f_phonet: fix page offset of first received fragment
[linux/fpc-iii.git] / fs / exofs / ore_raid.c
blob29c47e5c4a86888a5dfae3e98a76f83849ce9c6f
1 /*
2 * Copyright (C) 2011
3 * Boaz Harrosh <bharrosh@panasas.com>
5 * This file is part of the objects raid engine (ore).
7 * It is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation.
11 * You should have received a copy of the GNU General Public License
12 * along with "ore". If not, write to the Free Software Foundation, Inc:
13 * "Free Software Foundation <info@fsf.org>"
16 #include <linux/gfp.h>
17 #include <linux/async_tx.h>
19 #include "ore_raid.h"
21 #undef ORE_DBGMSG2
22 #define ORE_DBGMSG2 ORE_DBGMSG
24 struct page *_raid_page_alloc(void)
26 return alloc_page(GFP_KERNEL);
29 void _raid_page_free(struct page *p)
31 __free_page(p);
34 /* This struct is forward declare in ore_io_state, but is private to here.
35 * It is put on ios->sp2d for RAID5/6 writes only. See _gen_xor_unit.
37 * __stripe_pages_2d is a 2d array of pages, and it is also a corner turn.
38 * Ascending page index access is sp2d(p-minor, c-major). But storage is
39 * sp2d[p-minor][c-major], so it can be properlly presented to the async-xor
40 * API.
42 struct __stripe_pages_2d {
43 /* Cache some hot path repeated calculations */
44 unsigned parity;
45 unsigned data_devs;
46 unsigned pages_in_unit;
48 bool needed ;
50 /* Array size is pages_in_unit (layout->stripe_unit / PAGE_SIZE) */
51 struct __1_page_stripe {
52 bool alloc;
53 unsigned write_count;
54 struct async_submit_ctl submit;
55 struct dma_async_tx_descriptor *tx;
57 /* The size of this array is data_devs + parity */
58 struct page **pages;
59 struct page **scribble;
60 /* bool array, size of this array is data_devs */
61 char *page_is_read;
62 } _1p_stripes[];
65 /* This can get bigger then a page. So support multiple page allocations
66 * _sp2d_free should be called even if _sp2d_alloc fails (by returning
67 * none-zero).
69 static int _sp2d_alloc(unsigned pages_in_unit, unsigned group_width,
70 unsigned parity, struct __stripe_pages_2d **psp2d)
72 struct __stripe_pages_2d *sp2d;
73 unsigned data_devs = group_width - parity;
74 struct _alloc_all_bytes {
75 struct __alloc_stripe_pages_2d {
76 struct __stripe_pages_2d sp2d;
77 struct __1_page_stripe _1p_stripes[pages_in_unit];
78 } __asp2d;
79 struct __alloc_1p_arrays {
80 struct page *pages[group_width];
81 struct page *scribble[group_width];
82 char page_is_read[data_devs];
83 } __a1pa[pages_in_unit];
84 } *_aab;
85 struct __alloc_1p_arrays *__a1pa;
86 struct __alloc_1p_arrays *__a1pa_end;
87 const unsigned sizeof__a1pa = sizeof(_aab->__a1pa[0]);
88 unsigned num_a1pa, alloc_size, i;
90 /* FIXME: check these numbers in ore_verify_layout */
91 BUG_ON(sizeof(_aab->__asp2d) > PAGE_SIZE);
92 BUG_ON(sizeof__a1pa > PAGE_SIZE);
94 if (sizeof(*_aab) > PAGE_SIZE) {
95 num_a1pa = (PAGE_SIZE - sizeof(_aab->__asp2d)) / sizeof__a1pa;
96 alloc_size = sizeof(_aab->__asp2d) + sizeof__a1pa * num_a1pa;
97 } else {
98 num_a1pa = pages_in_unit;
99 alloc_size = sizeof(*_aab);
102 _aab = kzalloc(alloc_size, GFP_KERNEL);
103 if (unlikely(!_aab)) {
104 ORE_DBGMSG("!! Failed to alloc sp2d size=%d\n", alloc_size);
105 return -ENOMEM;
108 sp2d = &_aab->__asp2d.sp2d;
109 *psp2d = sp2d; /* From here Just call _sp2d_free */
111 __a1pa = _aab->__a1pa;
112 __a1pa_end = __a1pa + num_a1pa;
114 for (i = 0; i < pages_in_unit; ++i) {
115 if (unlikely(__a1pa >= __a1pa_end)) {
116 num_a1pa = min_t(unsigned, PAGE_SIZE / sizeof__a1pa,
117 pages_in_unit - i);
119 __a1pa = kzalloc(num_a1pa * sizeof__a1pa, GFP_KERNEL);
120 if (unlikely(!__a1pa)) {
121 ORE_DBGMSG("!! Failed to _alloc_1p_arrays=%d\n",
122 num_a1pa);
123 return -ENOMEM;
125 __a1pa_end = __a1pa + num_a1pa;
126 /* First *pages is marked for kfree of the buffer */
127 sp2d->_1p_stripes[i].alloc = true;
130 sp2d->_1p_stripes[i].pages = __a1pa->pages;
131 sp2d->_1p_stripes[i].scribble = __a1pa->scribble ;
132 sp2d->_1p_stripes[i].page_is_read = __a1pa->page_is_read;
133 ++__a1pa;
136 sp2d->parity = parity;
137 sp2d->data_devs = data_devs;
138 sp2d->pages_in_unit = pages_in_unit;
139 return 0;
142 static void _sp2d_reset(struct __stripe_pages_2d *sp2d,
143 const struct _ore_r4w_op *r4w, void *priv)
145 unsigned data_devs = sp2d->data_devs;
146 unsigned group_width = data_devs + sp2d->parity;
147 unsigned p;
149 if (!sp2d->needed)
150 return;
152 for (p = 0; p < sp2d->pages_in_unit; p++) {
153 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
155 if (_1ps->write_count < group_width) {
156 unsigned c;
158 for (c = 0; c < data_devs; c++)
159 if (_1ps->page_is_read[c]) {
160 struct page *page = _1ps->pages[c];
162 r4w->put_page(priv, page);
163 _1ps->page_is_read[c] = false;
167 memset(_1ps->pages, 0, group_width * sizeof(*_1ps->pages));
168 _1ps->write_count = 0;
169 _1ps->tx = NULL;
172 sp2d->needed = false;
175 static void _sp2d_free(struct __stripe_pages_2d *sp2d)
177 unsigned i;
179 if (!sp2d)
180 return;
182 for (i = 0; i < sp2d->pages_in_unit; ++i) {
183 if (sp2d->_1p_stripes[i].alloc)
184 kfree(sp2d->_1p_stripes[i].pages);
187 kfree(sp2d);
190 static unsigned _sp2d_min_pg(struct __stripe_pages_2d *sp2d)
192 unsigned p;
194 for (p = 0; p < sp2d->pages_in_unit; p++) {
195 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
197 if (_1ps->write_count)
198 return p;
201 return ~0;
204 static unsigned _sp2d_max_pg(struct __stripe_pages_2d *sp2d)
206 unsigned p;
208 for (p = sp2d->pages_in_unit - 1; p >= 0; --p) {
209 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
211 if (_1ps->write_count)
212 return p;
215 return ~0;
218 static void _gen_xor_unit(struct __stripe_pages_2d *sp2d)
220 unsigned p;
221 for (p = 0; p < sp2d->pages_in_unit; p++) {
222 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
224 if (!_1ps->write_count)
225 continue;
227 init_async_submit(&_1ps->submit,
228 ASYNC_TX_XOR_ZERO_DST | ASYNC_TX_ACK,
229 NULL,
230 NULL, NULL,
231 (addr_conv_t *)_1ps->scribble);
233 /* TODO: raid6 */
234 _1ps->tx = async_xor(_1ps->pages[sp2d->data_devs], _1ps->pages,
235 0, sp2d->data_devs, PAGE_SIZE,
236 &_1ps->submit);
239 for (p = 0; p < sp2d->pages_in_unit; p++) {
240 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
241 /* NOTE: We wait for HW synchronously (I don't have such HW
242 * to test with.) Is parallelism needed with today's multi
243 * cores?
245 async_tx_issue_pending(_1ps->tx);
249 void _ore_add_stripe_page(struct __stripe_pages_2d *sp2d,
250 struct ore_striping_info *si, struct page *page)
252 struct __1_page_stripe *_1ps;
254 sp2d->needed = true;
256 _1ps = &sp2d->_1p_stripes[si->cur_pg];
257 _1ps->pages[si->cur_comp] = page;
258 ++_1ps->write_count;
260 si->cur_pg = (si->cur_pg + 1) % sp2d->pages_in_unit;
261 /* si->cur_comp is advanced outside at main loop */
264 void _ore_add_sg_seg(struct ore_per_dev_state *per_dev, unsigned cur_len,
265 bool not_last)
267 struct osd_sg_entry *sge;
269 ORE_DBGMSG("dev=%d cur_len=0x%x not_last=%d cur_sg=%d "
270 "offset=0x%llx length=0x%x last_sgs_total=0x%x\n",
271 per_dev->dev, cur_len, not_last, per_dev->cur_sg,
272 _LLU(per_dev->offset), per_dev->length,
273 per_dev->last_sgs_total);
275 if (!per_dev->cur_sg) {
276 sge = per_dev->sglist;
278 /* First time we prepare two entries */
279 if (per_dev->length) {
280 ++per_dev->cur_sg;
281 sge->offset = per_dev->offset;
282 sge->len = per_dev->length;
283 } else {
284 /* Here the parity is the first unit of this object.
285 * This happens every time we reach a parity device on
286 * the same stripe as the per_dev->offset. We need to
287 * just skip this unit.
289 per_dev->offset += cur_len;
290 return;
292 } else {
293 /* finalize the last one */
294 sge = &per_dev->sglist[per_dev->cur_sg - 1];
295 sge->len = per_dev->length - per_dev->last_sgs_total;
298 if (not_last) {
299 /* Partly prepare the next one */
300 struct osd_sg_entry *next_sge = sge + 1;
302 ++per_dev->cur_sg;
303 next_sge->offset = sge->offset + sge->len + cur_len;
304 /* Save cur len so we know how mutch was added next time */
305 per_dev->last_sgs_total = per_dev->length;
306 next_sge->len = 0;
307 } else if (!sge->len) {
308 /* Optimize for when the last unit is a parity */
309 --per_dev->cur_sg;
313 static int _alloc_read_4_write(struct ore_io_state *ios)
315 struct ore_layout *layout = ios->layout;
316 int ret;
317 /* We want to only read those pages not in cache so worst case
318 * is a stripe populated with every other page
320 unsigned sgs_per_dev = ios->sp2d->pages_in_unit + 2;
322 ret = _ore_get_io_state(layout, ios->oc,
323 layout->group_width * layout->mirrors_p1,
324 sgs_per_dev, 0, &ios->ios_read_4_write);
325 return ret;
328 /* @si contains info of the to-be-inserted page. Update of @si should be
329 * maintained by caller. Specificaly si->dev, si->obj_offset, ...
331 static int _add_to_read_4_write(struct ore_io_state *ios,
332 struct ore_striping_info *si, struct page *page)
334 struct request_queue *q;
335 struct ore_per_dev_state *per_dev;
336 struct ore_io_state *read_ios;
337 unsigned first_dev = si->dev - (si->dev %
338 (ios->layout->group_width * ios->layout->mirrors_p1));
339 unsigned comp = si->dev - first_dev;
340 unsigned added_len;
342 if (!ios->ios_read_4_write) {
343 int ret = _alloc_read_4_write(ios);
345 if (unlikely(ret))
346 return ret;
349 read_ios = ios->ios_read_4_write;
350 read_ios->numdevs = ios->layout->group_width * ios->layout->mirrors_p1;
352 per_dev = &read_ios->per_dev[comp];
353 if (!per_dev->length) {
354 per_dev->bio = bio_kmalloc(GFP_KERNEL,
355 ios->sp2d->pages_in_unit);
356 if (unlikely(!per_dev->bio)) {
357 ORE_DBGMSG("Failed to allocate BIO size=%u\n",
358 ios->sp2d->pages_in_unit);
359 return -ENOMEM;
361 per_dev->offset = si->obj_offset;
362 per_dev->dev = si->dev;
363 } else if (si->obj_offset != (per_dev->offset + per_dev->length)) {
364 u64 gap = si->obj_offset - (per_dev->offset + per_dev->length);
366 _ore_add_sg_seg(per_dev, gap, true);
368 q = osd_request_queue(ore_comp_dev(read_ios->oc, per_dev->dev));
369 added_len = bio_add_pc_page(q, per_dev->bio, page, PAGE_SIZE, 0);
370 if (unlikely(added_len != PAGE_SIZE)) {
371 ORE_DBGMSG("Failed to bio_add_pc_page bi_vcnt=%d\n",
372 per_dev->bio->bi_vcnt);
373 return -ENOMEM;
376 per_dev->length += PAGE_SIZE;
377 return 0;
380 static void _mark_read4write_pages_uptodate(struct ore_io_state *ios, int ret)
382 struct bio_vec *bv;
383 unsigned i, d;
385 /* loop on all devices all pages */
386 for (d = 0; d < ios->numdevs; d++) {
387 struct bio *bio = ios->per_dev[d].bio;
389 if (!bio)
390 continue;
392 __bio_for_each_segment(bv, bio, i, 0) {
393 struct page *page = bv->bv_page;
395 SetPageUptodate(page);
396 if (PageError(page))
397 ClearPageError(page);
402 /* read_4_write is hacked to read the start of the first stripe and/or
403 * the end of the last stripe. If needed, with an sg-gap at each device/page.
404 * It is assumed to be called after the to_be_written pages of the first stripe
405 * are populating ios->sp2d[][]
407 * NOTE: We call ios->r4w->lock_fn for all pages needed for parity calculations
408 * These pages are held at sp2d[p].pages[c] but with
409 * sp2d[p].page_is_read[c] = true. At _sp2d_reset these pages are
410 * ios->r4w->lock_fn(). The ios->r4w->lock_fn might signal that the page is
411 * @uptodate=true, so we don't need to read it, only unlock, after IO.
413 * TODO: The read_4_write should calc a need_to_read_pages_count, if bigger then
414 * to-be-written count, we should consider the xor-in-place mode.
415 * need_to_read_pages_count is the actual number of pages not present in cache.
416 * maybe "devs_in_group - ios->sp2d[p].write_count" is a good enough
417 * approximation? In this mode the read pages are put in the empty places of
418 * ios->sp2d[p][*], xor is calculated the same way. These pages are
419 * allocated/freed and don't go through cache
421 static int _read_4_write(struct ore_io_state *ios)
423 struct ore_io_state *ios_read;
424 struct ore_striping_info read_si;
425 struct __stripe_pages_2d *sp2d = ios->sp2d;
426 u64 offset = ios->si.first_stripe_start;
427 u64 last_stripe_end;
428 unsigned bytes_in_stripe = ios->si.bytes_in_stripe;
429 unsigned i, c, p, min_p = sp2d->pages_in_unit, max_p = -1;
430 int ret;
432 if (offset == ios->offset) /* Go to start collect $200 */
433 goto read_last_stripe;
435 min_p = _sp2d_min_pg(sp2d);
436 max_p = _sp2d_max_pg(sp2d);
438 for (c = 0; ; c++) {
439 ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
440 read_si.obj_offset += min_p * PAGE_SIZE;
441 offset += min_p * PAGE_SIZE;
442 for (p = min_p; p <= max_p; p++) {
443 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
444 struct page **pp = &_1ps->pages[c];
445 bool uptodate;
447 if (*pp)
448 /* to-be-written pages start here */
449 goto read_last_stripe;
451 *pp = ios->r4w->get_page(ios->private, offset,
452 &uptodate);
453 if (unlikely(!*pp))
454 return -ENOMEM;
456 if (!uptodate)
457 _add_to_read_4_write(ios, &read_si, *pp);
459 /* Mark read-pages to be cache_released */
460 _1ps->page_is_read[c] = true;
461 read_si.obj_offset += PAGE_SIZE;
462 offset += PAGE_SIZE;
464 offset += (sp2d->pages_in_unit - p) * PAGE_SIZE;
467 read_last_stripe:
468 offset = ios->offset + (ios->length + PAGE_SIZE - 1) /
469 PAGE_SIZE * PAGE_SIZE;
470 last_stripe_end = div_u64(offset + bytes_in_stripe - 1, bytes_in_stripe)
471 * bytes_in_stripe;
472 if (offset == last_stripe_end) /* Optimize for the aligned case */
473 goto read_it;
475 ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
476 p = read_si.unit_off / PAGE_SIZE;
477 c = _dev_order(ios->layout->group_width * ios->layout->mirrors_p1,
478 ios->layout->mirrors_p1, read_si.par_dev, read_si.dev);
480 BUG_ON(ios->si.first_stripe_start + bytes_in_stripe != last_stripe_end);
481 /* unaligned IO must be within a single stripe */
483 if (min_p == sp2d->pages_in_unit) {
484 /* Didn't do it yet */
485 min_p = _sp2d_min_pg(sp2d);
486 max_p = _sp2d_max_pg(sp2d);
489 while (offset < last_stripe_end) {
490 struct __1_page_stripe *_1ps = &sp2d->_1p_stripes[p];
492 if ((min_p <= p) && (p <= max_p)) {
493 struct page *page;
494 bool uptodate;
496 BUG_ON(_1ps->pages[c]);
497 page = ios->r4w->get_page(ios->private, offset,
498 &uptodate);
499 if (unlikely(!page))
500 return -ENOMEM;
502 _1ps->pages[c] = page;
503 /* Mark read-pages to be cache_released */
504 _1ps->page_is_read[c] = true;
505 if (!uptodate)
506 _add_to_read_4_write(ios, &read_si, page);
509 offset += PAGE_SIZE;
510 if (p == (sp2d->pages_in_unit - 1)) {
511 ++c;
512 p = 0;
513 ore_calc_stripe_info(ios->layout, offset, 0, &read_si);
514 } else {
515 read_si.obj_offset += PAGE_SIZE;
516 ++p;
520 read_it:
521 ios_read = ios->ios_read_4_write;
522 if (!ios_read)
523 return 0;
525 /* FIXME: Ugly to signal _sbi_read_mirror that we have bio(s). Change
526 * to check for per_dev->bio
528 ios_read->pages = ios->pages;
530 /* Now read these devices */
531 for (i = 0; i < ios_read->numdevs; i += ios_read->layout->mirrors_p1) {
532 ret = _ore_read_mirror(ios_read, i);
533 if (unlikely(ret))
534 return ret;
537 ret = ore_io_execute(ios_read); /* Synchronus execution */
538 if (unlikely(ret)) {
539 ORE_DBGMSG("!! ore_io_execute => %d\n", ret);
540 return ret;
543 _mark_read4write_pages_uptodate(ios_read, ret);
544 return 0;
547 /* In writes @cur_len means length left. .i.e cur_len==0 is the last parity U */
548 int _ore_add_parity_unit(struct ore_io_state *ios,
549 struct ore_striping_info *si,
550 struct ore_per_dev_state *per_dev,
551 unsigned cur_len)
553 if (ios->reading) {
554 BUG_ON(per_dev->cur_sg >= ios->sgs_per_dev);
555 _ore_add_sg_seg(per_dev, cur_len, true);
556 } else {
557 struct __stripe_pages_2d *sp2d = ios->sp2d;
558 struct page **pages = ios->parity_pages + ios->cur_par_page;
559 unsigned num_pages;
560 unsigned array_start = 0;
561 unsigned i;
562 int ret;
564 si->cur_pg = _sp2d_min_pg(sp2d);
565 num_pages = _sp2d_max_pg(sp2d) + 1 - si->cur_pg;
567 if (!cur_len) /* If last stripe operate on parity comp */
568 si->cur_comp = sp2d->data_devs;
570 if (!per_dev->length) {
571 per_dev->offset += si->cur_pg * PAGE_SIZE;
572 /* If first stripe, Read in all read4write pages
573 * (if needed) before we calculate the first parity.
575 _read_4_write(ios);
578 for (i = 0; i < num_pages; i++) {
579 pages[i] = _raid_page_alloc();
580 if (unlikely(!pages[i]))
581 return -ENOMEM;
583 ++(ios->cur_par_page);
586 BUG_ON(si->cur_comp != sp2d->data_devs);
587 BUG_ON(si->cur_pg + num_pages > sp2d->pages_in_unit);
589 ret = _ore_add_stripe_unit(ios, &array_start, 0, pages,
590 per_dev, num_pages * PAGE_SIZE);
591 if (unlikely(ret))
592 return ret;
594 /* TODO: raid6 if (last_parity_dev) */
595 _gen_xor_unit(sp2d);
596 _sp2d_reset(sp2d, ios->r4w, ios->private);
598 return 0;
601 int _ore_post_alloc_raid_stuff(struct ore_io_state *ios)
603 struct ore_layout *layout = ios->layout;
605 if (ios->parity_pages) {
606 unsigned pages_in_unit = layout->stripe_unit / PAGE_SIZE;
607 unsigned stripe_size = ios->si.bytes_in_stripe;
608 u64 last_stripe, first_stripe;
610 if (_sp2d_alloc(pages_in_unit, layout->group_width,
611 layout->parity, &ios->sp2d)) {
612 return -ENOMEM;
615 BUG_ON(ios->offset % PAGE_SIZE);
617 /* Round io down to last full strip */
618 first_stripe = div_u64(ios->offset, stripe_size);
619 last_stripe = div_u64(ios->offset + ios->length, stripe_size);
621 /* If an IO spans more then a single stripe it must end at
622 * a stripe boundary. The reminder at the end is pushed into the
623 * next IO.
625 if (last_stripe != first_stripe) {
626 ios->length = last_stripe * stripe_size - ios->offset;
628 BUG_ON(!ios->length);
629 ios->nr_pages = (ios->length + PAGE_SIZE - 1) /
630 PAGE_SIZE;
631 ios->si.length = ios->length; /*make it consistent */
634 return 0;
637 void _ore_free_raid_stuff(struct ore_io_state *ios)
639 if (ios->sp2d) { /* writing and raid */
640 unsigned i;
642 for (i = 0; i < ios->cur_par_page; i++) {
643 struct page *page = ios->parity_pages[i];
645 if (page)
646 _raid_page_free(page);
648 if (ios->extra_part_alloc)
649 kfree(ios->parity_pages);
650 /* If IO returned an error pages might need unlocking */
651 _sp2d_reset(ios->sp2d, ios->r4w, ios->private);
652 _sp2d_free(ios->sp2d);
653 } else {
654 /* Will only be set if raid reading && sglist is big */
655 if (ios->extra_part_alloc)
656 kfree(ios->per_dev[0].sglist);
658 if (ios->ios_read_4_write)
659 ore_put_io_state(ios->ios_read_4_write);