2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_btree.h"
41 #include "xfs_ialloc.h"
43 #include "xfs_error.h"
44 #include "xfs_trace.h"
47 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
50 * This returns the number of iovecs needed to log the given inode item.
52 * We need one iovec for the inode log format structure, one for the
53 * inode core, and possibly one for the inode data/extents/b-tree root
54 * and one for the inode attribute data/extents/b-tree root.
58 xfs_inode_log_item_t
*iip
)
67 * Only log the data/extents/b-tree root if there is something
70 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
72 switch (ip
->i_d
.di_format
) {
73 case XFS_DINODE_FMT_EXTENTS
:
74 iip
->ili_format
.ilf_fields
&=
75 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
76 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
77 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) &&
78 (ip
->i_d
.di_nextents
> 0) &&
79 (ip
->i_df
.if_bytes
> 0)) {
80 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
83 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DEXT
;
87 case XFS_DINODE_FMT_BTREE
:
88 ASSERT(ip
->i_df
.if_ext_max
==
89 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
));
90 iip
->ili_format
.ilf_fields
&=
91 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
92 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
93 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) &&
94 (ip
->i_df
.if_broot_bytes
> 0)) {
95 ASSERT(ip
->i_df
.if_broot
!= NULL
);
98 ASSERT(!(iip
->ili_format
.ilf_fields
&
100 #ifdef XFS_TRANS_DEBUG
101 if (iip
->ili_root_size
> 0) {
102 ASSERT(iip
->ili_root_size
==
103 ip
->i_df
.if_broot_bytes
);
104 ASSERT(memcmp(iip
->ili_orig_root
,
106 iip
->ili_root_size
) == 0);
108 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
111 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DBROOT
;
115 case XFS_DINODE_FMT_LOCAL
:
116 iip
->ili_format
.ilf_fields
&=
117 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
118 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
119 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) &&
120 (ip
->i_df
.if_bytes
> 0)) {
121 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
122 ASSERT(ip
->i_d
.di_size
> 0);
125 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DDATA
;
129 case XFS_DINODE_FMT_DEV
:
130 iip
->ili_format
.ilf_fields
&=
131 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
132 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
135 case XFS_DINODE_FMT_UUID
:
136 iip
->ili_format
.ilf_fields
&=
137 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
138 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
147 * If there are no attributes associated with this file,
148 * then there cannot be anything more to log.
149 * Clear all attribute-related log flags.
151 if (!XFS_IFORK_Q(ip
)) {
152 iip
->ili_format
.ilf_fields
&=
153 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
158 * Log any necessary attribute data.
160 switch (ip
->i_d
.di_aformat
) {
161 case XFS_DINODE_FMT_EXTENTS
:
162 iip
->ili_format
.ilf_fields
&=
163 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
164 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) &&
165 (ip
->i_d
.di_anextents
> 0) &&
166 (ip
->i_afp
->if_bytes
> 0)) {
167 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
170 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_AEXT
;
174 case XFS_DINODE_FMT_BTREE
:
175 iip
->ili_format
.ilf_fields
&=
176 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
177 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) &&
178 (ip
->i_afp
->if_broot_bytes
> 0)) {
179 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
182 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ABROOT
;
186 case XFS_DINODE_FMT_LOCAL
:
187 iip
->ili_format
.ilf_fields
&=
188 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
189 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) &&
190 (ip
->i_afp
->if_bytes
> 0)) {
191 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
194 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ADATA
;
207 * This is called to fill in the vector of log iovecs for the
208 * given inode log item. It fills the first item with an inode
209 * log format structure, the second with the on-disk inode structure,
210 * and a possible third and/or fourth with the inode data/extents/b-tree
211 * root and inode attributes data/extents/b-tree root.
214 xfs_inode_item_format(
215 xfs_inode_log_item_t
*iip
,
216 xfs_log_iovec_t
*log_vector
)
219 xfs_log_iovec_t
*vecp
;
222 xfs_bmbt_rec_t
*ext_buffer
;
229 vecp
->i_addr
= (xfs_caddr_t
)&iip
->ili_format
;
230 vecp
->i_len
= sizeof(xfs_inode_log_format_t
);
231 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IFORMAT
);
236 * Make sure the linux inode is dirty. We do this before
237 * clearing i_update_core as the VFS will call back into
238 * XFS here and set i_update_core, so we need to dirty the
239 * inode first so that the ordering of i_update_core and
240 * unlogged modifications still works as described below.
242 xfs_mark_inode_dirty_sync(ip
);
245 * Clear i_update_core if the timestamps (or any other
246 * non-transactional modification) need flushing/logging
247 * and we're about to log them with the rest of the core.
249 * This is the same logic as xfs_iflush() but this code can't
250 * run at the same time as xfs_iflush because we're in commit
251 * processing here and so we have the inode lock held in
252 * exclusive mode. Although it doesn't really matter
253 * for the timestamps if both routines were to grab the
254 * timestamps or not. That would be ok.
256 * We clear i_update_core before copying out the data.
257 * This is for coordination with our timestamp updates
258 * that don't hold the inode lock. They will always
259 * update the timestamps BEFORE setting i_update_core,
260 * so if we clear i_update_core after they set it we
261 * are guaranteed to see their updates to the timestamps
262 * either here. Likewise, if they set it after we clear it
263 * here, we'll see it either on the next commit of this
264 * inode or the next time the inode gets flushed via
265 * xfs_iflush(). This depends on strongly ordered memory
266 * semantics, but we have that. We use the SYNCHRONIZE
267 * macro to make sure that the compiler does not reorder
268 * the i_update_core access below the data copy below.
270 if (ip
->i_update_core
) {
271 ip
->i_update_core
= 0;
276 * Make sure to get the latest timestamps from the Linux inode.
278 xfs_synchronize_times(ip
);
280 vecp
->i_addr
= (xfs_caddr_t
)&ip
->i_d
;
281 vecp
->i_len
= sizeof(struct xfs_icdinode
);
282 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_ICORE
);
285 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
288 * If this is really an old format inode, then we need to
289 * log it as such. This means that we have to copy the link
290 * count from the new field to the old. We don't have to worry
291 * about the new fields, because nothing trusts them as long as
292 * the old inode version number is there. If the superblock already
293 * has a new version number, then we don't bother converting back.
296 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
297 if (ip
->i_d
.di_version
== 1) {
298 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
302 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
303 ip
->i_d
.di_onlink
= ip
->i_d
.di_nlink
;
306 * The superblock version has already been bumped,
307 * so just make the conversion to the new inode
310 ip
->i_d
.di_version
= 2;
311 ip
->i_d
.di_onlink
= 0;
312 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
316 switch (ip
->i_d
.di_format
) {
317 case XFS_DINODE_FMT_EXTENTS
:
318 ASSERT(!(iip
->ili_format
.ilf_fields
&
319 (XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
320 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
321 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) {
322 ASSERT(ip
->i_df
.if_bytes
> 0);
323 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
324 ASSERT(ip
->i_d
.di_nextents
> 0);
325 ASSERT(iip
->ili_extents_buf
== NULL
);
326 nrecs
= ip
->i_df
.if_bytes
/
327 (uint
)sizeof(xfs_bmbt_rec_t
);
329 #ifdef XFS_NATIVE_HOST
330 if (nrecs
== ip
->i_d
.di_nextents
) {
332 * There are no delayed allocation
333 * extents, so just point to the
334 * real extents array.
337 (char *)(ip
->i_df
.if_u1
.if_extents
);
338 vecp
->i_len
= ip
->i_df
.if_bytes
;
339 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IEXT
);
344 * There are delayed allocation extents
345 * in the inode, or we need to convert
346 * the extents to on disk format.
347 * Use xfs_iextents_copy()
348 * to copy only the real extents into
349 * a separate buffer. We'll free the
350 * buffer in the unlock routine.
352 ext_buffer
= kmem_alloc(ip
->i_df
.if_bytes
,
354 iip
->ili_extents_buf
= ext_buffer
;
355 vecp
->i_addr
= (xfs_caddr_t
)ext_buffer
;
356 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
358 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IEXT
);
360 ASSERT(vecp
->i_len
<= ip
->i_df
.if_bytes
);
361 iip
->ili_format
.ilf_dsize
= vecp
->i_len
;
367 case XFS_DINODE_FMT_BTREE
:
368 ASSERT(!(iip
->ili_format
.ilf_fields
&
369 (XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
370 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
371 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) {
372 ASSERT(ip
->i_df
.if_broot_bytes
> 0);
373 ASSERT(ip
->i_df
.if_broot
!= NULL
);
374 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_df
.if_broot
;
375 vecp
->i_len
= ip
->i_df
.if_broot_bytes
;
376 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IBROOT
);
379 iip
->ili_format
.ilf_dsize
= ip
->i_df
.if_broot_bytes
;
383 case XFS_DINODE_FMT_LOCAL
:
384 ASSERT(!(iip
->ili_format
.ilf_fields
&
385 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
386 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
387 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) {
388 ASSERT(ip
->i_df
.if_bytes
> 0);
389 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
390 ASSERT(ip
->i_d
.di_size
> 0);
392 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_df
.if_u1
.if_data
;
394 * Round i_bytes up to a word boundary.
395 * The underlying memory is guaranteed to
396 * to be there by xfs_idata_realloc().
398 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
399 ASSERT((ip
->i_df
.if_real_bytes
== 0) ||
400 (ip
->i_df
.if_real_bytes
== data_bytes
));
401 vecp
->i_len
= (int)data_bytes
;
402 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_ILOCAL
);
405 iip
->ili_format
.ilf_dsize
= (unsigned)data_bytes
;
409 case XFS_DINODE_FMT_DEV
:
410 ASSERT(!(iip
->ili_format
.ilf_fields
&
411 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
412 XFS_ILOG_DDATA
| XFS_ILOG_UUID
)));
413 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
414 iip
->ili_format
.ilf_u
.ilfu_rdev
=
415 ip
->i_df
.if_u2
.if_rdev
;
419 case XFS_DINODE_FMT_UUID
:
420 ASSERT(!(iip
->ili_format
.ilf_fields
&
421 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
422 XFS_ILOG_DDATA
| XFS_ILOG_DEV
)));
423 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
424 iip
->ili_format
.ilf_u
.ilfu_uuid
=
425 ip
->i_df
.if_u2
.if_uuid
;
435 * If there are no attributes associated with the file,
437 * Assert that no attribute-related log flags are set.
439 if (!XFS_IFORK_Q(ip
)) {
440 ASSERT(nvecs
== iip
->ili_item
.li_desc
->lid_size
);
441 iip
->ili_format
.ilf_size
= nvecs
;
442 ASSERT(!(iip
->ili_format
.ilf_fields
&
443 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
447 switch (ip
->i_d
.di_aformat
) {
448 case XFS_DINODE_FMT_EXTENTS
:
449 ASSERT(!(iip
->ili_format
.ilf_fields
&
450 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
)));
451 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) {
452 ASSERT(ip
->i_afp
->if_bytes
> 0);
453 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
454 ASSERT(ip
->i_d
.di_anextents
> 0);
456 nrecs
= ip
->i_afp
->if_bytes
/
457 (uint
)sizeof(xfs_bmbt_rec_t
);
460 ASSERT(nrecs
== ip
->i_d
.di_anextents
);
461 #ifdef XFS_NATIVE_HOST
463 * There are not delayed allocation extents
464 * for attributes, so just point at the array.
466 vecp
->i_addr
= (char *)(ip
->i_afp
->if_u1
.if_extents
);
467 vecp
->i_len
= ip
->i_afp
->if_bytes
;
469 ASSERT(iip
->ili_aextents_buf
== NULL
);
471 * Need to endian flip before logging
473 ext_buffer
= kmem_alloc(ip
->i_afp
->if_bytes
,
475 iip
->ili_aextents_buf
= ext_buffer
;
476 vecp
->i_addr
= (xfs_caddr_t
)ext_buffer
;
477 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
,
480 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_EXT
);
481 iip
->ili_format
.ilf_asize
= vecp
->i_len
;
487 case XFS_DINODE_FMT_BTREE
:
488 ASSERT(!(iip
->ili_format
.ilf_fields
&
489 (XFS_ILOG_ADATA
| XFS_ILOG_AEXT
)));
490 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) {
491 ASSERT(ip
->i_afp
->if_broot_bytes
> 0);
492 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
493 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_afp
->if_broot
;
494 vecp
->i_len
= ip
->i_afp
->if_broot_bytes
;
495 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_BROOT
);
498 iip
->ili_format
.ilf_asize
= ip
->i_afp
->if_broot_bytes
;
502 case XFS_DINODE_FMT_LOCAL
:
503 ASSERT(!(iip
->ili_format
.ilf_fields
&
504 (XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
505 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) {
506 ASSERT(ip
->i_afp
->if_bytes
> 0);
507 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
509 vecp
->i_addr
= (xfs_caddr_t
)ip
->i_afp
->if_u1
.if_data
;
511 * Round i_bytes up to a word boundary.
512 * The underlying memory is guaranteed to
513 * to be there by xfs_idata_realloc().
515 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
516 ASSERT((ip
->i_afp
->if_real_bytes
== 0) ||
517 (ip
->i_afp
->if_real_bytes
== data_bytes
));
518 vecp
->i_len
= (int)data_bytes
;
519 XLOG_VEC_SET_TYPE(vecp
, XLOG_REG_TYPE_IATTR_LOCAL
);
522 iip
->ili_format
.ilf_asize
= (unsigned)data_bytes
;
531 ASSERT(nvecs
== iip
->ili_item
.li_desc
->lid_size
);
532 iip
->ili_format
.ilf_size
= nvecs
;
537 * This is called to pin the inode associated with the inode log
538 * item in memory so it cannot be written out. Do this by calling
539 * xfs_ipin() to bump the pin count in the inode while holding the
544 xfs_inode_log_item_t
*iip
)
546 ASSERT(xfs_isilocked(iip
->ili_inode
, XFS_ILOCK_EXCL
));
547 xfs_ipin(iip
->ili_inode
);
552 * This is called to unpin the inode associated with the inode log
553 * item which was previously pinned with a call to xfs_inode_item_pin().
554 * Just call xfs_iunpin() on the inode to do this.
558 xfs_inode_item_unpin(
559 xfs_inode_log_item_t
*iip
,
562 xfs_iunpin(iip
->ili_inode
);
567 xfs_inode_item_unpin_remove(
568 xfs_inode_log_item_t
*iip
,
571 xfs_iunpin(iip
->ili_inode
);
575 * This is called to attempt to lock the inode associated with this
576 * inode log item, in preparation for the push routine which does the actual
577 * iflush. Don't sleep on the inode lock or the flush lock.
579 * If the flush lock is already held, indicating that the inode has
580 * been or is in the process of being flushed, then (ideally) we'd like to
581 * see if the inode's buffer is still incore, and if so give it a nudge.
582 * We delay doing so until the pushbuf routine, though, to avoid holding
583 * the AIL lock across a call to the blackhole which is the buffer cache.
584 * Also we don't want to sleep in any device strategy routines, which can happen
585 * if we do the subsequent bawrite in here.
588 xfs_inode_item_trylock(
589 xfs_inode_log_item_t
*iip
)
591 register xfs_inode_t
*ip
;
595 if (xfs_ipincount(ip
) > 0) {
596 return XFS_ITEM_PINNED
;
599 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
600 return XFS_ITEM_LOCKED
;
603 if (!xfs_iflock_nowait(ip
)) {
605 * If someone else isn't already trying to push the inode
606 * buffer, we get to do it.
608 if (iip
->ili_pushbuf_flag
== 0) {
609 iip
->ili_pushbuf_flag
= 1;
611 iip
->ili_push_owner
= current_pid();
614 * Inode is left locked in shared mode.
615 * Pushbuf routine gets to unlock it.
617 return XFS_ITEM_PUSHBUF
;
620 * We hold the AIL lock, so we must specify the
621 * NONOTIFY flag so that we won't double trip.
623 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
624 return XFS_ITEM_FLUSHING
;
629 /* Stale items should force out the iclog */
630 if (ip
->i_flags
& XFS_ISTALE
) {
632 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
633 return XFS_ITEM_PINNED
;
637 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
638 ASSERT(iip
->ili_format
.ilf_fields
!= 0);
639 ASSERT(iip
->ili_logged
== 0);
640 ASSERT(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
);
643 return XFS_ITEM_SUCCESS
;
647 * Unlock the inode associated with the inode log item.
648 * Clear the fields of the inode and inode log item that
649 * are specific to the current transaction. If the
650 * hold flags is set, do not unlock the inode.
653 xfs_inode_item_unlock(
654 xfs_inode_log_item_t
*iip
)
662 ASSERT(iip
->ili_inode
->i_itemp
!= NULL
);
663 ASSERT(xfs_isilocked(iip
->ili_inode
, XFS_ILOCK_EXCL
));
664 ASSERT((!(iip
->ili_inode
->i_itemp
->ili_flags
&
665 XFS_ILI_IOLOCKED_EXCL
)) ||
666 xfs_isilocked(iip
->ili_inode
, XFS_IOLOCK_EXCL
));
667 ASSERT((!(iip
->ili_inode
->i_itemp
->ili_flags
&
668 XFS_ILI_IOLOCKED_SHARED
)) ||
669 xfs_isilocked(iip
->ili_inode
, XFS_IOLOCK_SHARED
));
671 * Clear the transaction pointer in the inode.
677 * If the inode needed a separate buffer with which to log
678 * its extents, then free it now.
680 if (iip
->ili_extents_buf
!= NULL
) {
681 ASSERT(ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
);
682 ASSERT(ip
->i_d
.di_nextents
> 0);
683 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
);
684 ASSERT(ip
->i_df
.if_bytes
> 0);
685 kmem_free(iip
->ili_extents_buf
);
686 iip
->ili_extents_buf
= NULL
;
688 if (iip
->ili_aextents_buf
!= NULL
) {
689 ASSERT(ip
->i_d
.di_aformat
== XFS_DINODE_FMT_EXTENTS
);
690 ASSERT(ip
->i_d
.di_anextents
> 0);
691 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
);
692 ASSERT(ip
->i_afp
->if_bytes
> 0);
693 kmem_free(iip
->ili_aextents_buf
);
694 iip
->ili_aextents_buf
= NULL
;
698 * Figure out if we should unlock the inode or not.
700 hold
= iip
->ili_flags
& XFS_ILI_HOLD
;
703 * Before clearing out the flags, remember whether we
704 * are holding the inode's IO lock.
706 iolocked
= iip
->ili_flags
& XFS_ILI_IOLOCKED_ANY
;
709 * Clear out the fields of the inode log item particular
710 * to the current transaction.
715 * Unlock the inode if XFS_ILI_HOLD was not set.
718 lock_flags
= XFS_ILOCK_EXCL
;
719 if (iolocked
& XFS_ILI_IOLOCKED_EXCL
) {
720 lock_flags
|= XFS_IOLOCK_EXCL
;
721 } else if (iolocked
& XFS_ILI_IOLOCKED_SHARED
) {
722 lock_flags
|= XFS_IOLOCK_SHARED
;
724 xfs_iput(iip
->ili_inode
, lock_flags
);
729 * This is called to find out where the oldest active copy of the
730 * inode log item in the on disk log resides now that the last log
731 * write of it completed at the given lsn. Since we always re-log
732 * all dirty data in an inode, the latest copy in the on disk log
733 * is the only one that matters. Therefore, simply return the
738 xfs_inode_item_committed(
739 xfs_inode_log_item_t
*iip
,
746 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
747 * failed to get the inode flush lock but did get the inode locked SHARED.
748 * Here we're trying to see if the inode buffer is incore, and if so whether it's
749 * marked delayed write. If that's the case, we'll initiate a bawrite on that
750 * buffer to expedite the process.
752 * We aren't holding the AIL lock (or the flush lock) when this gets called,
753 * so it is inherently race-y.
756 xfs_inode_item_pushbuf(
757 xfs_inode_log_item_t
*iip
)
766 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
769 * The ili_pushbuf_flag keeps others from
770 * trying to duplicate our effort.
772 ASSERT(iip
->ili_pushbuf_flag
!= 0);
773 ASSERT(iip
->ili_push_owner
== current_pid());
776 * If a flush is not in progress anymore, chances are that the
777 * inode was taken off the AIL. So, just get out.
779 if (completion_done(&ip
->i_flush
) ||
780 ((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0)) {
781 iip
->ili_pushbuf_flag
= 0;
782 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
787 bp
= xfs_incore(mp
->m_ddev_targp
, iip
->ili_format
.ilf_blkno
,
788 iip
->ili_format
.ilf_len
, XFS_INCORE_TRYLOCK
);
791 if (XFS_BUF_ISDELAYWRITE(bp
)) {
793 * We were racing with iflush because we don't hold
794 * the AIL lock or the flush lock. However, at this point,
795 * we have the buffer, and we know that it's dirty.
796 * So, it's possible that iflush raced with us, and
797 * this item is already taken off the AIL.
798 * If not, we can flush it async.
800 dopush
= ((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) &&
801 !completion_done(&ip
->i_flush
));
802 iip
->ili_pushbuf_flag
= 0;
803 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
805 trace_xfs_inode_item_push(bp
, _RET_IP_
);
807 if (XFS_BUF_ISPINNED(bp
)) {
808 xfs_log_force(mp
, (xfs_lsn_t
)0,
813 error
= xfs_bawrite(mp
, bp
);
815 xfs_fs_cmn_err(CE_WARN
, mp
,
816 "xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
822 iip
->ili_pushbuf_flag
= 0;
823 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
829 * We have to be careful about resetting pushbuf flag too early (above).
830 * Even though in theory we can do it as soon as we have the buflock,
831 * we don't want others to be doing work needlessly. They'll come to
832 * this function thinking that pushing the buffer is their
833 * responsibility only to find that the buffer is still locked by
834 * another doing the same thing
836 iip
->ili_pushbuf_flag
= 0;
837 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
843 * This is called to asynchronously write the inode associated with this
844 * inode log item out to disk. The inode will already have been locked by
845 * a successful call to xfs_inode_item_trylock().
849 xfs_inode_log_item_t
*iip
)
855 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
856 ASSERT(!completion_done(&ip
->i_flush
));
858 * Since we were able to lock the inode's flush lock and
859 * we found it on the AIL, the inode must be dirty. This
860 * is because the inode is removed from the AIL while still
861 * holding the flush lock in xfs_iflush_done(). Thus, if
862 * we found it in the AIL and were able to obtain the flush
863 * lock without sleeping, then there must not have been
864 * anyone in the process of flushing the inode.
866 ASSERT(XFS_FORCED_SHUTDOWN(ip
->i_mount
) ||
867 iip
->ili_format
.ilf_fields
!= 0);
870 * Write out the inode. The completion routine ('iflush_done') will
871 * pull it from the AIL, mark it clean, unlock the flush lock.
873 (void) xfs_iflush(ip
, XFS_IFLUSH_ASYNC
);
874 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
880 * XXX rcc - this one really has to do something. Probably needs
881 * to stamp in a new field in the incore inode.
885 xfs_inode_item_committing(
886 xfs_inode_log_item_t
*iip
,
889 iip
->ili_last_lsn
= lsn
;
894 * This is the ops vector shared by all buf log items.
896 static struct xfs_item_ops xfs_inode_item_ops
= {
897 .iop_size
= (uint(*)(xfs_log_item_t
*))xfs_inode_item_size
,
898 .iop_format
= (void(*)(xfs_log_item_t
*, xfs_log_iovec_t
*))
899 xfs_inode_item_format
,
900 .iop_pin
= (void(*)(xfs_log_item_t
*))xfs_inode_item_pin
,
901 .iop_unpin
= (void(*)(xfs_log_item_t
*, int))xfs_inode_item_unpin
,
902 .iop_unpin_remove
= (void(*)(xfs_log_item_t
*, xfs_trans_t
*))
903 xfs_inode_item_unpin_remove
,
904 .iop_trylock
= (uint(*)(xfs_log_item_t
*))xfs_inode_item_trylock
,
905 .iop_unlock
= (void(*)(xfs_log_item_t
*))xfs_inode_item_unlock
,
906 .iop_committed
= (xfs_lsn_t(*)(xfs_log_item_t
*, xfs_lsn_t
))
907 xfs_inode_item_committed
,
908 .iop_push
= (void(*)(xfs_log_item_t
*))xfs_inode_item_push
,
909 .iop_pushbuf
= (void(*)(xfs_log_item_t
*))xfs_inode_item_pushbuf
,
910 .iop_committing
= (void(*)(xfs_log_item_t
*, xfs_lsn_t
))
911 xfs_inode_item_committing
916 * Initialize the inode log item for a newly allocated (in-core) inode.
923 xfs_inode_log_item_t
*iip
;
925 ASSERT(ip
->i_itemp
== NULL
);
926 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
928 iip
->ili_item
.li_type
= XFS_LI_INODE
;
929 iip
->ili_item
.li_ops
= &xfs_inode_item_ops
;
930 iip
->ili_item
.li_mountp
= mp
;
931 iip
->ili_item
.li_ailp
= mp
->m_ail
;
935 We have zeroed memory. No need ...
936 iip->ili_extents_buf = NULL;
937 iip->ili_pushbuf_flag = 0;
940 iip
->ili_format
.ilf_type
= XFS_LI_INODE
;
941 iip
->ili_format
.ilf_ino
= ip
->i_ino
;
942 iip
->ili_format
.ilf_blkno
= ip
->i_imap
.im_blkno
;
943 iip
->ili_format
.ilf_len
= ip
->i_imap
.im_len
;
944 iip
->ili_format
.ilf_boffset
= ip
->i_imap
.im_boffset
;
948 * Free the inode log item and any memory hanging off of it.
951 xfs_inode_item_destroy(
954 #ifdef XFS_TRANS_DEBUG
955 if (ip
->i_itemp
->ili_root_size
!= 0) {
956 kmem_free(ip
->i_itemp
->ili_orig_root
);
959 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
964 * This is the inode flushing I/O completion routine. It is called
965 * from interrupt level when the buffer containing the inode is
966 * flushed to disk. It is responsible for removing the inode item
967 * from the AIL if it has not been re-logged, and unlocking the inode's
974 xfs_inode_log_item_t
*iip
)
976 xfs_inode_t
*ip
= iip
->ili_inode
;
977 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
980 * We only want to pull the item from the AIL if it is
981 * actually there and its location in the log has not
982 * changed since we started the flush. Thus, we only bother
983 * if the ili_logged flag is set and the inode's lsn has not
984 * changed. First we check the lsn outside
985 * the lock since it's cheaper, and then we recheck while
986 * holding the lock before removing the inode from the AIL.
988 if (iip
->ili_logged
&&
989 (iip
->ili_item
.li_lsn
== iip
->ili_flush_lsn
)) {
990 spin_lock(&ailp
->xa_lock
);
991 if (iip
->ili_item
.li_lsn
== iip
->ili_flush_lsn
) {
992 /* xfs_trans_ail_delete() drops the AIL lock. */
993 xfs_trans_ail_delete(ailp
, (xfs_log_item_t
*)iip
);
995 spin_unlock(&ailp
->xa_lock
);
1002 * Clear the ili_last_fields bits now that we know that the
1003 * data corresponding to them is safely on disk.
1005 iip
->ili_last_fields
= 0;
1008 * Release the inode's flush lock since we're done with it.
1016 * This is the inode flushing abort routine. It is called
1017 * from xfs_iflush when the filesystem is shutting down to clean
1018 * up the inode state.
1019 * It is responsible for removing the inode item
1020 * from the AIL if it has not been re-logged, and unlocking the inode's
1027 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
1033 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
1034 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
1035 spin_lock(&ailp
->xa_lock
);
1036 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
1037 /* xfs_trans_ail_delete() drops the AIL lock. */
1038 xfs_trans_ail_delete(ailp
, (xfs_log_item_t
*)iip
);
1040 spin_unlock(&ailp
->xa_lock
);
1042 iip
->ili_logged
= 0;
1044 * Clear the ili_last_fields bits now that we know that the
1045 * data corresponding to them is safely on disk.
1047 iip
->ili_last_fields
= 0;
1049 * Clear the inode logging fields so no more flushes are
1052 iip
->ili_format
.ilf_fields
= 0;
1055 * Release the inode's flush lock since we're done with it.
1063 xfs_inode_log_item_t
*iip
)
1065 xfs_iflush_abort(iip
->ili_inode
);
1069 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1070 * (which can have different field alignments) to the native version
1073 xfs_inode_item_format_convert(
1074 xfs_log_iovec_t
*buf
,
1075 xfs_inode_log_format_t
*in_f
)
1077 if (buf
->i_len
== sizeof(xfs_inode_log_format_32_t
)) {
1078 xfs_inode_log_format_32_t
*in_f32
;
1080 in_f32
= (xfs_inode_log_format_32_t
*)buf
->i_addr
;
1081 in_f
->ilf_type
= in_f32
->ilf_type
;
1082 in_f
->ilf_size
= in_f32
->ilf_size
;
1083 in_f
->ilf_fields
= in_f32
->ilf_fields
;
1084 in_f
->ilf_asize
= in_f32
->ilf_asize
;
1085 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
1086 in_f
->ilf_ino
= in_f32
->ilf_ino
;
1087 /* copy biggest field of ilf_u */
1088 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
1089 in_f32
->ilf_u
.ilfu_uuid
.__u_bits
,
1091 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
1092 in_f
->ilf_len
= in_f32
->ilf_len
;
1093 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;
1095 } else if (buf
->i_len
== sizeof(xfs_inode_log_format_64_t
)){
1096 xfs_inode_log_format_64_t
*in_f64
;
1098 in_f64
= (xfs_inode_log_format_64_t
*)buf
->i_addr
;
1099 in_f
->ilf_type
= in_f64
->ilf_type
;
1100 in_f
->ilf_size
= in_f64
->ilf_size
;
1101 in_f
->ilf_fields
= in_f64
->ilf_fields
;
1102 in_f
->ilf_asize
= in_f64
->ilf_asize
;
1103 in_f
->ilf_dsize
= in_f64
->ilf_dsize
;
1104 in_f
->ilf_ino
= in_f64
->ilf_ino
;
1105 /* copy biggest field of ilf_u */
1106 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
1107 in_f64
->ilf_u
.ilfu_uuid
.__u_bits
,
1109 in_f
->ilf_blkno
= in_f64
->ilf_blkno
;
1110 in_f
->ilf_len
= in_f64
->ilf_len
;
1111 in_f
->ilf_boffset
= in_f64
->ilf_boffset
;
1114 return EFSCORRUPTED
;