2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
52 #include "compression.h"
55 #include <asm/cpufeature.h>
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
64 static const struct extent_io_ops btree_extent_io_ops
;
65 static void end_workqueue_fn(struct btrfs_work
*work
);
66 static void free_fs_root(struct btrfs_root
*root
);
67 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
69 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
71 struct btrfs_root
*root
);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
73 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
74 struct extent_io_tree
*dirty_pages
,
76 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
77 struct extent_io_tree
*pinned_extents
);
78 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
79 static void btrfs_error_commit_super(struct btrfs_root
*root
);
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
86 struct btrfs_end_io_wq
{
90 struct btrfs_fs_info
*info
;
92 enum btrfs_wq_endio_type metadata
;
93 struct list_head list
;
94 struct btrfs_work work
;
97 static struct kmem_cache
*btrfs_end_io_wq_cache
;
99 int __init
btrfs_end_io_wq_init(void)
101 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq
),
106 if (!btrfs_end_io_wq_cache
)
111 void btrfs_end_io_wq_exit(void)
113 kmem_cache_destroy(btrfs_end_io_wq_cache
);
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
121 struct async_submit_bio
{
124 struct list_head list
;
125 extent_submit_bio_hook_t
*submit_bio_start
;
126 extent_submit_bio_hook_t
*submit_bio_done
;
128 unsigned long bio_flags
;
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
134 struct btrfs_work work
;
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
166 static struct btrfs_lockdep_keyset
{
167 u64 id
; /* root objectid */
168 const char *name_stem
; /* lock name stem */
169 char names
[BTRFS_MAX_LEVEL
+ 1][20];
170 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
171 } btrfs_lockdep_keysets
[] = {
172 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
173 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
174 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
175 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
176 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
177 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
178 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
179 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
180 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
181 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
182 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
183 { .id
= BTRFS_FREE_SPACE_TREE_OBJECTID
, .name_stem
= "free-space" },
184 { .id
= 0, .name_stem
= "tree" },
187 void __init
btrfs_init_lockdep(void)
191 /* initialize lockdep class names */
192 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
193 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
195 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
196 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
197 "btrfs-%s-%02d", ks
->name_stem
, j
);
201 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
204 struct btrfs_lockdep_keyset
*ks
;
206 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
210 if (ks
->id
== objectid
)
213 lockdep_set_class_and_name(&eb
->lock
,
214 &ks
->keys
[level
], ks
->names
[level
]);
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
223 static struct extent_map
*btree_get_extent(struct inode
*inode
,
224 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
227 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
228 struct extent_map
*em
;
231 read_lock(&em_tree
->lock
);
232 em
= lookup_extent_mapping(em_tree
, start
, len
);
235 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
236 read_unlock(&em_tree
->lock
);
239 read_unlock(&em_tree
->lock
);
241 em
= alloc_extent_map();
243 em
= ERR_PTR(-ENOMEM
);
248 em
->block_len
= (u64
)-1;
250 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
252 write_lock(&em_tree
->lock
);
253 ret
= add_extent_mapping(em_tree
, em
, 0);
254 if (ret
== -EEXIST
) {
256 em
= lookup_extent_mapping(em_tree
, start
, len
);
263 write_unlock(&em_tree
->lock
);
269 u32
btrfs_csum_data(char *data
, u32 seed
, size_t len
)
271 return btrfs_crc32c(seed
, data
, len
);
274 void btrfs_csum_final(u32 crc
, char *result
)
276 put_unaligned_le32(~crc
, result
);
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
283 static int csum_tree_block(struct btrfs_fs_info
*fs_info
,
284 struct extent_buffer
*buf
,
287 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
290 unsigned long cur_len
;
291 unsigned long offset
= BTRFS_CSUM_SIZE
;
293 unsigned long map_start
;
294 unsigned long map_len
;
297 unsigned long inline_result
;
299 len
= buf
->len
- offset
;
301 err
= map_private_extent_buffer(buf
, offset
, 32,
302 &kaddr
, &map_start
, &map_len
);
305 cur_len
= min(len
, map_len
- (offset
- map_start
));
306 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
311 if (csum_size
> sizeof(inline_result
)) {
312 result
= kzalloc(csum_size
, GFP_NOFS
);
316 result
= (char *)&inline_result
;
319 btrfs_csum_final(crc
, result
);
322 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
325 memcpy(&found
, result
, csum_size
);
327 read_extent_buffer(buf
, &val
, 0, csum_size
);
328 btrfs_warn_rl(fs_info
,
329 "%s checksum verify failed on %llu wanted %X found %X "
331 fs_info
->sb
->s_id
, buf
->start
,
332 val
, found
, btrfs_header_level(buf
));
333 if (result
!= (char *)&inline_result
)
338 write_extent_buffer(buf
, result
, 0, csum_size
);
340 if (result
!= (char *)&inline_result
)
346 * we can't consider a given block up to date unless the transid of the
347 * block matches the transid in the parent node's pointer. This is how we
348 * detect blocks that either didn't get written at all or got written
349 * in the wrong place.
351 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
352 struct extent_buffer
*eb
, u64 parent_transid
,
355 struct extent_state
*cached_state
= NULL
;
357 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
359 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
366 btrfs_tree_read_lock(eb
);
367 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
370 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
372 if (extent_buffer_uptodate(eb
) &&
373 btrfs_header_generation(eb
) == parent_transid
) {
377 btrfs_err_rl(eb
->fs_info
,
378 "parent transid verify failed on %llu wanted %llu found %llu",
380 parent_transid
, btrfs_header_generation(eb
));
384 * Things reading via commit roots that don't have normal protection,
385 * like send, can have a really old block in cache that may point at a
386 * block that has been freed and re-allocated. So don't clear uptodate
387 * if we find an eb that is under IO (dirty/writeback) because we could
388 * end up reading in the stale data and then writing it back out and
389 * making everybody very sad.
391 if (!extent_buffer_under_io(eb
))
392 clear_extent_buffer_uptodate(eb
);
394 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
395 &cached_state
, GFP_NOFS
);
397 btrfs_tree_read_unlock_blocking(eb
);
402 * Return 0 if the superblock checksum type matches the checksum value of that
403 * algorithm. Pass the raw disk superblock data.
405 static int btrfs_check_super_csum(char *raw_disk_sb
)
407 struct btrfs_super_block
*disk_sb
=
408 (struct btrfs_super_block
*)raw_disk_sb
;
409 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
412 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
414 const int csum_size
= sizeof(crc
);
415 char result
[csum_size
];
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
422 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
423 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
424 btrfs_csum_final(crc
, result
);
426 if (memcmp(raw_disk_sb
, result
, csum_size
))
430 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
431 printk(KERN_ERR
"BTRFS: unsupported checksum algorithm %u\n",
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
443 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
444 struct extent_buffer
*eb
,
445 u64 start
, u64 parent_transid
)
447 struct extent_io_tree
*io_tree
;
452 int failed_mirror
= 0;
454 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
455 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
457 ret
= read_extent_buffer_pages(io_tree
, eb
, start
,
459 btree_get_extent
, mirror_num
);
461 if (!verify_parent_transid(io_tree
, eb
,
469 * This buffer's crc is fine, but its contents are corrupted, so
470 * there is no reason to read the other copies, they won't be
473 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
476 num_copies
= btrfs_num_copies(root
->fs_info
,
481 if (!failed_mirror
) {
483 failed_mirror
= eb
->read_mirror
;
487 if (mirror_num
== failed_mirror
)
490 if (mirror_num
> num_copies
)
494 if (failed
&& !ret
&& failed_mirror
)
495 repair_eb_io_failure(root
, eb
, failed_mirror
);
501 * checksum a dirty tree block before IO. This has extra checks to make sure
502 * we only fill in the checksum field in the first page of a multi-page block
505 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
507 u64 start
= page_offset(page
);
509 struct extent_buffer
*eb
;
511 eb
= (struct extent_buffer
*)page
->private;
512 if (page
!= eb
->pages
[0])
515 found_start
= btrfs_header_bytenr(eb
);
517 * Please do not consolidate these warnings into a single if.
518 * It is useful to know what went wrong.
520 if (WARN_ON(found_start
!= start
))
522 if (WARN_ON(!PageUptodate(page
)))
525 ASSERT(memcmp_extent_buffer(eb
, fs_info
->fsid
,
526 btrfs_header_fsid(), BTRFS_FSID_SIZE
) == 0);
528 return csum_tree_block(fs_info
, eb
, 0);
531 static int check_tree_block_fsid(struct btrfs_fs_info
*fs_info
,
532 struct extent_buffer
*eb
)
534 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
535 u8 fsid
[BTRFS_UUID_SIZE
];
538 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
540 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
544 fs_devices
= fs_devices
->seed
;
549 #define CORRUPT(reason, eb, root, slot) \
550 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
551 "root=%llu, slot=%d", reason, \
552 btrfs_header_bytenr(eb), root->objectid, slot)
554 static noinline
int check_leaf(struct btrfs_root
*root
,
555 struct extent_buffer
*leaf
)
557 struct btrfs_key key
;
558 struct btrfs_key leaf_key
;
559 u32 nritems
= btrfs_header_nritems(leaf
);
565 /* Check the 0 item */
566 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
567 BTRFS_LEAF_DATA_SIZE(root
)) {
568 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
573 * Check to make sure each items keys are in the correct order and their
574 * offsets make sense. We only have to loop through nritems-1 because
575 * we check the current slot against the next slot, which verifies the
576 * next slot's offset+size makes sense and that the current's slot
579 for (slot
= 0; slot
< nritems
- 1; slot
++) {
580 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
581 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
583 /* Make sure the keys are in the right order */
584 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
585 CORRUPT("bad key order", leaf
, root
, slot
);
590 * Make sure the offset and ends are right, remember that the
591 * item data starts at the end of the leaf and grows towards the
594 if (btrfs_item_offset_nr(leaf
, slot
) !=
595 btrfs_item_end_nr(leaf
, slot
+ 1)) {
596 CORRUPT("slot offset bad", leaf
, root
, slot
);
601 * Check to make sure that we don't point outside of the leaf,
602 * just in case all the items are consistent to each other, but
603 * all point outside of the leaf.
605 if (btrfs_item_end_nr(leaf
, slot
) >
606 BTRFS_LEAF_DATA_SIZE(root
)) {
607 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
615 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
616 u64 phy_offset
, struct page
*page
,
617 u64 start
, u64 end
, int mirror
)
621 struct extent_buffer
*eb
;
622 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
623 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
630 eb
= (struct extent_buffer
*)page
->private;
632 /* the pending IO might have been the only thing that kept this buffer
633 * in memory. Make sure we have a ref for all this other checks
635 extent_buffer_get(eb
);
637 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
641 eb
->read_mirror
= mirror
;
642 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
647 found_start
= btrfs_header_bytenr(eb
);
648 if (found_start
!= eb
->start
) {
649 btrfs_err_rl(fs_info
, "bad tree block start %llu %llu",
650 found_start
, eb
->start
);
654 if (check_tree_block_fsid(fs_info
, eb
)) {
655 btrfs_err_rl(fs_info
, "bad fsid on block %llu",
660 found_level
= btrfs_header_level(eb
);
661 if (found_level
>= BTRFS_MAX_LEVEL
) {
662 btrfs_err(fs_info
, "bad tree block level %d",
663 (int)btrfs_header_level(eb
));
668 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
671 ret
= csum_tree_block(fs_info
, eb
, 1);
676 * If this is a leaf block and it is corrupt, set the corrupt bit so
677 * that we don't try and read the other copies of this block, just
680 if (found_level
== 0 && check_leaf(root
, eb
)) {
681 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
686 set_extent_buffer_uptodate(eb
);
689 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
690 btree_readahead_hook(fs_info
, eb
, eb
->start
, ret
);
694 * our io error hook is going to dec the io pages
695 * again, we have to make sure it has something
698 atomic_inc(&eb
->io_pages
);
699 clear_extent_buffer_uptodate(eb
);
701 free_extent_buffer(eb
);
706 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
708 struct extent_buffer
*eb
;
710 eb
= (struct extent_buffer
*)page
->private;
711 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
712 eb
->read_mirror
= failed_mirror
;
713 atomic_dec(&eb
->io_pages
);
714 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
715 btree_readahead_hook(eb
->fs_info
, eb
, eb
->start
, -EIO
);
716 return -EIO
; /* we fixed nothing */
719 static void end_workqueue_bio(struct bio
*bio
)
721 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
722 struct btrfs_fs_info
*fs_info
;
723 struct btrfs_workqueue
*wq
;
724 btrfs_work_func_t func
;
726 fs_info
= end_io_wq
->info
;
727 end_io_wq
->error
= bio
->bi_error
;
729 if (bio_op(bio
) == REQ_OP_WRITE
) {
730 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
) {
731 wq
= fs_info
->endio_meta_write_workers
;
732 func
= btrfs_endio_meta_write_helper
;
733 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
) {
734 wq
= fs_info
->endio_freespace_worker
;
735 func
= btrfs_freespace_write_helper
;
736 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
737 wq
= fs_info
->endio_raid56_workers
;
738 func
= btrfs_endio_raid56_helper
;
740 wq
= fs_info
->endio_write_workers
;
741 func
= btrfs_endio_write_helper
;
744 if (unlikely(end_io_wq
->metadata
==
745 BTRFS_WQ_ENDIO_DIO_REPAIR
)) {
746 wq
= fs_info
->endio_repair_workers
;
747 func
= btrfs_endio_repair_helper
;
748 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
749 wq
= fs_info
->endio_raid56_workers
;
750 func
= btrfs_endio_raid56_helper
;
751 } else if (end_io_wq
->metadata
) {
752 wq
= fs_info
->endio_meta_workers
;
753 func
= btrfs_endio_meta_helper
;
755 wq
= fs_info
->endio_workers
;
756 func
= btrfs_endio_helper
;
760 btrfs_init_work(&end_io_wq
->work
, func
, end_workqueue_fn
, NULL
, NULL
);
761 btrfs_queue_work(wq
, &end_io_wq
->work
);
764 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
765 enum btrfs_wq_endio_type metadata
)
767 struct btrfs_end_io_wq
*end_io_wq
;
769 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
773 end_io_wq
->private = bio
->bi_private
;
774 end_io_wq
->end_io
= bio
->bi_end_io
;
775 end_io_wq
->info
= info
;
776 end_io_wq
->error
= 0;
777 end_io_wq
->bio
= bio
;
778 end_io_wq
->metadata
= metadata
;
780 bio
->bi_private
= end_io_wq
;
781 bio
->bi_end_io
= end_workqueue_bio
;
785 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
787 unsigned long limit
= min_t(unsigned long,
788 info
->thread_pool_size
,
789 info
->fs_devices
->open_devices
);
793 static void run_one_async_start(struct btrfs_work
*work
)
795 struct async_submit_bio
*async
;
798 async
= container_of(work
, struct async_submit_bio
, work
);
799 ret
= async
->submit_bio_start(async
->inode
, async
->bio
,
800 async
->mirror_num
, async
->bio_flags
,
806 static void run_one_async_done(struct btrfs_work
*work
)
808 struct btrfs_fs_info
*fs_info
;
809 struct async_submit_bio
*async
;
812 async
= container_of(work
, struct async_submit_bio
, work
);
813 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
815 limit
= btrfs_async_submit_limit(fs_info
);
816 limit
= limit
* 2 / 3;
819 * atomic_dec_return implies a barrier for waitqueue_active
821 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
822 waitqueue_active(&fs_info
->async_submit_wait
))
823 wake_up(&fs_info
->async_submit_wait
);
825 /* If an error occurred we just want to clean up the bio and move on */
827 async
->bio
->bi_error
= async
->error
;
828 bio_endio(async
->bio
);
832 async
->submit_bio_done(async
->inode
, async
->bio
, async
->mirror_num
,
833 async
->bio_flags
, async
->bio_offset
);
836 static void run_one_async_free(struct btrfs_work
*work
)
838 struct async_submit_bio
*async
;
840 async
= container_of(work
, struct async_submit_bio
, work
);
844 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
845 struct bio
*bio
, int mirror_num
,
846 unsigned long bio_flags
,
848 extent_submit_bio_hook_t
*submit_bio_start
,
849 extent_submit_bio_hook_t
*submit_bio_done
)
851 struct async_submit_bio
*async
;
853 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
857 async
->inode
= inode
;
859 async
->mirror_num
= mirror_num
;
860 async
->submit_bio_start
= submit_bio_start
;
861 async
->submit_bio_done
= submit_bio_done
;
863 btrfs_init_work(&async
->work
, btrfs_worker_helper
, run_one_async_start
,
864 run_one_async_done
, run_one_async_free
);
866 async
->bio_flags
= bio_flags
;
867 async
->bio_offset
= bio_offset
;
871 atomic_inc(&fs_info
->nr_async_submits
);
873 if (bio
->bi_opf
& REQ_SYNC
)
874 btrfs_set_work_high_priority(&async
->work
);
876 btrfs_queue_work(fs_info
->workers
, &async
->work
);
878 while (atomic_read(&fs_info
->async_submit_draining
) &&
879 atomic_read(&fs_info
->nr_async_submits
)) {
880 wait_event(fs_info
->async_submit_wait
,
881 (atomic_read(&fs_info
->nr_async_submits
) == 0));
887 static int btree_csum_one_bio(struct bio
*bio
)
889 struct bio_vec
*bvec
;
890 struct btrfs_root
*root
;
893 bio_for_each_segment_all(bvec
, bio
, i
) {
894 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
895 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
903 static int __btree_submit_bio_start(struct inode
*inode
, struct bio
*bio
,
904 int mirror_num
, unsigned long bio_flags
,
908 * when we're called for a write, we're already in the async
909 * submission context. Just jump into btrfs_map_bio
911 return btree_csum_one_bio(bio
);
914 static int __btree_submit_bio_done(struct inode
*inode
, struct bio
*bio
,
915 int mirror_num
, unsigned long bio_flags
,
921 * when we're called for a write, we're already in the async
922 * submission context. Just jump into btrfs_map_bio
924 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, bio
, mirror_num
, 1);
932 static int check_async_write(struct inode
*inode
, unsigned long bio_flags
)
934 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
937 if (static_cpu_has(X86_FEATURE_XMM4_2
))
943 static int btree_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
944 int mirror_num
, unsigned long bio_flags
,
947 int async
= check_async_write(inode
, bio_flags
);
950 if (bio_op(bio
) != REQ_OP_WRITE
) {
952 * called for a read, do the setup so that checksum validation
953 * can happen in the async kernel threads
955 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
956 bio
, BTRFS_WQ_ENDIO_METADATA
);
959 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, bio
, mirror_num
, 0);
961 ret
= btree_csum_one_bio(bio
);
964 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, bio
, mirror_num
, 0);
967 * kthread helpers are used to submit writes so that
968 * checksumming can happen in parallel across all CPUs
970 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
971 inode
, bio
, mirror_num
, 0,
973 __btree_submit_bio_start
,
974 __btree_submit_bio_done
);
987 #ifdef CONFIG_MIGRATION
988 static int btree_migratepage(struct address_space
*mapping
,
989 struct page
*newpage
, struct page
*page
,
990 enum migrate_mode mode
)
993 * we can't safely write a btree page from here,
994 * we haven't done the locking hook
999 * Buffers may be managed in a filesystem specific way.
1000 * We must have no buffers or drop them.
1002 if (page_has_private(page
) &&
1003 !try_to_release_page(page
, GFP_KERNEL
))
1005 return migrate_page(mapping
, newpage
, page
, mode
);
1010 static int btree_writepages(struct address_space
*mapping
,
1011 struct writeback_control
*wbc
)
1013 struct btrfs_fs_info
*fs_info
;
1016 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
1018 if (wbc
->for_kupdate
)
1021 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
1022 /* this is a bit racy, but that's ok */
1023 ret
= percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
1024 BTRFS_DIRTY_METADATA_THRESH
);
1028 return btree_write_cache_pages(mapping
, wbc
);
1031 static int btree_readpage(struct file
*file
, struct page
*page
)
1033 struct extent_io_tree
*tree
;
1034 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1035 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
1038 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
1040 if (PageWriteback(page
) || PageDirty(page
))
1043 return try_release_extent_buffer(page
);
1046 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
1047 unsigned int length
)
1049 struct extent_io_tree
*tree
;
1050 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1051 extent_invalidatepage(tree
, page
, offset
);
1052 btree_releasepage(page
, GFP_NOFS
);
1053 if (PagePrivate(page
)) {
1054 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
1055 "page private not zero on page %llu",
1056 (unsigned long long)page_offset(page
));
1057 ClearPagePrivate(page
);
1058 set_page_private(page
, 0);
1063 static int btree_set_page_dirty(struct page
*page
)
1066 struct extent_buffer
*eb
;
1068 BUG_ON(!PagePrivate(page
));
1069 eb
= (struct extent_buffer
*)page
->private;
1071 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1072 BUG_ON(!atomic_read(&eb
->refs
));
1073 btrfs_assert_tree_locked(eb
);
1075 return __set_page_dirty_nobuffers(page
);
1078 static const struct address_space_operations btree_aops
= {
1079 .readpage
= btree_readpage
,
1080 .writepages
= btree_writepages
,
1081 .releasepage
= btree_releasepage
,
1082 .invalidatepage
= btree_invalidatepage
,
1083 #ifdef CONFIG_MIGRATION
1084 .migratepage
= btree_migratepage
,
1086 .set_page_dirty
= btree_set_page_dirty
,
1089 void readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
)
1091 struct extent_buffer
*buf
= NULL
;
1092 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1094 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1097 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1098 buf
, 0, WAIT_NONE
, btree_get_extent
, 0);
1099 free_extent_buffer(buf
);
1102 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
,
1103 int mirror_num
, struct extent_buffer
**eb
)
1105 struct extent_buffer
*buf
= NULL
;
1106 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1107 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1110 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1114 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1116 ret
= read_extent_buffer_pages(io_tree
, buf
, 0, WAIT_PAGE_LOCK
,
1117 btree_get_extent
, mirror_num
);
1119 free_extent_buffer(buf
);
1123 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1124 free_extent_buffer(buf
);
1126 } else if (extent_buffer_uptodate(buf
)) {
1129 free_extent_buffer(buf
);
1134 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_fs_info
*fs_info
,
1137 return find_extent_buffer(fs_info
, bytenr
);
1140 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1143 if (btrfs_is_testing(root
->fs_info
))
1144 return alloc_test_extent_buffer(root
->fs_info
, bytenr
,
1146 return alloc_extent_buffer(root
->fs_info
, bytenr
);
1150 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1152 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1153 buf
->start
+ buf
->len
- 1);
1156 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1158 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1159 buf
->start
, buf
->start
+ buf
->len
- 1);
1162 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1165 struct extent_buffer
*buf
= NULL
;
1168 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1172 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1174 free_extent_buffer(buf
);
1175 return ERR_PTR(ret
);
1181 void clean_tree_block(struct btrfs_trans_handle
*trans
,
1182 struct btrfs_fs_info
*fs_info
,
1183 struct extent_buffer
*buf
)
1185 if (btrfs_header_generation(buf
) ==
1186 fs_info
->running_transaction
->transid
) {
1187 btrfs_assert_tree_locked(buf
);
1189 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1190 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
1192 fs_info
->dirty_metadata_batch
);
1193 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1194 btrfs_set_lock_blocking(buf
);
1195 clear_extent_buffer_dirty(buf
);
1200 static struct btrfs_subvolume_writers
*btrfs_alloc_subvolume_writers(void)
1202 struct btrfs_subvolume_writers
*writers
;
1205 writers
= kmalloc(sizeof(*writers
), GFP_NOFS
);
1207 return ERR_PTR(-ENOMEM
);
1209 ret
= percpu_counter_init(&writers
->counter
, 0, GFP_KERNEL
);
1212 return ERR_PTR(ret
);
1215 init_waitqueue_head(&writers
->wait
);
1220 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers
*writers
)
1222 percpu_counter_destroy(&writers
->counter
);
1226 static void __setup_root(u32 nodesize
, u32 sectorsize
, u32 stripesize
,
1227 struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1230 bool dummy
= test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO
, &fs_info
->fs_state
);
1232 root
->commit_root
= NULL
;
1233 root
->sectorsize
= sectorsize
;
1234 root
->nodesize
= nodesize
;
1235 root
->stripesize
= stripesize
;
1237 root
->orphan_cleanup_state
= 0;
1239 root
->objectid
= objectid
;
1240 root
->last_trans
= 0;
1241 root
->highest_objectid
= 0;
1242 root
->nr_delalloc_inodes
= 0;
1243 root
->nr_ordered_extents
= 0;
1245 root
->inode_tree
= RB_ROOT
;
1246 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1247 root
->block_rsv
= NULL
;
1248 root
->orphan_block_rsv
= NULL
;
1250 INIT_LIST_HEAD(&root
->dirty_list
);
1251 INIT_LIST_HEAD(&root
->root_list
);
1252 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1253 INIT_LIST_HEAD(&root
->delalloc_root
);
1254 INIT_LIST_HEAD(&root
->ordered_extents
);
1255 INIT_LIST_HEAD(&root
->ordered_root
);
1256 INIT_LIST_HEAD(&root
->logged_list
[0]);
1257 INIT_LIST_HEAD(&root
->logged_list
[1]);
1258 spin_lock_init(&root
->orphan_lock
);
1259 spin_lock_init(&root
->inode_lock
);
1260 spin_lock_init(&root
->delalloc_lock
);
1261 spin_lock_init(&root
->ordered_extent_lock
);
1262 spin_lock_init(&root
->accounting_lock
);
1263 spin_lock_init(&root
->log_extents_lock
[0]);
1264 spin_lock_init(&root
->log_extents_lock
[1]);
1265 mutex_init(&root
->objectid_mutex
);
1266 mutex_init(&root
->log_mutex
);
1267 mutex_init(&root
->ordered_extent_mutex
);
1268 mutex_init(&root
->delalloc_mutex
);
1269 init_waitqueue_head(&root
->log_writer_wait
);
1270 init_waitqueue_head(&root
->log_commit_wait
[0]);
1271 init_waitqueue_head(&root
->log_commit_wait
[1]);
1272 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1273 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1274 atomic_set(&root
->log_commit
[0], 0);
1275 atomic_set(&root
->log_commit
[1], 0);
1276 atomic_set(&root
->log_writers
, 0);
1277 atomic_set(&root
->log_batch
, 0);
1278 atomic_set(&root
->orphan_inodes
, 0);
1279 atomic_set(&root
->refs
, 1);
1280 atomic_set(&root
->will_be_snapshoted
, 0);
1281 atomic_set(&root
->qgroup_meta_rsv
, 0);
1282 root
->log_transid
= 0;
1283 root
->log_transid_committed
= -1;
1284 root
->last_log_commit
= 0;
1286 extent_io_tree_init(&root
->dirty_log_pages
,
1287 fs_info
->btree_inode
->i_mapping
);
1289 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1290 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1291 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1293 root
->defrag_trans_start
= fs_info
->generation
;
1295 root
->defrag_trans_start
= 0;
1296 root
->root_key
.objectid
= objectid
;
1299 spin_lock_init(&root
->root_item_lock
);
1302 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
,
1305 struct btrfs_root
*root
= kzalloc(sizeof(*root
), flags
);
1307 root
->fs_info
= fs_info
;
1311 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1312 /* Should only be used by the testing infrastructure */
1313 struct btrfs_root
*btrfs_alloc_dummy_root(struct btrfs_fs_info
*fs_info
,
1314 u32 sectorsize
, u32 nodesize
)
1316 struct btrfs_root
*root
;
1319 return ERR_PTR(-EINVAL
);
1321 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1323 return ERR_PTR(-ENOMEM
);
1324 /* We don't use the stripesize in selftest, set it as sectorsize */
1325 __setup_root(nodesize
, sectorsize
, sectorsize
, root
, fs_info
,
1326 BTRFS_ROOT_TREE_OBJECTID
);
1327 root
->alloc_bytenr
= 0;
1333 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1334 struct btrfs_fs_info
*fs_info
,
1337 struct extent_buffer
*leaf
;
1338 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1339 struct btrfs_root
*root
;
1340 struct btrfs_key key
;
1344 root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
1346 return ERR_PTR(-ENOMEM
);
1348 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1349 tree_root
->stripesize
, root
, fs_info
, objectid
);
1350 root
->root_key
.objectid
= objectid
;
1351 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1352 root
->root_key
.offset
= 0;
1354 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1356 ret
= PTR_ERR(leaf
);
1361 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1362 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1363 btrfs_set_header_generation(leaf
, trans
->transid
);
1364 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1365 btrfs_set_header_owner(leaf
, objectid
);
1368 write_extent_buffer(leaf
, fs_info
->fsid
, btrfs_header_fsid(),
1370 write_extent_buffer(leaf
, fs_info
->chunk_tree_uuid
,
1371 btrfs_header_chunk_tree_uuid(leaf
),
1373 btrfs_mark_buffer_dirty(leaf
);
1375 root
->commit_root
= btrfs_root_node(root
);
1376 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1378 root
->root_item
.flags
= 0;
1379 root
->root_item
.byte_limit
= 0;
1380 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1381 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1382 btrfs_set_root_level(&root
->root_item
, 0);
1383 btrfs_set_root_refs(&root
->root_item
, 1);
1384 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1385 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1386 btrfs_set_root_dirid(&root
->root_item
, 0);
1388 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1389 root
->root_item
.drop_level
= 0;
1391 key
.objectid
= objectid
;
1392 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1394 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1398 btrfs_tree_unlock(leaf
);
1404 btrfs_tree_unlock(leaf
);
1405 free_extent_buffer(root
->commit_root
);
1406 free_extent_buffer(leaf
);
1410 return ERR_PTR(ret
);
1413 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1414 struct btrfs_fs_info
*fs_info
)
1416 struct btrfs_root
*root
;
1417 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1418 struct extent_buffer
*leaf
;
1420 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1422 return ERR_PTR(-ENOMEM
);
1424 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1425 tree_root
->stripesize
, root
, fs_info
,
1426 BTRFS_TREE_LOG_OBJECTID
);
1428 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1429 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1430 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1433 * DON'T set REF_COWS for log trees
1435 * log trees do not get reference counted because they go away
1436 * before a real commit is actually done. They do store pointers
1437 * to file data extents, and those reference counts still get
1438 * updated (along with back refs to the log tree).
1441 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1445 return ERR_CAST(leaf
);
1448 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1449 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1450 btrfs_set_header_generation(leaf
, trans
->transid
);
1451 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1452 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1455 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1456 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
1457 btrfs_mark_buffer_dirty(root
->node
);
1458 btrfs_tree_unlock(root
->node
);
1462 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1463 struct btrfs_fs_info
*fs_info
)
1465 struct btrfs_root
*log_root
;
1467 log_root
= alloc_log_tree(trans
, fs_info
);
1468 if (IS_ERR(log_root
))
1469 return PTR_ERR(log_root
);
1470 WARN_ON(fs_info
->log_root_tree
);
1471 fs_info
->log_root_tree
= log_root
;
1475 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1476 struct btrfs_root
*root
)
1478 struct btrfs_root
*log_root
;
1479 struct btrfs_inode_item
*inode_item
;
1481 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1482 if (IS_ERR(log_root
))
1483 return PTR_ERR(log_root
);
1485 log_root
->last_trans
= trans
->transid
;
1486 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1488 inode_item
= &log_root
->root_item
.inode
;
1489 btrfs_set_stack_inode_generation(inode_item
, 1);
1490 btrfs_set_stack_inode_size(inode_item
, 3);
1491 btrfs_set_stack_inode_nlink(inode_item
, 1);
1492 btrfs_set_stack_inode_nbytes(inode_item
, root
->nodesize
);
1493 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1495 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1497 WARN_ON(root
->log_root
);
1498 root
->log_root
= log_root
;
1499 root
->log_transid
= 0;
1500 root
->log_transid_committed
= -1;
1501 root
->last_log_commit
= 0;
1505 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1506 struct btrfs_key
*key
)
1508 struct btrfs_root
*root
;
1509 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1510 struct btrfs_path
*path
;
1514 path
= btrfs_alloc_path();
1516 return ERR_PTR(-ENOMEM
);
1518 root
= btrfs_alloc_root(fs_info
, GFP_NOFS
);
1524 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1525 tree_root
->stripesize
, root
, fs_info
, key
->objectid
);
1527 ret
= btrfs_find_root(tree_root
, key
, path
,
1528 &root
->root_item
, &root
->root_key
);
1535 generation
= btrfs_root_generation(&root
->root_item
);
1536 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1538 if (IS_ERR(root
->node
)) {
1539 ret
= PTR_ERR(root
->node
);
1541 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1543 free_extent_buffer(root
->node
);
1546 root
->commit_root
= btrfs_root_node(root
);
1548 btrfs_free_path(path
);
1554 root
= ERR_PTR(ret
);
1558 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1559 struct btrfs_key
*location
)
1561 struct btrfs_root
*root
;
1563 root
= btrfs_read_tree_root(tree_root
, location
);
1567 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1568 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1569 btrfs_check_and_init_root_item(&root
->root_item
);
1575 int btrfs_init_fs_root(struct btrfs_root
*root
)
1578 struct btrfs_subvolume_writers
*writers
;
1580 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1581 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1583 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1588 writers
= btrfs_alloc_subvolume_writers();
1589 if (IS_ERR(writers
)) {
1590 ret
= PTR_ERR(writers
);
1593 root
->subv_writers
= writers
;
1595 btrfs_init_free_ino_ctl(root
);
1596 spin_lock_init(&root
->ino_cache_lock
);
1597 init_waitqueue_head(&root
->ino_cache_wait
);
1599 ret
= get_anon_bdev(&root
->anon_dev
);
1603 mutex_lock(&root
->objectid_mutex
);
1604 ret
= btrfs_find_highest_objectid(root
,
1605 &root
->highest_objectid
);
1607 mutex_unlock(&root
->objectid_mutex
);
1611 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1613 mutex_unlock(&root
->objectid_mutex
);
1617 /* the caller is responsible to call free_fs_root */
1621 static struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1624 struct btrfs_root
*root
;
1626 spin_lock(&fs_info
->fs_roots_radix_lock
);
1627 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1628 (unsigned long)root_id
);
1629 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1633 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1634 struct btrfs_root
*root
)
1638 ret
= radix_tree_preload(GFP_NOFS
);
1642 spin_lock(&fs_info
->fs_roots_radix_lock
);
1643 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1644 (unsigned long)root
->root_key
.objectid
,
1647 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1648 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1649 radix_tree_preload_end();
1654 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1655 struct btrfs_key
*location
,
1658 struct btrfs_root
*root
;
1659 struct btrfs_path
*path
;
1660 struct btrfs_key key
;
1663 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1664 return fs_info
->tree_root
;
1665 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1666 return fs_info
->extent_root
;
1667 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1668 return fs_info
->chunk_root
;
1669 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1670 return fs_info
->dev_root
;
1671 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1672 return fs_info
->csum_root
;
1673 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1674 return fs_info
->quota_root
? fs_info
->quota_root
:
1676 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1677 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1679 if (location
->objectid
== BTRFS_FREE_SPACE_TREE_OBJECTID
)
1680 return fs_info
->free_space_root
? fs_info
->free_space_root
:
1683 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1685 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1686 return ERR_PTR(-ENOENT
);
1690 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1694 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1699 ret
= btrfs_init_fs_root(root
);
1703 path
= btrfs_alloc_path();
1708 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1709 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1710 key
.offset
= location
->objectid
;
1712 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1713 btrfs_free_path(path
);
1717 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1719 ret
= btrfs_insert_fs_root(fs_info
, root
);
1721 if (ret
== -EEXIST
) {
1730 return ERR_PTR(ret
);
1733 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1735 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1737 struct btrfs_device
*device
;
1738 struct backing_dev_info
*bdi
;
1741 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1744 bdi
= blk_get_backing_dev_info(device
->bdev
);
1745 if (bdi_congested(bdi
, bdi_bits
)) {
1754 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1758 err
= bdi_setup_and_register(bdi
, "btrfs");
1762 bdi
->ra_pages
= VM_MAX_READAHEAD
* 1024 / PAGE_SIZE
;
1763 bdi
->congested_fn
= btrfs_congested_fn
;
1764 bdi
->congested_data
= info
;
1765 bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
1770 * called by the kthread helper functions to finally call the bio end_io
1771 * functions. This is where read checksum verification actually happens
1773 static void end_workqueue_fn(struct btrfs_work
*work
)
1776 struct btrfs_end_io_wq
*end_io_wq
;
1778 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1779 bio
= end_io_wq
->bio
;
1781 bio
->bi_error
= end_io_wq
->error
;
1782 bio
->bi_private
= end_io_wq
->private;
1783 bio
->bi_end_io
= end_io_wq
->end_io
;
1784 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1788 static int cleaner_kthread(void *arg
)
1790 struct btrfs_root
*root
= arg
;
1792 struct btrfs_trans_handle
*trans
;
1797 /* Make the cleaner go to sleep early. */
1798 if (btrfs_need_cleaner_sleep(root
))
1802 * Do not do anything if we might cause open_ctree() to block
1803 * before we have finished mounting the filesystem.
1805 if (!root
->fs_info
->open
)
1808 if (!mutex_trylock(&root
->fs_info
->cleaner_mutex
))
1812 * Avoid the problem that we change the status of the fs
1813 * during the above check and trylock.
1815 if (btrfs_need_cleaner_sleep(root
)) {
1816 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1820 mutex_lock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
1821 btrfs_run_delayed_iputs(root
);
1822 mutex_unlock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
1824 again
= btrfs_clean_one_deleted_snapshot(root
);
1825 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1828 * The defragger has dealt with the R/O remount and umount,
1829 * needn't do anything special here.
1831 btrfs_run_defrag_inodes(root
->fs_info
);
1834 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1835 * with relocation (btrfs_relocate_chunk) and relocation
1836 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1837 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1838 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1839 * unused block groups.
1841 btrfs_delete_unused_bgs(root
->fs_info
);
1844 set_current_state(TASK_INTERRUPTIBLE
);
1845 if (!kthread_should_stop())
1847 __set_current_state(TASK_RUNNING
);
1849 } while (!kthread_should_stop());
1852 * Transaction kthread is stopped before us and wakes us up.
1853 * However we might have started a new transaction and COWed some
1854 * tree blocks when deleting unused block groups for example. So
1855 * make sure we commit the transaction we started to have a clean
1856 * shutdown when evicting the btree inode - if it has dirty pages
1857 * when we do the final iput() on it, eviction will trigger a
1858 * writeback for it which will fail with null pointer dereferences
1859 * since work queues and other resources were already released and
1860 * destroyed by the time the iput/eviction/writeback is made.
1862 trans
= btrfs_attach_transaction(root
);
1863 if (IS_ERR(trans
)) {
1864 if (PTR_ERR(trans
) != -ENOENT
)
1865 btrfs_err(root
->fs_info
,
1866 "cleaner transaction attach returned %ld",
1871 ret
= btrfs_commit_transaction(trans
, root
);
1873 btrfs_err(root
->fs_info
,
1874 "cleaner open transaction commit returned %d",
1881 static int transaction_kthread(void *arg
)
1883 struct btrfs_root
*root
= arg
;
1884 struct btrfs_trans_handle
*trans
;
1885 struct btrfs_transaction
*cur
;
1888 unsigned long delay
;
1892 cannot_commit
= false;
1893 delay
= HZ
* root
->fs_info
->commit_interval
;
1894 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1896 spin_lock(&root
->fs_info
->trans_lock
);
1897 cur
= root
->fs_info
->running_transaction
;
1899 spin_unlock(&root
->fs_info
->trans_lock
);
1903 now
= get_seconds();
1904 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1905 (now
< cur
->start_time
||
1906 now
- cur
->start_time
< root
->fs_info
->commit_interval
)) {
1907 spin_unlock(&root
->fs_info
->trans_lock
);
1911 transid
= cur
->transid
;
1912 spin_unlock(&root
->fs_info
->trans_lock
);
1914 /* If the file system is aborted, this will always fail. */
1915 trans
= btrfs_attach_transaction(root
);
1916 if (IS_ERR(trans
)) {
1917 if (PTR_ERR(trans
) != -ENOENT
)
1918 cannot_commit
= true;
1921 if (transid
== trans
->transid
) {
1922 btrfs_commit_transaction(trans
, root
);
1924 btrfs_end_transaction(trans
, root
);
1927 wake_up_process(root
->fs_info
->cleaner_kthread
);
1928 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1930 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1931 &root
->fs_info
->fs_state
)))
1932 btrfs_cleanup_transaction(root
);
1933 set_current_state(TASK_INTERRUPTIBLE
);
1934 if (!kthread_should_stop() &&
1935 (!btrfs_transaction_blocked(root
->fs_info
) ||
1937 schedule_timeout(delay
);
1938 __set_current_state(TASK_RUNNING
);
1939 } while (!kthread_should_stop());
1944 * this will find the highest generation in the array of
1945 * root backups. The index of the highest array is returned,
1946 * or -1 if we can't find anything.
1948 * We check to make sure the array is valid by comparing the
1949 * generation of the latest root in the array with the generation
1950 * in the super block. If they don't match we pitch it.
1952 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1955 int newest_index
= -1;
1956 struct btrfs_root_backup
*root_backup
;
1959 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1960 root_backup
= info
->super_copy
->super_roots
+ i
;
1961 cur
= btrfs_backup_tree_root_gen(root_backup
);
1962 if (cur
== newest_gen
)
1966 /* check to see if we actually wrapped around */
1967 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1968 root_backup
= info
->super_copy
->super_roots
;
1969 cur
= btrfs_backup_tree_root_gen(root_backup
);
1970 if (cur
== newest_gen
)
1973 return newest_index
;
1978 * find the oldest backup so we know where to store new entries
1979 * in the backup array. This will set the backup_root_index
1980 * field in the fs_info struct
1982 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1985 int newest_index
= -1;
1987 newest_index
= find_newest_super_backup(info
, newest_gen
);
1988 /* if there was garbage in there, just move along */
1989 if (newest_index
== -1) {
1990 info
->backup_root_index
= 0;
1992 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1997 * copy all the root pointers into the super backup array.
1998 * this will bump the backup pointer by one when it is
2001 static void backup_super_roots(struct btrfs_fs_info
*info
)
2004 struct btrfs_root_backup
*root_backup
;
2007 next_backup
= info
->backup_root_index
;
2008 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2009 BTRFS_NUM_BACKUP_ROOTS
;
2012 * just overwrite the last backup if we're at the same generation
2013 * this happens only at umount
2015 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
2016 if (btrfs_backup_tree_root_gen(root_backup
) ==
2017 btrfs_header_generation(info
->tree_root
->node
))
2018 next_backup
= last_backup
;
2020 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
2023 * make sure all of our padding and empty slots get zero filled
2024 * regardless of which ones we use today
2026 memset(root_backup
, 0, sizeof(*root_backup
));
2028 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
2030 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
2031 btrfs_set_backup_tree_root_gen(root_backup
,
2032 btrfs_header_generation(info
->tree_root
->node
));
2034 btrfs_set_backup_tree_root_level(root_backup
,
2035 btrfs_header_level(info
->tree_root
->node
));
2037 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
2038 btrfs_set_backup_chunk_root_gen(root_backup
,
2039 btrfs_header_generation(info
->chunk_root
->node
));
2040 btrfs_set_backup_chunk_root_level(root_backup
,
2041 btrfs_header_level(info
->chunk_root
->node
));
2043 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
2044 btrfs_set_backup_extent_root_gen(root_backup
,
2045 btrfs_header_generation(info
->extent_root
->node
));
2046 btrfs_set_backup_extent_root_level(root_backup
,
2047 btrfs_header_level(info
->extent_root
->node
));
2050 * we might commit during log recovery, which happens before we set
2051 * the fs_root. Make sure it is valid before we fill it in.
2053 if (info
->fs_root
&& info
->fs_root
->node
) {
2054 btrfs_set_backup_fs_root(root_backup
,
2055 info
->fs_root
->node
->start
);
2056 btrfs_set_backup_fs_root_gen(root_backup
,
2057 btrfs_header_generation(info
->fs_root
->node
));
2058 btrfs_set_backup_fs_root_level(root_backup
,
2059 btrfs_header_level(info
->fs_root
->node
));
2062 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
2063 btrfs_set_backup_dev_root_gen(root_backup
,
2064 btrfs_header_generation(info
->dev_root
->node
));
2065 btrfs_set_backup_dev_root_level(root_backup
,
2066 btrfs_header_level(info
->dev_root
->node
));
2068 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
2069 btrfs_set_backup_csum_root_gen(root_backup
,
2070 btrfs_header_generation(info
->csum_root
->node
));
2071 btrfs_set_backup_csum_root_level(root_backup
,
2072 btrfs_header_level(info
->csum_root
->node
));
2074 btrfs_set_backup_total_bytes(root_backup
,
2075 btrfs_super_total_bytes(info
->super_copy
));
2076 btrfs_set_backup_bytes_used(root_backup
,
2077 btrfs_super_bytes_used(info
->super_copy
));
2078 btrfs_set_backup_num_devices(root_backup
,
2079 btrfs_super_num_devices(info
->super_copy
));
2082 * if we don't copy this out to the super_copy, it won't get remembered
2083 * for the next commit
2085 memcpy(&info
->super_copy
->super_roots
,
2086 &info
->super_for_commit
->super_roots
,
2087 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
2091 * this copies info out of the root backup array and back into
2092 * the in-memory super block. It is meant to help iterate through
2093 * the array, so you send it the number of backups you've already
2094 * tried and the last backup index you used.
2096 * this returns -1 when it has tried all the backups
2098 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
2099 struct btrfs_super_block
*super
,
2100 int *num_backups_tried
, int *backup_index
)
2102 struct btrfs_root_backup
*root_backup
;
2103 int newest
= *backup_index
;
2105 if (*num_backups_tried
== 0) {
2106 u64 gen
= btrfs_super_generation(super
);
2108 newest
= find_newest_super_backup(info
, gen
);
2112 *backup_index
= newest
;
2113 *num_backups_tried
= 1;
2114 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
2115 /* we've tried all the backups, all done */
2118 /* jump to the next oldest backup */
2119 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2120 BTRFS_NUM_BACKUP_ROOTS
;
2121 *backup_index
= newest
;
2122 *num_backups_tried
+= 1;
2124 root_backup
= super
->super_roots
+ newest
;
2126 btrfs_set_super_generation(super
,
2127 btrfs_backup_tree_root_gen(root_backup
));
2128 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
2129 btrfs_set_super_root_level(super
,
2130 btrfs_backup_tree_root_level(root_backup
));
2131 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
2134 * fixme: the total bytes and num_devices need to match or we should
2137 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
2138 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
2142 /* helper to cleanup workers */
2143 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
2145 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
2146 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
2147 btrfs_destroy_workqueue(fs_info
->workers
);
2148 btrfs_destroy_workqueue(fs_info
->endio_workers
);
2149 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2150 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
2151 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
2152 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
2153 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2154 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
2155 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
2156 btrfs_destroy_workqueue(fs_info
->submit_workers
);
2157 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
2158 btrfs_destroy_workqueue(fs_info
->caching_workers
);
2159 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
2160 btrfs_destroy_workqueue(fs_info
->flush_workers
);
2161 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
2162 btrfs_destroy_workqueue(fs_info
->extent_workers
);
2165 static void free_root_extent_buffers(struct btrfs_root
*root
)
2168 free_extent_buffer(root
->node
);
2169 free_extent_buffer(root
->commit_root
);
2171 root
->commit_root
= NULL
;
2175 /* helper to cleanup tree roots */
2176 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2178 free_root_extent_buffers(info
->tree_root
);
2180 free_root_extent_buffers(info
->dev_root
);
2181 free_root_extent_buffers(info
->extent_root
);
2182 free_root_extent_buffers(info
->csum_root
);
2183 free_root_extent_buffers(info
->quota_root
);
2184 free_root_extent_buffers(info
->uuid_root
);
2186 free_root_extent_buffers(info
->chunk_root
);
2187 free_root_extent_buffers(info
->free_space_root
);
2190 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2193 struct btrfs_root
*gang
[8];
2196 while (!list_empty(&fs_info
->dead_roots
)) {
2197 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2198 struct btrfs_root
, root_list
);
2199 list_del(&gang
[0]->root_list
);
2201 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
)) {
2202 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2204 free_extent_buffer(gang
[0]->node
);
2205 free_extent_buffer(gang
[0]->commit_root
);
2206 btrfs_put_fs_root(gang
[0]);
2211 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2216 for (i
= 0; i
< ret
; i
++)
2217 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2220 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2221 btrfs_free_log_root_tree(NULL
, fs_info
);
2222 btrfs_destroy_pinned_extent(fs_info
->tree_root
,
2223 fs_info
->pinned_extents
);
2227 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2229 mutex_init(&fs_info
->scrub_lock
);
2230 atomic_set(&fs_info
->scrubs_running
, 0);
2231 atomic_set(&fs_info
->scrub_pause_req
, 0);
2232 atomic_set(&fs_info
->scrubs_paused
, 0);
2233 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2234 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2235 fs_info
->scrub_workers_refcnt
= 0;
2238 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2240 spin_lock_init(&fs_info
->balance_lock
);
2241 mutex_init(&fs_info
->balance_mutex
);
2242 atomic_set(&fs_info
->balance_running
, 0);
2243 atomic_set(&fs_info
->balance_pause_req
, 0);
2244 atomic_set(&fs_info
->balance_cancel_req
, 0);
2245 fs_info
->balance_ctl
= NULL
;
2246 init_waitqueue_head(&fs_info
->balance_wait_q
);
2249 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
,
2250 struct btrfs_root
*tree_root
)
2252 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2253 set_nlink(fs_info
->btree_inode
, 1);
2255 * we set the i_size on the btree inode to the max possible int.
2256 * the real end of the address space is determined by all of
2257 * the devices in the system
2259 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2260 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2262 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2263 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2264 fs_info
->btree_inode
->i_mapping
);
2265 BTRFS_I(fs_info
->btree_inode
)->io_tree
.track_uptodate
= 0;
2266 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2268 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2270 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2271 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2272 sizeof(struct btrfs_key
));
2273 set_bit(BTRFS_INODE_DUMMY
,
2274 &BTRFS_I(fs_info
->btree_inode
)->runtime_flags
);
2275 btrfs_insert_inode_hash(fs_info
->btree_inode
);
2278 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2280 fs_info
->dev_replace
.lock_owner
= 0;
2281 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2282 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2283 rwlock_init(&fs_info
->dev_replace
.lock
);
2284 atomic_set(&fs_info
->dev_replace
.read_locks
, 0);
2285 atomic_set(&fs_info
->dev_replace
.blocking_readers
, 0);
2286 init_waitqueue_head(&fs_info
->replace_wait
);
2287 init_waitqueue_head(&fs_info
->dev_replace
.read_lock_wq
);
2290 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2292 spin_lock_init(&fs_info
->qgroup_lock
);
2293 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2294 fs_info
->qgroup_tree
= RB_ROOT
;
2295 fs_info
->qgroup_op_tree
= RB_ROOT
;
2296 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2297 fs_info
->qgroup_seq
= 1;
2298 fs_info
->quota_enabled
= 0;
2299 fs_info
->pending_quota_state
= 0;
2300 fs_info
->qgroup_ulist
= NULL
;
2301 mutex_init(&fs_info
->qgroup_rescan_lock
);
2304 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2305 struct btrfs_fs_devices
*fs_devices
)
2307 int max_active
= fs_info
->thread_pool_size
;
2308 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2311 btrfs_alloc_workqueue(fs_info
, "worker",
2312 flags
| WQ_HIGHPRI
, max_active
, 16);
2314 fs_info
->delalloc_workers
=
2315 btrfs_alloc_workqueue(fs_info
, "delalloc",
2316 flags
, max_active
, 2);
2318 fs_info
->flush_workers
=
2319 btrfs_alloc_workqueue(fs_info
, "flush_delalloc",
2320 flags
, max_active
, 0);
2322 fs_info
->caching_workers
=
2323 btrfs_alloc_workqueue(fs_info
, "cache", flags
, max_active
, 0);
2326 * a higher idle thresh on the submit workers makes it much more
2327 * likely that bios will be send down in a sane order to the
2330 fs_info
->submit_workers
=
2331 btrfs_alloc_workqueue(fs_info
, "submit", flags
,
2332 min_t(u64
, fs_devices
->num_devices
,
2335 fs_info
->fixup_workers
=
2336 btrfs_alloc_workqueue(fs_info
, "fixup", flags
, 1, 0);
2339 * endios are largely parallel and should have a very
2342 fs_info
->endio_workers
=
2343 btrfs_alloc_workqueue(fs_info
, "endio", flags
, max_active
, 4);
2344 fs_info
->endio_meta_workers
=
2345 btrfs_alloc_workqueue(fs_info
, "endio-meta", flags
,
2347 fs_info
->endio_meta_write_workers
=
2348 btrfs_alloc_workqueue(fs_info
, "endio-meta-write", flags
,
2350 fs_info
->endio_raid56_workers
=
2351 btrfs_alloc_workqueue(fs_info
, "endio-raid56", flags
,
2353 fs_info
->endio_repair_workers
=
2354 btrfs_alloc_workqueue(fs_info
, "endio-repair", flags
, 1, 0);
2355 fs_info
->rmw_workers
=
2356 btrfs_alloc_workqueue(fs_info
, "rmw", flags
, max_active
, 2);
2357 fs_info
->endio_write_workers
=
2358 btrfs_alloc_workqueue(fs_info
, "endio-write", flags
,
2360 fs_info
->endio_freespace_worker
=
2361 btrfs_alloc_workqueue(fs_info
, "freespace-write", flags
,
2363 fs_info
->delayed_workers
=
2364 btrfs_alloc_workqueue(fs_info
, "delayed-meta", flags
,
2366 fs_info
->readahead_workers
=
2367 btrfs_alloc_workqueue(fs_info
, "readahead", flags
,
2369 fs_info
->qgroup_rescan_workers
=
2370 btrfs_alloc_workqueue(fs_info
, "qgroup-rescan", flags
, 1, 0);
2371 fs_info
->extent_workers
=
2372 btrfs_alloc_workqueue(fs_info
, "extent-refs", flags
,
2373 min_t(u64
, fs_devices
->num_devices
,
2376 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2377 fs_info
->submit_workers
&& fs_info
->flush_workers
&&
2378 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2379 fs_info
->endio_meta_write_workers
&&
2380 fs_info
->endio_repair_workers
&&
2381 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2382 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2383 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2384 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2385 fs_info
->extent_workers
&&
2386 fs_info
->qgroup_rescan_workers
)) {
2393 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2394 struct btrfs_fs_devices
*fs_devices
)
2397 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2398 struct btrfs_root
*log_tree_root
;
2399 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2400 u64 bytenr
= btrfs_super_log_root(disk_super
);
2402 if (fs_devices
->rw_devices
== 0) {
2403 btrfs_warn(fs_info
, "log replay required on RO media");
2407 log_tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2411 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
2412 tree_root
->stripesize
, log_tree_root
, fs_info
,
2413 BTRFS_TREE_LOG_OBJECTID
);
2415 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2416 fs_info
->generation
+ 1);
2417 if (IS_ERR(log_tree_root
->node
)) {
2418 btrfs_warn(fs_info
, "failed to read log tree");
2419 ret
= PTR_ERR(log_tree_root
->node
);
2420 kfree(log_tree_root
);
2422 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2423 btrfs_err(fs_info
, "failed to read log tree");
2424 free_extent_buffer(log_tree_root
->node
);
2425 kfree(log_tree_root
);
2428 /* returns with log_tree_root freed on success */
2429 ret
= btrfs_recover_log_trees(log_tree_root
);
2431 btrfs_handle_fs_error(tree_root
->fs_info
, ret
,
2432 "Failed to recover log tree");
2433 free_extent_buffer(log_tree_root
->node
);
2434 kfree(log_tree_root
);
2438 if (fs_info
->sb
->s_flags
& MS_RDONLY
) {
2439 ret
= btrfs_commit_super(tree_root
);
2447 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
,
2448 struct btrfs_root
*tree_root
)
2450 struct btrfs_root
*root
;
2451 struct btrfs_key location
;
2454 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2455 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2456 location
.offset
= 0;
2458 root
= btrfs_read_tree_root(tree_root
, &location
);
2460 return PTR_ERR(root
);
2461 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2462 fs_info
->extent_root
= root
;
2464 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2465 root
= btrfs_read_tree_root(tree_root
, &location
);
2467 return PTR_ERR(root
);
2468 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2469 fs_info
->dev_root
= root
;
2470 btrfs_init_devices_late(fs_info
);
2472 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2473 root
= btrfs_read_tree_root(tree_root
, &location
);
2475 return PTR_ERR(root
);
2476 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2477 fs_info
->csum_root
= root
;
2479 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2480 root
= btrfs_read_tree_root(tree_root
, &location
);
2481 if (!IS_ERR(root
)) {
2482 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2483 fs_info
->quota_enabled
= 1;
2484 fs_info
->pending_quota_state
= 1;
2485 fs_info
->quota_root
= root
;
2488 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2489 root
= btrfs_read_tree_root(tree_root
, &location
);
2491 ret
= PTR_ERR(root
);
2495 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2496 fs_info
->uuid_root
= root
;
2499 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
2500 location
.objectid
= BTRFS_FREE_SPACE_TREE_OBJECTID
;
2501 root
= btrfs_read_tree_root(tree_root
, &location
);
2503 return PTR_ERR(root
);
2504 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2505 fs_info
->free_space_root
= root
;
2511 int open_ctree(struct super_block
*sb
,
2512 struct btrfs_fs_devices
*fs_devices
,
2520 struct btrfs_key location
;
2521 struct buffer_head
*bh
;
2522 struct btrfs_super_block
*disk_super
;
2523 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2524 struct btrfs_root
*tree_root
;
2525 struct btrfs_root
*chunk_root
;
2528 int num_backups_tried
= 0;
2529 int backup_index
= 0;
2532 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2533 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
, GFP_KERNEL
);
2534 if (!tree_root
|| !chunk_root
) {
2539 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2545 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
2551 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2556 fs_info
->dirty_metadata_batch
= PAGE_SIZE
*
2557 (1 + ilog2(nr_cpu_ids
));
2559 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2562 goto fail_dirty_metadata_bytes
;
2565 ret
= percpu_counter_init(&fs_info
->bio_counter
, 0, GFP_KERNEL
);
2568 goto fail_delalloc_bytes
;
2571 fs_info
->btree_inode
= new_inode(sb
);
2572 if (!fs_info
->btree_inode
) {
2574 goto fail_bio_counter
;
2577 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2579 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2580 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2581 INIT_LIST_HEAD(&fs_info
->trans_list
);
2582 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2583 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2584 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2585 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2586 spin_lock_init(&fs_info
->delalloc_root_lock
);
2587 spin_lock_init(&fs_info
->trans_lock
);
2588 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2589 spin_lock_init(&fs_info
->delayed_iput_lock
);
2590 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2591 spin_lock_init(&fs_info
->free_chunk_lock
);
2592 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2593 spin_lock_init(&fs_info
->super_lock
);
2594 spin_lock_init(&fs_info
->qgroup_op_lock
);
2595 spin_lock_init(&fs_info
->buffer_lock
);
2596 spin_lock_init(&fs_info
->unused_bgs_lock
);
2597 rwlock_init(&fs_info
->tree_mod_log_lock
);
2598 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2599 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2600 mutex_init(&fs_info
->reloc_mutex
);
2601 mutex_init(&fs_info
->delalloc_root_mutex
);
2602 mutex_init(&fs_info
->cleaner_delayed_iput_mutex
);
2603 seqlock_init(&fs_info
->profiles_lock
);
2605 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2606 INIT_LIST_HEAD(&fs_info
->space_info
);
2607 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2608 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2609 btrfs_mapping_init(&fs_info
->mapping_tree
);
2610 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2611 BTRFS_BLOCK_RSV_GLOBAL
);
2612 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2613 BTRFS_BLOCK_RSV_DELALLOC
);
2614 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2615 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2616 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2617 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2618 BTRFS_BLOCK_RSV_DELOPS
);
2619 atomic_set(&fs_info
->nr_async_submits
, 0);
2620 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2621 atomic_set(&fs_info
->async_submit_draining
, 0);
2622 atomic_set(&fs_info
->nr_async_bios
, 0);
2623 atomic_set(&fs_info
->defrag_running
, 0);
2624 atomic_set(&fs_info
->qgroup_op_seq
, 0);
2625 atomic_set(&fs_info
->reada_works_cnt
, 0);
2626 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2628 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2629 fs_info
->metadata_ratio
= 0;
2630 fs_info
->defrag_inodes
= RB_ROOT
;
2631 fs_info
->free_chunk_space
= 0;
2632 fs_info
->tree_mod_log
= RB_ROOT
;
2633 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2634 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2635 /* readahead state */
2636 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2637 spin_lock_init(&fs_info
->reada_lock
);
2639 fs_info
->thread_pool_size
= min_t(unsigned long,
2640 num_online_cpus() + 2, 8);
2642 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2643 spin_lock_init(&fs_info
->ordered_root_lock
);
2644 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2646 if (!fs_info
->delayed_root
) {
2650 btrfs_init_delayed_root(fs_info
->delayed_root
);
2652 btrfs_init_scrub(fs_info
);
2653 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2654 fs_info
->check_integrity_print_mask
= 0;
2656 btrfs_init_balance(fs_info
);
2657 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2659 sb
->s_blocksize
= 4096;
2660 sb
->s_blocksize_bits
= blksize_bits(4096);
2661 sb
->s_bdi
= &fs_info
->bdi
;
2663 btrfs_init_btree_inode(fs_info
, tree_root
);
2665 spin_lock_init(&fs_info
->block_group_cache_lock
);
2666 fs_info
->block_group_cache_tree
= RB_ROOT
;
2667 fs_info
->first_logical_byte
= (u64
)-1;
2669 extent_io_tree_init(&fs_info
->freed_extents
[0],
2670 fs_info
->btree_inode
->i_mapping
);
2671 extent_io_tree_init(&fs_info
->freed_extents
[1],
2672 fs_info
->btree_inode
->i_mapping
);
2673 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2674 fs_info
->do_barriers
= 1;
2677 mutex_init(&fs_info
->ordered_operations_mutex
);
2678 mutex_init(&fs_info
->tree_log_mutex
);
2679 mutex_init(&fs_info
->chunk_mutex
);
2680 mutex_init(&fs_info
->transaction_kthread_mutex
);
2681 mutex_init(&fs_info
->cleaner_mutex
);
2682 mutex_init(&fs_info
->volume_mutex
);
2683 mutex_init(&fs_info
->ro_block_group_mutex
);
2684 init_rwsem(&fs_info
->commit_root_sem
);
2685 init_rwsem(&fs_info
->cleanup_work_sem
);
2686 init_rwsem(&fs_info
->subvol_sem
);
2687 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2689 btrfs_init_dev_replace_locks(fs_info
);
2690 btrfs_init_qgroup(fs_info
);
2692 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2693 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2695 init_waitqueue_head(&fs_info
->transaction_throttle
);
2696 init_waitqueue_head(&fs_info
->transaction_wait
);
2697 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2698 init_waitqueue_head(&fs_info
->async_submit_wait
);
2700 INIT_LIST_HEAD(&fs_info
->pinned_chunks
);
2702 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2708 __setup_root(4096, 4096, 4096, tree_root
,
2709 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2711 invalidate_bdev(fs_devices
->latest_bdev
);
2714 * Read super block and check the signature bytes only
2716 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2723 * We want to check superblock checksum, the type is stored inside.
2724 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2726 if (btrfs_check_super_csum(bh
->b_data
)) {
2727 btrfs_err(fs_info
, "superblock checksum mismatch");
2734 * super_copy is zeroed at allocation time and we never touch the
2735 * following bytes up to INFO_SIZE, the checksum is calculated from
2736 * the whole block of INFO_SIZE
2738 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2739 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2740 sizeof(*fs_info
->super_for_commit
));
2743 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2745 ret
= btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2747 btrfs_err(fs_info
, "superblock contains fatal errors");
2752 disk_super
= fs_info
->super_copy
;
2753 if (!btrfs_super_root(disk_super
))
2756 /* check FS state, whether FS is broken. */
2757 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2758 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2761 * run through our array of backup supers and setup
2762 * our ring pointer to the oldest one
2764 generation
= btrfs_super_generation(disk_super
);
2765 find_oldest_super_backup(fs_info
, generation
);
2768 * In the long term, we'll store the compression type in the super
2769 * block, and it'll be used for per file compression control.
2771 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2773 ret
= btrfs_parse_options(tree_root
, options
, sb
->s_flags
);
2779 features
= btrfs_super_incompat_flags(disk_super
) &
2780 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2783 "cannot mount because of unsupported optional features (%llx)",
2789 features
= btrfs_super_incompat_flags(disk_super
);
2790 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2791 if (tree_root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2792 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2794 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2795 btrfs_info(fs_info
, "has skinny extents");
2798 * flag our filesystem as having big metadata blocks if
2799 * they are bigger than the page size
2801 if (btrfs_super_nodesize(disk_super
) > PAGE_SIZE
) {
2802 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2804 "flagging fs with big metadata feature");
2805 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2808 nodesize
= btrfs_super_nodesize(disk_super
);
2809 sectorsize
= btrfs_super_sectorsize(disk_super
);
2810 stripesize
= sectorsize
;
2811 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
2812 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2815 * mixed block groups end up with duplicate but slightly offset
2816 * extent buffers for the same range. It leads to corruptions
2818 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2819 (sectorsize
!= nodesize
)) {
2821 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2822 nodesize
, sectorsize
);
2827 * Needn't use the lock because there is no other task which will
2830 btrfs_set_super_incompat_flags(disk_super
, features
);
2832 features
= btrfs_super_compat_ro_flags(disk_super
) &
2833 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2834 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2836 "cannot mount read-write because of unsupported optional features (%llx)",
2842 max_active
= fs_info
->thread_pool_size
;
2844 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
2847 goto fail_sb_buffer
;
2850 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2851 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2854 tree_root
->nodesize
= nodesize
;
2855 tree_root
->sectorsize
= sectorsize
;
2856 tree_root
->stripesize
= stripesize
;
2858 sb
->s_blocksize
= sectorsize
;
2859 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2861 mutex_lock(&fs_info
->chunk_mutex
);
2862 ret
= btrfs_read_sys_array(tree_root
);
2863 mutex_unlock(&fs_info
->chunk_mutex
);
2865 btrfs_err(fs_info
, "failed to read the system array: %d", ret
);
2866 goto fail_sb_buffer
;
2869 generation
= btrfs_super_chunk_root_generation(disk_super
);
2871 __setup_root(nodesize
, sectorsize
, stripesize
, chunk_root
,
2872 fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2874 chunk_root
->node
= read_tree_block(chunk_root
,
2875 btrfs_super_chunk_root(disk_super
),
2877 if (IS_ERR(chunk_root
->node
) ||
2878 !extent_buffer_uptodate(chunk_root
->node
)) {
2879 btrfs_err(fs_info
, "failed to read chunk root");
2880 if (!IS_ERR(chunk_root
->node
))
2881 free_extent_buffer(chunk_root
->node
);
2882 chunk_root
->node
= NULL
;
2883 goto fail_tree_roots
;
2885 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2886 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2888 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2889 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2891 ret
= btrfs_read_chunk_tree(chunk_root
);
2893 btrfs_err(fs_info
, "failed to read chunk tree: %d", ret
);
2894 goto fail_tree_roots
;
2898 * keep the device that is marked to be the target device for the
2899 * dev_replace procedure
2901 btrfs_close_extra_devices(fs_devices
, 0);
2903 if (!fs_devices
->latest_bdev
) {
2904 btrfs_err(fs_info
, "failed to read devices");
2905 goto fail_tree_roots
;
2909 generation
= btrfs_super_generation(disk_super
);
2911 tree_root
->node
= read_tree_block(tree_root
,
2912 btrfs_super_root(disk_super
),
2914 if (IS_ERR(tree_root
->node
) ||
2915 !extent_buffer_uptodate(tree_root
->node
)) {
2916 btrfs_warn(fs_info
, "failed to read tree root");
2917 if (!IS_ERR(tree_root
->node
))
2918 free_extent_buffer(tree_root
->node
);
2919 tree_root
->node
= NULL
;
2920 goto recovery_tree_root
;
2923 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2924 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2925 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2927 mutex_lock(&tree_root
->objectid_mutex
);
2928 ret
= btrfs_find_highest_objectid(tree_root
,
2929 &tree_root
->highest_objectid
);
2931 mutex_unlock(&tree_root
->objectid_mutex
);
2932 goto recovery_tree_root
;
2935 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2937 mutex_unlock(&tree_root
->objectid_mutex
);
2939 ret
= btrfs_read_roots(fs_info
, tree_root
);
2941 goto recovery_tree_root
;
2943 fs_info
->generation
= generation
;
2944 fs_info
->last_trans_committed
= generation
;
2946 ret
= btrfs_recover_balance(fs_info
);
2948 btrfs_err(fs_info
, "failed to recover balance: %d", ret
);
2949 goto fail_block_groups
;
2952 ret
= btrfs_init_dev_stats(fs_info
);
2954 btrfs_err(fs_info
, "failed to init dev_stats: %d", ret
);
2955 goto fail_block_groups
;
2958 ret
= btrfs_init_dev_replace(fs_info
);
2960 btrfs_err(fs_info
, "failed to init dev_replace: %d", ret
);
2961 goto fail_block_groups
;
2964 btrfs_close_extra_devices(fs_devices
, 1);
2966 ret
= btrfs_sysfs_add_fsid(fs_devices
, NULL
);
2968 btrfs_err(fs_info
, "failed to init sysfs fsid interface: %d",
2970 goto fail_block_groups
;
2973 ret
= btrfs_sysfs_add_device(fs_devices
);
2975 btrfs_err(fs_info
, "failed to init sysfs device interface: %d",
2977 goto fail_fsdev_sysfs
;
2980 ret
= btrfs_sysfs_add_mounted(fs_info
);
2982 btrfs_err(fs_info
, "failed to init sysfs interface: %d", ret
);
2983 goto fail_fsdev_sysfs
;
2986 ret
= btrfs_init_space_info(fs_info
);
2988 btrfs_err(fs_info
, "failed to initialize space info: %d", ret
);
2992 ret
= btrfs_read_block_groups(fs_info
->extent_root
);
2994 btrfs_err(fs_info
, "failed to read block groups: %d", ret
);
2997 fs_info
->num_tolerated_disk_barrier_failures
=
2998 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2999 if (fs_info
->fs_devices
->missing_devices
>
3000 fs_info
->num_tolerated_disk_barrier_failures
&&
3001 !(sb
->s_flags
& MS_RDONLY
)) {
3003 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3004 fs_info
->fs_devices
->missing_devices
,
3005 fs_info
->num_tolerated_disk_barrier_failures
);
3009 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
3011 if (IS_ERR(fs_info
->cleaner_kthread
))
3014 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
3016 "btrfs-transaction");
3017 if (IS_ERR(fs_info
->transaction_kthread
))
3020 if (!btrfs_test_opt(tree_root
->fs_info
, SSD
) &&
3021 !btrfs_test_opt(tree_root
->fs_info
, NOSSD
) &&
3022 !fs_info
->fs_devices
->rotating
) {
3023 btrfs_info(fs_info
, "detected SSD devices, enabling SSD mode");
3024 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
3028 * Mount does not set all options immediately, we can do it now and do
3029 * not have to wait for transaction commit
3031 btrfs_apply_pending_changes(fs_info
);
3033 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3034 if (btrfs_test_opt(tree_root
->fs_info
, CHECK_INTEGRITY
)) {
3035 ret
= btrfsic_mount(tree_root
, fs_devices
,
3036 btrfs_test_opt(tree_root
->fs_info
,
3037 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
3039 fs_info
->check_integrity_print_mask
);
3042 "failed to initialize integrity check module: %d",
3046 ret
= btrfs_read_qgroup_config(fs_info
);
3048 goto fail_trans_kthread
;
3050 /* do not make disk changes in broken FS or nologreplay is given */
3051 if (btrfs_super_log_root(disk_super
) != 0 &&
3052 !btrfs_test_opt(tree_root
->fs_info
, NOLOGREPLAY
)) {
3053 ret
= btrfs_replay_log(fs_info
, fs_devices
);
3060 ret
= btrfs_find_orphan_roots(tree_root
);
3064 if (!(sb
->s_flags
& MS_RDONLY
)) {
3065 ret
= btrfs_cleanup_fs_roots(fs_info
);
3069 mutex_lock(&fs_info
->cleaner_mutex
);
3070 ret
= btrfs_recover_relocation(tree_root
);
3071 mutex_unlock(&fs_info
->cleaner_mutex
);
3073 btrfs_warn(fs_info
, "failed to recover relocation: %d",
3080 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
3081 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3082 location
.offset
= 0;
3084 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
3085 if (IS_ERR(fs_info
->fs_root
)) {
3086 err
= PTR_ERR(fs_info
->fs_root
);
3090 if (sb
->s_flags
& MS_RDONLY
)
3093 if (btrfs_test_opt(tree_root
->fs_info
, FREE_SPACE_TREE
) &&
3094 !btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3095 btrfs_info(fs_info
, "creating free space tree");
3096 ret
= btrfs_create_free_space_tree(fs_info
);
3099 "failed to create free space tree: %d", ret
);
3100 close_ctree(tree_root
);
3105 down_read(&fs_info
->cleanup_work_sem
);
3106 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3107 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3108 up_read(&fs_info
->cleanup_work_sem
);
3109 close_ctree(tree_root
);
3112 up_read(&fs_info
->cleanup_work_sem
);
3114 ret
= btrfs_resume_balance_async(fs_info
);
3116 btrfs_warn(fs_info
, "failed to resume balance: %d", ret
);
3117 close_ctree(tree_root
);
3121 ret
= btrfs_resume_dev_replace_async(fs_info
);
3123 btrfs_warn(fs_info
, "failed to resume device replace: %d", ret
);
3124 close_ctree(tree_root
);
3128 btrfs_qgroup_rescan_resume(fs_info
);
3130 if (btrfs_test_opt(tree_root
->fs_info
, CLEAR_CACHE
) &&
3131 btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
)) {
3132 btrfs_info(fs_info
, "clearing free space tree");
3133 ret
= btrfs_clear_free_space_tree(fs_info
);
3136 "failed to clear free space tree: %d", ret
);
3137 close_ctree(tree_root
);
3142 if (!fs_info
->uuid_root
) {
3143 btrfs_info(fs_info
, "creating UUID tree");
3144 ret
= btrfs_create_uuid_tree(fs_info
);
3147 "failed to create the UUID tree: %d", ret
);
3148 close_ctree(tree_root
);
3151 } else if (btrfs_test_opt(tree_root
->fs_info
, RESCAN_UUID_TREE
) ||
3152 fs_info
->generation
!=
3153 btrfs_super_uuid_tree_generation(disk_super
)) {
3154 btrfs_info(fs_info
, "checking UUID tree");
3155 ret
= btrfs_check_uuid_tree(fs_info
);
3158 "failed to check the UUID tree: %d", ret
);
3159 close_ctree(tree_root
);
3163 fs_info
->update_uuid_tree_gen
= 1;
3169 * backuproot only affect mount behavior, and if open_ctree succeeded,
3170 * no need to keep the flag
3172 btrfs_clear_opt(fs_info
->mount_opt
, USEBACKUPROOT
);
3177 btrfs_free_qgroup_config(fs_info
);
3179 kthread_stop(fs_info
->transaction_kthread
);
3180 btrfs_cleanup_transaction(fs_info
->tree_root
);
3181 btrfs_free_fs_roots(fs_info
);
3183 kthread_stop(fs_info
->cleaner_kthread
);
3186 * make sure we're done with the btree inode before we stop our
3189 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3192 btrfs_sysfs_remove_mounted(fs_info
);
3195 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3198 btrfs_put_block_group_cache(fs_info
);
3199 btrfs_free_block_groups(fs_info
);
3202 free_root_pointers(fs_info
, 1);
3203 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3206 btrfs_stop_all_workers(fs_info
);
3209 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3211 iput(fs_info
->btree_inode
);
3213 percpu_counter_destroy(&fs_info
->bio_counter
);
3214 fail_delalloc_bytes
:
3215 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3216 fail_dirty_metadata_bytes
:
3217 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3219 bdi_destroy(&fs_info
->bdi
);
3221 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3223 btrfs_free_stripe_hash_table(fs_info
);
3224 btrfs_close_devices(fs_info
->fs_devices
);
3228 if (!btrfs_test_opt(tree_root
->fs_info
, USEBACKUPROOT
))
3229 goto fail_tree_roots
;
3231 free_root_pointers(fs_info
, 0);
3233 /* don't use the log in recovery mode, it won't be valid */
3234 btrfs_set_super_log_root(disk_super
, 0);
3236 /* we can't trust the free space cache either */
3237 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
3239 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
3240 &num_backups_tried
, &backup_index
);
3242 goto fail_block_groups
;
3243 goto retry_root_backup
;
3246 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3249 set_buffer_uptodate(bh
);
3251 struct btrfs_device
*device
= (struct btrfs_device
*)
3254 btrfs_warn_rl_in_rcu(device
->dev_root
->fs_info
,
3255 "lost page write due to IO error on %s",
3256 rcu_str_deref(device
->name
));
3257 /* note, we don't set_buffer_write_io_error because we have
3258 * our own ways of dealing with the IO errors
3260 clear_buffer_uptodate(bh
);
3261 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3267 int btrfs_read_dev_one_super(struct block_device
*bdev
, int copy_num
,
3268 struct buffer_head
**bh_ret
)
3270 struct buffer_head
*bh
;
3271 struct btrfs_super_block
*super
;
3274 bytenr
= btrfs_sb_offset(copy_num
);
3275 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3278 bh
= __bread(bdev
, bytenr
/ 4096, BTRFS_SUPER_INFO_SIZE
);
3280 * If we fail to read from the underlying devices, as of now
3281 * the best option we have is to mark it EIO.
3286 super
= (struct btrfs_super_block
*)bh
->b_data
;
3287 if (btrfs_super_bytenr(super
) != bytenr
||
3288 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3298 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3300 struct buffer_head
*bh
;
3301 struct buffer_head
*latest
= NULL
;
3302 struct btrfs_super_block
*super
;
3307 /* we would like to check all the supers, but that would make
3308 * a btrfs mount succeed after a mkfs from a different FS.
3309 * So, we need to add a special mount option to scan for
3310 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3312 for (i
= 0; i
< 1; i
++) {
3313 ret
= btrfs_read_dev_one_super(bdev
, i
, &bh
);
3317 super
= (struct btrfs_super_block
*)bh
->b_data
;
3319 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3322 transid
= btrfs_super_generation(super
);
3329 return ERR_PTR(ret
);
3335 * this should be called twice, once with wait == 0 and
3336 * once with wait == 1. When wait == 0 is done, all the buffer heads
3337 * we write are pinned.
3339 * They are released when wait == 1 is done.
3340 * max_mirrors must be the same for both runs, and it indicates how
3341 * many supers on this one device should be written.
3343 * max_mirrors == 0 means to write them all.
3345 static int write_dev_supers(struct btrfs_device
*device
,
3346 struct btrfs_super_block
*sb
,
3347 int do_barriers
, int wait
, int max_mirrors
)
3349 struct buffer_head
*bh
;
3356 if (max_mirrors
== 0)
3357 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3359 for (i
= 0; i
< max_mirrors
; i
++) {
3360 bytenr
= btrfs_sb_offset(i
);
3361 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3362 device
->commit_total_bytes
)
3366 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
3367 BTRFS_SUPER_INFO_SIZE
);
3373 if (!buffer_uptodate(bh
))
3376 /* drop our reference */
3379 /* drop the reference from the wait == 0 run */
3383 btrfs_set_super_bytenr(sb
, bytenr
);
3386 crc
= btrfs_csum_data((char *)sb
+
3387 BTRFS_CSUM_SIZE
, crc
,
3388 BTRFS_SUPER_INFO_SIZE
-
3390 btrfs_csum_final(crc
, sb
->csum
);
3393 * one reference for us, and we leave it for the
3396 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
3397 BTRFS_SUPER_INFO_SIZE
);
3399 btrfs_err(device
->dev_root
->fs_info
,
3400 "couldn't get super buffer head for bytenr %llu",
3406 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3408 /* one reference for submit_bh */
3411 set_buffer_uptodate(bh
);
3413 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3414 bh
->b_private
= device
;
3418 * we fua the first super. The others we allow
3422 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, WRITE_FUA
, bh
);
3424 ret
= btrfsic_submit_bh(REQ_OP_WRITE
, WRITE_SYNC
, bh
);
3428 return errors
< i
? 0 : -1;
3432 * endio for the write_dev_flush, this will wake anyone waiting
3433 * for the barrier when it is done
3435 static void btrfs_end_empty_barrier(struct bio
*bio
)
3437 if (bio
->bi_private
)
3438 complete(bio
->bi_private
);
3443 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3444 * sent down. With wait == 1, it waits for the previous flush.
3446 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3449 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
3454 if (device
->nobarriers
)
3458 bio
= device
->flush_bio
;
3462 wait_for_completion(&device
->flush_wait
);
3464 if (bio
->bi_error
) {
3465 ret
= bio
->bi_error
;
3466 btrfs_dev_stat_inc_and_print(device
,
3467 BTRFS_DEV_STAT_FLUSH_ERRS
);
3470 /* drop the reference from the wait == 0 run */
3472 device
->flush_bio
= NULL
;
3478 * one reference for us, and we leave it for the
3481 device
->flush_bio
= NULL
;
3482 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
3486 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3487 bio
->bi_bdev
= device
->bdev
;
3488 bio_set_op_attrs(bio
, REQ_OP_WRITE
, WRITE_FLUSH
);
3489 init_completion(&device
->flush_wait
);
3490 bio
->bi_private
= &device
->flush_wait
;
3491 device
->flush_bio
= bio
;
3494 btrfsic_submit_bio(bio
);
3500 * send an empty flush down to each device in parallel,
3501 * then wait for them
3503 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3505 struct list_head
*head
;
3506 struct btrfs_device
*dev
;
3507 int errors_send
= 0;
3508 int errors_wait
= 0;
3511 /* send down all the barriers */
3512 head
= &info
->fs_devices
->devices
;
3513 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3520 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3523 ret
= write_dev_flush(dev
, 0);
3528 /* wait for all the barriers */
3529 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3536 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3539 ret
= write_dev_flush(dev
, 1);
3543 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3544 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3549 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3552 int min_tolerated
= INT_MAX
;
3554 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3555 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3556 min_tolerated
= min(min_tolerated
,
3557 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3558 tolerated_failures
);
3560 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3561 if (raid_type
== BTRFS_RAID_SINGLE
)
3563 if (!(flags
& btrfs_raid_group
[raid_type
]))
3565 min_tolerated
= min(min_tolerated
,
3566 btrfs_raid_array
[raid_type
].
3567 tolerated_failures
);
3570 if (min_tolerated
== INT_MAX
) {
3571 pr_warn("BTRFS: unknown raid flag: %llu\n", flags
);
3575 return min_tolerated
;
3578 int btrfs_calc_num_tolerated_disk_barrier_failures(
3579 struct btrfs_fs_info
*fs_info
)
3581 struct btrfs_ioctl_space_info space
;
3582 struct btrfs_space_info
*sinfo
;
3583 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3584 BTRFS_BLOCK_GROUP_SYSTEM
,
3585 BTRFS_BLOCK_GROUP_METADATA
,
3586 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3589 int num_tolerated_disk_barrier_failures
=
3590 (int)fs_info
->fs_devices
->num_devices
;
3592 for (i
= 0; i
< ARRAY_SIZE(types
); i
++) {
3593 struct btrfs_space_info
*tmp
;
3597 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3598 if (tmp
->flags
== types
[i
]) {
3608 down_read(&sinfo
->groups_sem
);
3609 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3612 if (list_empty(&sinfo
->block_groups
[c
]))
3615 btrfs_get_block_group_info(&sinfo
->block_groups
[c
],
3617 if (space
.total_bytes
== 0 || space
.used_bytes
== 0)
3619 flags
= space
.flags
;
3621 num_tolerated_disk_barrier_failures
= min(
3622 num_tolerated_disk_barrier_failures
,
3623 btrfs_get_num_tolerated_disk_barrier_failures(
3626 up_read(&sinfo
->groups_sem
);
3629 return num_tolerated_disk_barrier_failures
;
3632 static int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
3634 struct list_head
*head
;
3635 struct btrfs_device
*dev
;
3636 struct btrfs_super_block
*sb
;
3637 struct btrfs_dev_item
*dev_item
;
3641 int total_errors
= 0;
3644 do_barriers
= !btrfs_test_opt(root
->fs_info
, NOBARRIER
);
3645 backup_super_roots(root
->fs_info
);
3647 sb
= root
->fs_info
->super_for_commit
;
3648 dev_item
= &sb
->dev_item
;
3650 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3651 head
= &root
->fs_info
->fs_devices
->devices
;
3652 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
3655 ret
= barrier_all_devices(root
->fs_info
);
3658 &root
->fs_info
->fs_devices
->device_list_mutex
);
3659 btrfs_handle_fs_error(root
->fs_info
, ret
,
3660 "errors while submitting device barriers.");
3665 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3670 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3673 btrfs_set_stack_device_generation(dev_item
, 0);
3674 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3675 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3676 btrfs_set_stack_device_total_bytes(dev_item
,
3677 dev
->commit_total_bytes
);
3678 btrfs_set_stack_device_bytes_used(dev_item
,
3679 dev
->commit_bytes_used
);
3680 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3681 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3682 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3683 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3684 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3686 flags
= btrfs_super_flags(sb
);
3687 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3689 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
3693 if (total_errors
> max_errors
) {
3694 btrfs_err(root
->fs_info
, "%d errors while writing supers",
3696 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3698 /* FUA is masked off if unsupported and can't be the reason */
3699 btrfs_handle_fs_error(root
->fs_info
, -EIO
,
3700 "%d errors while writing supers", total_errors
);
3705 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3708 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3711 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
3715 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3716 if (total_errors
> max_errors
) {
3717 btrfs_handle_fs_error(root
->fs_info
, -EIO
,
3718 "%d errors while writing supers", total_errors
);
3724 int write_ctree_super(struct btrfs_trans_handle
*trans
,
3725 struct btrfs_root
*root
, int max_mirrors
)
3727 return write_all_supers(root
, max_mirrors
);
3730 /* Drop a fs root from the radix tree and free it. */
3731 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3732 struct btrfs_root
*root
)
3734 spin_lock(&fs_info
->fs_roots_radix_lock
);
3735 radix_tree_delete(&fs_info
->fs_roots_radix
,
3736 (unsigned long)root
->root_key
.objectid
);
3737 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3739 if (btrfs_root_refs(&root
->root_item
) == 0)
3740 synchronize_srcu(&fs_info
->subvol_srcu
);
3742 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3743 btrfs_free_log(NULL
, root
);
3745 if (root
->free_ino_pinned
)
3746 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3747 if (root
->free_ino_ctl
)
3748 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3752 static void free_fs_root(struct btrfs_root
*root
)
3754 iput(root
->ino_cache_inode
);
3755 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3756 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
3757 root
->orphan_block_rsv
= NULL
;
3759 free_anon_bdev(root
->anon_dev
);
3760 if (root
->subv_writers
)
3761 btrfs_free_subvolume_writers(root
->subv_writers
);
3762 free_extent_buffer(root
->node
);
3763 free_extent_buffer(root
->commit_root
);
3764 kfree(root
->free_ino_ctl
);
3765 kfree(root
->free_ino_pinned
);
3767 btrfs_put_fs_root(root
);
3770 void btrfs_free_fs_root(struct btrfs_root
*root
)
3775 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3777 u64 root_objectid
= 0;
3778 struct btrfs_root
*gang
[8];
3781 unsigned int ret
= 0;
3785 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3786 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3787 (void **)gang
, root_objectid
,
3790 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3793 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3795 for (i
= 0; i
< ret
; i
++) {
3796 /* Avoid to grab roots in dead_roots */
3797 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3801 /* grab all the search result for later use */
3802 gang
[i
] = btrfs_grab_fs_root(gang
[i
]);
3804 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3806 for (i
= 0; i
< ret
; i
++) {
3809 root_objectid
= gang
[i
]->root_key
.objectid
;
3810 err
= btrfs_orphan_cleanup(gang
[i
]);
3813 btrfs_put_fs_root(gang
[i
]);
3818 /* release the uncleaned roots due to error */
3819 for (; i
< ret
; i
++) {
3821 btrfs_put_fs_root(gang
[i
]);
3826 int btrfs_commit_super(struct btrfs_root
*root
)
3828 struct btrfs_trans_handle
*trans
;
3830 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3831 btrfs_run_delayed_iputs(root
);
3832 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3833 wake_up_process(root
->fs_info
->cleaner_kthread
);
3835 /* wait until ongoing cleanup work done */
3836 down_write(&root
->fs_info
->cleanup_work_sem
);
3837 up_write(&root
->fs_info
->cleanup_work_sem
);
3839 trans
= btrfs_join_transaction(root
);
3841 return PTR_ERR(trans
);
3842 return btrfs_commit_transaction(trans
, root
);
3845 void close_ctree(struct btrfs_root
*root
)
3847 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3850 fs_info
->closing
= 1;
3853 /* wait for the qgroup rescan worker to stop */
3854 btrfs_qgroup_wait_for_completion(fs_info
);
3856 /* wait for the uuid_scan task to finish */
3857 down(&fs_info
->uuid_tree_rescan_sem
);
3858 /* avoid complains from lockdep et al., set sem back to initial state */
3859 up(&fs_info
->uuid_tree_rescan_sem
);
3861 /* pause restriper - we want to resume on mount */
3862 btrfs_pause_balance(fs_info
);
3864 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3866 btrfs_scrub_cancel(fs_info
);
3868 /* wait for any defraggers to finish */
3869 wait_event(fs_info
->transaction_wait
,
3870 (atomic_read(&fs_info
->defrag_running
) == 0));
3872 /* clear out the rbtree of defraggable inodes */
3873 btrfs_cleanup_defrag_inodes(fs_info
);
3875 cancel_work_sync(&fs_info
->async_reclaim_work
);
3877 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3879 * If the cleaner thread is stopped and there are
3880 * block groups queued for removal, the deletion will be
3881 * skipped when we quit the cleaner thread.
3883 btrfs_delete_unused_bgs(root
->fs_info
);
3885 ret
= btrfs_commit_super(root
);
3887 btrfs_err(fs_info
, "commit super ret %d", ret
);
3890 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3891 btrfs_error_commit_super(root
);
3893 kthread_stop(fs_info
->transaction_kthread
);
3894 kthread_stop(fs_info
->cleaner_kthread
);
3896 fs_info
->closing
= 2;
3899 btrfs_free_qgroup_config(fs_info
);
3901 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3902 btrfs_info(fs_info
, "at unmount delalloc count %lld",
3903 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3906 btrfs_sysfs_remove_mounted(fs_info
);
3907 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3909 btrfs_free_fs_roots(fs_info
);
3911 btrfs_put_block_group_cache(fs_info
);
3913 btrfs_free_block_groups(fs_info
);
3916 * we must make sure there is not any read request to
3917 * submit after we stopping all workers.
3919 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3920 btrfs_stop_all_workers(fs_info
);
3923 free_root_pointers(fs_info
, 1);
3925 iput(fs_info
->btree_inode
);
3927 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3928 if (btrfs_test_opt(root
->fs_info
, CHECK_INTEGRITY
))
3929 btrfsic_unmount(root
, fs_info
->fs_devices
);
3932 btrfs_close_devices(fs_info
->fs_devices
);
3933 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3935 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3936 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3937 percpu_counter_destroy(&fs_info
->bio_counter
);
3938 bdi_destroy(&fs_info
->bdi
);
3939 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3941 btrfs_free_stripe_hash_table(fs_info
);
3943 __btrfs_free_block_rsv(root
->orphan_block_rsv
);
3944 root
->orphan_block_rsv
= NULL
;
3947 while (!list_empty(&fs_info
->pinned_chunks
)) {
3948 struct extent_map
*em
;
3950 em
= list_first_entry(&fs_info
->pinned_chunks
,
3951 struct extent_map
, list
);
3952 list_del_init(&em
->list
);
3953 free_extent_map(em
);
3955 unlock_chunks(root
);
3958 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
3962 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
3964 ret
= extent_buffer_uptodate(buf
);
3968 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3969 parent_transid
, atomic
);
3975 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3977 struct btrfs_root
*root
;
3978 u64 transid
= btrfs_header_generation(buf
);
3981 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3983 * This is a fast path so only do this check if we have sanity tests
3984 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3985 * outside of the sanity tests.
3987 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &buf
->bflags
)))
3990 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3991 btrfs_assert_tree_locked(buf
);
3992 if (transid
!= root
->fs_info
->generation
)
3993 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, "
3994 "found %llu running %llu\n",
3995 buf
->start
, transid
, root
->fs_info
->generation
);
3996 was_dirty
= set_extent_buffer_dirty(buf
);
3998 __percpu_counter_add(&root
->fs_info
->dirty_metadata_bytes
,
4000 root
->fs_info
->dirty_metadata_batch
);
4001 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4002 if (btrfs_header_level(buf
) == 0 && check_leaf(root
, buf
)) {
4003 btrfs_print_leaf(root
, buf
);
4009 static void __btrfs_btree_balance_dirty(struct btrfs_root
*root
,
4013 * looks as though older kernels can get into trouble with
4014 * this code, they end up stuck in balance_dirty_pages forever
4018 if (current
->flags
& PF_MEMALLOC
)
4022 btrfs_balance_delayed_items(root
);
4024 ret
= percpu_counter_compare(&root
->fs_info
->dirty_metadata_bytes
,
4025 BTRFS_DIRTY_METADATA_THRESH
);
4027 balance_dirty_pages_ratelimited(
4028 root
->fs_info
->btree_inode
->i_mapping
);
4032 void btrfs_btree_balance_dirty(struct btrfs_root
*root
)
4034 __btrfs_btree_balance_dirty(root
, 1);
4037 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root
*root
)
4039 __btrfs_btree_balance_dirty(root
, 0);
4042 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
4044 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
4045 return btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
4048 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
4051 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
4052 u64 nodesize
= btrfs_super_nodesize(sb
);
4053 u64 sectorsize
= btrfs_super_sectorsize(sb
);
4056 if (btrfs_super_magic(sb
) != BTRFS_MAGIC
) {
4057 printk(KERN_ERR
"BTRFS: no valid FS found\n");
4060 if (btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
)
4061 printk(KERN_WARNING
"BTRFS: unrecognized super flag: %llu\n",
4062 btrfs_super_flags(sb
) & ~BTRFS_SUPER_FLAG_SUPP
);
4063 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4064 printk(KERN_ERR
"BTRFS: tree_root level too big: %d >= %d\n",
4065 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
4068 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4069 printk(KERN_ERR
"BTRFS: chunk_root level too big: %d >= %d\n",
4070 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
4073 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
4074 printk(KERN_ERR
"BTRFS: log_root level too big: %d >= %d\n",
4075 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
4080 * Check sectorsize and nodesize first, other check will need it.
4081 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4083 if (!is_power_of_2(sectorsize
) || sectorsize
< 4096 ||
4084 sectorsize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
4085 printk(KERN_ERR
"BTRFS: invalid sectorsize %llu\n", sectorsize
);
4088 /* Only PAGE SIZE is supported yet */
4089 if (sectorsize
!= PAGE_SIZE
) {
4090 printk(KERN_ERR
"BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4091 sectorsize
, PAGE_SIZE
);
4094 if (!is_power_of_2(nodesize
) || nodesize
< sectorsize
||
4095 nodesize
> BTRFS_MAX_METADATA_BLOCKSIZE
) {
4096 printk(KERN_ERR
"BTRFS: invalid nodesize %llu\n", nodesize
);
4099 if (nodesize
!= le32_to_cpu(sb
->__unused_leafsize
)) {
4100 printk(KERN_ERR
"BTRFS: invalid leafsize %u, should be %llu\n",
4101 le32_to_cpu(sb
->__unused_leafsize
),
4106 /* Root alignment check */
4107 if (!IS_ALIGNED(btrfs_super_root(sb
), sectorsize
)) {
4108 printk(KERN_WARNING
"BTRFS: tree_root block unaligned: %llu\n",
4109 btrfs_super_root(sb
));
4112 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), sectorsize
)) {
4113 printk(KERN_WARNING
"BTRFS: chunk_root block unaligned: %llu\n",
4114 btrfs_super_chunk_root(sb
));
4117 if (!IS_ALIGNED(btrfs_super_log_root(sb
), sectorsize
)) {
4118 printk(KERN_WARNING
"BTRFS: log_root block unaligned: %llu\n",
4119 btrfs_super_log_root(sb
));
4123 if (memcmp(fs_info
->fsid
, sb
->dev_item
.fsid
, BTRFS_UUID_SIZE
) != 0) {
4124 printk(KERN_ERR
"BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4125 fs_info
->fsid
, sb
->dev_item
.fsid
);
4130 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4133 if (btrfs_super_bytes_used(sb
) < 6 * btrfs_super_nodesize(sb
)) {
4134 btrfs_err(fs_info
, "bytes_used is too small %llu",
4135 btrfs_super_bytes_used(sb
));
4138 if (!is_power_of_2(btrfs_super_stripesize(sb
))) {
4139 btrfs_err(fs_info
, "invalid stripesize %u",
4140 btrfs_super_stripesize(sb
));
4143 if (btrfs_super_num_devices(sb
) > (1UL << 31))
4144 printk(KERN_WARNING
"BTRFS: suspicious number of devices: %llu\n",
4145 btrfs_super_num_devices(sb
));
4146 if (btrfs_super_num_devices(sb
) == 0) {
4147 printk(KERN_ERR
"BTRFS: number of devices is 0\n");
4151 if (btrfs_super_bytenr(sb
) != BTRFS_SUPER_INFO_OFFSET
) {
4152 printk(KERN_ERR
"BTRFS: super offset mismatch %llu != %u\n",
4153 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
4158 * Obvious sys_chunk_array corruptions, it must hold at least one key
4161 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4162 printk(KERN_ERR
"BTRFS: system chunk array too big %u > %u\n",
4163 btrfs_super_sys_array_size(sb
),
4164 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
4167 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
4168 + sizeof(struct btrfs_chunk
)) {
4169 printk(KERN_ERR
"BTRFS: system chunk array too small %u < %zu\n",
4170 btrfs_super_sys_array_size(sb
),
4171 sizeof(struct btrfs_disk_key
)
4172 + sizeof(struct btrfs_chunk
));
4177 * The generation is a global counter, we'll trust it more than the others
4178 * but it's still possible that it's the one that's wrong.
4180 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
4182 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4183 btrfs_super_generation(sb
), btrfs_super_chunk_root_generation(sb
));
4184 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
4185 && btrfs_super_cache_generation(sb
) != (u64
)-1)
4187 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4188 btrfs_super_generation(sb
), btrfs_super_cache_generation(sb
));
4193 static void btrfs_error_commit_super(struct btrfs_root
*root
)
4195 mutex_lock(&root
->fs_info
->cleaner_mutex
);
4196 btrfs_run_delayed_iputs(root
);
4197 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
4199 down_write(&root
->fs_info
->cleanup_work_sem
);
4200 up_write(&root
->fs_info
->cleanup_work_sem
);
4202 /* cleanup FS via transaction */
4203 btrfs_cleanup_transaction(root
);
4206 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4208 struct btrfs_ordered_extent
*ordered
;
4210 spin_lock(&root
->ordered_extent_lock
);
4212 * This will just short circuit the ordered completion stuff which will
4213 * make sure the ordered extent gets properly cleaned up.
4215 list_for_each_entry(ordered
, &root
->ordered_extents
,
4217 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4218 spin_unlock(&root
->ordered_extent_lock
);
4221 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4223 struct btrfs_root
*root
;
4224 struct list_head splice
;
4226 INIT_LIST_HEAD(&splice
);
4228 spin_lock(&fs_info
->ordered_root_lock
);
4229 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4230 while (!list_empty(&splice
)) {
4231 root
= list_first_entry(&splice
, struct btrfs_root
,
4233 list_move_tail(&root
->ordered_root
,
4234 &fs_info
->ordered_roots
);
4236 spin_unlock(&fs_info
->ordered_root_lock
);
4237 btrfs_destroy_ordered_extents(root
);
4240 spin_lock(&fs_info
->ordered_root_lock
);
4242 spin_unlock(&fs_info
->ordered_root_lock
);
4245 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4246 struct btrfs_root
*root
)
4248 struct rb_node
*node
;
4249 struct btrfs_delayed_ref_root
*delayed_refs
;
4250 struct btrfs_delayed_ref_node
*ref
;
4253 delayed_refs
= &trans
->delayed_refs
;
4255 spin_lock(&delayed_refs
->lock
);
4256 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4257 spin_unlock(&delayed_refs
->lock
);
4258 btrfs_info(root
->fs_info
, "delayed_refs has NO entry");
4262 while ((node
= rb_first(&delayed_refs
->href_root
)) != NULL
) {
4263 struct btrfs_delayed_ref_head
*head
;
4264 struct btrfs_delayed_ref_node
*tmp
;
4265 bool pin_bytes
= false;
4267 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4269 if (!mutex_trylock(&head
->mutex
)) {
4270 atomic_inc(&head
->node
.refs
);
4271 spin_unlock(&delayed_refs
->lock
);
4273 mutex_lock(&head
->mutex
);
4274 mutex_unlock(&head
->mutex
);
4275 btrfs_put_delayed_ref(&head
->node
);
4276 spin_lock(&delayed_refs
->lock
);
4279 spin_lock(&head
->lock
);
4280 list_for_each_entry_safe_reverse(ref
, tmp
, &head
->ref_list
,
4283 list_del(&ref
->list
);
4284 atomic_dec(&delayed_refs
->num_entries
);
4285 btrfs_put_delayed_ref(ref
);
4287 if (head
->must_insert_reserved
)
4289 btrfs_free_delayed_extent_op(head
->extent_op
);
4290 delayed_refs
->num_heads
--;
4291 if (head
->processing
== 0)
4292 delayed_refs
->num_heads_ready
--;
4293 atomic_dec(&delayed_refs
->num_entries
);
4294 head
->node
.in_tree
= 0;
4295 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
4296 spin_unlock(&head
->lock
);
4297 spin_unlock(&delayed_refs
->lock
);
4298 mutex_unlock(&head
->mutex
);
4301 btrfs_pin_extent(root
, head
->node
.bytenr
,
4302 head
->node
.num_bytes
, 1);
4303 btrfs_put_delayed_ref(&head
->node
);
4305 spin_lock(&delayed_refs
->lock
);
4308 spin_unlock(&delayed_refs
->lock
);
4313 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4315 struct btrfs_inode
*btrfs_inode
;
4316 struct list_head splice
;
4318 INIT_LIST_HEAD(&splice
);
4320 spin_lock(&root
->delalloc_lock
);
4321 list_splice_init(&root
->delalloc_inodes
, &splice
);
4323 while (!list_empty(&splice
)) {
4324 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4327 list_del_init(&btrfs_inode
->delalloc_inodes
);
4328 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
4329 &btrfs_inode
->runtime_flags
);
4330 spin_unlock(&root
->delalloc_lock
);
4332 btrfs_invalidate_inodes(btrfs_inode
->root
);
4334 spin_lock(&root
->delalloc_lock
);
4337 spin_unlock(&root
->delalloc_lock
);
4340 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4342 struct btrfs_root
*root
;
4343 struct list_head splice
;
4345 INIT_LIST_HEAD(&splice
);
4347 spin_lock(&fs_info
->delalloc_root_lock
);
4348 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4349 while (!list_empty(&splice
)) {
4350 root
= list_first_entry(&splice
, struct btrfs_root
,
4352 list_del_init(&root
->delalloc_root
);
4353 root
= btrfs_grab_fs_root(root
);
4355 spin_unlock(&fs_info
->delalloc_root_lock
);
4357 btrfs_destroy_delalloc_inodes(root
);
4358 btrfs_put_fs_root(root
);
4360 spin_lock(&fs_info
->delalloc_root_lock
);
4362 spin_unlock(&fs_info
->delalloc_root_lock
);
4365 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
4366 struct extent_io_tree
*dirty_pages
,
4370 struct extent_buffer
*eb
;
4375 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4380 clear_extent_bits(dirty_pages
, start
, end
, mark
);
4381 while (start
<= end
) {
4382 eb
= btrfs_find_tree_block(root
->fs_info
, start
);
4383 start
+= root
->nodesize
;
4386 wait_on_extent_buffer_writeback(eb
);
4388 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4390 clear_extent_buffer_dirty(eb
);
4391 free_extent_buffer_stale(eb
);
4398 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
4399 struct extent_io_tree
*pinned_extents
)
4401 struct extent_io_tree
*unpin
;
4407 unpin
= pinned_extents
;
4410 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4411 EXTENT_DIRTY
, NULL
);
4415 clear_extent_dirty(unpin
, start
, end
);
4416 btrfs_error_unpin_extent_range(root
, start
, end
);
4421 if (unpin
== &root
->fs_info
->freed_extents
[0])
4422 unpin
= &root
->fs_info
->freed_extents
[1];
4424 unpin
= &root
->fs_info
->freed_extents
[0];
4432 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4433 struct btrfs_root
*root
)
4435 btrfs_destroy_delayed_refs(cur_trans
, root
);
4437 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4438 wake_up(&root
->fs_info
->transaction_blocked_wait
);
4440 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4441 wake_up(&root
->fs_info
->transaction_wait
);
4443 btrfs_destroy_delayed_inodes(root
);
4444 btrfs_assert_delayed_root_empty(root
);
4446 btrfs_destroy_marked_extents(root
, &cur_trans
->dirty_pages
,
4448 btrfs_destroy_pinned_extent(root
,
4449 root
->fs_info
->pinned_extents
);
4451 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4452 wake_up(&cur_trans
->commit_wait
);
4455 memset(cur_trans, 0, sizeof(*cur_trans));
4456 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4460 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
4462 struct btrfs_transaction
*t
;
4464 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
4466 spin_lock(&root
->fs_info
->trans_lock
);
4467 while (!list_empty(&root
->fs_info
->trans_list
)) {
4468 t
= list_first_entry(&root
->fs_info
->trans_list
,
4469 struct btrfs_transaction
, list
);
4470 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4471 atomic_inc(&t
->use_count
);
4472 spin_unlock(&root
->fs_info
->trans_lock
);
4473 btrfs_wait_for_commit(root
, t
->transid
);
4474 btrfs_put_transaction(t
);
4475 spin_lock(&root
->fs_info
->trans_lock
);
4478 if (t
== root
->fs_info
->running_transaction
) {
4479 t
->state
= TRANS_STATE_COMMIT_DOING
;
4480 spin_unlock(&root
->fs_info
->trans_lock
);
4482 * We wait for 0 num_writers since we don't hold a trans
4483 * handle open currently for this transaction.
4485 wait_event(t
->writer_wait
,
4486 atomic_read(&t
->num_writers
) == 0);
4488 spin_unlock(&root
->fs_info
->trans_lock
);
4490 btrfs_cleanup_one_transaction(t
, root
);
4492 spin_lock(&root
->fs_info
->trans_lock
);
4493 if (t
== root
->fs_info
->running_transaction
)
4494 root
->fs_info
->running_transaction
= NULL
;
4495 list_del_init(&t
->list
);
4496 spin_unlock(&root
->fs_info
->trans_lock
);
4498 btrfs_put_transaction(t
);
4499 trace_btrfs_transaction_commit(root
);
4500 spin_lock(&root
->fs_info
->trans_lock
);
4502 spin_unlock(&root
->fs_info
->trans_lock
);
4503 btrfs_destroy_all_ordered_extents(root
->fs_info
);
4504 btrfs_destroy_delayed_inodes(root
);
4505 btrfs_assert_delayed_root_empty(root
);
4506 btrfs_destroy_pinned_extent(root
, root
->fs_info
->pinned_extents
);
4507 btrfs_destroy_all_delalloc_inodes(root
->fs_info
);
4508 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
4513 static const struct extent_io_ops btree_extent_io_ops
= {
4514 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4515 .readpage_io_failed_hook
= btree_io_failed_hook
,
4516 .submit_bio_hook
= btree_submit_bio_hook
,
4517 /* note we're sharing with inode.c for the merge bio hook */
4518 .merge_bio_hook
= btrfs_merge_bio_hook
,