE(ip
))
109 return mp
->m_rtdev_targp
->bt_bdev
;
111 return mp
->m_ddev_targp
->bt_bdev
;
115 * We're now finished for good with this ioend structure.
116 * Update the page state via the associated buffer_heads,
117 * release holds on the inode and bio, and finally free
118 * up memory. Do not use the ioend after this.
124 struct buffer_head
*bh
, *next
;
125 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
127 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
128 next
= bh
->b_private
;
129 bh
->b_end_io(bh
, !ioend
->io_error
);
133 * Volume managers supporting multiple paths can send back ENODEV
134 * when the final path disappears. In this case continuing to fill
135 * the page cache with dirty data which cannot be written out is
136 * evil, so prevent that.
138 if (unlikely(ioend
->io_error
== -ENODEV
)) {
139 xfs_do_force_shutdown(ip
->i_mount
, SHUTDOWN_DEVICE_REQ
,
144 mempool_free(ioend
, xfs_ioend_pool
);
148 * If the end of the current ioend is beyond the current EOF,
149 * return the new EOF value, otherwise zero.
155 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
159 bsize
= ioend
->io_offset
+ ioend
->io_size
;
160 isize
= MAX(ip
->i_size
, ip
->i_new_size
);
161 isize
= MIN(isize
, bsize
);
162 return isize
> ip
->i_d
.di_size
? isize
: 0;
166 * Update on-disk file size now that data has been written to disk.
167 * The current in-memory file size is i_size. If a write is beyond
168 * eof i_new_size will be the intended file size until i_size is
169 * updated. If this write does not extend all the way to the valid
170 * file size then restrict this update to the end of the write.
177 xfs_inode_t
*ip
= XFS_I(ioend
->io_inode
);
180 ASSERT((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
);
181 ASSERT(ioend
->io_type
!= IOMAP_READ
);
183 if (unlikely(ioend
->io_error
))
186 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
187 isize
= xfs_ioend_new_eof(ioend
);
189 ip
->i_d
.di_size
= isize
;
190 xfs_mark_inode_dirty_sync(ip
);
193 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
197 * IO write completion.
201 struct work_struct
*work
)
204 container_of(work
, xfs_ioend_t
, io_work
);
205 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
208 * For unwritten extents we need to issue transactions to convert a
209 * range to normal written extens after the data I/O has finished.
211 if (ioend
->io_type
== IOMAP_UNWRITTEN
&&
212 likely(!ioend
->io_error
&& !XFS_FORCED_SHUTDOWN(ip
->i_mount
))) {
215 error
= xfs_iomap_write_unwritten(ip
, ioend
->io_offset
,
218 ioend
->io_error
= error
;
222 * We might have to update the on-disk file size after extending
225 if (ioend
->io_type
!= IOMAP_READ
)
226 xfs_setfilesize(ioend
);
227 xfs_destroy_ioend(ioend
);
231 * Schedule IO completion handling on a xfsdatad if this was
232 * the final hold on this ioend. If we are asked to wait,
233 * flush the workqueue.
240 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
241 struct workqueue_struct
*wq
;
243 wq
= (ioend
->io_type
== IOMAP_UNWRITTEN
) ?
244 xfsconvertd_workqueue
: xfsdatad_workqueue
;
245 queue_work(wq
, &ioend
->io_work
);
252 * Allocate and initialise an IO completion structure.
253 * We need to track unwritten extent write completion here initially.
254 * We'll need to extend this for updating the ondisk inode size later
264 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
267 * Set the count to 1 initially, which will prevent an I/O
268 * completion callback from happening before we have started
269 * all the I/O from calling the completion routine too early.
271 atomic_set(&ioend
->io_remaining
, 1);
273 ioend
->io_list
= NULL
;
274 ioend
->io_type
= type
;
275 ioend
->io_inode
= inode
;
276 ioend
->io_buffer_head
= NULL
;
277 ioend
->io_buffer_tail
= NULL
;
278 atomic_inc(&XFS_I(ioend
->io_inode
)->i_iocount
);
279 ioend
->io_offset
= 0;
282 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
296 return -xfs_iomap(XFS_I(inode
), offset
, count
, flags
, mapp
, &nmaps
);
304 return offset
>= iomapp
->iomap_offset
&&
305 offset
< iomapp
->iomap_offset
+ iomapp
->iomap_bsize
;
309 * BIO completion handler for buffered IO.
316 xfs_ioend_t
*ioend
= bio
->bi_private
;
318 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
319 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
321 /* Toss bio and pass work off to an xfsdatad thread */
322 bio
->bi_private
= NULL
;
323 bio
->bi_end_io
= NULL
;
326 xfs_finish_ioend(ioend
, 0);
330 xfs_submit_ioend_bio(
331 struct writeback_control
*wbc
,
335 atomic_inc(&ioend
->io_remaining
);
336 bio
->bi_private
= ioend
;
337 bio
->bi_end_io
= xfs_end_bio
;
340 * If the I/O is beyond EOF we mark the inode dirty immediately
341 * but don't update the inode size until I/O completion.
343 if (xfs_ioend_new_eof(ioend
))
344 xfs_mark_inode_dirty_sync(XFS_I(ioend
->io_inode
));
346 submit_bio(wbc
->sync_mode
== WB_SYNC_ALL
?
347 WRITE_SYNC_PLUG
: WRITE
, bio
);
348 ASSERT(!bio_flagged(bio
, BIO_EOPNOTSUPP
));
354 struct buffer_head
*bh
)
357 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
360 bio
= bio_alloc(GFP_NOIO
, nvecs
);
364 ASSERT(bio
->bi_private
== NULL
);
365 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
366 bio
->bi_bdev
= bh
->b_bdev
;
372 xfs_start_buffer_writeback(
373 struct buffer_head
*bh
)
375 ASSERT(buffer_mapped(bh
));
376 ASSERT(buffer_locked(bh
));
377 ASSERT(!buffer_delay(bh
));
378 ASSERT(!buffer_unwritten(bh
));
380 mark_buffer_async_write(bh
);
381 set_buffer_uptodate(bh
);
382 clear_buffer_dirty(bh
);
386 xfs_start_page_writeback(
391 ASSERT(PageLocked(page
));
392 ASSERT(!PageWriteback(page
));
394 clear_page_dirty_for_io(page
);
395 set_page_writeback(page
);
397 /* If no buffers on the page are to be written, finish it here */
399 end_page_writeback(page
);
402 static inline int bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
404 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
408 * Submit all of the bios for all of the ioends we have saved up, covering the
409 * initial writepage page and also any probed pages.
411 * Because we may have multiple ioends spanning a page, we need to start
412 * writeback on all the buffers before we submit them for I/O. If we mark the
413 * buffers as we got, then we can end up with a page that only has buffers
414 * marked async write and I/O complete on can occur before we mark the other
415 * buffers async write.
417 * The end result of this is that we trip a bug in end_page_writeback() because
418 * we call it twice for the one page as the code in end_buffer_async_write()
419 * assumes that all buffers on the page are started at the same time.
421 * The fix is two passes across the ioend list - one to start writeback on the
422 * buffer_heads, and then submit them for I/O on the second pass.
426 struct writeback_control
*wbc
,
429 xfs_ioend_t
*head
= ioend
;
431 struct buffer_head
*bh
;
433 sector_t lastblock
= 0;
435 /* Pass 1 - start writeback */
437 next
= ioend
->io_list
;
438 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
439 xfs_start_buffer_writeback(bh
);
441 } while ((ioend
= next
) != NULL
);
443 /* Pass 2 - submit I/O */
446 next
= ioend
->io_list
;
449 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
453 bio
= xfs_alloc_ioend_bio(bh
);
454 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
455 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
459 if (bio_add_buffer(bio
, bh
) != bh
->b_size
) {
460 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
464 lastblock
= bh
->b_blocknr
;
467 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
468 xfs_finish_ioend(ioend
, 0);
469 } while ((ioend
= next
) != NULL
);
473 * Cancel submission of all buffer_heads so far in this endio.
474 * Toss the endio too. Only ever called for the initial page
475 * in a writepage request, so only ever one page.
482 struct buffer_head
*bh
, *next_bh
;
485 next
= ioend
->io_list
;
486 bh
= ioend
->io_buffer_head
;
488 next_bh
= bh
->b_private
;
489 clear_buffer_async_write(bh
);
491 } while ((bh
= next_bh
) != NULL
);
493 xfs_ioend_wake(XFS_I(ioend
->io_inode
));
494 mempool_free(ioend
, xfs_ioend_pool
);
495 } while ((ioend
= next
) != NULL
);
499 * Test to see if we've been building up a completion structure for
500 * earlier buffers -- if so, we try to append to this ioend if we
501 * can, otherwise we finish off any current ioend and start another.
502 * Return true if we've finished the given ioend.
507 struct buffer_head
*bh
,
510 xfs_ioend_t
**result
,
513 xfs_ioend_t
*ioend
= *result
;
515 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
516 xfs_ioend_t
*previous
= *result
;
518 ioend
= xfs_alloc_ioend(inode
, type
);
519 ioend
->io_offset
= offset
;
520 ioend
->io_buffer_head
= bh
;
521 ioend
->io_buffer_tail
= bh
;
523 previous
->io_list
= ioend
;
526 ioend
->io_buffer_tail
->b_private
= bh
;
527 ioend
->io_buffer_tail
= bh
;
530 bh
->b_private
= NULL
;
531 ioend
->io_size
+= bh
->b_size
;
536 struct buffer_head
*bh
,
543 ASSERT(mp
->iomap_bn
!= IOMAP_DADDR_NULL
);
545 bn
= (mp
->iomap_bn
>> (block_bits
- BBSHIFT
)) +
546 ((offset
- mp
->iomap_offset
) >> block_bits
);
548 ASSERT(bn
|| (mp
->iomap_flags
& IOMAP_REALTIME
));
551 set_buffer_mapped(bh
);
556 struct buffer_head
*bh
,
561 ASSERT(!(iomapp
->iomap_flags
& IOMAP_HOLE
));
562 ASSERT(!(iomapp
->iomap_flags
& IOMAP_DELAY
));
565 xfs_map_buffer(bh
, iomapp
, offset
, block_bits
);
566 bh
->b_bdev
= iomapp
->iomap_target
->bt_bdev
;
567 set_buffer_mapped(bh
);
568 clear_buffer_delay(bh
);
569 clear_buffer_unwritten(bh
);
573 * Look for a page at index that is suitable for clustering.
578 unsigned int pg_offset
,
583 if (PageWriteback(page
))
586 if (page
->mapping
&& PageDirty(page
)) {
587 if (page_has_buffers(page
)) {
588 struct buffer_head
*bh
, *head
;
590 bh
= head
= page_buffers(page
);
592 if (!buffer_uptodate(bh
))
594 if (mapped
!= buffer_mapped(bh
))
597 if (ret
>= pg_offset
)
599 } while ((bh
= bh
->b_this_page
) != head
);
601 ret
= mapped
? 0 : PAGE_CACHE_SIZE
;
610 struct page
*startpage
,
611 struct buffer_head
*bh
,
612 struct buffer_head
*head
,
616 pgoff_t tindex
, tlast
, tloff
;
620 /* First sum forwards in this page */
622 if (!buffer_uptodate(bh
) || (mapped
!= buffer_mapped(bh
)))
625 } while ((bh
= bh
->b_this_page
) != head
);
627 /* if we reached the end of the page, sum forwards in following pages */
628 tlast
= i_size_read(inode
) >> PAGE_CACHE_SHIFT
;
629 tindex
= startpage
->index
+ 1;
631 /* Prune this back to avoid pathological behavior */
632 tloff
= min(tlast
, startpage
->index
+ 64);
634 pagevec_init(&pvec
, 0);
635 while (!done
&& tindex
<= tloff
) {
636 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
638 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
641 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
642 struct page
*page
= pvec
.pages
[i
];
643 size_t pg_offset
, pg_len
= 0;
645 if (tindex
== tlast
) {
647 i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1);
653 pg_offset
= PAGE_CACHE_SIZE
;
655 if (page
->index
== tindex
&& trylock_page(page
)) {
656 pg_len
= xfs_probe_page(page
, pg_offset
, mapped
);
669 pagevec_release(&pvec
);
677 * Test if a given page is suitable for writing as part of an unwritten
678 * or delayed allocate extent.
685 if (PageWriteback(page
))
688 if (page
->mapping
&& page_has_buffers(page
)) {
689 struct buffer_head
*bh
, *head
;
692 bh
= head
= page_buffers(page
);
694 if (buffer_unwritten(bh
))
695 acceptable
= (type
== IOMAP_UNWRITTEN
);
696 else if (buffer_delay(bh
))
697 acceptable
= (type
== IOMAP_DELAY
);
698 else if (buffer_dirty(bh
) && buffer_mapped(bh
))
699 acceptable
= (type
== IOMAP_NEW
);
702 } while ((bh
= bh
->b_this_page
) != head
);
712 * Allocate & map buffers for page given the extent map. Write it out.
713 * except for the original page of a writepage, this is called on
714 * delalloc/unwritten pages only, for the original page it is possible
715 * that the page has no mapping at all.
723 xfs_ioend_t
**ioendp
,
724 struct writeback_control
*wbc
,
728 struct buffer_head
*bh
, *head
;
729 xfs_off_t end_offset
;
730 unsigned long p_offset
;
732 int bbits
= inode
->i_blkbits
;
734 int count
= 0, done
= 0, uptodate
= 1;
735 xfs_off_t offset
= page_offset(page
);
737 if (page
->index
!= tindex
)
739 if (!trylock_page(page
))
741 if (PageWriteback(page
))
742 goto fail_unlock_page
;
743 if (page
->mapping
!= inode
->i_mapping
)
744 goto fail_unlock_page
;
745 if (!xfs_is_delayed_page(page
, (*ioendp
)->io_type
))
746 goto fail_unlock_page
;
749 * page_dirty is initially a count of buffers on the page before
750 * EOF and is decremented as we move each into a cleanable state.
754 * End offset is the highest offset that this page should represent.
755 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
756 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
757 * hence give us the correct page_dirty count. On any other page,
758 * it will be zero and in that case we need page_dirty to be the
759 * count of buffers on the page.
761 end_offset
= min_t(unsigned long long,
762 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
765 len
= 1 << inode
->i_blkbits
;
766 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
768 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
769 page_dirty
= p_offset
/ len
;
771 bh
= head
= page_buffers(page
);
773 if (offset
>= end_offset
)
775 if (!buffer_uptodate(bh
))
777 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
782 if (buffer_unwritten(bh
) || buffer_delay(bh
)) {
783 if (buffer_unwritten(bh
))
784 type
= IOMAP_UNWRITTEN
;
788 if (!xfs_iomap_valid(mp
, offset
)) {
793 ASSERT(!(mp
->iomap_flags
& IOMAP_HOLE
));
794 ASSERT(!(mp
->iomap_flags
& IOMAP_DELAY
));
796 xfs_map_at_offset(bh
, offset
, bbits
, mp
);
798 xfs_add_to_ioend(inode
, bh
, offset
,
801 set_buffer_dirty(bh
);
803 mark_buffer_dirty(bh
);
809 if (buffer_mapped(bh
) && all_bh
&& startio
) {
811 xfs_add_to_ioend(inode
, bh
, offset
,
819 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
821 if (uptodate
&& bh
== head
)
822 SetPageUptodate(page
);
827 if (wbc
->nr_to_write
<= 0)
830 xfs_start_page_writeback(page
, !page_dirty
, count
);
841 * Convert & write out a cluster of pages in the same extent as defined
842 * by mp and following the start page.
849 xfs_ioend_t
**ioendp
,
850 struct writeback_control
*wbc
,
858 pagevec_init(&pvec
, 0);
859 while (!done
&& tindex
<= tlast
) {
860 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
862 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
865 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
866 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
867 iomapp
, ioendp
, wbc
, startio
, all_bh
);
872 pagevec_release(&pvec
);
878 * Calling this without startio set means we are being asked to make a dirty
879 * page ready for freeing it's buffers. When called with startio set then
880 * we are coming from writepage.
882 * When called with startio set it is important that we write the WHOLE
884 * The bh->b_state's cannot know if any of the blocks or which block for
885 * that matter are dirty due to mmap writes, and therefore bh uptodate is
886 * only valid if the page itself isn't completely uptodate. Some layers
887 * may clear the page dirty flag prior to calling write page, under the
888 * assumption the entire page will be written out; by not writing out the
889 * whole page the page can be reused before all valid dirty data is
890 * written out. Note: in the case of a page that has been dirty'd by
891 * mapwrite and but partially setup by block_prepare_write the
892 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
893 * valid state, thus the whole page must be written out thing.
897 xfs_page_state_convert(
900 struct writeback_control
*wbc
,
902 int unmapped
) /* also implies page uptodate */
904 struct buffer_head
*bh
, *head
;
906 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
908 unsigned long p_offset
= 0;
910 __uint64_t end_offset
;
911 pgoff_t end_index
, last_index
, tlast
;
913 int flags
, err
, iomap_valid
= 0, uptodate
= 1;
914 int page_dirty
, count
= 0;
916 int all_bh
= unmapped
;
919 if (wbc
->sync_mode
== WB_SYNC_NONE
&& wbc
->nonblocking
)
920 trylock
|= BMAPI_TRYLOCK
;
923 /* Is this page beyond the end of the file? */
924 offset
= i_size_read(inode
);
925 end_index
= offset
>> PAGE_CACHE_SHIFT
;
926 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
927 if (page
->index
>= end_index
) {
928 if ((page
->index
>= end_index
+ 1) ||
929 !(i_size_read(inode
) & (PAGE_CACHE_SIZE
- 1))) {
937 * page_dirty is initially a count of buffers on the page before
938 * EOF and is decremented as we move each into a cleanable state.
942 * End offset is the highest offset that this page should represent.
943 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
944 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
945 * hence give us the correct page_dirty count. On any other page,
946 * it will be zero and in that case we need page_dirty to be the
947 * count of buffers on the page.
949 end_offset
= min_t(unsigned long long,
950 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
, offset
);
951 len
= 1 << inode
->i_blkbits
;
952 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
954 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
955 page_dirty
= p_offset
/ len
;
957 bh
= head
= page_buffers(page
);
958 offset
= page_offset(page
);
962 /* TODO: cleanup count and page_dirty */
965 if (offset
>= end_offset
)
967 if (!buffer_uptodate(bh
))
969 if (!(PageUptodate(page
) || buffer_uptodate(bh
)) && !startio
) {
971 * the iomap is actually still valid, but the ioend
972 * isn't. shouldn't happen too often.
979 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
982 * First case, map an unwritten extent and prepare for
983 * extent state conversion transaction on completion.
985 * Second case, allocate space for a delalloc buffer.
986 * We can return EAGAIN here in the release page case.
988 * Third case, an unmapped buffer was found, and we are
989 * in a path where we need to write the whole page out.
991 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
992 ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
993 !buffer_mapped(bh
) && (unmapped
|| startio
))) {
997 * Make sure we don't use a read-only iomap
999 if (flags
== BMAPI_READ
)
1002 if (buffer_unwritten(bh
)) {
1003 type
= IOMAP_UNWRITTEN
;
1004 flags
= BMAPI_WRITE
| BMAPI_IGNSTATE
;
1005 } else if (buffer_delay(bh
)) {
1007 flags
= BMAPI_ALLOCATE
| trylock
;
1010 flags
= BMAPI_WRITE
| BMAPI_MMAP
;
1015 * if we didn't have a valid mapping then we
1016 * need to ensure that we put the new mapping
1017 * in a new ioend structure. This needs to be
1018 * done to ensure that the ioends correctly
1019 * reflect the block mappings at io completion
1020 * for unwritten extent conversion.
1023 if (type
== IOMAP_NEW
) {
1024 size
= xfs_probe_cluster(inode
,
1030 err
= xfs_map_blocks(inode
, offset
, size
,
1034 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1037 xfs_map_at_offset(bh
, offset
,
1038 inode
->i_blkbits
, &iomap
);
1040 xfs_add_to_ioend(inode
, bh
, offset
,
1044 set_buffer_dirty(bh
);
1046 mark_buffer_dirty(bh
);
1051 } else if (buffer_uptodate(bh
) && startio
) {
1053 * we got here because the buffer is already mapped.
1054 * That means it must already have extents allocated
1055 * underneath it. Map the extent by reading it.
1057 if (!iomap_valid
|| flags
!= BMAPI_READ
) {
1059 size
= xfs_probe_cluster(inode
, page
, bh
,
1061 err
= xfs_map_blocks(inode
, offset
, size
,
1065 iomap_valid
= xfs_iomap_valid(&iomap
, offset
);
1069 * We set the type to IOMAP_NEW in case we are doing a
1070 * small write at EOF that is extending the file but
1071 * without needing an allocation. We need to update the
1072 * file size on I/O completion in this case so it is
1073 * the same case as having just allocated a new extent
1074 * that we are writing into for the first time.
1077 if (trylock_buffer(bh
)) {
1078 ASSERT(buffer_mapped(bh
));
1081 xfs_add_to_ioend(inode
, bh
, offset
, type
,
1082 &ioend
, !iomap_valid
);
1088 } else if ((buffer_uptodate(bh
) || PageUptodate(page
)) &&
1089 (unmapped
|| startio
)) {
1096 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1098 if (uptodate
&& bh
== head
)
1099 SetPageUptodate(page
);
1102 xfs_start_page_writeback(page
, 1, count
);
1104 if (ioend
&& iomap_valid
) {
1105 offset
= (iomap
.iomap_offset
+ iomap
.iomap_bsize
- 1) >>
1107 tlast
= min_t(pgoff_t
, offset
, last_index
);
1108 xfs_cluster_write(inode
, page
->index
+ 1, &iomap
, &ioend
,
1109 wbc
, startio
, all_bh
, tlast
);
1113 xfs_submit_ioend(wbc
, iohead
);
1119 xfs_cancel_ioend(iohead
);
1122 * If it's delalloc and we have nowhere to put it,
1123 * throw it away, unless the lower layers told
1126 if (err
!= -EAGAIN
) {
1128 block_invalidatepage(page
, 0);
1129 ClearPageUptodate(page
);
1135 * writepage: Called from one of two places:
1137 * 1. we are flushing a delalloc buffer head.
1139 * 2. we are writing out a dirty page. Typically the page dirty
1140 * state is cleared before we get here. In this case is it
1141 * conceivable we have no buffer heads.
1143 * For delalloc space on the page we need to allocate space and
1144 * flush it. For unmapped buffer heads on the page we should
1145 * allocate space if the page is uptodate. For any other dirty
1146 * buffer heads on the page we should flush them.
1148 * If we detect that a transaction would be required to flush
1149 * the page, we have to check the process flags first, if we
1150 * are already in a transaction or disk I/O during allocations
1151 * is off, we need to fail the writepage and redirty the page.
1157 struct writeback_control
*wbc
)
1161 int delalloc
, unmapped
, unwritten
;
1162 struct inode
*inode
= page
->mapping
->host
;
1164 trace_xfs_writepage(inode
, page
, 0);
1167 * We need a transaction if:
1168 * 1. There are delalloc buffers on the page
1169 * 2. The page is uptodate and we have unmapped buffers
1170 * 3. The page is uptodate and we have no buffers
1171 * 4. There are unwritten buffers on the page
1174 if (!page_has_buffers(page
)) {
1178 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1179 if (!PageUptodate(page
))
1181 need_trans
= delalloc
+ unmapped
+ unwritten
;
1185 * If we need a transaction and the process flags say
1186 * we are already in a transaction, or no IO is allowed
1187 * then mark the page dirty again and leave the page
1190 if (current_test_flags(PF_FSTRANS
) && need_trans
)
1194 * Delay hooking up buffer heads until we have
1195 * made our go/no-go decision.
1197 if (!page_has_buffers(page
))
1198 create_empty_buffers(page
, 1 << inode
->i_blkbits
, 0);
1202 * VM calculation for nr_to_write seems off. Bump it way
1203 * up, this gets simple streaming writes zippy again.
1204 * To be reviewed again after Jens' writeback changes.
1206 wbc
->nr_to_write
*= 4;
1209 * Convert delayed allocate, unwritten or unmapped space
1210 * to real space and flush out to disk.
1212 error
= xfs_page_state_convert(inode
, page
, wbc
, 1, unmapped
);
1213 if (error
== -EAGAIN
)
1215 if (unlikely(error
< 0))
1221 redirty_page_for_writepage(wbc
, page
);
1231 struct address_space
*mapping
,
1232 struct writeback_control
*wbc
)
1234 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1235 return generic_writepages(mapping
, wbc
);
1239 * Called to move a page into cleanable state - and from there
1240 * to be released. Possibly the page is already clean. We always
1241 * have buffer heads in this call.
1243 * Returns 0 if the page is ok to release, 1 otherwise.
1245 * Possible scenarios are:
1247 * 1. We are being called to release a page which has been written
1248 * to via regular I/O. buffer heads will be dirty and possibly
1249 * delalloc. If no delalloc buffer heads in this case then we
1250 * can just return zero.
1252 * 2. We are called to release a page which has been written via
1253 * mmap, all we need to do is ensure there is no delalloc
1254 * state in the buffer heads, if not we can let the caller
1255 * free them and we should come back later via writepage.
1262 struct inode
*inode
= page
->mapping
->host
;
1263 int dirty
, delalloc
, unmapped
, unwritten
;
1264 struct writeback_control wbc
= {
1265 .sync_mode
= WB_SYNC_ALL
,
1269 trace_xfs_releasepage(inode
, page
, 0);
1271 if (!page_has_buffers(page
))
1274 xfs_count_page_state(page
, &delalloc
, &unmapped
, &unwritten
);
1275 if (!delalloc
&& !unwritten
)
1278 if (!(gfp_mask
& __GFP_FS
))
1281 /* If we are already inside a transaction or the thread cannot
1282 * do I/O, we cannot release this page.
1284 if (current_test_flags(PF_FSTRANS
))
1288 * Convert delalloc space to real space, do not flush the
1289 * data out to disk, that will be done by the caller.
1290 * Never need to allocate space here - we will always
1291 * come back to writepage in that case.
1293 dirty
= xfs_page_state_convert(inode
, page
, &wbc
, 0, 0);
1294 if (dirty
== 0 && !unwritten
)
1299 return try_to_free_buffers(page
);
1304 struct inode
*inode
,
1306 struct buffer_head
*bh_result
,
1309 bmapi_flags_t flags
)
1317 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1318 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1319 size
= bh_result
->b_size
;
1321 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1324 error
= xfs_iomap(XFS_I(inode
), offset
, size
,
1325 create
? flags
: BMAPI_READ
, &iomap
, &niomap
);
1331 if (iomap
.iomap_bn
!= IOMAP_DADDR_NULL
) {
1333 * For unwritten extents do not report a disk address on
1334 * the read case (treat as if we're reading into a hole).
1336 if (create
|| !(iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1337 xfs_map_buffer(bh_result
, &iomap
, offset
,
1340 if (create
&& (iomap
.iomap_flags
& IOMAP_UNWRITTEN
)) {
1342 bh_result
->b_private
= inode
;
1343 set_buffer_unwritten(bh_result
);
1348 * If this is a realtime file, data may be on a different device.
1349 * to that pointed to from the buffer_head b_bdev currently.
1351 bh_result
->b_bdev
= iomap
.iomap_target
->bt_bdev
;
1354 * If we previously allocated a block out beyond eof and we are now
1355 * coming back to use it then we will need to flag it as new even if it
1356 * has a disk address.
1358 * With sub-block writes into unwritten extents we also need to mark
1359 * the buffer as new so that the unwritten parts of the buffer gets
1363 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1364 (offset
>= i_size_read(inode
)) ||
1365 (iomap
.iomap_flags
& (IOMAP_NEW
|IOMAP_UNWRITTEN
))))
1366 set_buffer_new(bh_result
);
1368 if (iomap
.iomap_flags
& IOMAP_DELAY
) {
1371 set_buffer_uptodate(bh_result
);
1372 set_buffer_mapped(bh_result
);
1373 set_buffer_delay(bh_result
);
1377 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1378 ASSERT(iomap
.iomap_bsize
- iomap
.iomap_delta
> 0);
1379 offset
= min_t(xfs_off_t
,
1380 iomap
.iomap_bsize
- iomap
.iomap_delta
, size
);
1381 bh_result
->b_size
= (ssize_t
)min_t(xfs_off_t
, LONG_MAX
, offset
);
1389 struct inode
*inode
,
1391 struct buffer_head
*bh_result
,
1394 return __xfs_get_blocks(inode
, iblock
,
1395 bh_result
, create
, 0, BMAPI_WRITE
);
1399 xfs_get_blocks_direct(
1400 struct inode
*inode
,
1402 struct buffer_head
*bh_result
,
1405 return __xfs_get_blocks(inode
, iblock
,
1406 bh_result
, create
, 1, BMAPI_WRITE
|BMAPI_DIRECT
);
1416 xfs_ioend_t
*ioend
= iocb
->private;
1419 * Non-NULL private data means we need to issue a transaction to
1420 * convert a range from unwritten to written extents. This needs
1421 * to happen from process context but aio+dio I/O completion
1422 * happens from irq context so we need to defer it to a workqueue.
1423 * This is not necessary for synchronous direct I/O, but we do
1424 * it anyway to keep the code uniform and simpler.
1426 * Well, if only it were that simple. Because synchronous direct I/O
1427 * requires extent conversion to occur *before* we return to userspace,
1428 * we have to wait for extent conversion to complete. Look at the
1429 * iocb that has been passed to us to determine if this is AIO or
1430 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1431 * workqueue and wait for it to complete.
1433 * The core direct I/O code might be changed to always call the
1434 * completion handler in the future, in which case all this can
1437 ioend
->io_offset
= offset
;
1438 ioend
->io_size
= size
;
1439 if (ioend
->io_type
== IOMAP_READ
) {
1440 xfs_finish_ioend(ioend
, 0);
1441 } else if (private && size
> 0) {
1442 xfs_finish_ioend(ioend
, is_sync_kiocb(iocb
));
1445 * A direct I/O write ioend starts it's life in unwritten
1446 * state in case they map an unwritten extent. This write
1447 * didn't map an unwritten extent so switch it's completion
1450 ioend
->io_type
= IOMAP_NEW
;
1451 xfs_finish_ioend(ioend
, 0);
1455 * blockdev_direct_IO can return an error even after the I/O
1456 * completion handler was called. Thus we need to protect
1457 * against double-freeing.
1459 iocb
->private = NULL
;
1466 const struct iovec
*iov
,
1468 unsigned long nr_segs
)
1470 struct file
*file
= iocb
->ki_filp
;
1471 struct inode
*inode
= file
->f_mapping
->host
;
1472 struct block_device
*bdev
;
1475 bdev
= xfs_find_bdev_for_inode(XFS_I(inode
));
1477 iocb
->private = xfs_alloc_ioend(inode
, rw
== WRITE
?
1478 IOMAP_UNWRITTEN
: IOMAP_READ
);
1480 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
, bdev
, iov
,
1482 xfs_get_blocks_direct
,
1485 if (unlikely(ret
!= -EIOCBQUEUED
&& iocb
->private))
1486 xfs_destroy_ioend(iocb
->private);
1493 struct address_space
*mapping
,
1497 struct page
**pagep
,
1501 return block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1507 struct address_space
*mapping
,
1510 struct inode
*inode
= (struct inode
*)mapping
->host
;
1511 struct xfs_inode
*ip
= XFS_I(inode
);
1513 xfs_itrace_entry(XFS_I(inode
));
1514 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1515 xfs_flush_pages(ip
, (xfs_off_t
)0, -1, 0, FI_REMAPF
);
1516 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1517 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1522 struct file
*unused
,
1525 return mpage_readpage(page
, xfs_get_blocks
);
1530 struct file
*unused
,
1531 struct address_space
*mapping
,
1532 struct list_head
*pages
,
1535 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1539 xfs_vm_invalidatepage(
1541 unsigned long offset
)
1543 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
);
1544 block_invalidatepage(page
, offset
);
1547 const struct address_space_operations xfs_address_space_operations
= {
1548 .readpage
= xfs_vm_readpage
,
1549 .readpages
= xfs_vm_readpages
,
1550 .writepage
= xfs_vm_writepage
,
1551 .writepages
= xfs_vm_writepages
,
1552 .sync_page
= block_sync_page
,
1553 .releasepage
= xfs_vm_releasepage
,
1554 .invalidatepage
= xfs_vm_invalidatepage
,
1555 .write_begin
= xfs_vm_write_begin
,
1556 .write_end
= generic_write_end
,
1557 .bmap
= xfs_vm_bmap
,
1558 .direct_IO
= xfs_vm_direct_IO
,
1559 .migratepage
= buffer_migrate_page
,
1560 .is_partially_uptodate
= block_is_partially_uptodate
,
1561 .error_remove_page
= generic_error_remove_page
,