2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
41 #undef SCRAMBLE_DELAYED_REFS
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 CHUNK_ALLOC_NO_FORCE
= 0,
59 CHUNK_ALLOC_LIMITED
= 1,
60 CHUNK_ALLOC_FORCE
= 2,
64 * Control how reservations are dealt with.
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
75 RESERVE_ALLOC_NO_ACCOUNT
= 2,
78 static int update_block_group(struct btrfs_trans_handle
*trans
,
79 struct btrfs_root
*root
, u64 bytenr
,
80 u64 num_bytes
, int alloc
);
81 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
82 struct btrfs_root
*root
,
83 struct btrfs_delayed_ref_node
*node
, u64 parent
,
84 u64 root_objectid
, u64 owner_objectid
,
85 u64 owner_offset
, int refs_to_drop
,
86 struct btrfs_delayed_extent_op
*extra_op
);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
88 struct extent_buffer
*leaf
,
89 struct btrfs_extent_item
*ei
);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
91 struct btrfs_root
*root
,
92 u64 parent
, u64 root_objectid
,
93 u64 flags
, u64 owner
, u64 offset
,
94 struct btrfs_key
*ins
, int ref_mod
);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
96 struct btrfs_root
*root
,
97 u64 parent
, u64 root_objectid
,
98 u64 flags
, struct btrfs_disk_key
*key
,
99 int level
, struct btrfs_key
*ins
);
100 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*extent_root
, u64 flags
,
103 static int find_next_key(struct btrfs_path
*path
, int level
,
104 struct btrfs_key
*key
);
105 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
106 int dump_block_groups
);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
108 u64 num_bytes
, int reserve
,
110 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
112 int btrfs_pin_extent(struct btrfs_root
*root
,
113 u64 bytenr
, u64 num_bytes
, int reserved
);
114 static int __reserve_metadata_bytes(struct btrfs_root
*root
,
115 struct btrfs_space_info
*space_info
,
117 enum btrfs_reserve_flush_enum flush
);
118 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
119 struct btrfs_space_info
*space_info
,
121 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
122 struct btrfs_space_info
*space_info
,
126 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
129 return cache
->cached
== BTRFS_CACHE_FINISHED
||
130 cache
->cached
== BTRFS_CACHE_ERROR
;
133 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
135 return (cache
->flags
& bits
) == bits
;
138 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
140 atomic_inc(&cache
->count
);
143 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
145 if (atomic_dec_and_test(&cache
->count
)) {
146 WARN_ON(cache
->pinned
> 0);
147 WARN_ON(cache
->reserved
> 0);
148 kfree(cache
->free_space_ctl
);
154 * this adds the block group to the fs_info rb tree for the block group
157 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
158 struct btrfs_block_group_cache
*block_group
)
161 struct rb_node
*parent
= NULL
;
162 struct btrfs_block_group_cache
*cache
;
164 spin_lock(&info
->block_group_cache_lock
);
165 p
= &info
->block_group_cache_tree
.rb_node
;
169 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
171 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
173 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
176 spin_unlock(&info
->block_group_cache_lock
);
181 rb_link_node(&block_group
->cache_node
, parent
, p
);
182 rb_insert_color(&block_group
->cache_node
,
183 &info
->block_group_cache_tree
);
185 if (info
->first_logical_byte
> block_group
->key
.objectid
)
186 info
->first_logical_byte
= block_group
->key
.objectid
;
188 spin_unlock(&info
->block_group_cache_lock
);
194 * This will return the block group at or after bytenr if contains is 0, else
195 * it will return the block group that contains the bytenr
197 static struct btrfs_block_group_cache
*
198 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
201 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
205 spin_lock(&info
->block_group_cache_lock
);
206 n
= info
->block_group_cache_tree
.rb_node
;
209 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
211 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
212 start
= cache
->key
.objectid
;
214 if (bytenr
< start
) {
215 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
218 } else if (bytenr
> start
) {
219 if (contains
&& bytenr
<= end
) {
230 btrfs_get_block_group(ret
);
231 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
232 info
->first_logical_byte
= ret
->key
.objectid
;
234 spin_unlock(&info
->block_group_cache_lock
);
239 static int add_excluded_extent(struct btrfs_root
*root
,
240 u64 start
, u64 num_bytes
)
242 u64 end
= start
+ num_bytes
- 1;
243 set_extent_bits(&root
->fs_info
->freed_extents
[0],
244 start
, end
, EXTENT_UPTODATE
);
245 set_extent_bits(&root
->fs_info
->freed_extents
[1],
246 start
, end
, EXTENT_UPTODATE
);
250 static void free_excluded_extents(struct btrfs_root
*root
,
251 struct btrfs_block_group_cache
*cache
)
255 start
= cache
->key
.objectid
;
256 end
= start
+ cache
->key
.offset
- 1;
258 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
259 start
, end
, EXTENT_UPTODATE
);
260 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
261 start
, end
, EXTENT_UPTODATE
);
264 static int exclude_super_stripes(struct btrfs_root
*root
,
265 struct btrfs_block_group_cache
*cache
)
272 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
273 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
274 cache
->bytes_super
+= stripe_len
;
275 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
281 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
282 bytenr
= btrfs_sb_offset(i
);
283 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
284 cache
->key
.objectid
, bytenr
,
285 0, &logical
, &nr
, &stripe_len
);
292 if (logical
[nr
] > cache
->key
.objectid
+
296 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
300 if (start
< cache
->key
.objectid
) {
301 start
= cache
->key
.objectid
;
302 len
= (logical
[nr
] + stripe_len
) - start
;
304 len
= min_t(u64
, stripe_len
,
305 cache
->key
.objectid
+
306 cache
->key
.offset
- start
);
309 cache
->bytes_super
+= len
;
310 ret
= add_excluded_extent(root
, start
, len
);
322 static struct btrfs_caching_control
*
323 get_caching_control(struct btrfs_block_group_cache
*cache
)
325 struct btrfs_caching_control
*ctl
;
327 spin_lock(&cache
->lock
);
328 if (!cache
->caching_ctl
) {
329 spin_unlock(&cache
->lock
);
333 ctl
= cache
->caching_ctl
;
334 atomic_inc(&ctl
->count
);
335 spin_unlock(&cache
->lock
);
339 static void put_caching_control(struct btrfs_caching_control
*ctl
)
341 if (atomic_dec_and_test(&ctl
->count
))
345 #ifdef CONFIG_BTRFS_DEBUG
346 static void fragment_free_space(struct btrfs_root
*root
,
347 struct btrfs_block_group_cache
*block_group
)
349 u64 start
= block_group
->key
.objectid
;
350 u64 len
= block_group
->key
.offset
;
351 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
352 root
->nodesize
: root
->sectorsize
;
353 u64 step
= chunk
<< 1;
355 while (len
> chunk
) {
356 btrfs_remove_free_space(block_group
, start
, chunk
);
367 * this is only called by cache_block_group, since we could have freed extents
368 * we need to check the pinned_extents for any extents that can't be used yet
369 * since their free space will be released as soon as the transaction commits.
371 u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
372 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
374 u64 extent_start
, extent_end
, size
, total_added
= 0;
377 while (start
< end
) {
378 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
379 &extent_start
, &extent_end
,
380 EXTENT_DIRTY
| EXTENT_UPTODATE
,
385 if (extent_start
<= start
) {
386 start
= extent_end
+ 1;
387 } else if (extent_start
> start
&& extent_start
< end
) {
388 size
= extent_start
- start
;
390 ret
= btrfs_add_free_space(block_group
, start
,
392 BUG_ON(ret
); /* -ENOMEM or logic error */
393 start
= extent_end
+ 1;
402 ret
= btrfs_add_free_space(block_group
, start
, size
);
403 BUG_ON(ret
); /* -ENOMEM or logic error */
409 static int load_extent_tree_free(struct btrfs_caching_control
*caching_ctl
)
411 struct btrfs_block_group_cache
*block_group
;
412 struct btrfs_fs_info
*fs_info
;
413 struct btrfs_root
*extent_root
;
414 struct btrfs_path
*path
;
415 struct extent_buffer
*leaf
;
416 struct btrfs_key key
;
423 block_group
= caching_ctl
->block_group
;
424 fs_info
= block_group
->fs_info
;
425 extent_root
= fs_info
->extent_root
;
427 path
= btrfs_alloc_path();
431 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
433 #ifdef CONFIG_BTRFS_DEBUG
435 * If we're fragmenting we don't want to make anybody think we can
436 * allocate from this block group until we've had a chance to fragment
439 if (btrfs_should_fragment_free_space(extent_root
, block_group
))
443 * We don't want to deadlock with somebody trying to allocate a new
444 * extent for the extent root while also trying to search the extent
445 * root to add free space. So we skip locking and search the commit
446 * root, since its read-only
448 path
->skip_locking
= 1;
449 path
->search_commit_root
= 1;
450 path
->reada
= READA_FORWARD
;
454 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
457 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
461 leaf
= path
->nodes
[0];
462 nritems
= btrfs_header_nritems(leaf
);
465 if (btrfs_fs_closing(fs_info
) > 1) {
470 if (path
->slots
[0] < nritems
) {
471 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
473 ret
= find_next_key(path
, 0, &key
);
477 if (need_resched() ||
478 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
480 caching_ctl
->progress
= last
;
481 btrfs_release_path(path
);
482 up_read(&fs_info
->commit_root_sem
);
483 mutex_unlock(&caching_ctl
->mutex
);
485 mutex_lock(&caching_ctl
->mutex
);
486 down_read(&fs_info
->commit_root_sem
);
490 ret
= btrfs_next_leaf(extent_root
, path
);
495 leaf
= path
->nodes
[0];
496 nritems
= btrfs_header_nritems(leaf
);
500 if (key
.objectid
< last
) {
503 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
506 caching_ctl
->progress
= last
;
507 btrfs_release_path(path
);
511 if (key
.objectid
< block_group
->key
.objectid
) {
516 if (key
.objectid
>= block_group
->key
.objectid
+
517 block_group
->key
.offset
)
520 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
521 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
522 total_found
+= add_new_free_space(block_group
,
525 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
526 last
= key
.objectid
+
527 fs_info
->tree_root
->nodesize
;
529 last
= key
.objectid
+ key
.offset
;
531 if (total_found
> CACHING_CTL_WAKE_UP
) {
534 wake_up(&caching_ctl
->wait
);
541 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
542 block_group
->key
.objectid
+
543 block_group
->key
.offset
);
544 caching_ctl
->progress
= (u64
)-1;
547 btrfs_free_path(path
);
551 static noinline
void caching_thread(struct btrfs_work
*work
)
553 struct btrfs_block_group_cache
*block_group
;
554 struct btrfs_fs_info
*fs_info
;
555 struct btrfs_caching_control
*caching_ctl
;
556 struct btrfs_root
*extent_root
;
559 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
560 block_group
= caching_ctl
->block_group
;
561 fs_info
= block_group
->fs_info
;
562 extent_root
= fs_info
->extent_root
;
564 mutex_lock(&caching_ctl
->mutex
);
565 down_read(&fs_info
->commit_root_sem
);
567 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
))
568 ret
= load_free_space_tree(caching_ctl
);
570 ret
= load_extent_tree_free(caching_ctl
);
572 spin_lock(&block_group
->lock
);
573 block_group
->caching_ctl
= NULL
;
574 block_group
->cached
= ret
? BTRFS_CACHE_ERROR
: BTRFS_CACHE_FINISHED
;
575 spin_unlock(&block_group
->lock
);
577 #ifdef CONFIG_BTRFS_DEBUG
578 if (btrfs_should_fragment_free_space(extent_root
, block_group
)) {
581 spin_lock(&block_group
->space_info
->lock
);
582 spin_lock(&block_group
->lock
);
583 bytes_used
= block_group
->key
.offset
-
584 btrfs_block_group_used(&block_group
->item
);
585 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
586 spin_unlock(&block_group
->lock
);
587 spin_unlock(&block_group
->space_info
->lock
);
588 fragment_free_space(extent_root
, block_group
);
592 caching_ctl
->progress
= (u64
)-1;
594 up_read(&fs_info
->commit_root_sem
);
595 free_excluded_extents(fs_info
->extent_root
, block_group
);
596 mutex_unlock(&caching_ctl
->mutex
);
598 wake_up(&caching_ctl
->wait
);
600 put_caching_control(caching_ctl
);
601 btrfs_put_block_group(block_group
);
604 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
608 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
609 struct btrfs_caching_control
*caching_ctl
;
612 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
616 INIT_LIST_HEAD(&caching_ctl
->list
);
617 mutex_init(&caching_ctl
->mutex
);
618 init_waitqueue_head(&caching_ctl
->wait
);
619 caching_ctl
->block_group
= cache
;
620 caching_ctl
->progress
= cache
->key
.objectid
;
621 atomic_set(&caching_ctl
->count
, 1);
622 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
623 caching_thread
, NULL
, NULL
);
625 spin_lock(&cache
->lock
);
627 * This should be a rare occasion, but this could happen I think in the
628 * case where one thread starts to load the space cache info, and then
629 * some other thread starts a transaction commit which tries to do an
630 * allocation while the other thread is still loading the space cache
631 * info. The previous loop should have kept us from choosing this block
632 * group, but if we've moved to the state where we will wait on caching
633 * block groups we need to first check if we're doing a fast load here,
634 * so we can wait for it to finish, otherwise we could end up allocating
635 * from a block group who's cache gets evicted for one reason or
638 while (cache
->cached
== BTRFS_CACHE_FAST
) {
639 struct btrfs_caching_control
*ctl
;
641 ctl
= cache
->caching_ctl
;
642 atomic_inc(&ctl
->count
);
643 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
644 spin_unlock(&cache
->lock
);
648 finish_wait(&ctl
->wait
, &wait
);
649 put_caching_control(ctl
);
650 spin_lock(&cache
->lock
);
653 if (cache
->cached
!= BTRFS_CACHE_NO
) {
654 spin_unlock(&cache
->lock
);
658 WARN_ON(cache
->caching_ctl
);
659 cache
->caching_ctl
= caching_ctl
;
660 cache
->cached
= BTRFS_CACHE_FAST
;
661 spin_unlock(&cache
->lock
);
663 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
664 mutex_lock(&caching_ctl
->mutex
);
665 ret
= load_free_space_cache(fs_info
, cache
);
667 spin_lock(&cache
->lock
);
669 cache
->caching_ctl
= NULL
;
670 cache
->cached
= BTRFS_CACHE_FINISHED
;
671 cache
->last_byte_to_unpin
= (u64
)-1;
672 caching_ctl
->progress
= (u64
)-1;
674 if (load_cache_only
) {
675 cache
->caching_ctl
= NULL
;
676 cache
->cached
= BTRFS_CACHE_NO
;
678 cache
->cached
= BTRFS_CACHE_STARTED
;
679 cache
->has_caching_ctl
= 1;
682 spin_unlock(&cache
->lock
);
683 #ifdef CONFIG_BTRFS_DEBUG
685 btrfs_should_fragment_free_space(fs_info
->extent_root
,
689 spin_lock(&cache
->space_info
->lock
);
690 spin_lock(&cache
->lock
);
691 bytes_used
= cache
->key
.offset
-
692 btrfs_block_group_used(&cache
->item
);
693 cache
->space_info
->bytes_used
+= bytes_used
>> 1;
694 spin_unlock(&cache
->lock
);
695 spin_unlock(&cache
->space_info
->lock
);
696 fragment_free_space(fs_info
->extent_root
, cache
);
699 mutex_unlock(&caching_ctl
->mutex
);
701 wake_up(&caching_ctl
->wait
);
703 put_caching_control(caching_ctl
);
704 free_excluded_extents(fs_info
->extent_root
, cache
);
709 * We're either using the free space tree or no caching at all.
710 * Set cached to the appropriate value and wakeup any waiters.
712 spin_lock(&cache
->lock
);
713 if (load_cache_only
) {
714 cache
->caching_ctl
= NULL
;
715 cache
->cached
= BTRFS_CACHE_NO
;
717 cache
->cached
= BTRFS_CACHE_STARTED
;
718 cache
->has_caching_ctl
= 1;
720 spin_unlock(&cache
->lock
);
721 wake_up(&caching_ctl
->wait
);
724 if (load_cache_only
) {
725 put_caching_control(caching_ctl
);
729 down_write(&fs_info
->commit_root_sem
);
730 atomic_inc(&caching_ctl
->count
);
731 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
732 up_write(&fs_info
->commit_root_sem
);
734 btrfs_get_block_group(cache
);
736 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
742 * return the block group that starts at or after bytenr
744 static struct btrfs_block_group_cache
*
745 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
747 struct btrfs_block_group_cache
*cache
;
749 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
755 * return the block group that contains the given bytenr
757 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
758 struct btrfs_fs_info
*info
,
761 struct btrfs_block_group_cache
*cache
;
763 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
768 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
771 struct list_head
*head
= &info
->space_info
;
772 struct btrfs_space_info
*found
;
774 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
777 list_for_each_entry_rcu(found
, head
, list
) {
778 if (found
->flags
& flags
) {
788 * after adding space to the filesystem, we need to clear the full flags
789 * on all the space infos.
791 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
793 struct list_head
*head
= &info
->space_info
;
794 struct btrfs_space_info
*found
;
797 list_for_each_entry_rcu(found
, head
, list
)
802 /* simple helper to search for an existing data extent at a given offset */
803 int btrfs_lookup_data_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
806 struct btrfs_key key
;
807 struct btrfs_path
*path
;
809 path
= btrfs_alloc_path();
813 key
.objectid
= start
;
815 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
816 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
818 btrfs_free_path(path
);
823 * helper function to lookup reference count and flags of a tree block.
825 * the head node for delayed ref is used to store the sum of all the
826 * reference count modifications queued up in the rbtree. the head
827 * node may also store the extent flags to set. This way you can check
828 * to see what the reference count and extent flags would be if all of
829 * the delayed refs are not processed.
831 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
832 struct btrfs_root
*root
, u64 bytenr
,
833 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
835 struct btrfs_delayed_ref_head
*head
;
836 struct btrfs_delayed_ref_root
*delayed_refs
;
837 struct btrfs_path
*path
;
838 struct btrfs_extent_item
*ei
;
839 struct extent_buffer
*leaf
;
840 struct btrfs_key key
;
847 * If we don't have skinny metadata, don't bother doing anything
850 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
)) {
851 offset
= root
->nodesize
;
855 path
= btrfs_alloc_path();
860 path
->skip_locking
= 1;
861 path
->search_commit_root
= 1;
865 key
.objectid
= bytenr
;
868 key
.type
= BTRFS_METADATA_ITEM_KEY
;
870 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
872 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
877 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
878 if (path
->slots
[0]) {
880 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
882 if (key
.objectid
== bytenr
&&
883 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
884 key
.offset
== root
->nodesize
)
890 leaf
= path
->nodes
[0];
891 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
892 if (item_size
>= sizeof(*ei
)) {
893 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
894 struct btrfs_extent_item
);
895 num_refs
= btrfs_extent_refs(leaf
, ei
);
896 extent_flags
= btrfs_extent_flags(leaf
, ei
);
898 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
899 struct btrfs_extent_item_v0
*ei0
;
900 BUG_ON(item_size
!= sizeof(*ei0
));
901 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
902 struct btrfs_extent_item_v0
);
903 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
904 /* FIXME: this isn't correct for data */
905 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
910 BUG_ON(num_refs
== 0);
920 delayed_refs
= &trans
->transaction
->delayed_refs
;
921 spin_lock(&delayed_refs
->lock
);
922 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
924 if (!mutex_trylock(&head
->mutex
)) {
925 atomic_inc(&head
->node
.refs
);
926 spin_unlock(&delayed_refs
->lock
);
928 btrfs_release_path(path
);
931 * Mutex was contended, block until it's released and try
934 mutex_lock(&head
->mutex
);
935 mutex_unlock(&head
->mutex
);
936 btrfs_put_delayed_ref(&head
->node
);
939 spin_lock(&head
->lock
);
940 if (head
->extent_op
&& head
->extent_op
->update_flags
)
941 extent_flags
|= head
->extent_op
->flags_to_set
;
943 BUG_ON(num_refs
== 0);
945 num_refs
+= head
->node
.ref_mod
;
946 spin_unlock(&head
->lock
);
947 mutex_unlock(&head
->mutex
);
949 spin_unlock(&delayed_refs
->lock
);
951 WARN_ON(num_refs
== 0);
955 *flags
= extent_flags
;
957 btrfs_free_path(path
);
962 * Back reference rules. Back refs have three main goals:
964 * 1) differentiate between all holders of references to an extent so that
965 * when a reference is dropped we can make sure it was a valid reference
966 * before freeing the extent.
968 * 2) Provide enough information to quickly find the holders of an extent
969 * if we notice a given block is corrupted or bad.
971 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
972 * maintenance. This is actually the same as #2, but with a slightly
973 * different use case.
975 * There are two kinds of back refs. The implicit back refs is optimized
976 * for pointers in non-shared tree blocks. For a given pointer in a block,
977 * back refs of this kind provide information about the block's owner tree
978 * and the pointer's key. These information allow us to find the block by
979 * b-tree searching. The full back refs is for pointers in tree blocks not
980 * referenced by their owner trees. The location of tree block is recorded
981 * in the back refs. Actually the full back refs is generic, and can be
982 * used in all cases the implicit back refs is used. The major shortcoming
983 * of the full back refs is its overhead. Every time a tree block gets
984 * COWed, we have to update back refs entry for all pointers in it.
986 * For a newly allocated tree block, we use implicit back refs for
987 * pointers in it. This means most tree related operations only involve
988 * implicit back refs. For a tree block created in old transaction, the
989 * only way to drop a reference to it is COW it. So we can detect the
990 * event that tree block loses its owner tree's reference and do the
991 * back refs conversion.
993 * When a tree block is COWed through a tree, there are four cases:
995 * The reference count of the block is one and the tree is the block's
996 * owner tree. Nothing to do in this case.
998 * The reference count of the block is one and the tree is not the
999 * block's owner tree. In this case, full back refs is used for pointers
1000 * in the block. Remove these full back refs, add implicit back refs for
1001 * every pointers in the new block.
1003 * The reference count of the block is greater than one and the tree is
1004 * the block's owner tree. In this case, implicit back refs is used for
1005 * pointers in the block. Add full back refs for every pointers in the
1006 * block, increase lower level extents' reference counts. The original
1007 * implicit back refs are entailed to the new block.
1009 * The reference count of the block is greater than one and the tree is
1010 * not the block's owner tree. Add implicit back refs for every pointer in
1011 * the new block, increase lower level extents' reference count.
1013 * Back Reference Key composing:
1015 * The key objectid corresponds to the first byte in the extent,
1016 * The key type is used to differentiate between types of back refs.
1017 * There are different meanings of the key offset for different types
1020 * File extents can be referenced by:
1022 * - multiple snapshots, subvolumes, or different generations in one subvol
1023 * - different files inside a single subvolume
1024 * - different offsets inside a file (bookend extents in file.c)
1026 * The extent ref structure for the implicit back refs has fields for:
1028 * - Objectid of the subvolume root
1029 * - objectid of the file holding the reference
1030 * - original offset in the file
1031 * - how many bookend extents
1033 * The key offset for the implicit back refs is hash of the first
1036 * The extent ref structure for the full back refs has field for:
1038 * - number of pointers in the tree leaf
1040 * The key offset for the implicit back refs is the first byte of
1043 * When a file extent is allocated, The implicit back refs is used.
1044 * the fields are filled in:
1046 * (root_key.objectid, inode objectid, offset in file, 1)
1048 * When a file extent is removed file truncation, we find the
1049 * corresponding implicit back refs and check the following fields:
1051 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1053 * Btree extents can be referenced by:
1055 * - Different subvolumes
1057 * Both the implicit back refs and the full back refs for tree blocks
1058 * only consist of key. The key offset for the implicit back refs is
1059 * objectid of block's owner tree. The key offset for the full back refs
1060 * is the first byte of parent block.
1062 * When implicit back refs is used, information about the lowest key and
1063 * level of the tree block are required. These information are stored in
1064 * tree block info structure.
1067 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1068 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
1069 struct btrfs_root
*root
,
1070 struct btrfs_path
*path
,
1071 u64 owner
, u32 extra_size
)
1073 struct btrfs_extent_item
*item
;
1074 struct btrfs_extent_item_v0
*ei0
;
1075 struct btrfs_extent_ref_v0
*ref0
;
1076 struct btrfs_tree_block_info
*bi
;
1077 struct extent_buffer
*leaf
;
1078 struct btrfs_key key
;
1079 struct btrfs_key found_key
;
1080 u32 new_size
= sizeof(*item
);
1084 leaf
= path
->nodes
[0];
1085 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1087 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1088 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1089 struct btrfs_extent_item_v0
);
1090 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1092 if (owner
== (u64
)-1) {
1094 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1095 ret
= btrfs_next_leaf(root
, path
);
1098 BUG_ON(ret
> 0); /* Corruption */
1099 leaf
= path
->nodes
[0];
1101 btrfs_item_key_to_cpu(leaf
, &found_key
,
1103 BUG_ON(key
.objectid
!= found_key
.objectid
);
1104 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1108 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1109 struct btrfs_extent_ref_v0
);
1110 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1114 btrfs_release_path(path
);
1116 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1117 new_size
+= sizeof(*bi
);
1119 new_size
-= sizeof(*ei0
);
1120 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1121 new_size
+ extra_size
, 1);
1124 BUG_ON(ret
); /* Corruption */
1126 btrfs_extend_item(root
, path
, new_size
);
1128 leaf
= path
->nodes
[0];
1129 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1130 btrfs_set_extent_refs(leaf
, item
, refs
);
1131 /* FIXME: get real generation */
1132 btrfs_set_extent_generation(leaf
, item
, 0);
1133 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1134 btrfs_set_extent_flags(leaf
, item
,
1135 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1136 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1137 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1138 /* FIXME: get first key of the block */
1139 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1140 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1142 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1144 btrfs_mark_buffer_dirty(leaf
);
1149 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1151 u32 high_crc
= ~(u32
)0;
1152 u32 low_crc
= ~(u32
)0;
1155 lenum
= cpu_to_le64(root_objectid
);
1156 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1157 lenum
= cpu_to_le64(owner
);
1158 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1159 lenum
= cpu_to_le64(offset
);
1160 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1162 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1165 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1166 struct btrfs_extent_data_ref
*ref
)
1168 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1169 btrfs_extent_data_ref_objectid(leaf
, ref
),
1170 btrfs_extent_data_ref_offset(leaf
, ref
));
1173 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1174 struct btrfs_extent_data_ref
*ref
,
1175 u64 root_objectid
, u64 owner
, u64 offset
)
1177 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1178 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1179 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1184 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1185 struct btrfs_root
*root
,
1186 struct btrfs_path
*path
,
1187 u64 bytenr
, u64 parent
,
1189 u64 owner
, u64 offset
)
1191 struct btrfs_key key
;
1192 struct btrfs_extent_data_ref
*ref
;
1193 struct extent_buffer
*leaf
;
1199 key
.objectid
= bytenr
;
1201 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1202 key
.offset
= parent
;
1204 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1205 key
.offset
= hash_extent_data_ref(root_objectid
,
1210 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1219 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1220 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1221 btrfs_release_path(path
);
1222 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1233 leaf
= path
->nodes
[0];
1234 nritems
= btrfs_header_nritems(leaf
);
1236 if (path
->slots
[0] >= nritems
) {
1237 ret
= btrfs_next_leaf(root
, path
);
1243 leaf
= path
->nodes
[0];
1244 nritems
= btrfs_header_nritems(leaf
);
1248 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1249 if (key
.objectid
!= bytenr
||
1250 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1253 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1254 struct btrfs_extent_data_ref
);
1256 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1259 btrfs_release_path(path
);
1271 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1272 struct btrfs_root
*root
,
1273 struct btrfs_path
*path
,
1274 u64 bytenr
, u64 parent
,
1275 u64 root_objectid
, u64 owner
,
1276 u64 offset
, int refs_to_add
)
1278 struct btrfs_key key
;
1279 struct extent_buffer
*leaf
;
1284 key
.objectid
= bytenr
;
1286 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1287 key
.offset
= parent
;
1288 size
= sizeof(struct btrfs_shared_data_ref
);
1290 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1291 key
.offset
= hash_extent_data_ref(root_objectid
,
1293 size
= sizeof(struct btrfs_extent_data_ref
);
1296 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1297 if (ret
&& ret
!= -EEXIST
)
1300 leaf
= path
->nodes
[0];
1302 struct btrfs_shared_data_ref
*ref
;
1303 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1304 struct btrfs_shared_data_ref
);
1306 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1308 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1309 num_refs
+= refs_to_add
;
1310 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1313 struct btrfs_extent_data_ref
*ref
;
1314 while (ret
== -EEXIST
) {
1315 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1316 struct btrfs_extent_data_ref
);
1317 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1320 btrfs_release_path(path
);
1322 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1324 if (ret
&& ret
!= -EEXIST
)
1327 leaf
= path
->nodes
[0];
1329 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1330 struct btrfs_extent_data_ref
);
1332 btrfs_set_extent_data_ref_root(leaf
, ref
,
1334 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1335 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1336 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1338 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1339 num_refs
+= refs_to_add
;
1340 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1343 btrfs_mark_buffer_dirty(leaf
);
1346 btrfs_release_path(path
);
1350 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1351 struct btrfs_root
*root
,
1352 struct btrfs_path
*path
,
1353 int refs_to_drop
, int *last_ref
)
1355 struct btrfs_key key
;
1356 struct btrfs_extent_data_ref
*ref1
= NULL
;
1357 struct btrfs_shared_data_ref
*ref2
= NULL
;
1358 struct extent_buffer
*leaf
;
1362 leaf
= path
->nodes
[0];
1363 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1365 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1366 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1367 struct btrfs_extent_data_ref
);
1368 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1369 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1370 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1371 struct btrfs_shared_data_ref
);
1372 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1374 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1375 struct btrfs_extent_ref_v0
*ref0
;
1376 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1377 struct btrfs_extent_ref_v0
);
1378 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1384 BUG_ON(num_refs
< refs_to_drop
);
1385 num_refs
-= refs_to_drop
;
1387 if (num_refs
== 0) {
1388 ret
= btrfs_del_item(trans
, root
, path
);
1391 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1392 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1393 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1394 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1395 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1397 struct btrfs_extent_ref_v0
*ref0
;
1398 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1399 struct btrfs_extent_ref_v0
);
1400 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1403 btrfs_mark_buffer_dirty(leaf
);
1408 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
1409 struct btrfs_extent_inline_ref
*iref
)
1411 struct btrfs_key key
;
1412 struct extent_buffer
*leaf
;
1413 struct btrfs_extent_data_ref
*ref1
;
1414 struct btrfs_shared_data_ref
*ref2
;
1417 leaf
= path
->nodes
[0];
1418 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1420 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1421 BTRFS_EXTENT_DATA_REF_KEY
) {
1422 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1423 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1425 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1426 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1428 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1429 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1430 struct btrfs_extent_data_ref
);
1431 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1432 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1433 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1434 struct btrfs_shared_data_ref
);
1435 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1436 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1437 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1438 struct btrfs_extent_ref_v0
*ref0
;
1439 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1440 struct btrfs_extent_ref_v0
);
1441 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1449 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1450 struct btrfs_root
*root
,
1451 struct btrfs_path
*path
,
1452 u64 bytenr
, u64 parent
,
1455 struct btrfs_key key
;
1458 key
.objectid
= bytenr
;
1460 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1461 key
.offset
= parent
;
1463 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1464 key
.offset
= root_objectid
;
1467 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1470 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1471 if (ret
== -ENOENT
&& parent
) {
1472 btrfs_release_path(path
);
1473 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1474 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1482 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1483 struct btrfs_root
*root
,
1484 struct btrfs_path
*path
,
1485 u64 bytenr
, u64 parent
,
1488 struct btrfs_key key
;
1491 key
.objectid
= bytenr
;
1493 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1494 key
.offset
= parent
;
1496 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1497 key
.offset
= root_objectid
;
1500 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1501 btrfs_release_path(path
);
1505 static inline int extent_ref_type(u64 parent
, u64 owner
)
1508 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1510 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1512 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1515 type
= BTRFS_SHARED_DATA_REF_KEY
;
1517 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1522 static int find_next_key(struct btrfs_path
*path
, int level
,
1523 struct btrfs_key
*key
)
1526 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1527 if (!path
->nodes
[level
])
1529 if (path
->slots
[level
] + 1 >=
1530 btrfs_header_nritems(path
->nodes
[level
]))
1533 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1534 path
->slots
[level
] + 1);
1536 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1537 path
->slots
[level
] + 1);
1544 * look for inline back ref. if back ref is found, *ref_ret is set
1545 * to the address of inline back ref, and 0 is returned.
1547 * if back ref isn't found, *ref_ret is set to the address where it
1548 * should be inserted, and -ENOENT is returned.
1550 * if insert is true and there are too many inline back refs, the path
1551 * points to the extent item, and -EAGAIN is returned.
1553 * NOTE: inline back refs are ordered in the same way that back ref
1554 * items in the tree are ordered.
1556 static noinline_for_stack
1557 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1558 struct btrfs_root
*root
,
1559 struct btrfs_path
*path
,
1560 struct btrfs_extent_inline_ref
**ref_ret
,
1561 u64 bytenr
, u64 num_bytes
,
1562 u64 parent
, u64 root_objectid
,
1563 u64 owner
, u64 offset
, int insert
)
1565 struct btrfs_key key
;
1566 struct extent_buffer
*leaf
;
1567 struct btrfs_extent_item
*ei
;
1568 struct btrfs_extent_inline_ref
*iref
;
1578 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
1581 key
.objectid
= bytenr
;
1582 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1583 key
.offset
= num_bytes
;
1585 want
= extent_ref_type(parent
, owner
);
1587 extra_size
= btrfs_extent_inline_ref_size(want
);
1588 path
->keep_locks
= 1;
1593 * Owner is our parent level, so we can just add one to get the level
1594 * for the block we are interested in.
1596 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1597 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1602 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1609 * We may be a newly converted file system which still has the old fat
1610 * extent entries for metadata, so try and see if we have one of those.
1612 if (ret
> 0 && skinny_metadata
) {
1613 skinny_metadata
= false;
1614 if (path
->slots
[0]) {
1616 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1618 if (key
.objectid
== bytenr
&&
1619 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1620 key
.offset
== num_bytes
)
1624 key
.objectid
= bytenr
;
1625 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1626 key
.offset
= num_bytes
;
1627 btrfs_release_path(path
);
1632 if (ret
&& !insert
) {
1635 } else if (WARN_ON(ret
)) {
1640 leaf
= path
->nodes
[0];
1641 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1642 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1643 if (item_size
< sizeof(*ei
)) {
1648 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1654 leaf
= path
->nodes
[0];
1655 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1658 BUG_ON(item_size
< sizeof(*ei
));
1660 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1661 flags
= btrfs_extent_flags(leaf
, ei
);
1663 ptr
= (unsigned long)(ei
+ 1);
1664 end
= (unsigned long)ei
+ item_size
;
1666 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1667 ptr
+= sizeof(struct btrfs_tree_block_info
);
1677 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1678 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1682 ptr
+= btrfs_extent_inline_ref_size(type
);
1686 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1687 struct btrfs_extent_data_ref
*dref
;
1688 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1689 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1694 if (hash_extent_data_ref_item(leaf
, dref
) <
1695 hash_extent_data_ref(root_objectid
, owner
, offset
))
1699 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1701 if (parent
== ref_offset
) {
1705 if (ref_offset
< parent
)
1708 if (root_objectid
== ref_offset
) {
1712 if (ref_offset
< root_objectid
)
1716 ptr
+= btrfs_extent_inline_ref_size(type
);
1718 if (err
== -ENOENT
&& insert
) {
1719 if (item_size
+ extra_size
>=
1720 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1725 * To add new inline back ref, we have to make sure
1726 * there is no corresponding back ref item.
1727 * For simplicity, we just do not add new inline back
1728 * ref if there is any kind of item for this block
1730 if (find_next_key(path
, 0, &key
) == 0 &&
1731 key
.objectid
== bytenr
&&
1732 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1737 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1740 path
->keep_locks
= 0;
1741 btrfs_unlock_up_safe(path
, 1);
1747 * helper to add new inline back ref
1749 static noinline_for_stack
1750 void setup_inline_extent_backref(struct btrfs_root
*root
,
1751 struct btrfs_path
*path
,
1752 struct btrfs_extent_inline_ref
*iref
,
1753 u64 parent
, u64 root_objectid
,
1754 u64 owner
, u64 offset
, int refs_to_add
,
1755 struct btrfs_delayed_extent_op
*extent_op
)
1757 struct extent_buffer
*leaf
;
1758 struct btrfs_extent_item
*ei
;
1761 unsigned long item_offset
;
1766 leaf
= path
->nodes
[0];
1767 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1768 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1770 type
= extent_ref_type(parent
, owner
);
1771 size
= btrfs_extent_inline_ref_size(type
);
1773 btrfs_extend_item(root
, path
, size
);
1775 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1776 refs
= btrfs_extent_refs(leaf
, ei
);
1777 refs
+= refs_to_add
;
1778 btrfs_set_extent_refs(leaf
, ei
, refs
);
1780 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1782 ptr
= (unsigned long)ei
+ item_offset
;
1783 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1784 if (ptr
< end
- size
)
1785 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1788 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1789 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1790 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1791 struct btrfs_extent_data_ref
*dref
;
1792 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1793 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1794 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1795 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1796 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1797 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1798 struct btrfs_shared_data_ref
*sref
;
1799 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1800 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1801 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1802 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1803 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1805 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1807 btrfs_mark_buffer_dirty(leaf
);
1810 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1811 struct btrfs_root
*root
,
1812 struct btrfs_path
*path
,
1813 struct btrfs_extent_inline_ref
**ref_ret
,
1814 u64 bytenr
, u64 num_bytes
, u64 parent
,
1815 u64 root_objectid
, u64 owner
, u64 offset
)
1819 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1820 bytenr
, num_bytes
, parent
,
1821 root_objectid
, owner
, offset
, 0);
1825 btrfs_release_path(path
);
1828 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1829 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1832 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1833 root_objectid
, owner
, offset
);
1839 * helper to update/remove inline back ref
1841 static noinline_for_stack
1842 void update_inline_extent_backref(struct btrfs_root
*root
,
1843 struct btrfs_path
*path
,
1844 struct btrfs_extent_inline_ref
*iref
,
1846 struct btrfs_delayed_extent_op
*extent_op
,
1849 struct extent_buffer
*leaf
;
1850 struct btrfs_extent_item
*ei
;
1851 struct btrfs_extent_data_ref
*dref
= NULL
;
1852 struct btrfs_shared_data_ref
*sref
= NULL
;
1860 leaf
= path
->nodes
[0];
1861 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1862 refs
= btrfs_extent_refs(leaf
, ei
);
1863 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1864 refs
+= refs_to_mod
;
1865 btrfs_set_extent_refs(leaf
, ei
, refs
);
1867 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1869 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1871 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1872 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1873 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1874 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1875 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1876 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1879 BUG_ON(refs_to_mod
!= -1);
1882 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1883 refs
+= refs_to_mod
;
1886 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1887 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1889 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1892 size
= btrfs_extent_inline_ref_size(type
);
1893 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1894 ptr
= (unsigned long)iref
;
1895 end
= (unsigned long)ei
+ item_size
;
1896 if (ptr
+ size
< end
)
1897 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1900 btrfs_truncate_item(root
, path
, item_size
, 1);
1902 btrfs_mark_buffer_dirty(leaf
);
1905 static noinline_for_stack
1906 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1907 struct btrfs_root
*root
,
1908 struct btrfs_path
*path
,
1909 u64 bytenr
, u64 num_bytes
, u64 parent
,
1910 u64 root_objectid
, u64 owner
,
1911 u64 offset
, int refs_to_add
,
1912 struct btrfs_delayed_extent_op
*extent_op
)
1914 struct btrfs_extent_inline_ref
*iref
;
1917 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1918 bytenr
, num_bytes
, parent
,
1919 root_objectid
, owner
, offset
, 1);
1921 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1922 update_inline_extent_backref(root
, path
, iref
,
1923 refs_to_add
, extent_op
, NULL
);
1924 } else if (ret
== -ENOENT
) {
1925 setup_inline_extent_backref(root
, path
, iref
, parent
,
1926 root_objectid
, owner
, offset
,
1927 refs_to_add
, extent_op
);
1933 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1934 struct btrfs_root
*root
,
1935 struct btrfs_path
*path
,
1936 u64 bytenr
, u64 parent
, u64 root_objectid
,
1937 u64 owner
, u64 offset
, int refs_to_add
)
1940 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1941 BUG_ON(refs_to_add
!= 1);
1942 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1943 parent
, root_objectid
);
1945 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1946 parent
, root_objectid
,
1947 owner
, offset
, refs_to_add
);
1952 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1953 struct btrfs_root
*root
,
1954 struct btrfs_path
*path
,
1955 struct btrfs_extent_inline_ref
*iref
,
1956 int refs_to_drop
, int is_data
, int *last_ref
)
1960 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1962 update_inline_extent_backref(root
, path
, iref
,
1963 -refs_to_drop
, NULL
, last_ref
);
1964 } else if (is_data
) {
1965 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
,
1969 ret
= btrfs_del_item(trans
, root
, path
);
1974 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1975 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
1976 u64
*discarded_bytes
)
1979 u64 bytes_left
, end
;
1980 u64 aligned_start
= ALIGN(start
, 1 << 9);
1982 if (WARN_ON(start
!= aligned_start
)) {
1983 len
-= aligned_start
- start
;
1984 len
= round_down(len
, 1 << 9);
1985 start
= aligned_start
;
1988 *discarded_bytes
= 0;
1996 /* Skip any superblocks on this device. */
1997 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
1998 u64 sb_start
= btrfs_sb_offset(j
);
1999 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
2000 u64 size
= sb_start
- start
;
2002 if (!in_range(sb_start
, start
, bytes_left
) &&
2003 !in_range(sb_end
, start
, bytes_left
) &&
2004 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
2008 * Superblock spans beginning of range. Adjust start and
2011 if (sb_start
<= start
) {
2012 start
+= sb_end
- start
;
2017 bytes_left
= end
- start
;
2022 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
2025 *discarded_bytes
+= size
;
2026 else if (ret
!= -EOPNOTSUPP
)
2035 bytes_left
= end
- start
;
2039 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
2042 *discarded_bytes
+= bytes_left
;
2047 int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
2048 u64 num_bytes
, u64
*actual_bytes
)
2051 u64 discarded_bytes
= 0;
2052 struct btrfs_bio
*bbio
= NULL
;
2056 * Avoid races with device replace and make sure our bbio has devices
2057 * associated to its stripes that don't go away while we are discarding.
2059 btrfs_bio_counter_inc_blocked(root
->fs_info
);
2060 /* Tell the block device(s) that the sectors can be discarded */
2061 ret
= btrfs_map_block(root
->fs_info
, REQ_OP_DISCARD
,
2062 bytenr
, &num_bytes
, &bbio
, 0);
2063 /* Error condition is -ENOMEM */
2065 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
2069 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
2071 if (!stripe
->dev
->can_discard
)
2074 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
2079 discarded_bytes
+= bytes
;
2080 else if (ret
!= -EOPNOTSUPP
)
2081 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2084 * Just in case we get back EOPNOTSUPP for some reason,
2085 * just ignore the return value so we don't screw up
2086 * people calling discard_extent.
2090 btrfs_put_bbio(bbio
);
2092 btrfs_bio_counter_dec(root
->fs_info
);
2095 *actual_bytes
= discarded_bytes
;
2098 if (ret
== -EOPNOTSUPP
)
2103 /* Can return -ENOMEM */
2104 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2105 struct btrfs_root
*root
,
2106 u64 bytenr
, u64 num_bytes
, u64 parent
,
2107 u64 root_objectid
, u64 owner
, u64 offset
)
2110 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2112 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
2113 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
2115 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2116 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
2118 parent
, root_objectid
, (int)owner
,
2119 BTRFS_ADD_DELAYED_REF
, NULL
);
2121 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
2122 num_bytes
, parent
, root_objectid
,
2124 BTRFS_ADD_DELAYED_REF
, NULL
);
2129 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2130 struct btrfs_root
*root
,
2131 struct btrfs_delayed_ref_node
*node
,
2132 u64 parent
, u64 root_objectid
,
2133 u64 owner
, u64 offset
, int refs_to_add
,
2134 struct btrfs_delayed_extent_op
*extent_op
)
2136 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2137 struct btrfs_path
*path
;
2138 struct extent_buffer
*leaf
;
2139 struct btrfs_extent_item
*item
;
2140 struct btrfs_key key
;
2141 u64 bytenr
= node
->bytenr
;
2142 u64 num_bytes
= node
->num_bytes
;
2146 path
= btrfs_alloc_path();
2150 path
->reada
= READA_FORWARD
;
2151 path
->leave_spinning
= 1;
2152 /* this will setup the path even if it fails to insert the back ref */
2153 ret
= insert_inline_extent_backref(trans
, fs_info
->extent_root
, path
,
2154 bytenr
, num_bytes
, parent
,
2155 root_objectid
, owner
, offset
,
2156 refs_to_add
, extent_op
);
2157 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
2161 * Ok we had -EAGAIN which means we didn't have space to insert and
2162 * inline extent ref, so just update the reference count and add a
2165 leaf
= path
->nodes
[0];
2166 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2167 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2168 refs
= btrfs_extent_refs(leaf
, item
);
2169 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2171 __run_delayed_extent_op(extent_op
, leaf
, item
);
2173 btrfs_mark_buffer_dirty(leaf
);
2174 btrfs_release_path(path
);
2176 path
->reada
= READA_FORWARD
;
2177 path
->leave_spinning
= 1;
2178 /* now insert the actual backref */
2179 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
2180 path
, bytenr
, parent
, root_objectid
,
2181 owner
, offset
, refs_to_add
);
2183 btrfs_abort_transaction(trans
, ret
);
2185 btrfs_free_path(path
);
2189 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2190 struct btrfs_root
*root
,
2191 struct btrfs_delayed_ref_node
*node
,
2192 struct btrfs_delayed_extent_op
*extent_op
,
2193 int insert_reserved
)
2196 struct btrfs_delayed_data_ref
*ref
;
2197 struct btrfs_key ins
;
2202 ins
.objectid
= node
->bytenr
;
2203 ins
.offset
= node
->num_bytes
;
2204 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2206 ref
= btrfs_delayed_node_to_data_ref(node
);
2207 trace_run_delayed_data_ref(root
->fs_info
, node
, ref
, node
->action
);
2209 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2210 parent
= ref
->parent
;
2211 ref_root
= ref
->root
;
2213 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2215 flags
|= extent_op
->flags_to_set
;
2216 ret
= alloc_reserved_file_extent(trans
, root
,
2217 parent
, ref_root
, flags
,
2218 ref
->objectid
, ref
->offset
,
2219 &ins
, node
->ref_mod
);
2220 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2221 ret
= __btrfs_inc_extent_ref(trans
, root
, node
, parent
,
2222 ref_root
, ref
->objectid
,
2223 ref
->offset
, node
->ref_mod
,
2225 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2226 ret
= __btrfs_free_extent(trans
, root
, node
, parent
,
2227 ref_root
, ref
->objectid
,
2228 ref
->offset
, node
->ref_mod
,
2236 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2237 struct extent_buffer
*leaf
,
2238 struct btrfs_extent_item
*ei
)
2240 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2241 if (extent_op
->update_flags
) {
2242 flags
|= extent_op
->flags_to_set
;
2243 btrfs_set_extent_flags(leaf
, ei
, flags
);
2246 if (extent_op
->update_key
) {
2247 struct btrfs_tree_block_info
*bi
;
2248 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2249 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2250 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2254 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2255 struct btrfs_root
*root
,
2256 struct btrfs_delayed_ref_node
*node
,
2257 struct btrfs_delayed_extent_op
*extent_op
)
2259 struct btrfs_key key
;
2260 struct btrfs_path
*path
;
2261 struct btrfs_extent_item
*ei
;
2262 struct extent_buffer
*leaf
;
2266 int metadata
= !extent_op
->is_data
;
2271 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2274 path
= btrfs_alloc_path();
2278 key
.objectid
= node
->bytenr
;
2281 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2282 key
.offset
= extent_op
->level
;
2284 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2285 key
.offset
= node
->num_bytes
;
2289 path
->reada
= READA_FORWARD
;
2290 path
->leave_spinning
= 1;
2291 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2299 if (path
->slots
[0] > 0) {
2301 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2303 if (key
.objectid
== node
->bytenr
&&
2304 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2305 key
.offset
== node
->num_bytes
)
2309 btrfs_release_path(path
);
2312 key
.objectid
= node
->bytenr
;
2313 key
.offset
= node
->num_bytes
;
2314 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2323 leaf
= path
->nodes
[0];
2324 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2325 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2326 if (item_size
< sizeof(*ei
)) {
2327 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2333 leaf
= path
->nodes
[0];
2334 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2337 BUG_ON(item_size
< sizeof(*ei
));
2338 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2339 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2341 btrfs_mark_buffer_dirty(leaf
);
2343 btrfs_free_path(path
);
2347 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2348 struct btrfs_root
*root
,
2349 struct btrfs_delayed_ref_node
*node
,
2350 struct btrfs_delayed_extent_op
*extent_op
,
2351 int insert_reserved
)
2354 struct btrfs_delayed_tree_ref
*ref
;
2355 struct btrfs_key ins
;
2358 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
2361 ref
= btrfs_delayed_node_to_tree_ref(node
);
2362 trace_run_delayed_tree_ref(root
->fs_info
, node
, ref
, node
->action
);
2364 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2365 parent
= ref
->parent
;
2366 ref_root
= ref
->root
;
2368 ins
.objectid
= node
->bytenr
;
2369 if (skinny_metadata
) {
2370 ins
.offset
= ref
->level
;
2371 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2373 ins
.offset
= node
->num_bytes
;
2374 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2377 BUG_ON(node
->ref_mod
!= 1);
2378 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2379 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2380 ret
= alloc_reserved_tree_block(trans
, root
,
2382 extent_op
->flags_to_set
,
2385 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2386 ret
= __btrfs_inc_extent_ref(trans
, root
, node
,
2390 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2391 ret
= __btrfs_free_extent(trans
, root
, node
,
2393 ref
->level
, 0, 1, extent_op
);
2400 /* helper function to actually process a single delayed ref entry */
2401 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2402 struct btrfs_root
*root
,
2403 struct btrfs_delayed_ref_node
*node
,
2404 struct btrfs_delayed_extent_op
*extent_op
,
2405 int insert_reserved
)
2409 if (trans
->aborted
) {
2410 if (insert_reserved
)
2411 btrfs_pin_extent(root
, node
->bytenr
,
2412 node
->num_bytes
, 1);
2416 if (btrfs_delayed_ref_is_head(node
)) {
2417 struct btrfs_delayed_ref_head
*head
;
2419 * we've hit the end of the chain and we were supposed
2420 * to insert this extent into the tree. But, it got
2421 * deleted before we ever needed to insert it, so all
2422 * we have to do is clean up the accounting
2425 head
= btrfs_delayed_node_to_head(node
);
2426 trace_run_delayed_ref_head(root
->fs_info
, node
, head
,
2429 if (insert_reserved
) {
2430 btrfs_pin_extent(root
, node
->bytenr
,
2431 node
->num_bytes
, 1);
2432 if (head
->is_data
) {
2433 ret
= btrfs_del_csums(trans
, root
,
2439 /* Also free its reserved qgroup space */
2440 btrfs_qgroup_free_delayed_ref(root
->fs_info
,
2441 head
->qgroup_ref_root
,
2442 head
->qgroup_reserved
);
2446 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2447 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2448 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2450 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2451 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2452 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2459 static inline struct btrfs_delayed_ref_node
*
2460 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2462 struct btrfs_delayed_ref_node
*ref
;
2464 if (list_empty(&head
->ref_list
))
2468 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2469 * This is to prevent a ref count from going down to zero, which deletes
2470 * the extent item from the extent tree, when there still are references
2471 * to add, which would fail because they would not find the extent item.
2473 list_for_each_entry(ref
, &head
->ref_list
, list
) {
2474 if (ref
->action
== BTRFS_ADD_DELAYED_REF
)
2478 return list_entry(head
->ref_list
.next
, struct btrfs_delayed_ref_node
,
2483 * Returns 0 on success or if called with an already aborted transaction.
2484 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2486 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2487 struct btrfs_root
*root
,
2490 struct btrfs_delayed_ref_root
*delayed_refs
;
2491 struct btrfs_delayed_ref_node
*ref
;
2492 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2493 struct btrfs_delayed_extent_op
*extent_op
;
2494 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2495 ktime_t start
= ktime_get();
2497 unsigned long count
= 0;
2498 unsigned long actual_count
= 0;
2499 int must_insert_reserved
= 0;
2501 delayed_refs
= &trans
->transaction
->delayed_refs
;
2507 spin_lock(&delayed_refs
->lock
);
2508 locked_ref
= btrfs_select_ref_head(trans
);
2510 spin_unlock(&delayed_refs
->lock
);
2514 /* grab the lock that says we are going to process
2515 * all the refs for this head */
2516 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2517 spin_unlock(&delayed_refs
->lock
);
2519 * we may have dropped the spin lock to get the head
2520 * mutex lock, and that might have given someone else
2521 * time to free the head. If that's true, it has been
2522 * removed from our list and we can move on.
2524 if (ret
== -EAGAIN
) {
2532 * We need to try and merge add/drops of the same ref since we
2533 * can run into issues with relocate dropping the implicit ref
2534 * and then it being added back again before the drop can
2535 * finish. If we merged anything we need to re-loop so we can
2537 * Or we can get node references of the same type that weren't
2538 * merged when created due to bumps in the tree mod seq, and
2539 * we need to merge them to prevent adding an inline extent
2540 * backref before dropping it (triggering a BUG_ON at
2541 * insert_inline_extent_backref()).
2543 spin_lock(&locked_ref
->lock
);
2544 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2548 * locked_ref is the head node, so we have to go one
2549 * node back for any delayed ref updates
2551 ref
= select_delayed_ref(locked_ref
);
2553 if (ref
&& ref
->seq
&&
2554 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2555 spin_unlock(&locked_ref
->lock
);
2556 btrfs_delayed_ref_unlock(locked_ref
);
2557 spin_lock(&delayed_refs
->lock
);
2558 locked_ref
->processing
= 0;
2559 delayed_refs
->num_heads_ready
++;
2560 spin_unlock(&delayed_refs
->lock
);
2568 * record the must insert reserved flag before we
2569 * drop the spin lock.
2571 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2572 locked_ref
->must_insert_reserved
= 0;
2574 extent_op
= locked_ref
->extent_op
;
2575 locked_ref
->extent_op
= NULL
;
2580 /* All delayed refs have been processed, Go ahead
2581 * and send the head node to run_one_delayed_ref,
2582 * so that any accounting fixes can happen
2584 ref
= &locked_ref
->node
;
2586 if (extent_op
&& must_insert_reserved
) {
2587 btrfs_free_delayed_extent_op(extent_op
);
2592 spin_unlock(&locked_ref
->lock
);
2593 ret
= run_delayed_extent_op(trans
, root
,
2595 btrfs_free_delayed_extent_op(extent_op
);
2599 * Need to reset must_insert_reserved if
2600 * there was an error so the abort stuff
2601 * can cleanup the reserved space
2604 if (must_insert_reserved
)
2605 locked_ref
->must_insert_reserved
= 1;
2606 locked_ref
->processing
= 0;
2607 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
2608 btrfs_delayed_ref_unlock(locked_ref
);
2615 * Need to drop our head ref lock and re-acquire the
2616 * delayed ref lock and then re-check to make sure
2619 spin_unlock(&locked_ref
->lock
);
2620 spin_lock(&delayed_refs
->lock
);
2621 spin_lock(&locked_ref
->lock
);
2622 if (!list_empty(&locked_ref
->ref_list
) ||
2623 locked_ref
->extent_op
) {
2624 spin_unlock(&locked_ref
->lock
);
2625 spin_unlock(&delayed_refs
->lock
);
2629 delayed_refs
->num_heads
--;
2630 rb_erase(&locked_ref
->href_node
,
2631 &delayed_refs
->href_root
);
2632 spin_unlock(&delayed_refs
->lock
);
2636 list_del(&ref
->list
);
2638 atomic_dec(&delayed_refs
->num_entries
);
2640 if (!btrfs_delayed_ref_is_head(ref
)) {
2642 * when we play the delayed ref, also correct the
2645 switch (ref
->action
) {
2646 case BTRFS_ADD_DELAYED_REF
:
2647 case BTRFS_ADD_DELAYED_EXTENT
:
2648 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2650 case BTRFS_DROP_DELAYED_REF
:
2651 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2657 spin_unlock(&locked_ref
->lock
);
2659 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2660 must_insert_reserved
);
2662 btrfs_free_delayed_extent_op(extent_op
);
2664 locked_ref
->processing
= 0;
2665 btrfs_delayed_ref_unlock(locked_ref
);
2666 btrfs_put_delayed_ref(ref
);
2667 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d", ret
);
2672 * If this node is a head, that means all the refs in this head
2673 * have been dealt with, and we will pick the next head to deal
2674 * with, so we must unlock the head and drop it from the cluster
2675 * list before we release it.
2677 if (btrfs_delayed_ref_is_head(ref
)) {
2678 if (locked_ref
->is_data
&&
2679 locked_ref
->total_ref_mod
< 0) {
2680 spin_lock(&delayed_refs
->lock
);
2681 delayed_refs
->pending_csums
-= ref
->num_bytes
;
2682 spin_unlock(&delayed_refs
->lock
);
2684 btrfs_delayed_ref_unlock(locked_ref
);
2687 btrfs_put_delayed_ref(ref
);
2693 * We don't want to include ref heads since we can have empty ref heads
2694 * and those will drastically skew our runtime down since we just do
2695 * accounting, no actual extent tree updates.
2697 if (actual_count
> 0) {
2698 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2702 * We weigh the current average higher than our current runtime
2703 * to avoid large swings in the average.
2705 spin_lock(&delayed_refs
->lock
);
2706 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2707 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2708 spin_unlock(&delayed_refs
->lock
);
2713 #ifdef SCRAMBLE_DELAYED_REFS
2715 * Normally delayed refs get processed in ascending bytenr order. This
2716 * correlates in most cases to the order added. To expose dependencies on this
2717 * order, we start to process the tree in the middle instead of the beginning
2719 static u64
find_middle(struct rb_root
*root
)
2721 struct rb_node
*n
= root
->rb_node
;
2722 struct btrfs_delayed_ref_node
*entry
;
2725 u64 first
= 0, last
= 0;
2729 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2730 first
= entry
->bytenr
;
2734 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2735 last
= entry
->bytenr
;
2740 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2741 WARN_ON(!entry
->in_tree
);
2743 middle
= entry
->bytenr
;
2756 static inline u64
heads_to_leaves(struct btrfs_root
*root
, u64 heads
)
2760 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2761 sizeof(struct btrfs_extent_inline_ref
));
2762 if (!btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2763 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2766 * We don't ever fill up leaves all the way so multiply by 2 just to be
2767 * closer to what we're really going to want to use.
2769 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(root
));
2773 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2774 * would require to store the csums for that many bytes.
2776 u64
btrfs_csum_bytes_to_leaves(struct btrfs_root
*root
, u64 csum_bytes
)
2779 u64 num_csums_per_leaf
;
2782 csum_size
= BTRFS_MAX_ITEM_SIZE(root
);
2783 num_csums_per_leaf
= div64_u64(csum_size
,
2784 (u64
)btrfs_super_csum_size(root
->fs_info
->super_copy
));
2785 num_csums
= div64_u64(csum_bytes
, root
->sectorsize
);
2786 num_csums
+= num_csums_per_leaf
- 1;
2787 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2791 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2792 struct btrfs_root
*root
)
2794 struct btrfs_block_rsv
*global_rsv
;
2795 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2796 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2797 u64 num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2798 u64 num_bytes
, num_dirty_bgs_bytes
;
2801 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
2802 num_heads
= heads_to_leaves(root
, num_heads
);
2804 num_bytes
+= (num_heads
- 1) * root
->nodesize
;
2806 num_bytes
+= btrfs_csum_bytes_to_leaves(root
, csum_bytes
) * root
->nodesize
;
2807 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(root
,
2809 global_rsv
= &root
->fs_info
->global_block_rsv
;
2812 * If we can't allocate any more chunks lets make sure we have _lots_ of
2813 * wiggle room since running delayed refs can create more delayed refs.
2815 if (global_rsv
->space_info
->full
) {
2816 num_dirty_bgs_bytes
<<= 1;
2820 spin_lock(&global_rsv
->lock
);
2821 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2823 spin_unlock(&global_rsv
->lock
);
2827 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2828 struct btrfs_root
*root
)
2830 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2832 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2837 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2838 val
= num_entries
* avg_runtime
;
2839 if (num_entries
* avg_runtime
>= NSEC_PER_SEC
)
2841 if (val
>= NSEC_PER_SEC
/ 2)
2844 return btrfs_check_space_for_delayed_refs(trans
, root
);
2847 struct async_delayed_refs
{
2848 struct btrfs_root
*root
;
2853 struct completion wait
;
2854 struct btrfs_work work
;
2857 static void delayed_ref_async_start(struct btrfs_work
*work
)
2859 struct async_delayed_refs
*async
;
2860 struct btrfs_trans_handle
*trans
;
2863 async
= container_of(work
, struct async_delayed_refs
, work
);
2865 /* if the commit is already started, we don't need to wait here */
2866 if (btrfs_transaction_blocked(async
->root
->fs_info
))
2869 trans
= btrfs_join_transaction(async
->root
);
2870 if (IS_ERR(trans
)) {
2871 async
->error
= PTR_ERR(trans
);
2876 * trans->sync means that when we call end_transaction, we won't
2877 * wait on delayed refs
2881 /* Don't bother flushing if we got into a different transaction */
2882 if (trans
->transid
> async
->transid
)
2885 ret
= btrfs_run_delayed_refs(trans
, async
->root
, async
->count
);
2889 ret
= btrfs_end_transaction(trans
, async
->root
);
2890 if (ret
&& !async
->error
)
2894 complete(&async
->wait
);
2899 int btrfs_async_run_delayed_refs(struct btrfs_root
*root
,
2900 unsigned long count
, u64 transid
, int wait
)
2902 struct async_delayed_refs
*async
;
2905 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2909 async
->root
= root
->fs_info
->tree_root
;
2910 async
->count
= count
;
2912 async
->transid
= transid
;
2917 init_completion(&async
->wait
);
2919 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2920 delayed_ref_async_start
, NULL
, NULL
);
2922 btrfs_queue_work(root
->fs_info
->extent_workers
, &async
->work
);
2925 wait_for_completion(&async
->wait
);
2934 * this starts processing the delayed reference count updates and
2935 * extent insertions we have queued up so far. count can be
2936 * 0, which means to process everything in the tree at the start
2937 * of the run (but not newly added entries), or it can be some target
2938 * number you'd like to process.
2940 * Returns 0 on success or if called with an aborted transaction
2941 * Returns <0 on error and aborts the transaction
2943 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2944 struct btrfs_root
*root
, unsigned long count
)
2946 struct rb_node
*node
;
2947 struct btrfs_delayed_ref_root
*delayed_refs
;
2948 struct btrfs_delayed_ref_head
*head
;
2950 int run_all
= count
== (unsigned long)-1;
2951 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
2953 /* We'll clean this up in btrfs_cleanup_transaction */
2957 if (root
->fs_info
->creating_free_space_tree
)
2960 if (root
== root
->fs_info
->extent_root
)
2961 root
= root
->fs_info
->tree_root
;
2963 delayed_refs
= &trans
->transaction
->delayed_refs
;
2965 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2968 #ifdef SCRAMBLE_DELAYED_REFS
2969 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2971 trans
->can_flush_pending_bgs
= false;
2972 ret
= __btrfs_run_delayed_refs(trans
, root
, count
);
2974 btrfs_abort_transaction(trans
, ret
);
2979 if (!list_empty(&trans
->new_bgs
))
2980 btrfs_create_pending_block_groups(trans
, root
);
2982 spin_lock(&delayed_refs
->lock
);
2983 node
= rb_first(&delayed_refs
->href_root
);
2985 spin_unlock(&delayed_refs
->lock
);
2988 count
= (unsigned long)-1;
2991 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2993 if (btrfs_delayed_ref_is_head(&head
->node
)) {
2994 struct btrfs_delayed_ref_node
*ref
;
2997 atomic_inc(&ref
->refs
);
2999 spin_unlock(&delayed_refs
->lock
);
3001 * Mutex was contended, block until it's
3002 * released and try again
3004 mutex_lock(&head
->mutex
);
3005 mutex_unlock(&head
->mutex
);
3007 btrfs_put_delayed_ref(ref
);
3013 node
= rb_next(node
);
3015 spin_unlock(&delayed_refs
->lock
);
3020 assert_qgroups_uptodate(trans
);
3021 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
3025 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
3026 struct btrfs_root
*root
,
3027 u64 bytenr
, u64 num_bytes
, u64 flags
,
3028 int level
, int is_data
)
3030 struct btrfs_delayed_extent_op
*extent_op
;
3033 extent_op
= btrfs_alloc_delayed_extent_op();
3037 extent_op
->flags_to_set
= flags
;
3038 extent_op
->update_flags
= true;
3039 extent_op
->update_key
= false;
3040 extent_op
->is_data
= is_data
? true : false;
3041 extent_op
->level
= level
;
3043 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
3044 num_bytes
, extent_op
);
3046 btrfs_free_delayed_extent_op(extent_op
);
3050 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
3051 struct btrfs_root
*root
,
3052 struct btrfs_path
*path
,
3053 u64 objectid
, u64 offset
, u64 bytenr
)
3055 struct btrfs_delayed_ref_head
*head
;
3056 struct btrfs_delayed_ref_node
*ref
;
3057 struct btrfs_delayed_data_ref
*data_ref
;
3058 struct btrfs_delayed_ref_root
*delayed_refs
;
3061 delayed_refs
= &trans
->transaction
->delayed_refs
;
3062 spin_lock(&delayed_refs
->lock
);
3063 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
3065 spin_unlock(&delayed_refs
->lock
);
3069 if (!mutex_trylock(&head
->mutex
)) {
3070 atomic_inc(&head
->node
.refs
);
3071 spin_unlock(&delayed_refs
->lock
);
3073 btrfs_release_path(path
);
3076 * Mutex was contended, block until it's released and let
3079 mutex_lock(&head
->mutex
);
3080 mutex_unlock(&head
->mutex
);
3081 btrfs_put_delayed_ref(&head
->node
);
3084 spin_unlock(&delayed_refs
->lock
);
3086 spin_lock(&head
->lock
);
3087 list_for_each_entry(ref
, &head
->ref_list
, list
) {
3088 /* If it's a shared ref we know a cross reference exists */
3089 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
3094 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
3097 * If our ref doesn't match the one we're currently looking at
3098 * then we have a cross reference.
3100 if (data_ref
->root
!= root
->root_key
.objectid
||
3101 data_ref
->objectid
!= objectid
||
3102 data_ref
->offset
!= offset
) {
3107 spin_unlock(&head
->lock
);
3108 mutex_unlock(&head
->mutex
);
3112 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
3113 struct btrfs_root
*root
,
3114 struct btrfs_path
*path
,
3115 u64 objectid
, u64 offset
, u64 bytenr
)
3117 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3118 struct extent_buffer
*leaf
;
3119 struct btrfs_extent_data_ref
*ref
;
3120 struct btrfs_extent_inline_ref
*iref
;
3121 struct btrfs_extent_item
*ei
;
3122 struct btrfs_key key
;
3126 key
.objectid
= bytenr
;
3127 key
.offset
= (u64
)-1;
3128 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3130 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
3133 BUG_ON(ret
== 0); /* Corruption */
3136 if (path
->slots
[0] == 0)
3140 leaf
= path
->nodes
[0];
3141 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3143 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
3147 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3148 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3149 if (item_size
< sizeof(*ei
)) {
3150 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
3154 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
3156 if (item_size
!= sizeof(*ei
) +
3157 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
3160 if (btrfs_extent_generation(leaf
, ei
) <=
3161 btrfs_root_last_snapshot(&root
->root_item
))
3164 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3165 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
3166 BTRFS_EXTENT_DATA_REF_KEY
)
3169 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3170 if (btrfs_extent_refs(leaf
, ei
) !=
3171 btrfs_extent_data_ref_count(leaf
, ref
) ||
3172 btrfs_extent_data_ref_root(leaf
, ref
) !=
3173 root
->root_key
.objectid
||
3174 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3175 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3183 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
3184 struct btrfs_root
*root
,
3185 u64 objectid
, u64 offset
, u64 bytenr
)
3187 struct btrfs_path
*path
;
3191 path
= btrfs_alloc_path();
3196 ret
= check_committed_ref(trans
, root
, path
, objectid
,
3198 if (ret
&& ret
!= -ENOENT
)
3201 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
3203 } while (ret2
== -EAGAIN
);
3205 if (ret2
&& ret2
!= -ENOENT
) {
3210 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3213 btrfs_free_path(path
);
3214 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3219 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3220 struct btrfs_root
*root
,
3221 struct extent_buffer
*buf
,
3222 int full_backref
, int inc
)
3229 struct btrfs_key key
;
3230 struct btrfs_file_extent_item
*fi
;
3234 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
3235 u64
, u64
, u64
, u64
, u64
, u64
);
3238 if (btrfs_is_testing(root
->fs_info
))
3241 ref_root
= btrfs_header_owner(buf
);
3242 nritems
= btrfs_header_nritems(buf
);
3243 level
= btrfs_header_level(buf
);
3245 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3249 process_func
= btrfs_inc_extent_ref
;
3251 process_func
= btrfs_free_extent
;
3254 parent
= buf
->start
;
3258 for (i
= 0; i
< nritems
; i
++) {
3260 btrfs_item_key_to_cpu(buf
, &key
, i
);
3261 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3263 fi
= btrfs_item_ptr(buf
, i
,
3264 struct btrfs_file_extent_item
);
3265 if (btrfs_file_extent_type(buf
, fi
) ==
3266 BTRFS_FILE_EXTENT_INLINE
)
3268 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3272 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3273 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3274 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3275 parent
, ref_root
, key
.objectid
,
3280 bytenr
= btrfs_node_blockptr(buf
, i
);
3281 num_bytes
= root
->nodesize
;
3282 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3283 parent
, ref_root
, level
- 1, 0);
3293 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3294 struct extent_buffer
*buf
, int full_backref
)
3296 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3299 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3300 struct extent_buffer
*buf
, int full_backref
)
3302 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3305 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3306 struct btrfs_root
*root
,
3307 struct btrfs_path
*path
,
3308 struct btrfs_block_group_cache
*cache
)
3311 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3313 struct extent_buffer
*leaf
;
3315 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3322 leaf
= path
->nodes
[0];
3323 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3324 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3325 btrfs_mark_buffer_dirty(leaf
);
3327 btrfs_release_path(path
);
3332 static struct btrfs_block_group_cache
*
3333 next_block_group(struct btrfs_root
*root
,
3334 struct btrfs_block_group_cache
*cache
)
3336 struct rb_node
*node
;
3338 spin_lock(&root
->fs_info
->block_group_cache_lock
);
3340 /* If our block group was removed, we need a full search. */
3341 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3342 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3344 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3345 btrfs_put_block_group(cache
);
3346 cache
= btrfs_lookup_first_block_group(root
->fs_info
,
3350 node
= rb_next(&cache
->cache_node
);
3351 btrfs_put_block_group(cache
);
3353 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3355 btrfs_get_block_group(cache
);
3358 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3362 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3363 struct btrfs_trans_handle
*trans
,
3364 struct btrfs_path
*path
)
3366 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
3367 struct inode
*inode
= NULL
;
3369 int dcs
= BTRFS_DC_ERROR
;
3375 * If this block group is smaller than 100 megs don't bother caching the
3378 if (block_group
->key
.offset
< (100 * SZ_1M
)) {
3379 spin_lock(&block_group
->lock
);
3380 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3381 spin_unlock(&block_group
->lock
);
3388 inode
= lookup_free_space_inode(root
, block_group
, path
);
3389 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3390 ret
= PTR_ERR(inode
);
3391 btrfs_release_path(path
);
3395 if (IS_ERR(inode
)) {
3399 if (block_group
->ro
)
3402 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3408 /* We've already setup this transaction, go ahead and exit */
3409 if (block_group
->cache_generation
== trans
->transid
&&
3410 i_size_read(inode
)) {
3411 dcs
= BTRFS_DC_SETUP
;
3416 * We want to set the generation to 0, that way if anything goes wrong
3417 * from here on out we know not to trust this cache when we load up next
3420 BTRFS_I(inode
)->generation
= 0;
3421 ret
= btrfs_update_inode(trans
, root
, inode
);
3424 * So theoretically we could recover from this, simply set the
3425 * super cache generation to 0 so we know to invalidate the
3426 * cache, but then we'd have to keep track of the block groups
3427 * that fail this way so we know we _have_ to reset this cache
3428 * before the next commit or risk reading stale cache. So to
3429 * limit our exposure to horrible edge cases lets just abort the
3430 * transaction, this only happens in really bad situations
3433 btrfs_abort_transaction(trans
, ret
);
3438 if (i_size_read(inode
) > 0) {
3439 ret
= btrfs_check_trunc_cache_free_space(root
,
3440 &root
->fs_info
->global_block_rsv
);
3444 ret
= btrfs_truncate_free_space_cache(root
, trans
, NULL
, inode
);
3449 spin_lock(&block_group
->lock
);
3450 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3451 !btrfs_test_opt(root
->fs_info
, SPACE_CACHE
)) {
3453 * don't bother trying to write stuff out _if_
3454 * a) we're not cached,
3455 * b) we're with nospace_cache mount option.
3457 dcs
= BTRFS_DC_WRITTEN
;
3458 spin_unlock(&block_group
->lock
);
3461 spin_unlock(&block_group
->lock
);
3464 * We hit an ENOSPC when setting up the cache in this transaction, just
3465 * skip doing the setup, we've already cleared the cache so we're safe.
3467 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
3473 * Try to preallocate enough space based on how big the block group is.
3474 * Keep in mind this has to include any pinned space which could end up
3475 * taking up quite a bit since it's not folded into the other space
3478 num_pages
= div_u64(block_group
->key
.offset
, SZ_256M
);
3483 num_pages
*= PAGE_SIZE
;
3485 ret
= btrfs_check_data_free_space(inode
, 0, num_pages
);
3489 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3490 num_pages
, num_pages
,
3493 * Our cache requires contiguous chunks so that we don't modify a bunch
3494 * of metadata or split extents when writing the cache out, which means
3495 * we can enospc if we are heavily fragmented in addition to just normal
3496 * out of space conditions. So if we hit this just skip setting up any
3497 * other block groups for this transaction, maybe we'll unpin enough
3498 * space the next time around.
3501 dcs
= BTRFS_DC_SETUP
;
3502 else if (ret
== -ENOSPC
)
3503 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
3504 btrfs_free_reserved_data_space(inode
, 0, num_pages
);
3509 btrfs_release_path(path
);
3511 spin_lock(&block_group
->lock
);
3512 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3513 block_group
->cache_generation
= trans
->transid
;
3514 block_group
->disk_cache_state
= dcs
;
3515 spin_unlock(&block_group
->lock
);
3520 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3521 struct btrfs_root
*root
)
3523 struct btrfs_block_group_cache
*cache
, *tmp
;
3524 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3525 struct btrfs_path
*path
;
3527 if (list_empty(&cur_trans
->dirty_bgs
) ||
3528 !btrfs_test_opt(root
->fs_info
, SPACE_CACHE
))
3531 path
= btrfs_alloc_path();
3535 /* Could add new block groups, use _safe just in case */
3536 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3538 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3539 cache_save_setup(cache
, trans
, path
);
3542 btrfs_free_path(path
);
3547 * transaction commit does final block group cache writeback during a
3548 * critical section where nothing is allowed to change the FS. This is
3549 * required in order for the cache to actually match the block group,
3550 * but can introduce a lot of latency into the commit.
3552 * So, btrfs_start_dirty_block_groups is here to kick off block group
3553 * cache IO. There's a chance we'll have to redo some of it if the
3554 * block group changes again during the commit, but it greatly reduces
3555 * the commit latency by getting rid of the easy block groups while
3556 * we're still allowing others to join the commit.
3558 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3559 struct btrfs_root
*root
)
3561 struct btrfs_block_group_cache
*cache
;
3562 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3565 struct btrfs_path
*path
= NULL
;
3567 struct list_head
*io
= &cur_trans
->io_bgs
;
3568 int num_started
= 0;
3571 spin_lock(&cur_trans
->dirty_bgs_lock
);
3572 if (list_empty(&cur_trans
->dirty_bgs
)) {
3573 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3576 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3577 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3581 * make sure all the block groups on our dirty list actually
3584 btrfs_create_pending_block_groups(trans
, root
);
3587 path
= btrfs_alloc_path();
3593 * cache_write_mutex is here only to save us from balance or automatic
3594 * removal of empty block groups deleting this block group while we are
3595 * writing out the cache
3597 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3598 while (!list_empty(&dirty
)) {
3599 cache
= list_first_entry(&dirty
,
3600 struct btrfs_block_group_cache
,
3603 * this can happen if something re-dirties a block
3604 * group that is already under IO. Just wait for it to
3605 * finish and then do it all again
3607 if (!list_empty(&cache
->io_list
)) {
3608 list_del_init(&cache
->io_list
);
3609 btrfs_wait_cache_io(root
, trans
, cache
,
3610 &cache
->io_ctl
, path
,
3611 cache
->key
.objectid
);
3612 btrfs_put_block_group(cache
);
3617 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3618 * if it should update the cache_state. Don't delete
3619 * until after we wait.
3621 * Since we're not running in the commit critical section
3622 * we need the dirty_bgs_lock to protect from update_block_group
3624 spin_lock(&cur_trans
->dirty_bgs_lock
);
3625 list_del_init(&cache
->dirty_list
);
3626 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3630 cache_save_setup(cache
, trans
, path
);
3632 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3633 cache
->io_ctl
.inode
= NULL
;
3634 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3635 if (ret
== 0 && cache
->io_ctl
.inode
) {
3640 * the cache_write_mutex is protecting
3643 list_add_tail(&cache
->io_list
, io
);
3646 * if we failed to write the cache, the
3647 * generation will be bad and life goes on
3653 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3655 * Our block group might still be attached to the list
3656 * of new block groups in the transaction handle of some
3657 * other task (struct btrfs_trans_handle->new_bgs). This
3658 * means its block group item isn't yet in the extent
3659 * tree. If this happens ignore the error, as we will
3660 * try again later in the critical section of the
3661 * transaction commit.
3663 if (ret
== -ENOENT
) {
3665 spin_lock(&cur_trans
->dirty_bgs_lock
);
3666 if (list_empty(&cache
->dirty_list
)) {
3667 list_add_tail(&cache
->dirty_list
,
3668 &cur_trans
->dirty_bgs
);
3669 btrfs_get_block_group(cache
);
3671 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3673 btrfs_abort_transaction(trans
, ret
);
3677 /* if its not on the io list, we need to put the block group */
3679 btrfs_put_block_group(cache
);
3685 * Avoid blocking other tasks for too long. It might even save
3686 * us from writing caches for block groups that are going to be
3689 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3690 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3692 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3695 * go through delayed refs for all the stuff we've just kicked off
3696 * and then loop back (just once)
3698 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
3699 if (!ret
&& loops
== 0) {
3701 spin_lock(&cur_trans
->dirty_bgs_lock
);
3702 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3704 * dirty_bgs_lock protects us from concurrent block group
3705 * deletes too (not just cache_write_mutex).
3707 if (!list_empty(&dirty
)) {
3708 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3711 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3714 btrfs_free_path(path
);
3718 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3719 struct btrfs_root
*root
)
3721 struct btrfs_block_group_cache
*cache
;
3722 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3725 struct btrfs_path
*path
;
3726 struct list_head
*io
= &cur_trans
->io_bgs
;
3727 int num_started
= 0;
3729 path
= btrfs_alloc_path();
3734 * Even though we are in the critical section of the transaction commit,
3735 * we can still have concurrent tasks adding elements to this
3736 * transaction's list of dirty block groups. These tasks correspond to
3737 * endio free space workers started when writeback finishes for a
3738 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3739 * allocate new block groups as a result of COWing nodes of the root
3740 * tree when updating the free space inode. The writeback for the space
3741 * caches is triggered by an earlier call to
3742 * btrfs_start_dirty_block_groups() and iterations of the following
3744 * Also we want to do the cache_save_setup first and then run the
3745 * delayed refs to make sure we have the best chance at doing this all
3748 spin_lock(&cur_trans
->dirty_bgs_lock
);
3749 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3750 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3751 struct btrfs_block_group_cache
,
3755 * this can happen if cache_save_setup re-dirties a block
3756 * group that is already under IO. Just wait for it to
3757 * finish and then do it all again
3759 if (!list_empty(&cache
->io_list
)) {
3760 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3761 list_del_init(&cache
->io_list
);
3762 btrfs_wait_cache_io(root
, trans
, cache
,
3763 &cache
->io_ctl
, path
,
3764 cache
->key
.objectid
);
3765 btrfs_put_block_group(cache
);
3766 spin_lock(&cur_trans
->dirty_bgs_lock
);
3770 * don't remove from the dirty list until after we've waited
3773 list_del_init(&cache
->dirty_list
);
3774 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3777 cache_save_setup(cache
, trans
, path
);
3780 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long) -1);
3782 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3783 cache
->io_ctl
.inode
= NULL
;
3784 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3785 if (ret
== 0 && cache
->io_ctl
.inode
) {
3788 list_add_tail(&cache
->io_list
, io
);
3791 * if we failed to write the cache, the
3792 * generation will be bad and life goes on
3798 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3800 * One of the free space endio workers might have
3801 * created a new block group while updating a free space
3802 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3803 * and hasn't released its transaction handle yet, in
3804 * which case the new block group is still attached to
3805 * its transaction handle and its creation has not
3806 * finished yet (no block group item in the extent tree
3807 * yet, etc). If this is the case, wait for all free
3808 * space endio workers to finish and retry. This is a
3809 * a very rare case so no need for a more efficient and
3812 if (ret
== -ENOENT
) {
3813 wait_event(cur_trans
->writer_wait
,
3814 atomic_read(&cur_trans
->num_writers
) == 1);
3815 ret
= write_one_cache_group(trans
, root
, path
,
3819 btrfs_abort_transaction(trans
, ret
);
3822 /* if its not on the io list, we need to put the block group */
3824 btrfs_put_block_group(cache
);
3825 spin_lock(&cur_trans
->dirty_bgs_lock
);
3827 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3829 while (!list_empty(io
)) {
3830 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3832 list_del_init(&cache
->io_list
);
3833 btrfs_wait_cache_io(root
, trans
, cache
,
3834 &cache
->io_ctl
, path
, cache
->key
.objectid
);
3835 btrfs_put_block_group(cache
);
3838 btrfs_free_path(path
);
3842 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3844 struct btrfs_block_group_cache
*block_group
;
3847 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3848 if (!block_group
|| block_group
->ro
)
3851 btrfs_put_block_group(block_group
);
3855 bool btrfs_inc_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3857 struct btrfs_block_group_cache
*bg
;
3860 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3864 spin_lock(&bg
->lock
);
3868 atomic_inc(&bg
->nocow_writers
);
3869 spin_unlock(&bg
->lock
);
3871 /* no put on block group, done by btrfs_dec_nocow_writers */
3873 btrfs_put_block_group(bg
);
3879 void btrfs_dec_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3881 struct btrfs_block_group_cache
*bg
;
3883 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3885 if (atomic_dec_and_test(&bg
->nocow_writers
))
3886 wake_up_atomic_t(&bg
->nocow_writers
);
3888 * Once for our lookup and once for the lookup done by a previous call
3889 * to btrfs_inc_nocow_writers()
3891 btrfs_put_block_group(bg
);
3892 btrfs_put_block_group(bg
);
3895 static int btrfs_wait_nocow_writers_atomic_t(atomic_t
*a
)
3901 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache
*bg
)
3903 wait_on_atomic_t(&bg
->nocow_writers
,
3904 btrfs_wait_nocow_writers_atomic_t
,
3905 TASK_UNINTERRUPTIBLE
);
3908 static const char *alloc_name(u64 flags
)
3911 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3913 case BTRFS_BLOCK_GROUP_METADATA
:
3915 case BTRFS_BLOCK_GROUP_DATA
:
3917 case BTRFS_BLOCK_GROUP_SYSTEM
:
3921 return "invalid-combination";
3925 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3926 u64 total_bytes
, u64 bytes_used
,
3928 struct btrfs_space_info
**space_info
)
3930 struct btrfs_space_info
*found
;
3935 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3936 BTRFS_BLOCK_GROUP_RAID10
))
3941 found
= __find_space_info(info
, flags
);
3943 spin_lock(&found
->lock
);
3944 found
->total_bytes
+= total_bytes
;
3945 found
->disk_total
+= total_bytes
* factor
;
3946 found
->bytes_used
+= bytes_used
;
3947 found
->disk_used
+= bytes_used
* factor
;
3948 found
->bytes_readonly
+= bytes_readonly
;
3949 if (total_bytes
> 0)
3951 space_info_add_new_bytes(info
, found
, total_bytes
-
3952 bytes_used
- bytes_readonly
);
3953 spin_unlock(&found
->lock
);
3954 *space_info
= found
;
3957 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3961 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0, GFP_KERNEL
);
3967 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3968 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3969 init_rwsem(&found
->groups_sem
);
3970 spin_lock_init(&found
->lock
);
3971 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3972 found
->total_bytes
= total_bytes
;
3973 found
->disk_total
= total_bytes
* factor
;
3974 found
->bytes_used
= bytes_used
;
3975 found
->disk_used
= bytes_used
* factor
;
3976 found
->bytes_pinned
= 0;
3977 found
->bytes_reserved
= 0;
3978 found
->bytes_readonly
= bytes_readonly
;
3979 found
->bytes_may_use
= 0;
3981 found
->max_extent_size
= 0;
3982 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3983 found
->chunk_alloc
= 0;
3985 init_waitqueue_head(&found
->wait
);
3986 INIT_LIST_HEAD(&found
->ro_bgs
);
3987 INIT_LIST_HEAD(&found
->tickets
);
3988 INIT_LIST_HEAD(&found
->priority_tickets
);
3990 ret
= kobject_init_and_add(&found
->kobj
, &space_info_ktype
,
3991 info
->space_info_kobj
, "%s",
3992 alloc_name(found
->flags
));
3998 *space_info
= found
;
3999 list_add_rcu(&found
->list
, &info
->space_info
);
4000 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4001 info
->data_sinfo
= found
;
4006 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
4008 u64 extra_flags
= chunk_to_extended(flags
) &
4009 BTRFS_EXTENDED_PROFILE_MASK
;
4011 write_seqlock(&fs_info
->profiles_lock
);
4012 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4013 fs_info
->avail_data_alloc_bits
|= extra_flags
;
4014 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4015 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
4016 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4017 fs_info
->avail_system_alloc_bits
|= extra_flags
;
4018 write_sequnlock(&fs_info
->profiles_lock
);
4022 * returns target flags in extended format or 0 if restripe for this
4023 * chunk_type is not in progress
4025 * should be called with either volume_mutex or balance_lock held
4027 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
4029 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4035 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
4036 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4037 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
4038 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
4039 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4040 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
4041 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
4042 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4043 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
4050 * @flags: available profiles in extended format (see ctree.h)
4052 * Returns reduced profile in chunk format. If profile changing is in
4053 * progress (either running or paused) picks the target profile (if it's
4054 * already available), otherwise falls back to plain reducing.
4056 static u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
4058 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
4064 * see if restripe for this chunk_type is in progress, if so
4065 * try to reduce to the target profile
4067 spin_lock(&root
->fs_info
->balance_lock
);
4068 target
= get_restripe_target(root
->fs_info
, flags
);
4070 /* pick target profile only if it's already available */
4071 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
4072 spin_unlock(&root
->fs_info
->balance_lock
);
4073 return extended_to_chunk(target
);
4076 spin_unlock(&root
->fs_info
->balance_lock
);
4078 /* First, mask out the RAID levels which aren't possible */
4079 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
4080 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
4081 allowed
|= btrfs_raid_group
[raid_type
];
4085 if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
4086 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
4087 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
4088 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
4089 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
4090 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
4091 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
4092 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
4093 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
4094 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
4096 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
4098 return extended_to_chunk(flags
| allowed
);
4101 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 orig_flags
)
4108 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
4110 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4111 flags
|= root
->fs_info
->avail_data_alloc_bits
;
4112 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4113 flags
|= root
->fs_info
->avail_system_alloc_bits
;
4114 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4115 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
4116 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
4118 return btrfs_reduce_alloc_profile(root
, flags
);
4121 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
4127 flags
= BTRFS_BLOCK_GROUP_DATA
;
4128 else if (root
== root
->fs_info
->chunk_root
)
4129 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
4131 flags
= BTRFS_BLOCK_GROUP_METADATA
;
4133 ret
= get_alloc_profile(root
, flags
);
4137 int btrfs_alloc_data_chunk_ondemand(struct inode
*inode
, u64 bytes
)
4139 struct btrfs_space_info
*data_sinfo
;
4140 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4141 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4144 int need_commit
= 2;
4145 int have_pinned_space
;
4147 /* make sure bytes are sectorsize aligned */
4148 bytes
= ALIGN(bytes
, root
->sectorsize
);
4150 if (btrfs_is_free_space_inode(inode
)) {
4152 ASSERT(current
->journal_info
);
4155 data_sinfo
= fs_info
->data_sinfo
;
4160 /* make sure we have enough space to handle the data first */
4161 spin_lock(&data_sinfo
->lock
);
4162 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
4163 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
4164 data_sinfo
->bytes_may_use
;
4166 if (used
+ bytes
> data_sinfo
->total_bytes
) {
4167 struct btrfs_trans_handle
*trans
;
4170 * if we don't have enough free bytes in this space then we need
4171 * to alloc a new chunk.
4173 if (!data_sinfo
->full
) {
4176 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
4177 spin_unlock(&data_sinfo
->lock
);
4179 alloc_target
= btrfs_get_alloc_profile(root
, 1);
4181 * It is ugly that we don't call nolock join
4182 * transaction for the free space inode case here.
4183 * But it is safe because we only do the data space
4184 * reservation for the free space cache in the
4185 * transaction context, the common join transaction
4186 * just increase the counter of the current transaction
4187 * handler, doesn't try to acquire the trans_lock of
4190 trans
= btrfs_join_transaction(root
);
4192 return PTR_ERR(trans
);
4194 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4196 CHUNK_ALLOC_NO_FORCE
);
4197 btrfs_end_transaction(trans
, root
);
4202 have_pinned_space
= 1;
4208 data_sinfo
= fs_info
->data_sinfo
;
4214 * If we don't have enough pinned space to deal with this
4215 * allocation, and no removed chunk in current transaction,
4216 * don't bother committing the transaction.
4218 have_pinned_space
= percpu_counter_compare(
4219 &data_sinfo
->total_bytes_pinned
,
4220 used
+ bytes
- data_sinfo
->total_bytes
);
4221 spin_unlock(&data_sinfo
->lock
);
4223 /* commit the current transaction and try again */
4226 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
4229 if (need_commit
> 0) {
4230 btrfs_start_delalloc_roots(fs_info
, 0, -1);
4231 btrfs_wait_ordered_roots(fs_info
, -1, 0, (u64
)-1);
4234 trans
= btrfs_join_transaction(root
);
4236 return PTR_ERR(trans
);
4237 if (have_pinned_space
>= 0 ||
4238 test_bit(BTRFS_TRANS_HAVE_FREE_BGS
,
4239 &trans
->transaction
->flags
) ||
4241 ret
= btrfs_commit_transaction(trans
, root
);
4245 * The cleaner kthread might still be doing iput
4246 * operations. Wait for it to finish so that
4247 * more space is released.
4249 mutex_lock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4250 mutex_unlock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4253 btrfs_end_transaction(trans
, root
);
4257 trace_btrfs_space_reservation(root
->fs_info
,
4258 "space_info:enospc",
4259 data_sinfo
->flags
, bytes
, 1);
4262 data_sinfo
->bytes_may_use
+= bytes
;
4263 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4264 data_sinfo
->flags
, bytes
, 1);
4265 spin_unlock(&data_sinfo
->lock
);
4271 * New check_data_free_space() with ability for precious data reservation
4272 * Will replace old btrfs_check_data_free_space(), but for patch split,
4273 * add a new function first and then replace it.
4275 int btrfs_check_data_free_space(struct inode
*inode
, u64 start
, u64 len
)
4277 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4280 /* align the range */
4281 len
= round_up(start
+ len
, root
->sectorsize
) -
4282 round_down(start
, root
->sectorsize
);
4283 start
= round_down(start
, root
->sectorsize
);
4285 ret
= btrfs_alloc_data_chunk_ondemand(inode
, len
);
4290 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4292 * TODO: Find a good method to avoid reserve data space for NOCOW
4293 * range, but don't impact performance on quota disable case.
4295 ret
= btrfs_qgroup_reserve_data(inode
, start
, len
);
4300 * Called if we need to clear a data reservation for this inode
4301 * Normally in a error case.
4303 * This one will *NOT* use accurate qgroup reserved space API, just for case
4304 * which we can't sleep and is sure it won't affect qgroup reserved space.
4305 * Like clear_bit_hook().
4307 void btrfs_free_reserved_data_space_noquota(struct inode
*inode
, u64 start
,
4310 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4311 struct btrfs_space_info
*data_sinfo
;
4313 /* Make sure the range is aligned to sectorsize */
4314 len
= round_up(start
+ len
, root
->sectorsize
) -
4315 round_down(start
, root
->sectorsize
);
4316 start
= round_down(start
, root
->sectorsize
);
4318 data_sinfo
= root
->fs_info
->data_sinfo
;
4319 spin_lock(&data_sinfo
->lock
);
4320 if (WARN_ON(data_sinfo
->bytes_may_use
< len
))
4321 data_sinfo
->bytes_may_use
= 0;
4323 data_sinfo
->bytes_may_use
-= len
;
4324 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4325 data_sinfo
->flags
, len
, 0);
4326 spin_unlock(&data_sinfo
->lock
);
4330 * Called if we need to clear a data reservation for this inode
4331 * Normally in a error case.
4333 * This one will handle the per-inode data rsv map for accurate reserved
4336 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 start
, u64 len
)
4338 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4339 btrfs_qgroup_free_data(inode
, start
, len
);
4342 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
4344 struct list_head
*head
= &info
->space_info
;
4345 struct btrfs_space_info
*found
;
4348 list_for_each_entry_rcu(found
, head
, list
) {
4349 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4350 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4355 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4357 return (global
->size
<< 1);
4360 static int should_alloc_chunk(struct btrfs_root
*root
,
4361 struct btrfs_space_info
*sinfo
, int force
)
4363 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4364 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
4365 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
4368 if (force
== CHUNK_ALLOC_FORCE
)
4372 * We need to take into account the global rsv because for all intents
4373 * and purposes it's used space. Don't worry about locking the
4374 * global_rsv, it doesn't change except when the transaction commits.
4376 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4377 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
4380 * in limited mode, we want to have some free space up to
4381 * about 1% of the FS size.
4383 if (force
== CHUNK_ALLOC_LIMITED
) {
4384 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
4385 thresh
= max_t(u64
, SZ_64M
, div_factor_fine(thresh
, 1));
4387 if (num_bytes
- num_allocated
< thresh
)
4391 if (num_allocated
+ SZ_2M
< div_factor(num_bytes
, 8))
4396 static u64
get_profile_num_devs(struct btrfs_root
*root
, u64 type
)
4400 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4401 BTRFS_BLOCK_GROUP_RAID0
|
4402 BTRFS_BLOCK_GROUP_RAID5
|
4403 BTRFS_BLOCK_GROUP_RAID6
))
4404 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
4405 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4408 num_dev
= 1; /* DUP or single */
4414 * If @is_allocation is true, reserve space in the system space info necessary
4415 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4418 void check_system_chunk(struct btrfs_trans_handle
*trans
,
4419 struct btrfs_root
*root
,
4422 struct btrfs_space_info
*info
;
4429 * Needed because we can end up allocating a system chunk and for an
4430 * atomic and race free space reservation in the chunk block reserve.
4432 ASSERT(mutex_is_locked(&root
->fs_info
->chunk_mutex
));
4434 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4435 spin_lock(&info
->lock
);
4436 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
4437 info
->bytes_reserved
- info
->bytes_readonly
-
4438 info
->bytes_may_use
;
4439 spin_unlock(&info
->lock
);
4441 num_devs
= get_profile_num_devs(root
, type
);
4443 /* num_devs device items to update and 1 chunk item to add or remove */
4444 thresh
= btrfs_calc_trunc_metadata_size(root
, num_devs
) +
4445 btrfs_calc_trans_metadata_size(root
, 1);
4447 if (left
< thresh
&& btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
4448 btrfs_info(root
->fs_info
, "left=%llu, need=%llu, flags=%llu",
4449 left
, thresh
, type
);
4450 dump_space_info(info
, 0, 0);
4453 if (left
< thresh
) {
4456 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
4458 * Ignore failure to create system chunk. We might end up not
4459 * needing it, as we might not need to COW all nodes/leafs from
4460 * the paths we visit in the chunk tree (they were already COWed
4461 * or created in the current transaction for example).
4463 ret
= btrfs_alloc_chunk(trans
, root
, flags
);
4467 ret
= btrfs_block_rsv_add(root
->fs_info
->chunk_root
,
4468 &root
->fs_info
->chunk_block_rsv
,
4469 thresh
, BTRFS_RESERVE_NO_FLUSH
);
4471 trans
->chunk_bytes_reserved
+= thresh
;
4475 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4476 struct btrfs_root
*extent_root
, u64 flags
, int force
)
4478 struct btrfs_space_info
*space_info
;
4479 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
4480 int wait_for_alloc
= 0;
4483 /* Don't re-enter if we're already allocating a chunk */
4484 if (trans
->allocating_chunk
)
4487 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
4489 ret
= update_space_info(extent_root
->fs_info
, flags
,
4490 0, 0, 0, &space_info
);
4491 BUG_ON(ret
); /* -ENOMEM */
4493 BUG_ON(!space_info
); /* Logic error */
4496 spin_lock(&space_info
->lock
);
4497 if (force
< space_info
->force_alloc
)
4498 force
= space_info
->force_alloc
;
4499 if (space_info
->full
) {
4500 if (should_alloc_chunk(extent_root
, space_info
, force
))
4504 spin_unlock(&space_info
->lock
);
4508 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
4509 spin_unlock(&space_info
->lock
);
4511 } else if (space_info
->chunk_alloc
) {
4514 space_info
->chunk_alloc
= 1;
4517 spin_unlock(&space_info
->lock
);
4519 mutex_lock(&fs_info
->chunk_mutex
);
4522 * The chunk_mutex is held throughout the entirety of a chunk
4523 * allocation, so once we've acquired the chunk_mutex we know that the
4524 * other guy is done and we need to recheck and see if we should
4527 if (wait_for_alloc
) {
4528 mutex_unlock(&fs_info
->chunk_mutex
);
4533 trans
->allocating_chunk
= true;
4536 * If we have mixed data/metadata chunks we want to make sure we keep
4537 * allocating mixed chunks instead of individual chunks.
4539 if (btrfs_mixed_space_info(space_info
))
4540 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4543 * if we're doing a data chunk, go ahead and make sure that
4544 * we keep a reasonable number of metadata chunks allocated in the
4547 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4548 fs_info
->data_chunk_allocations
++;
4549 if (!(fs_info
->data_chunk_allocations
%
4550 fs_info
->metadata_ratio
))
4551 force_metadata_allocation(fs_info
);
4555 * Check if we have enough space in SYSTEM chunk because we may need
4556 * to update devices.
4558 check_system_chunk(trans
, extent_root
, flags
);
4560 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
4561 trans
->allocating_chunk
= false;
4563 spin_lock(&space_info
->lock
);
4564 if (ret
< 0 && ret
!= -ENOSPC
)
4567 space_info
->full
= 1;
4571 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4573 space_info
->chunk_alloc
= 0;
4574 spin_unlock(&space_info
->lock
);
4575 mutex_unlock(&fs_info
->chunk_mutex
);
4577 * When we allocate a new chunk we reserve space in the chunk block
4578 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4579 * add new nodes/leafs to it if we end up needing to do it when
4580 * inserting the chunk item and updating device items as part of the
4581 * second phase of chunk allocation, performed by
4582 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4583 * large number of new block groups to create in our transaction
4584 * handle's new_bgs list to avoid exhausting the chunk block reserve
4585 * in extreme cases - like having a single transaction create many new
4586 * block groups when starting to write out the free space caches of all
4587 * the block groups that were made dirty during the lifetime of the
4590 if (trans
->can_flush_pending_bgs
&&
4591 trans
->chunk_bytes_reserved
>= (u64
)SZ_2M
) {
4592 btrfs_create_pending_block_groups(trans
, extent_root
);
4593 btrfs_trans_release_chunk_metadata(trans
);
4598 static int can_overcommit(struct btrfs_root
*root
,
4599 struct btrfs_space_info
*space_info
, u64 bytes
,
4600 enum btrfs_reserve_flush_enum flush
)
4602 struct btrfs_block_rsv
*global_rsv
;
4608 /* Don't overcommit when in mixed mode. */
4609 if (space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4612 BUG_ON(root
->fs_info
== NULL
);
4613 global_rsv
= &root
->fs_info
->global_block_rsv
;
4614 profile
= btrfs_get_alloc_profile(root
, 0);
4615 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4616 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
4619 * We only want to allow over committing if we have lots of actual space
4620 * free, but if we don't have enough space to handle the global reserve
4621 * space then we could end up having a real enospc problem when trying
4622 * to allocate a chunk or some other such important allocation.
4624 spin_lock(&global_rsv
->lock
);
4625 space_size
= calc_global_rsv_need_space(global_rsv
);
4626 spin_unlock(&global_rsv
->lock
);
4627 if (used
+ space_size
>= space_info
->total_bytes
)
4630 used
+= space_info
->bytes_may_use
;
4632 spin_lock(&root
->fs_info
->free_chunk_lock
);
4633 avail
= root
->fs_info
->free_chunk_space
;
4634 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4637 * If we have dup, raid1 or raid10 then only half of the free
4638 * space is actually useable. For raid56, the space info used
4639 * doesn't include the parity drive, so we don't have to
4642 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4643 BTRFS_BLOCK_GROUP_RAID1
|
4644 BTRFS_BLOCK_GROUP_RAID10
))
4648 * If we aren't flushing all things, let us overcommit up to
4649 * 1/2th of the space. If we can flush, don't let us overcommit
4650 * too much, let it overcommit up to 1/8 of the space.
4652 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4657 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4662 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root
*root
,
4663 unsigned long nr_pages
, int nr_items
)
4665 struct super_block
*sb
= root
->fs_info
->sb
;
4667 if (down_read_trylock(&sb
->s_umount
)) {
4668 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4669 up_read(&sb
->s_umount
);
4672 * We needn't worry the filesystem going from r/w to r/o though
4673 * we don't acquire ->s_umount mutex, because the filesystem
4674 * should guarantee the delalloc inodes list be empty after
4675 * the filesystem is readonly(all dirty pages are written to
4678 btrfs_start_delalloc_roots(root
->fs_info
, 0, nr_items
);
4679 if (!current
->journal_info
)
4680 btrfs_wait_ordered_roots(root
->fs_info
, nr_items
,
4685 static inline int calc_reclaim_items_nr(struct btrfs_root
*root
, u64 to_reclaim
)
4690 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4691 nr
= (int)div64_u64(to_reclaim
, bytes
);
4697 #define EXTENT_SIZE_PER_ITEM SZ_256K
4700 * shrink metadata reservation for delalloc
4702 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4705 struct btrfs_block_rsv
*block_rsv
;
4706 struct btrfs_space_info
*space_info
;
4707 struct btrfs_trans_handle
*trans
;
4711 unsigned long nr_pages
;
4714 enum btrfs_reserve_flush_enum flush
;
4716 /* Calc the number of the pages we need flush for space reservation */
4717 items
= calc_reclaim_items_nr(root
, to_reclaim
);
4718 to_reclaim
= (u64
)items
* EXTENT_SIZE_PER_ITEM
;
4720 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4721 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4722 space_info
= block_rsv
->space_info
;
4724 delalloc_bytes
= percpu_counter_sum_positive(
4725 &root
->fs_info
->delalloc_bytes
);
4726 if (delalloc_bytes
== 0) {
4730 btrfs_wait_ordered_roots(root
->fs_info
, items
,
4736 while (delalloc_bytes
&& loops
< 3) {
4737 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4738 nr_pages
= max_reclaim
>> PAGE_SHIFT
;
4739 btrfs_writeback_inodes_sb_nr(root
, nr_pages
, items
);
4741 * We need to wait for the async pages to actually start before
4744 max_reclaim
= atomic_read(&root
->fs_info
->async_delalloc_pages
);
4748 if (max_reclaim
<= nr_pages
)
4751 max_reclaim
-= nr_pages
;
4753 wait_event(root
->fs_info
->async_submit_wait
,
4754 atomic_read(&root
->fs_info
->async_delalloc_pages
) <=
4758 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4760 flush
= BTRFS_RESERVE_NO_FLUSH
;
4761 spin_lock(&space_info
->lock
);
4762 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4763 spin_unlock(&space_info
->lock
);
4766 if (list_empty(&space_info
->tickets
) &&
4767 list_empty(&space_info
->priority_tickets
)) {
4768 spin_unlock(&space_info
->lock
);
4771 spin_unlock(&space_info
->lock
);
4774 if (wait_ordered
&& !trans
) {
4775 btrfs_wait_ordered_roots(root
->fs_info
, items
,
4778 time_left
= schedule_timeout_killable(1);
4782 delalloc_bytes
= percpu_counter_sum_positive(
4783 &root
->fs_info
->delalloc_bytes
);
4788 * maybe_commit_transaction - possibly commit the transaction if its ok to
4789 * @root - the root we're allocating for
4790 * @bytes - the number of bytes we want to reserve
4791 * @force - force the commit
4793 * This will check to make sure that committing the transaction will actually
4794 * get us somewhere and then commit the transaction if it does. Otherwise it
4795 * will return -ENOSPC.
4797 static int may_commit_transaction(struct btrfs_root
*root
,
4798 struct btrfs_space_info
*space_info
,
4799 u64 bytes
, int force
)
4801 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
4802 struct btrfs_trans_handle
*trans
;
4804 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4811 /* See if there is enough pinned space to make this reservation */
4812 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4817 * See if there is some space in the delayed insertion reservation for
4820 if (space_info
!= delayed_rsv
->space_info
)
4823 spin_lock(&delayed_rsv
->lock
);
4824 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4825 bytes
- delayed_rsv
->size
) >= 0) {
4826 spin_unlock(&delayed_rsv
->lock
);
4829 spin_unlock(&delayed_rsv
->lock
);
4832 trans
= btrfs_join_transaction(root
);
4836 return btrfs_commit_transaction(trans
, root
);
4839 struct reserve_ticket
{
4842 struct list_head list
;
4843 wait_queue_head_t wait
;
4846 static int flush_space(struct btrfs_root
*root
,
4847 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4848 u64 orig_bytes
, int state
)
4850 struct btrfs_trans_handle
*trans
;
4855 case FLUSH_DELAYED_ITEMS_NR
:
4856 case FLUSH_DELAYED_ITEMS
:
4857 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4858 nr
= calc_reclaim_items_nr(root
, num_bytes
) * 2;
4862 trans
= btrfs_join_transaction(root
);
4863 if (IS_ERR(trans
)) {
4864 ret
= PTR_ERR(trans
);
4867 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
4868 btrfs_end_transaction(trans
, root
);
4870 case FLUSH_DELALLOC
:
4871 case FLUSH_DELALLOC_WAIT
:
4872 shrink_delalloc(root
, num_bytes
* 2, orig_bytes
,
4873 state
== FLUSH_DELALLOC_WAIT
);
4876 trans
= btrfs_join_transaction(root
);
4877 if (IS_ERR(trans
)) {
4878 ret
= PTR_ERR(trans
);
4881 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4882 btrfs_get_alloc_profile(root
, 0),
4883 CHUNK_ALLOC_NO_FORCE
);
4884 btrfs_end_transaction(trans
, root
);
4889 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4896 trace_btrfs_flush_space(root
->fs_info
, space_info
->flags
, num_bytes
,
4897 orig_bytes
, state
, ret
);
4902 btrfs_calc_reclaim_metadata_size(struct btrfs_root
*root
,
4903 struct btrfs_space_info
*space_info
)
4905 struct reserve_ticket
*ticket
;
4910 to_reclaim
= min_t(u64
, num_online_cpus() * SZ_1M
, SZ_16M
);
4911 if (can_overcommit(root
, space_info
, to_reclaim
,
4912 BTRFS_RESERVE_FLUSH_ALL
))
4915 list_for_each_entry(ticket
, &space_info
->tickets
, list
)
4916 to_reclaim
+= ticket
->bytes
;
4917 list_for_each_entry(ticket
, &space_info
->priority_tickets
, list
)
4918 to_reclaim
+= ticket
->bytes
;
4922 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4923 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4924 space_info
->bytes_may_use
;
4925 if (can_overcommit(root
, space_info
, SZ_1M
, BTRFS_RESERVE_FLUSH_ALL
))
4926 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4928 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4930 if (used
> expected
)
4931 to_reclaim
= used
- expected
;
4934 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
4935 space_info
->bytes_reserved
);
4939 static inline int need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4940 struct btrfs_root
*root
, u64 used
)
4942 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
4944 /* If we're just plain full then async reclaim just slows us down. */
4945 if ((space_info
->bytes_used
+ space_info
->bytes_reserved
) >= thresh
)
4948 if (!btrfs_calc_reclaim_metadata_size(root
, space_info
))
4951 return (used
>= thresh
&& !btrfs_fs_closing(root
->fs_info
) &&
4952 !test_bit(BTRFS_FS_STATE_REMOUNTING
,
4953 &root
->fs_info
->fs_state
));
4956 static void wake_all_tickets(struct list_head
*head
)
4958 struct reserve_ticket
*ticket
;
4960 while (!list_empty(head
)) {
4961 ticket
= list_first_entry(head
, struct reserve_ticket
, list
);
4962 list_del_init(&ticket
->list
);
4963 ticket
->error
= -ENOSPC
;
4964 wake_up(&ticket
->wait
);
4969 * This is for normal flushers, we can wait all goddamned day if we want to. We
4970 * will loop and continuously try to flush as long as we are making progress.
4971 * We count progress as clearing off tickets each time we have to loop.
4973 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
4975 struct reserve_ticket
*last_ticket
= NULL
;
4976 struct btrfs_fs_info
*fs_info
;
4977 struct btrfs_space_info
*space_info
;
4980 int commit_cycles
= 0;
4982 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
4983 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4985 spin_lock(&space_info
->lock
);
4986 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
4989 space_info
->flush
= 0;
4990 spin_unlock(&space_info
->lock
);
4993 last_ticket
= list_first_entry(&space_info
->tickets
,
4994 struct reserve_ticket
, list
);
4995 spin_unlock(&space_info
->lock
);
4997 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4999 struct reserve_ticket
*ticket
;
5002 ret
= flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
5003 to_reclaim
, flush_state
);
5004 spin_lock(&space_info
->lock
);
5005 if (list_empty(&space_info
->tickets
)) {
5006 space_info
->flush
= 0;
5007 spin_unlock(&space_info
->lock
);
5010 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
5012 ticket
= list_first_entry(&space_info
->tickets
,
5013 struct reserve_ticket
, list
);
5014 if (last_ticket
== ticket
) {
5017 last_ticket
= ticket
;
5018 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5023 if (flush_state
> COMMIT_TRANS
) {
5025 if (commit_cycles
> 2) {
5026 wake_all_tickets(&space_info
->tickets
);
5027 space_info
->flush
= 0;
5029 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5032 spin_unlock(&space_info
->lock
);
5033 } while (flush_state
<= COMMIT_TRANS
);
5036 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
5038 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
5041 static void priority_reclaim_metadata_space(struct btrfs_fs_info
*fs_info
,
5042 struct btrfs_space_info
*space_info
,
5043 struct reserve_ticket
*ticket
)
5046 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5048 spin_lock(&space_info
->lock
);
5049 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
5052 spin_unlock(&space_info
->lock
);
5055 spin_unlock(&space_info
->lock
);
5058 flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
5059 to_reclaim
, flush_state
);
5061 spin_lock(&space_info
->lock
);
5062 if (ticket
->bytes
== 0) {
5063 spin_unlock(&space_info
->lock
);
5066 spin_unlock(&space_info
->lock
);
5069 * Priority flushers can't wait on delalloc without
5072 if (flush_state
== FLUSH_DELALLOC
||
5073 flush_state
== FLUSH_DELALLOC_WAIT
)
5074 flush_state
= ALLOC_CHUNK
;
5075 } while (flush_state
< COMMIT_TRANS
);
5078 static int wait_reserve_ticket(struct btrfs_fs_info
*fs_info
,
5079 struct btrfs_space_info
*space_info
,
5080 struct reserve_ticket
*ticket
, u64 orig_bytes
)
5086 spin_lock(&space_info
->lock
);
5087 while (ticket
->bytes
> 0 && ticket
->error
== 0) {
5088 ret
= prepare_to_wait_event(&ticket
->wait
, &wait
, TASK_KILLABLE
);
5093 spin_unlock(&space_info
->lock
);
5097 finish_wait(&ticket
->wait
, &wait
);
5098 spin_lock(&space_info
->lock
);
5101 ret
= ticket
->error
;
5102 if (!list_empty(&ticket
->list
))
5103 list_del_init(&ticket
->list
);
5104 if (ticket
->bytes
&& ticket
->bytes
< orig_bytes
) {
5105 u64 num_bytes
= orig_bytes
- ticket
->bytes
;
5106 space_info
->bytes_may_use
-= num_bytes
;
5107 trace_btrfs_space_reservation(fs_info
, "space_info",
5108 space_info
->flags
, num_bytes
, 0);
5110 spin_unlock(&space_info
->lock
);
5116 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5117 * @root - the root we're allocating for
5118 * @space_info - the space info we want to allocate from
5119 * @orig_bytes - the number of bytes we want
5120 * @flush - whether or not we can flush to make our reservation
5122 * This will reserve orig_bytes number of bytes from the space info associated
5123 * with the block_rsv. If there is not enough space it will make an attempt to
5124 * flush out space to make room. It will do this by flushing delalloc if
5125 * possible or committing the transaction. If flush is 0 then no attempts to
5126 * regain reservations will be made and this will fail if there is not enough
5129 static int __reserve_metadata_bytes(struct btrfs_root
*root
,
5130 struct btrfs_space_info
*space_info
,
5132 enum btrfs_reserve_flush_enum flush
)
5134 struct reserve_ticket ticket
;
5139 ASSERT(!current
->journal_info
|| flush
!= BTRFS_RESERVE_FLUSH_ALL
);
5141 spin_lock(&space_info
->lock
);
5143 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
5144 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
5145 space_info
->bytes_may_use
;
5148 * If we have enough space then hooray, make our reservation and carry
5149 * on. If not see if we can overcommit, and if we can, hooray carry on.
5150 * If not things get more complicated.
5152 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
5153 space_info
->bytes_may_use
+= orig_bytes
;
5154 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
5155 space_info
->flags
, orig_bytes
,
5158 } else if (can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
5159 space_info
->bytes_may_use
+= orig_bytes
;
5160 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
5161 space_info
->flags
, orig_bytes
,
5167 * If we couldn't make a reservation then setup our reservation ticket
5168 * and kick the async worker if it's not already running.
5170 * If we are a priority flusher then we just need to add our ticket to
5171 * the list and we will do our own flushing further down.
5173 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
5174 ticket
.bytes
= orig_bytes
;
5176 init_waitqueue_head(&ticket
.wait
);
5177 if (flush
== BTRFS_RESERVE_FLUSH_ALL
) {
5178 list_add_tail(&ticket
.list
, &space_info
->tickets
);
5179 if (!space_info
->flush
) {
5180 space_info
->flush
= 1;
5181 trace_btrfs_trigger_flush(root
->fs_info
,
5185 queue_work(system_unbound_wq
,
5186 &root
->fs_info
->async_reclaim_work
);
5189 list_add_tail(&ticket
.list
,
5190 &space_info
->priority_tickets
);
5192 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
5195 * We will do the space reservation dance during log replay,
5196 * which means we won't have fs_info->fs_root set, so don't do
5197 * the async reclaim as we will panic.
5199 if (!root
->fs_info
->log_root_recovering
&&
5200 need_do_async_reclaim(space_info
, root
, used
) &&
5201 !work_busy(&root
->fs_info
->async_reclaim_work
)) {
5202 trace_btrfs_trigger_flush(root
->fs_info
,
5206 queue_work(system_unbound_wq
,
5207 &root
->fs_info
->async_reclaim_work
);
5210 spin_unlock(&space_info
->lock
);
5211 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
5214 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
5215 return wait_reserve_ticket(root
->fs_info
, space_info
, &ticket
,
5219 priority_reclaim_metadata_space(root
->fs_info
, space_info
, &ticket
);
5220 spin_lock(&space_info
->lock
);
5222 if (ticket
.bytes
< orig_bytes
) {
5223 u64 num_bytes
= orig_bytes
- ticket
.bytes
;
5224 space_info
->bytes_may_use
-= num_bytes
;
5225 trace_btrfs_space_reservation(root
->fs_info
,
5226 "space_info", space_info
->flags
,
5230 list_del_init(&ticket
.list
);
5233 spin_unlock(&space_info
->lock
);
5234 ASSERT(list_empty(&ticket
.list
));
5239 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5240 * @root - the root we're allocating for
5241 * @block_rsv - the block_rsv we're allocating for
5242 * @orig_bytes - the number of bytes we want
5243 * @flush - whether or not we can flush to make our reservation
5245 * This will reserve orgi_bytes number of bytes from the space info associated
5246 * with the block_rsv. If there is not enough space it will make an attempt to
5247 * flush out space to make room. It will do this by flushing delalloc if
5248 * possible or committing the transaction. If flush is 0 then no attempts to
5249 * regain reservations will be made and this will fail if there is not enough
5252 static int reserve_metadata_bytes(struct btrfs_root
*root
,
5253 struct btrfs_block_rsv
*block_rsv
,
5255 enum btrfs_reserve_flush_enum flush
)
5259 ret
= __reserve_metadata_bytes(root
, block_rsv
->space_info
, orig_bytes
,
5261 if (ret
== -ENOSPC
&&
5262 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
5263 struct btrfs_block_rsv
*global_rsv
=
5264 &root
->fs_info
->global_block_rsv
;
5266 if (block_rsv
!= global_rsv
&&
5267 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
5271 trace_btrfs_space_reservation(root
->fs_info
,
5272 "space_info:enospc",
5273 block_rsv
->space_info
->flags
,
5278 static struct btrfs_block_rsv
*get_block_rsv(
5279 const struct btrfs_trans_handle
*trans
,
5280 const struct btrfs_root
*root
)
5282 struct btrfs_block_rsv
*block_rsv
= NULL
;
5284 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
5285 (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
) ||
5286 (root
== root
->fs_info
->uuid_root
))
5287 block_rsv
= trans
->block_rsv
;
5290 block_rsv
= root
->block_rsv
;
5293 block_rsv
= &root
->fs_info
->empty_block_rsv
;
5298 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
5302 spin_lock(&block_rsv
->lock
);
5303 if (block_rsv
->reserved
>= num_bytes
) {
5304 block_rsv
->reserved
-= num_bytes
;
5305 if (block_rsv
->reserved
< block_rsv
->size
)
5306 block_rsv
->full
= 0;
5309 spin_unlock(&block_rsv
->lock
);
5313 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
5314 u64 num_bytes
, int update_size
)
5316 spin_lock(&block_rsv
->lock
);
5317 block_rsv
->reserved
+= num_bytes
;
5319 block_rsv
->size
+= num_bytes
;
5320 else if (block_rsv
->reserved
>= block_rsv
->size
)
5321 block_rsv
->full
= 1;
5322 spin_unlock(&block_rsv
->lock
);
5325 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
5326 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
5329 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5332 if (global_rsv
->space_info
!= dest
->space_info
)
5335 spin_lock(&global_rsv
->lock
);
5336 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
5337 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
5338 spin_unlock(&global_rsv
->lock
);
5341 global_rsv
->reserved
-= num_bytes
;
5342 if (global_rsv
->reserved
< global_rsv
->size
)
5343 global_rsv
->full
= 0;
5344 spin_unlock(&global_rsv
->lock
);
5346 block_rsv_add_bytes(dest
, num_bytes
, 1);
5351 * This is for space we already have accounted in space_info->bytes_may_use, so
5352 * basically when we're returning space from block_rsv's.
5354 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
5355 struct btrfs_space_info
*space_info
,
5358 struct reserve_ticket
*ticket
;
5359 struct list_head
*head
;
5361 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_NO_FLUSH
;
5362 bool check_overcommit
= false;
5364 spin_lock(&space_info
->lock
);
5365 head
= &space_info
->priority_tickets
;
5368 * If we are over our limit then we need to check and see if we can
5369 * overcommit, and if we can't then we just need to free up our space
5370 * and not satisfy any requests.
5372 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
5373 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
5374 space_info
->bytes_may_use
;
5375 if (used
- num_bytes
>= space_info
->total_bytes
)
5376 check_overcommit
= true;
5378 while (!list_empty(head
) && num_bytes
) {
5379 ticket
= list_first_entry(head
, struct reserve_ticket
,
5382 * We use 0 bytes because this space is already reserved, so
5383 * adding the ticket space would be a double count.
5385 if (check_overcommit
&&
5386 !can_overcommit(fs_info
->extent_root
, space_info
, 0,
5389 if (num_bytes
>= ticket
->bytes
) {
5390 list_del_init(&ticket
->list
);
5391 num_bytes
-= ticket
->bytes
;
5393 wake_up(&ticket
->wait
);
5395 ticket
->bytes
-= num_bytes
;
5400 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5401 head
= &space_info
->tickets
;
5402 flush
= BTRFS_RESERVE_FLUSH_ALL
;
5405 space_info
->bytes_may_use
-= num_bytes
;
5406 trace_btrfs_space_reservation(fs_info
, "space_info",
5407 space_info
->flags
, num_bytes
, 0);
5408 spin_unlock(&space_info
->lock
);
5412 * This is for newly allocated space that isn't accounted in
5413 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5414 * we use this helper.
5416 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
5417 struct btrfs_space_info
*space_info
,
5420 struct reserve_ticket
*ticket
;
5421 struct list_head
*head
= &space_info
->priority_tickets
;
5424 while (!list_empty(head
) && num_bytes
) {
5425 ticket
= list_first_entry(head
, struct reserve_ticket
,
5427 if (num_bytes
>= ticket
->bytes
) {
5428 trace_btrfs_space_reservation(fs_info
, "space_info",
5431 list_del_init(&ticket
->list
);
5432 num_bytes
-= ticket
->bytes
;
5433 space_info
->bytes_may_use
+= ticket
->bytes
;
5435 wake_up(&ticket
->wait
);
5437 trace_btrfs_space_reservation(fs_info
, "space_info",
5440 space_info
->bytes_may_use
+= num_bytes
;
5441 ticket
->bytes
-= num_bytes
;
5446 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5447 head
= &space_info
->tickets
;
5452 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
5453 struct btrfs_block_rsv
*block_rsv
,
5454 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
5456 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
5458 spin_lock(&block_rsv
->lock
);
5459 if (num_bytes
== (u64
)-1)
5460 num_bytes
= block_rsv
->size
;
5461 block_rsv
->size
-= num_bytes
;
5462 if (block_rsv
->reserved
>= block_rsv
->size
) {
5463 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5464 block_rsv
->reserved
= block_rsv
->size
;
5465 block_rsv
->full
= 1;
5469 spin_unlock(&block_rsv
->lock
);
5471 if (num_bytes
> 0) {
5473 spin_lock(&dest
->lock
);
5477 bytes_to_add
= dest
->size
- dest
->reserved
;
5478 bytes_to_add
= min(num_bytes
, bytes_to_add
);
5479 dest
->reserved
+= bytes_to_add
;
5480 if (dest
->reserved
>= dest
->size
)
5482 num_bytes
-= bytes_to_add
;
5484 spin_unlock(&dest
->lock
);
5487 space_info_add_old_bytes(fs_info
, space_info
,
5492 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src
,
5493 struct btrfs_block_rsv
*dst
, u64 num_bytes
,
5498 ret
= block_rsv_use_bytes(src
, num_bytes
);
5502 block_rsv_add_bytes(dst
, num_bytes
, update_size
);
5506 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
5508 memset(rsv
, 0, sizeof(*rsv
));
5509 spin_lock_init(&rsv
->lock
);
5513 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
5514 unsigned short type
)
5516 struct btrfs_block_rsv
*block_rsv
;
5517 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5519 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
5523 btrfs_init_block_rsv(block_rsv
, type
);
5524 block_rsv
->space_info
= __find_space_info(fs_info
,
5525 BTRFS_BLOCK_GROUP_METADATA
);
5529 void btrfs_free_block_rsv(struct btrfs_root
*root
,
5530 struct btrfs_block_rsv
*rsv
)
5534 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5538 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
5543 int btrfs_block_rsv_add(struct btrfs_root
*root
,
5544 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
5545 enum btrfs_reserve_flush_enum flush
)
5552 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5554 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5561 int btrfs_block_rsv_check(struct btrfs_root
*root
,
5562 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5570 spin_lock(&block_rsv
->lock
);
5571 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5572 if (block_rsv
->reserved
>= num_bytes
)
5574 spin_unlock(&block_rsv
->lock
);
5579 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5580 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5581 enum btrfs_reserve_flush_enum flush
)
5589 spin_lock(&block_rsv
->lock
);
5590 num_bytes
= min_reserved
;
5591 if (block_rsv
->reserved
>= num_bytes
)
5594 num_bytes
-= block_rsv
->reserved
;
5595 spin_unlock(&block_rsv
->lock
);
5600 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5602 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5609 void btrfs_block_rsv_release(struct btrfs_root
*root
,
5610 struct btrfs_block_rsv
*block_rsv
,
5613 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5614 if (global_rsv
== block_rsv
||
5615 block_rsv
->space_info
!= global_rsv
->space_info
)
5617 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
5621 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5623 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5624 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5628 * The global block rsv is based on the size of the extent tree, the
5629 * checksum tree and the root tree. If the fs is empty we want to set
5630 * it to a minimal amount for safety.
5632 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
) +
5633 btrfs_root_used(&fs_info
->csum_root
->root_item
) +
5634 btrfs_root_used(&fs_info
->tree_root
->root_item
);
5635 num_bytes
= max_t(u64
, num_bytes
, SZ_16M
);
5637 spin_lock(&sinfo
->lock
);
5638 spin_lock(&block_rsv
->lock
);
5640 block_rsv
->size
= min_t(u64
, num_bytes
, SZ_512M
);
5642 if (block_rsv
->reserved
< block_rsv
->size
) {
5643 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
5644 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
5645 sinfo
->bytes_may_use
;
5646 if (sinfo
->total_bytes
> num_bytes
) {
5647 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5648 num_bytes
= min(num_bytes
,
5649 block_rsv
->size
- block_rsv
->reserved
);
5650 block_rsv
->reserved
+= num_bytes
;
5651 sinfo
->bytes_may_use
+= num_bytes
;
5652 trace_btrfs_space_reservation(fs_info
, "space_info",
5653 sinfo
->flags
, num_bytes
,
5656 } else if (block_rsv
->reserved
> block_rsv
->size
) {
5657 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5658 sinfo
->bytes_may_use
-= num_bytes
;
5659 trace_btrfs_space_reservation(fs_info
, "space_info",
5660 sinfo
->flags
, num_bytes
, 0);
5661 block_rsv
->reserved
= block_rsv
->size
;
5664 if (block_rsv
->reserved
== block_rsv
->size
)
5665 block_rsv
->full
= 1;
5667 block_rsv
->full
= 0;
5669 spin_unlock(&block_rsv
->lock
);
5670 spin_unlock(&sinfo
->lock
);
5673 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5675 struct btrfs_space_info
*space_info
;
5677 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5678 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5680 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5681 fs_info
->global_block_rsv
.space_info
= space_info
;
5682 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
5683 fs_info
->trans_block_rsv
.space_info
= space_info
;
5684 fs_info
->empty_block_rsv
.space_info
= space_info
;
5685 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5687 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5688 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5689 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5690 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5691 if (fs_info
->quota_root
)
5692 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5693 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5695 update_global_block_rsv(fs_info
);
5698 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5700 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5702 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
5703 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
5704 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5705 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5706 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5707 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5708 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5709 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5712 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5713 struct btrfs_root
*root
)
5715 if (!trans
->block_rsv
)
5718 if (!trans
->bytes_reserved
)
5721 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
5722 trans
->transid
, trans
->bytes_reserved
, 0);
5723 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
5724 trans
->bytes_reserved
= 0;
5728 * To be called after all the new block groups attached to the transaction
5729 * handle have been created (btrfs_create_pending_block_groups()).
5731 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
5733 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5735 if (!trans
->chunk_bytes_reserved
)
5738 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
5740 block_rsv_release_bytes(fs_info
, &fs_info
->chunk_block_rsv
, NULL
,
5741 trans
->chunk_bytes_reserved
);
5742 trans
->chunk_bytes_reserved
= 0;
5745 /* Can only return 0 or -ENOSPC */
5746 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5747 struct inode
*inode
)
5749 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5751 * We always use trans->block_rsv here as we will have reserved space
5752 * for our orphan when starting the transaction, using get_block_rsv()
5753 * here will sometimes make us choose the wrong block rsv as we could be
5754 * doing a reloc inode for a non refcounted root.
5756 struct btrfs_block_rsv
*src_rsv
= trans
->block_rsv
;
5757 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5760 * We need to hold space in order to delete our orphan item once we've
5761 * added it, so this takes the reservation so we can release it later
5762 * when we are truly done with the orphan item.
5764 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5765 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5766 btrfs_ino(inode
), num_bytes
, 1);
5767 return btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
5770 void btrfs_orphan_release_metadata(struct inode
*inode
)
5772 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5773 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5774 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5775 btrfs_ino(inode
), num_bytes
, 0);
5776 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
5780 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5781 * root: the root of the parent directory
5782 * rsv: block reservation
5783 * items: the number of items that we need do reservation
5784 * qgroup_reserved: used to return the reserved size in qgroup
5786 * This function is used to reserve the space for snapshot/subvolume
5787 * creation and deletion. Those operations are different with the
5788 * common file/directory operations, they change two fs/file trees
5789 * and root tree, the number of items that the qgroup reserves is
5790 * different with the free space reservation. So we can not use
5791 * the space reservation mechanism in start_transaction().
5793 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5794 struct btrfs_block_rsv
*rsv
,
5796 u64
*qgroup_reserved
,
5797 bool use_global_rsv
)
5801 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5803 if (root
->fs_info
->quota_enabled
) {
5804 /* One for parent inode, two for dir entries */
5805 num_bytes
= 3 * root
->nodesize
;
5806 ret
= btrfs_qgroup_reserve_meta(root
, num_bytes
);
5813 *qgroup_reserved
= num_bytes
;
5815 num_bytes
= btrfs_calc_trans_metadata_size(root
, items
);
5816 rsv
->space_info
= __find_space_info(root
->fs_info
,
5817 BTRFS_BLOCK_GROUP_METADATA
);
5818 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5819 BTRFS_RESERVE_FLUSH_ALL
);
5821 if (ret
== -ENOSPC
&& use_global_rsv
)
5822 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
, 1);
5824 if (ret
&& *qgroup_reserved
)
5825 btrfs_qgroup_free_meta(root
, *qgroup_reserved
);
5830 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
5831 struct btrfs_block_rsv
*rsv
,
5832 u64 qgroup_reserved
)
5834 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5838 * drop_outstanding_extent - drop an outstanding extent
5839 * @inode: the inode we're dropping the extent for
5840 * @num_bytes: the number of bytes we're releasing.
5842 * This is called when we are freeing up an outstanding extent, either called
5843 * after an error or after an extent is written. This will return the number of
5844 * reserved extents that need to be freed. This must be called with
5845 * BTRFS_I(inode)->lock held.
5847 static unsigned drop_outstanding_extent(struct inode
*inode
, u64 num_bytes
)
5849 unsigned drop_inode_space
= 0;
5850 unsigned dropped_extents
= 0;
5851 unsigned num_extents
= 0;
5853 num_extents
= (unsigned)div64_u64(num_bytes
+
5854 BTRFS_MAX_EXTENT_SIZE
- 1,
5855 BTRFS_MAX_EXTENT_SIZE
);
5856 ASSERT(num_extents
);
5857 ASSERT(BTRFS_I(inode
)->outstanding_extents
>= num_extents
);
5858 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
5860 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
5861 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5862 &BTRFS_I(inode
)->runtime_flags
))
5863 drop_inode_space
= 1;
5866 * If we have more or the same amount of outstanding extents than we have
5867 * reserved then we need to leave the reserved extents count alone.
5869 if (BTRFS_I(inode
)->outstanding_extents
>=
5870 BTRFS_I(inode
)->reserved_extents
)
5871 return drop_inode_space
;
5873 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
5874 BTRFS_I(inode
)->outstanding_extents
;
5875 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
5876 return dropped_extents
+ drop_inode_space
;
5880 * calc_csum_metadata_size - return the amount of metadata space that must be
5881 * reserved/freed for the given bytes.
5882 * @inode: the inode we're manipulating
5883 * @num_bytes: the number of bytes in question
5884 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5886 * This adjusts the number of csum_bytes in the inode and then returns the
5887 * correct amount of metadata that must either be reserved or freed. We
5888 * calculate how many checksums we can fit into one leaf and then divide the
5889 * number of bytes that will need to be checksumed by this value to figure out
5890 * how many checksums will be required. If we are adding bytes then the number
5891 * may go up and we will return the number of additional bytes that must be
5892 * reserved. If it is going down we will return the number of bytes that must
5895 * This must be called with BTRFS_I(inode)->lock held.
5897 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
5900 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5901 u64 old_csums
, num_csums
;
5903 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
5904 BTRFS_I(inode
)->csum_bytes
== 0)
5907 old_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5909 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
5911 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
5912 num_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5914 /* No change, no need to reserve more */
5915 if (old_csums
== num_csums
)
5919 return btrfs_calc_trans_metadata_size(root
,
5920 num_csums
- old_csums
);
5922 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
5925 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
5927 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5928 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5931 unsigned nr_extents
= 0;
5932 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5934 bool delalloc_lock
= true;
5937 bool release_extra
= false;
5939 /* If we are a free space inode we need to not flush since we will be in
5940 * the middle of a transaction commit. We also don't need the delalloc
5941 * mutex since we won't race with anybody. We need this mostly to make
5942 * lockdep shut its filthy mouth.
5944 * If we have a transaction open (can happen if we call truncate_block
5945 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5947 if (btrfs_is_free_space_inode(inode
)) {
5948 flush
= BTRFS_RESERVE_NO_FLUSH
;
5949 delalloc_lock
= false;
5950 } else if (current
->journal_info
) {
5951 flush
= BTRFS_RESERVE_FLUSH_LIMIT
;
5954 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
5955 btrfs_transaction_in_commit(root
->fs_info
))
5956 schedule_timeout(1);
5959 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
5961 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5963 spin_lock(&BTRFS_I(inode
)->lock
);
5964 nr_extents
= (unsigned)div64_u64(num_bytes
+
5965 BTRFS_MAX_EXTENT_SIZE
- 1,
5966 BTRFS_MAX_EXTENT_SIZE
);
5967 BTRFS_I(inode
)->outstanding_extents
+= nr_extents
;
5970 if (BTRFS_I(inode
)->outstanding_extents
>
5971 BTRFS_I(inode
)->reserved_extents
)
5972 nr_extents
+= BTRFS_I(inode
)->outstanding_extents
-
5973 BTRFS_I(inode
)->reserved_extents
;
5975 /* We always want to reserve a slot for updating the inode. */
5976 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
+ 1);
5977 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
5978 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5979 spin_unlock(&BTRFS_I(inode
)->lock
);
5981 if (root
->fs_info
->quota_enabled
) {
5982 ret
= btrfs_qgroup_reserve_meta(root
,
5983 nr_extents
* root
->nodesize
);
5988 ret
= btrfs_block_rsv_add(root
, block_rsv
, to_reserve
, flush
);
5989 if (unlikely(ret
)) {
5990 btrfs_qgroup_free_meta(root
, nr_extents
* root
->nodesize
);
5994 spin_lock(&BTRFS_I(inode
)->lock
);
5995 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5996 &BTRFS_I(inode
)->runtime_flags
)) {
5997 to_reserve
-= btrfs_calc_trans_metadata_size(root
, 1);
5998 release_extra
= true;
6000 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
6001 spin_unlock(&BTRFS_I(inode
)->lock
);
6004 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
6007 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
6008 btrfs_ino(inode
), to_reserve
, 1);
6010 btrfs_block_rsv_release(root
, block_rsv
,
6011 btrfs_calc_trans_metadata_size(root
,
6016 spin_lock(&BTRFS_I(inode
)->lock
);
6017 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6019 * If the inodes csum_bytes is the same as the original
6020 * csum_bytes then we know we haven't raced with any free()ers
6021 * so we can just reduce our inodes csum bytes and carry on.
6023 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
6024 calc_csum_metadata_size(inode
, num_bytes
, 0);
6026 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
6030 * This is tricky, but first we need to figure out how much we
6031 * freed from any free-ers that occurred during this
6032 * reservation, so we reset ->csum_bytes to the csum_bytes
6033 * before we dropped our lock, and then call the free for the
6034 * number of bytes that were freed while we were trying our
6037 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
6038 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
6039 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
6043 * Now we need to see how much we would have freed had we not
6044 * been making this reservation and our ->csum_bytes were not
6045 * artificially inflated.
6047 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
6048 bytes
= csum_bytes
- orig_csum_bytes
;
6049 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
6052 * Now reset ->csum_bytes to what it should be. If bytes is
6053 * more than to_free then we would have freed more space had we
6054 * not had an artificially high ->csum_bytes, so we need to free
6055 * the remainder. If bytes is the same or less then we don't
6056 * need to do anything, the other free-ers did the correct
6059 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
6060 if (bytes
> to_free
)
6061 to_free
= bytes
- to_free
;
6065 spin_unlock(&BTRFS_I(inode
)->lock
);
6067 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
6070 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
6071 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
6072 btrfs_ino(inode
), to_free
, 0);
6075 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
6080 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6081 * @inode: the inode to release the reservation for
6082 * @num_bytes: the number of bytes we're releasing
6084 * This will release the metadata reservation for an inode. This can be called
6085 * once we complete IO for a given set of bytes to release their metadata
6088 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
6090 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6094 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
6095 spin_lock(&BTRFS_I(inode
)->lock
);
6096 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6099 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
6100 spin_unlock(&BTRFS_I(inode
)->lock
);
6102 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
6104 if (btrfs_is_testing(root
->fs_info
))
6107 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
6108 btrfs_ino(inode
), to_free
, 0);
6110 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
6115 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6117 * @inode: inode we're writing to
6118 * @start: start range we are writing to
6119 * @len: how long the range we are writing to
6121 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6123 * This will do the following things
6125 * o reserve space in data space info for num bytes
6126 * and reserve precious corresponding qgroup space
6127 * (Done in check_data_free_space)
6129 * o reserve space for metadata space, based on the number of outstanding
6130 * extents and how much csums will be needed
6131 * also reserve metadata space in a per root over-reserve method.
6132 * o add to the inodes->delalloc_bytes
6133 * o add it to the fs_info's delalloc inodes list.
6134 * (Above 3 all done in delalloc_reserve_metadata)
6136 * Return 0 for success
6137 * Return <0 for error(-ENOSPC or -EQUOT)
6139 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 start
, u64 len
)
6143 ret
= btrfs_check_data_free_space(inode
, start
, len
);
6146 ret
= btrfs_delalloc_reserve_metadata(inode
, len
);
6148 btrfs_free_reserved_data_space(inode
, start
, len
);
6153 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6154 * @inode: inode we're releasing space for
6155 * @start: start position of the space already reserved
6156 * @len: the len of the space already reserved
6158 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6159 * called in the case that we don't need the metadata AND data reservations
6160 * anymore. So if there is an error or we insert an inline extent.
6162 * This function will release the metadata space that was not used and will
6163 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6164 * list if there are no delalloc bytes left.
6165 * Also it will handle the qgroup reserved space.
6167 void btrfs_delalloc_release_space(struct inode
*inode
, u64 start
, u64 len
)
6169 btrfs_delalloc_release_metadata(inode
, len
);
6170 btrfs_free_reserved_data_space(inode
, start
, len
);
6173 static int update_block_group(struct btrfs_trans_handle
*trans
,
6174 struct btrfs_root
*root
, u64 bytenr
,
6175 u64 num_bytes
, int alloc
)
6177 struct btrfs_block_group_cache
*cache
= NULL
;
6178 struct btrfs_fs_info
*info
= root
->fs_info
;
6179 u64 total
= num_bytes
;
6184 /* block accounting for super block */
6185 spin_lock(&info
->delalloc_root_lock
);
6186 old_val
= btrfs_super_bytes_used(info
->super_copy
);
6188 old_val
+= num_bytes
;
6190 old_val
-= num_bytes
;
6191 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
6192 spin_unlock(&info
->delalloc_root_lock
);
6195 cache
= btrfs_lookup_block_group(info
, bytenr
);
6198 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
6199 BTRFS_BLOCK_GROUP_RAID1
|
6200 BTRFS_BLOCK_GROUP_RAID10
))
6205 * If this block group has free space cache written out, we
6206 * need to make sure to load it if we are removing space. This
6207 * is because we need the unpinning stage to actually add the
6208 * space back to the block group, otherwise we will leak space.
6210 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
6211 cache_block_group(cache
, 1);
6213 byte_in_group
= bytenr
- cache
->key
.objectid
;
6214 WARN_ON(byte_in_group
> cache
->key
.offset
);
6216 spin_lock(&cache
->space_info
->lock
);
6217 spin_lock(&cache
->lock
);
6219 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
) &&
6220 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
6221 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
6223 old_val
= btrfs_block_group_used(&cache
->item
);
6224 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
6226 old_val
+= num_bytes
;
6227 btrfs_set_block_group_used(&cache
->item
, old_val
);
6228 cache
->reserved
-= num_bytes
;
6229 cache
->space_info
->bytes_reserved
-= num_bytes
;
6230 cache
->space_info
->bytes_used
+= num_bytes
;
6231 cache
->space_info
->disk_used
+= num_bytes
* factor
;
6232 spin_unlock(&cache
->lock
);
6233 spin_unlock(&cache
->space_info
->lock
);
6235 old_val
-= num_bytes
;
6236 btrfs_set_block_group_used(&cache
->item
, old_val
);
6237 cache
->pinned
+= num_bytes
;
6238 cache
->space_info
->bytes_pinned
+= num_bytes
;
6239 cache
->space_info
->bytes_used
-= num_bytes
;
6240 cache
->space_info
->disk_used
-= num_bytes
* factor
;
6241 spin_unlock(&cache
->lock
);
6242 spin_unlock(&cache
->space_info
->lock
);
6244 trace_btrfs_space_reservation(root
->fs_info
, "pinned",
6245 cache
->space_info
->flags
,
6247 set_extent_dirty(info
->pinned_extents
,
6248 bytenr
, bytenr
+ num_bytes
- 1,
6249 GFP_NOFS
| __GFP_NOFAIL
);
6252 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
6253 if (list_empty(&cache
->dirty_list
)) {
6254 list_add_tail(&cache
->dirty_list
,
6255 &trans
->transaction
->dirty_bgs
);
6256 trans
->transaction
->num_dirty_bgs
++;
6257 btrfs_get_block_group(cache
);
6259 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
6262 * No longer have used bytes in this block group, queue it for
6263 * deletion. We do this after adding the block group to the
6264 * dirty list to avoid races between cleaner kthread and space
6267 if (!alloc
&& old_val
== 0) {
6268 spin_lock(&info
->unused_bgs_lock
);
6269 if (list_empty(&cache
->bg_list
)) {
6270 btrfs_get_block_group(cache
);
6271 list_add_tail(&cache
->bg_list
,
6274 spin_unlock(&info
->unused_bgs_lock
);
6277 btrfs_put_block_group(cache
);
6279 bytenr
+= num_bytes
;
6284 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
6286 struct btrfs_block_group_cache
*cache
;
6289 spin_lock(&root
->fs_info
->block_group_cache_lock
);
6290 bytenr
= root
->fs_info
->first_logical_byte
;
6291 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
6293 if (bytenr
< (u64
)-1)
6296 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
6300 bytenr
= cache
->key
.objectid
;
6301 btrfs_put_block_group(cache
);
6306 static int pin_down_extent(struct btrfs_root
*root
,
6307 struct btrfs_block_group_cache
*cache
,
6308 u64 bytenr
, u64 num_bytes
, int reserved
)
6310 spin_lock(&cache
->space_info
->lock
);
6311 spin_lock(&cache
->lock
);
6312 cache
->pinned
+= num_bytes
;
6313 cache
->space_info
->bytes_pinned
+= num_bytes
;
6315 cache
->reserved
-= num_bytes
;
6316 cache
->space_info
->bytes_reserved
-= num_bytes
;
6318 spin_unlock(&cache
->lock
);
6319 spin_unlock(&cache
->space_info
->lock
);
6321 trace_btrfs_space_reservation(root
->fs_info
, "pinned",
6322 cache
->space_info
->flags
, num_bytes
, 1);
6323 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
6324 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
6329 * this function must be called within transaction
6331 int btrfs_pin_extent(struct btrfs_root
*root
,
6332 u64 bytenr
, u64 num_bytes
, int reserved
)
6334 struct btrfs_block_group_cache
*cache
;
6336 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6337 BUG_ON(!cache
); /* Logic error */
6339 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
6341 btrfs_put_block_group(cache
);
6346 * this function must be called within transaction
6348 int btrfs_pin_extent_for_log_replay(struct btrfs_root
*root
,
6349 u64 bytenr
, u64 num_bytes
)
6351 struct btrfs_block_group_cache
*cache
;
6354 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6359 * pull in the free space cache (if any) so that our pin
6360 * removes the free space from the cache. We have load_only set
6361 * to one because the slow code to read in the free extents does check
6362 * the pinned extents.
6364 cache_block_group(cache
, 1);
6366 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
6368 /* remove us from the free space cache (if we're there at all) */
6369 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
6370 btrfs_put_block_group(cache
);
6374 static int __exclude_logged_extent(struct btrfs_root
*root
, u64 start
, u64 num_bytes
)
6377 struct btrfs_block_group_cache
*block_group
;
6378 struct btrfs_caching_control
*caching_ctl
;
6380 block_group
= btrfs_lookup_block_group(root
->fs_info
, start
);
6384 cache_block_group(block_group
, 0);
6385 caching_ctl
= get_caching_control(block_group
);
6389 BUG_ON(!block_group_cache_done(block_group
));
6390 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6392 mutex_lock(&caching_ctl
->mutex
);
6394 if (start
>= caching_ctl
->progress
) {
6395 ret
= add_excluded_extent(root
, start
, num_bytes
);
6396 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6397 ret
= btrfs_remove_free_space(block_group
,
6400 num_bytes
= caching_ctl
->progress
- start
;
6401 ret
= btrfs_remove_free_space(block_group
,
6406 num_bytes
= (start
+ num_bytes
) -
6407 caching_ctl
->progress
;
6408 start
= caching_ctl
->progress
;
6409 ret
= add_excluded_extent(root
, start
, num_bytes
);
6412 mutex_unlock(&caching_ctl
->mutex
);
6413 put_caching_control(caching_ctl
);
6415 btrfs_put_block_group(block_group
);
6419 int btrfs_exclude_logged_extents(struct btrfs_root
*log
,
6420 struct extent_buffer
*eb
)
6422 struct btrfs_file_extent_item
*item
;
6423 struct btrfs_key key
;
6427 if (!btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
))
6430 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
6431 btrfs_item_key_to_cpu(eb
, &key
, i
);
6432 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6434 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
6435 found_type
= btrfs_file_extent_type(eb
, item
);
6436 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
6438 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
6440 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
6441 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
6442 __exclude_logged_extent(log
, key
.objectid
, key
.offset
);
6449 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6451 atomic_inc(&bg
->reservations
);
6454 void btrfs_dec_block_group_reservations(struct btrfs_fs_info
*fs_info
,
6457 struct btrfs_block_group_cache
*bg
;
6459 bg
= btrfs_lookup_block_group(fs_info
, start
);
6461 if (atomic_dec_and_test(&bg
->reservations
))
6462 wake_up_atomic_t(&bg
->reservations
);
6463 btrfs_put_block_group(bg
);
6466 static int btrfs_wait_bg_reservations_atomic_t(atomic_t
*a
)
6472 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6474 struct btrfs_space_info
*space_info
= bg
->space_info
;
6478 if (!(bg
->flags
& BTRFS_BLOCK_GROUP_DATA
))
6482 * Our block group is read only but before we set it to read only,
6483 * some task might have had allocated an extent from it already, but it
6484 * has not yet created a respective ordered extent (and added it to a
6485 * root's list of ordered extents).
6486 * Therefore wait for any task currently allocating extents, since the
6487 * block group's reservations counter is incremented while a read lock
6488 * on the groups' semaphore is held and decremented after releasing
6489 * the read access on that semaphore and creating the ordered extent.
6491 down_write(&space_info
->groups_sem
);
6492 up_write(&space_info
->groups_sem
);
6494 wait_on_atomic_t(&bg
->reservations
,
6495 btrfs_wait_bg_reservations_atomic_t
,
6496 TASK_UNINTERRUPTIBLE
);
6500 * btrfs_update_reserved_bytes - update the block_group and space info counters
6501 * @cache: The cache we are manipulating
6502 * @num_bytes: The number of bytes in question
6503 * @reserve: One of the reservation enums
6504 * @delalloc: The blocks are allocated for the delalloc write
6506 * This is called by the allocator when it reserves space, or by somebody who is
6507 * freeing space that was never actually used on disk. For example if you
6508 * reserve some space for a new leaf in transaction A and before transaction A
6509 * commits you free that leaf, you call this with reserve set to 0 in order to
6510 * clear the reservation.
6512 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6513 * ENOSPC accounting. For data we handle the reservation through clearing the
6514 * delalloc bits in the io_tree. We have to do this since we could end up
6515 * allocating less disk space for the amount of data we have reserved in the
6516 * case of compression.
6518 * If this is a reservation and the block group has become read only we cannot
6519 * make the reservation and return -EAGAIN, otherwise this function always
6522 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6523 u64 num_bytes
, int reserve
, int delalloc
)
6525 struct btrfs_space_info
*space_info
= cache
->space_info
;
6528 spin_lock(&space_info
->lock
);
6529 spin_lock(&cache
->lock
);
6530 if (reserve
!= RESERVE_FREE
) {
6534 cache
->reserved
+= num_bytes
;
6535 space_info
->bytes_reserved
+= num_bytes
;
6536 if (reserve
== RESERVE_ALLOC
) {
6537 trace_btrfs_space_reservation(cache
->fs_info
,
6538 "space_info", space_info
->flags
,
6540 space_info
->bytes_may_use
-= num_bytes
;
6544 cache
->delalloc_bytes
+= num_bytes
;
6548 space_info
->bytes_readonly
+= num_bytes
;
6549 cache
->reserved
-= num_bytes
;
6550 space_info
->bytes_reserved
-= num_bytes
;
6553 cache
->delalloc_bytes
-= num_bytes
;
6555 spin_unlock(&cache
->lock
);
6556 spin_unlock(&space_info
->lock
);
6560 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
6561 struct btrfs_root
*root
)
6563 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6564 struct btrfs_caching_control
*next
;
6565 struct btrfs_caching_control
*caching_ctl
;
6566 struct btrfs_block_group_cache
*cache
;
6568 down_write(&fs_info
->commit_root_sem
);
6570 list_for_each_entry_safe(caching_ctl
, next
,
6571 &fs_info
->caching_block_groups
, list
) {
6572 cache
= caching_ctl
->block_group
;
6573 if (block_group_cache_done(cache
)) {
6574 cache
->last_byte_to_unpin
= (u64
)-1;
6575 list_del_init(&caching_ctl
->list
);
6576 put_caching_control(caching_ctl
);
6578 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
6582 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6583 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
6585 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
6587 up_write(&fs_info
->commit_root_sem
);
6589 update_global_block_rsv(fs_info
);
6593 * Returns the free cluster for the given space info and sets empty_cluster to
6594 * what it should be based on the mount options.
6596 static struct btrfs_free_cluster
*
6597 fetch_cluster_info(struct btrfs_root
*root
, struct btrfs_space_info
*space_info
,
6600 struct btrfs_free_cluster
*ret
= NULL
;
6601 bool ssd
= btrfs_test_opt(root
->fs_info
, SSD
);
6604 if (btrfs_mixed_space_info(space_info
))
6608 *empty_cluster
= SZ_2M
;
6609 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
6610 ret
= &root
->fs_info
->meta_alloc_cluster
;
6612 *empty_cluster
= SZ_64K
;
6613 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) && ssd
) {
6614 ret
= &root
->fs_info
->data_alloc_cluster
;
6620 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
,
6621 const bool return_free_space
)
6623 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6624 struct btrfs_block_group_cache
*cache
= NULL
;
6625 struct btrfs_space_info
*space_info
;
6626 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
6627 struct btrfs_free_cluster
*cluster
= NULL
;
6629 u64 total_unpinned
= 0;
6630 u64 empty_cluster
= 0;
6633 while (start
<= end
) {
6636 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
6638 btrfs_put_block_group(cache
);
6640 cache
= btrfs_lookup_block_group(fs_info
, start
);
6641 BUG_ON(!cache
); /* Logic error */
6643 cluster
= fetch_cluster_info(root
,
6646 empty_cluster
<<= 1;
6649 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
6650 len
= min(len
, end
+ 1 - start
);
6652 if (start
< cache
->last_byte_to_unpin
) {
6653 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6654 if (return_free_space
)
6655 btrfs_add_free_space(cache
, start
, len
);
6659 total_unpinned
+= len
;
6660 space_info
= cache
->space_info
;
6663 * If this space cluster has been marked as fragmented and we've
6664 * unpinned enough in this block group to potentially allow a
6665 * cluster to be created inside of it go ahead and clear the
6668 if (cluster
&& cluster
->fragmented
&&
6669 total_unpinned
> empty_cluster
) {
6670 spin_lock(&cluster
->lock
);
6671 cluster
->fragmented
= 0;
6672 spin_unlock(&cluster
->lock
);
6675 spin_lock(&space_info
->lock
);
6676 spin_lock(&cache
->lock
);
6677 cache
->pinned
-= len
;
6678 space_info
->bytes_pinned
-= len
;
6680 trace_btrfs_space_reservation(fs_info
, "pinned",
6681 space_info
->flags
, len
, 0);
6682 space_info
->max_extent_size
= 0;
6683 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6685 space_info
->bytes_readonly
+= len
;
6688 spin_unlock(&cache
->lock
);
6689 if (!readonly
&& return_free_space
&&
6690 global_rsv
->space_info
== space_info
) {
6692 WARN_ON(!return_free_space
);
6693 spin_lock(&global_rsv
->lock
);
6694 if (!global_rsv
->full
) {
6695 to_add
= min(len
, global_rsv
->size
-
6696 global_rsv
->reserved
);
6697 global_rsv
->reserved
+= to_add
;
6698 space_info
->bytes_may_use
+= to_add
;
6699 if (global_rsv
->reserved
>= global_rsv
->size
)
6700 global_rsv
->full
= 1;
6701 trace_btrfs_space_reservation(fs_info
,
6707 spin_unlock(&global_rsv
->lock
);
6708 /* Add to any tickets we may have */
6710 space_info_add_new_bytes(fs_info
, space_info
,
6713 spin_unlock(&space_info
->lock
);
6717 btrfs_put_block_group(cache
);
6721 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6722 struct btrfs_root
*root
)
6724 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6725 struct btrfs_block_group_cache
*block_group
, *tmp
;
6726 struct list_head
*deleted_bgs
;
6727 struct extent_io_tree
*unpin
;
6732 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6733 unpin
= &fs_info
->freed_extents
[1];
6735 unpin
= &fs_info
->freed_extents
[0];
6737 while (!trans
->aborted
) {
6738 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6739 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6740 EXTENT_DIRTY
, NULL
);
6742 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6746 if (btrfs_test_opt(root
->fs_info
, DISCARD
))
6747 ret
= btrfs_discard_extent(root
, start
,
6748 end
+ 1 - start
, NULL
);
6750 clear_extent_dirty(unpin
, start
, end
);
6751 unpin_extent_range(root
, start
, end
, true);
6752 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6757 * Transaction is finished. We don't need the lock anymore. We
6758 * do need to clean up the block groups in case of a transaction
6761 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
6762 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
6766 if (!trans
->aborted
)
6767 ret
= btrfs_discard_extent(root
,
6768 block_group
->key
.objectid
,
6769 block_group
->key
.offset
,
6772 list_del_init(&block_group
->bg_list
);
6773 btrfs_put_block_group_trimming(block_group
);
6774 btrfs_put_block_group(block_group
);
6777 const char *errstr
= btrfs_decode_error(ret
);
6779 "Discard failed while removing blockgroup: errno=%d %s\n",
6787 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
6788 u64 owner
, u64 root_objectid
)
6790 struct btrfs_space_info
*space_info
;
6793 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6794 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
6795 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
6797 flags
= BTRFS_BLOCK_GROUP_METADATA
;
6799 flags
= BTRFS_BLOCK_GROUP_DATA
;
6802 space_info
= __find_space_info(fs_info
, flags
);
6803 BUG_ON(!space_info
); /* Logic bug */
6804 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
6808 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6809 struct btrfs_root
*root
,
6810 struct btrfs_delayed_ref_node
*node
, u64 parent
,
6811 u64 root_objectid
, u64 owner_objectid
,
6812 u64 owner_offset
, int refs_to_drop
,
6813 struct btrfs_delayed_extent_op
*extent_op
)
6815 struct btrfs_key key
;
6816 struct btrfs_path
*path
;
6817 struct btrfs_fs_info
*info
= root
->fs_info
;
6818 struct btrfs_root
*extent_root
= info
->extent_root
;
6819 struct extent_buffer
*leaf
;
6820 struct btrfs_extent_item
*ei
;
6821 struct btrfs_extent_inline_ref
*iref
;
6824 int extent_slot
= 0;
6825 int found_extent
= 0;
6829 u64 bytenr
= node
->bytenr
;
6830 u64 num_bytes
= node
->num_bytes
;
6832 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
6835 path
= btrfs_alloc_path();
6839 path
->reada
= READA_FORWARD
;
6840 path
->leave_spinning
= 1;
6842 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6843 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6846 skinny_metadata
= 0;
6848 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
6849 bytenr
, num_bytes
, parent
,
6850 root_objectid
, owner_objectid
,
6853 extent_slot
= path
->slots
[0];
6854 while (extent_slot
>= 0) {
6855 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6857 if (key
.objectid
!= bytenr
)
6859 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6860 key
.offset
== num_bytes
) {
6864 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
6865 key
.offset
== owner_objectid
) {
6869 if (path
->slots
[0] - extent_slot
> 5)
6873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6874 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
6875 if (found_extent
&& item_size
< sizeof(*ei
))
6878 if (!found_extent
) {
6880 ret
= remove_extent_backref(trans
, extent_root
, path
,
6882 is_data
, &last_ref
);
6884 btrfs_abort_transaction(trans
, ret
);
6887 btrfs_release_path(path
);
6888 path
->leave_spinning
= 1;
6890 key
.objectid
= bytenr
;
6891 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6892 key
.offset
= num_bytes
;
6894 if (!is_data
&& skinny_metadata
) {
6895 key
.type
= BTRFS_METADATA_ITEM_KEY
;
6896 key
.offset
= owner_objectid
;
6899 ret
= btrfs_search_slot(trans
, extent_root
,
6901 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
6903 * Couldn't find our skinny metadata item,
6904 * see if we have ye olde extent item.
6907 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6909 if (key
.objectid
== bytenr
&&
6910 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6911 key
.offset
== num_bytes
)
6915 if (ret
> 0 && skinny_metadata
) {
6916 skinny_metadata
= false;
6917 key
.objectid
= bytenr
;
6918 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6919 key
.offset
= num_bytes
;
6920 btrfs_release_path(path
);
6921 ret
= btrfs_search_slot(trans
, extent_root
,
6926 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6929 btrfs_print_leaf(extent_root
,
6933 btrfs_abort_transaction(trans
, ret
);
6936 extent_slot
= path
->slots
[0];
6938 } else if (WARN_ON(ret
== -ENOENT
)) {
6939 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6941 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6942 bytenr
, parent
, root_objectid
, owner_objectid
,
6944 btrfs_abort_transaction(trans
, ret
);
6947 btrfs_abort_transaction(trans
, ret
);
6951 leaf
= path
->nodes
[0];
6952 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6953 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6954 if (item_size
< sizeof(*ei
)) {
6955 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
6956 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
6959 btrfs_abort_transaction(trans
, ret
);
6963 btrfs_release_path(path
);
6964 path
->leave_spinning
= 1;
6966 key
.objectid
= bytenr
;
6967 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6968 key
.offset
= num_bytes
;
6970 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
6973 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6975 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6978 btrfs_abort_transaction(trans
, ret
);
6982 extent_slot
= path
->slots
[0];
6983 leaf
= path
->nodes
[0];
6984 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6987 BUG_ON(item_size
< sizeof(*ei
));
6988 ei
= btrfs_item_ptr(leaf
, extent_slot
,
6989 struct btrfs_extent_item
);
6990 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
6991 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
6992 struct btrfs_tree_block_info
*bi
;
6993 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
6994 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
6995 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
6998 refs
= btrfs_extent_refs(leaf
, ei
);
6999 if (refs
< refs_to_drop
) {
7000 btrfs_err(info
, "trying to drop %d refs but we only have %Lu "
7001 "for bytenr %Lu", refs_to_drop
, refs
, bytenr
);
7003 btrfs_abort_transaction(trans
, ret
);
7006 refs
-= refs_to_drop
;
7010 __run_delayed_extent_op(extent_op
, leaf
, ei
);
7012 * In the case of inline back ref, reference count will
7013 * be updated by remove_extent_backref
7016 BUG_ON(!found_extent
);
7018 btrfs_set_extent_refs(leaf
, ei
, refs
);
7019 btrfs_mark_buffer_dirty(leaf
);
7022 ret
= remove_extent_backref(trans
, extent_root
, path
,
7024 is_data
, &last_ref
);
7026 btrfs_abort_transaction(trans
, ret
);
7030 add_pinned_bytes(root
->fs_info
, -num_bytes
, owner_objectid
,
7034 BUG_ON(is_data
&& refs_to_drop
!=
7035 extent_data_ref_count(path
, iref
));
7037 BUG_ON(path
->slots
[0] != extent_slot
);
7039 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
7040 path
->slots
[0] = extent_slot
;
7046 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
7049 btrfs_abort_transaction(trans
, ret
);
7052 btrfs_release_path(path
);
7055 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
7057 btrfs_abort_transaction(trans
, ret
);
7062 ret
= add_to_free_space_tree(trans
, root
->fs_info
, bytenr
,
7065 btrfs_abort_transaction(trans
, ret
);
7069 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
7071 btrfs_abort_transaction(trans
, ret
);
7075 btrfs_release_path(path
);
7078 btrfs_free_path(path
);
7083 * when we free an block, it is possible (and likely) that we free the last
7084 * delayed ref for that extent as well. This searches the delayed ref tree for
7085 * a given extent, and if there are no other delayed refs to be processed, it
7086 * removes it from the tree.
7088 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
7089 struct btrfs_root
*root
, u64 bytenr
)
7091 struct btrfs_delayed_ref_head
*head
;
7092 struct btrfs_delayed_ref_root
*delayed_refs
;
7095 delayed_refs
= &trans
->transaction
->delayed_refs
;
7096 spin_lock(&delayed_refs
->lock
);
7097 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
7099 goto out_delayed_unlock
;
7101 spin_lock(&head
->lock
);
7102 if (!list_empty(&head
->ref_list
))
7105 if (head
->extent_op
) {
7106 if (!head
->must_insert_reserved
)
7108 btrfs_free_delayed_extent_op(head
->extent_op
);
7109 head
->extent_op
= NULL
;
7113 * waiting for the lock here would deadlock. If someone else has it
7114 * locked they are already in the process of dropping it anyway
7116 if (!mutex_trylock(&head
->mutex
))
7120 * at this point we have a head with no other entries. Go
7121 * ahead and process it.
7123 head
->node
.in_tree
= 0;
7124 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
7126 atomic_dec(&delayed_refs
->num_entries
);
7129 * we don't take a ref on the node because we're removing it from the
7130 * tree, so we just steal the ref the tree was holding.
7132 delayed_refs
->num_heads
--;
7133 if (head
->processing
== 0)
7134 delayed_refs
->num_heads_ready
--;
7135 head
->processing
= 0;
7136 spin_unlock(&head
->lock
);
7137 spin_unlock(&delayed_refs
->lock
);
7139 BUG_ON(head
->extent_op
);
7140 if (head
->must_insert_reserved
)
7143 mutex_unlock(&head
->mutex
);
7144 btrfs_put_delayed_ref(&head
->node
);
7147 spin_unlock(&head
->lock
);
7150 spin_unlock(&delayed_refs
->lock
);
7154 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
7155 struct btrfs_root
*root
,
7156 struct extent_buffer
*buf
,
7157 u64 parent
, int last_ref
)
7162 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7163 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
7164 buf
->start
, buf
->len
,
7165 parent
, root
->root_key
.objectid
,
7166 btrfs_header_level(buf
),
7167 BTRFS_DROP_DELAYED_REF
, NULL
);
7168 BUG_ON(ret
); /* -ENOMEM */
7174 if (btrfs_header_generation(buf
) == trans
->transid
) {
7175 struct btrfs_block_group_cache
*cache
;
7177 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7178 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
7183 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
7185 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
7186 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
7187 btrfs_put_block_group(cache
);
7191 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
7193 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
7194 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
, 0);
7195 btrfs_put_block_group(cache
);
7196 trace_btrfs_reserved_extent_free(root
, buf
->start
, buf
->len
);
7201 add_pinned_bytes(root
->fs_info
, buf
->len
,
7202 btrfs_header_level(buf
),
7203 root
->root_key
.objectid
);
7206 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7209 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
7212 /* Can return -ENOMEM */
7213 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
7214 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
7215 u64 owner
, u64 offset
)
7218 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7220 if (btrfs_is_testing(fs_info
))
7223 add_pinned_bytes(root
->fs_info
, num_bytes
, owner
, root_objectid
);
7226 * tree log blocks never actually go into the extent allocation
7227 * tree, just update pinning info and exit early.
7229 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7230 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
7231 /* unlocks the pinned mutex */
7232 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
7234 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
7235 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
7237 parent
, root_objectid
, (int)owner
,
7238 BTRFS_DROP_DELAYED_REF
, NULL
);
7240 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
7242 parent
, root_objectid
, owner
,
7244 BTRFS_DROP_DELAYED_REF
, NULL
);
7250 * when we wait for progress in the block group caching, its because
7251 * our allocation attempt failed at least once. So, we must sleep
7252 * and let some progress happen before we try again.
7254 * This function will sleep at least once waiting for new free space to
7255 * show up, and then it will check the block group free space numbers
7256 * for our min num_bytes. Another option is to have it go ahead
7257 * and look in the rbtree for a free extent of a given size, but this
7260 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7261 * any of the information in this block group.
7263 static noinline
void
7264 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
7267 struct btrfs_caching_control
*caching_ctl
;
7269 caching_ctl
= get_caching_control(cache
);
7273 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
7274 (cache
->free_space_ctl
->free_space
>= num_bytes
));
7276 put_caching_control(caching_ctl
);
7280 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
7282 struct btrfs_caching_control
*caching_ctl
;
7285 caching_ctl
= get_caching_control(cache
);
7287 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
7289 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
7290 if (cache
->cached
== BTRFS_CACHE_ERROR
)
7292 put_caching_control(caching_ctl
);
7296 int __get_raid_index(u64 flags
)
7298 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
7299 return BTRFS_RAID_RAID10
;
7300 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
7301 return BTRFS_RAID_RAID1
;
7302 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7303 return BTRFS_RAID_DUP
;
7304 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7305 return BTRFS_RAID_RAID0
;
7306 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
7307 return BTRFS_RAID_RAID5
;
7308 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
7309 return BTRFS_RAID_RAID6
;
7311 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
7314 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
7316 return __get_raid_index(cache
->flags
);
7319 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
7320 [BTRFS_RAID_RAID10
] = "raid10",
7321 [BTRFS_RAID_RAID1
] = "raid1",
7322 [BTRFS_RAID_DUP
] = "dup",
7323 [BTRFS_RAID_RAID0
] = "raid0",
7324 [BTRFS_RAID_SINGLE
] = "single",
7325 [BTRFS_RAID_RAID5
] = "raid5",
7326 [BTRFS_RAID_RAID6
] = "raid6",
7329 static const char *get_raid_name(enum btrfs_raid_types type
)
7331 if (type
>= BTRFS_NR_RAID_TYPES
)
7334 return btrfs_raid_type_names
[type
];
7337 enum btrfs_loop_type
{
7338 LOOP_CACHING_NOWAIT
= 0,
7339 LOOP_CACHING_WAIT
= 1,
7340 LOOP_ALLOC_CHUNK
= 2,
7341 LOOP_NO_EMPTY_SIZE
= 3,
7345 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
7349 down_read(&cache
->data_rwsem
);
7353 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
7356 btrfs_get_block_group(cache
);
7358 down_read(&cache
->data_rwsem
);
7361 static struct btrfs_block_group_cache
*
7362 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
7363 struct btrfs_free_cluster
*cluster
,
7366 struct btrfs_block_group_cache
*used_bg
= NULL
;
7368 spin_lock(&cluster
->refill_lock
);
7370 used_bg
= cluster
->block_group
;
7374 if (used_bg
== block_group
)
7377 btrfs_get_block_group(used_bg
);
7382 if (down_read_trylock(&used_bg
->data_rwsem
))
7385 spin_unlock(&cluster
->refill_lock
);
7387 down_read(&used_bg
->data_rwsem
);
7389 spin_lock(&cluster
->refill_lock
);
7390 if (used_bg
== cluster
->block_group
)
7393 up_read(&used_bg
->data_rwsem
);
7394 btrfs_put_block_group(used_bg
);
7399 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
7403 up_read(&cache
->data_rwsem
);
7404 btrfs_put_block_group(cache
);
7408 * walks the btree of allocated extents and find a hole of a given size.
7409 * The key ins is changed to record the hole:
7410 * ins->objectid == start position
7411 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7412 * ins->offset == the size of the hole.
7413 * Any available blocks before search_start are skipped.
7415 * If there is no suitable free space, we will record the max size of
7416 * the free space extent currently.
7418 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
7419 u64 num_bytes
, u64 empty_size
,
7420 u64 hint_byte
, struct btrfs_key
*ins
,
7421 u64 flags
, int delalloc
)
7424 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
7425 struct btrfs_free_cluster
*last_ptr
= NULL
;
7426 struct btrfs_block_group_cache
*block_group
= NULL
;
7427 u64 search_start
= 0;
7428 u64 max_extent_size
= 0;
7429 u64 empty_cluster
= 0;
7430 struct btrfs_space_info
*space_info
;
7432 int index
= __get_raid_index(flags
);
7433 int alloc_type
= (flags
& BTRFS_BLOCK_GROUP_DATA
) ?
7434 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
7435 bool failed_cluster_refill
= false;
7436 bool failed_alloc
= false;
7437 bool use_cluster
= true;
7438 bool have_caching_bg
= false;
7439 bool orig_have_caching_bg
= false;
7440 bool full_search
= false;
7442 WARN_ON(num_bytes
< root
->sectorsize
);
7443 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
7447 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, flags
);
7449 space_info
= __find_space_info(root
->fs_info
, flags
);
7451 btrfs_err(root
->fs_info
, "No space info for %llu", flags
);
7456 * If our free space is heavily fragmented we may not be able to make
7457 * big contiguous allocations, so instead of doing the expensive search
7458 * for free space, simply return ENOSPC with our max_extent_size so we
7459 * can go ahead and search for a more manageable chunk.
7461 * If our max_extent_size is large enough for our allocation simply
7462 * disable clustering since we will likely not be able to find enough
7463 * space to create a cluster and induce latency trying.
7465 if (unlikely(space_info
->max_extent_size
)) {
7466 spin_lock(&space_info
->lock
);
7467 if (space_info
->max_extent_size
&&
7468 num_bytes
> space_info
->max_extent_size
) {
7469 ins
->offset
= space_info
->max_extent_size
;
7470 spin_unlock(&space_info
->lock
);
7472 } else if (space_info
->max_extent_size
) {
7473 use_cluster
= false;
7475 spin_unlock(&space_info
->lock
);
7478 last_ptr
= fetch_cluster_info(orig_root
, space_info
, &empty_cluster
);
7480 spin_lock(&last_ptr
->lock
);
7481 if (last_ptr
->block_group
)
7482 hint_byte
= last_ptr
->window_start
;
7483 if (last_ptr
->fragmented
) {
7485 * We still set window_start so we can keep track of the
7486 * last place we found an allocation to try and save
7489 hint_byte
= last_ptr
->window_start
;
7490 use_cluster
= false;
7492 spin_unlock(&last_ptr
->lock
);
7495 search_start
= max(search_start
, first_logical_byte(root
, 0));
7496 search_start
= max(search_start
, hint_byte
);
7497 if (search_start
== hint_byte
) {
7498 block_group
= btrfs_lookup_block_group(root
->fs_info
,
7501 * we don't want to use the block group if it doesn't match our
7502 * allocation bits, or if its not cached.
7504 * However if we are re-searching with an ideal block group
7505 * picked out then we don't care that the block group is cached.
7507 if (block_group
&& block_group_bits(block_group
, flags
) &&
7508 block_group
->cached
!= BTRFS_CACHE_NO
) {
7509 down_read(&space_info
->groups_sem
);
7510 if (list_empty(&block_group
->list
) ||
7513 * someone is removing this block group,
7514 * we can't jump into the have_block_group
7515 * target because our list pointers are not
7518 btrfs_put_block_group(block_group
);
7519 up_read(&space_info
->groups_sem
);
7521 index
= get_block_group_index(block_group
);
7522 btrfs_lock_block_group(block_group
, delalloc
);
7523 goto have_block_group
;
7525 } else if (block_group
) {
7526 btrfs_put_block_group(block_group
);
7530 have_caching_bg
= false;
7531 if (index
== 0 || index
== __get_raid_index(flags
))
7533 down_read(&space_info
->groups_sem
);
7534 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
7539 btrfs_grab_block_group(block_group
, delalloc
);
7540 search_start
= block_group
->key
.objectid
;
7543 * this can happen if we end up cycling through all the
7544 * raid types, but we want to make sure we only allocate
7545 * for the proper type.
7547 if (!block_group_bits(block_group
, flags
)) {
7548 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
7549 BTRFS_BLOCK_GROUP_RAID1
|
7550 BTRFS_BLOCK_GROUP_RAID5
|
7551 BTRFS_BLOCK_GROUP_RAID6
|
7552 BTRFS_BLOCK_GROUP_RAID10
;
7555 * if they asked for extra copies and this block group
7556 * doesn't provide them, bail. This does allow us to
7557 * fill raid0 from raid1.
7559 if ((flags
& extra
) && !(block_group
->flags
& extra
))
7564 cached
= block_group_cache_done(block_group
);
7565 if (unlikely(!cached
)) {
7566 have_caching_bg
= true;
7567 ret
= cache_block_group(block_group
, 0);
7572 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
7574 if (unlikely(block_group
->ro
))
7578 * Ok we want to try and use the cluster allocator, so
7581 if (last_ptr
&& use_cluster
) {
7582 struct btrfs_block_group_cache
*used_block_group
;
7583 unsigned long aligned_cluster
;
7585 * the refill lock keeps out other
7586 * people trying to start a new cluster
7588 used_block_group
= btrfs_lock_cluster(block_group
,
7591 if (!used_block_group
)
7592 goto refill_cluster
;
7594 if (used_block_group
!= block_group
&&
7595 (used_block_group
->ro
||
7596 !block_group_bits(used_block_group
, flags
)))
7597 goto release_cluster
;
7599 offset
= btrfs_alloc_from_cluster(used_block_group
,
7602 used_block_group
->key
.objectid
,
7605 /* we have a block, we're done */
7606 spin_unlock(&last_ptr
->refill_lock
);
7607 trace_btrfs_reserve_extent_cluster(root
,
7609 search_start
, num_bytes
);
7610 if (used_block_group
!= block_group
) {
7611 btrfs_release_block_group(block_group
,
7613 block_group
= used_block_group
;
7618 WARN_ON(last_ptr
->block_group
!= used_block_group
);
7620 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7621 * set up a new clusters, so lets just skip it
7622 * and let the allocator find whatever block
7623 * it can find. If we reach this point, we
7624 * will have tried the cluster allocator
7625 * plenty of times and not have found
7626 * anything, so we are likely way too
7627 * fragmented for the clustering stuff to find
7630 * However, if the cluster is taken from the
7631 * current block group, release the cluster
7632 * first, so that we stand a better chance of
7633 * succeeding in the unclustered
7635 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
7636 used_block_group
!= block_group
) {
7637 spin_unlock(&last_ptr
->refill_lock
);
7638 btrfs_release_block_group(used_block_group
,
7640 goto unclustered_alloc
;
7644 * this cluster didn't work out, free it and
7647 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7649 if (used_block_group
!= block_group
)
7650 btrfs_release_block_group(used_block_group
,
7653 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
7654 spin_unlock(&last_ptr
->refill_lock
);
7655 goto unclustered_alloc
;
7658 aligned_cluster
= max_t(unsigned long,
7659 empty_cluster
+ empty_size
,
7660 block_group
->full_stripe_len
);
7662 /* allocate a cluster in this block group */
7663 ret
= btrfs_find_space_cluster(root
, block_group
,
7664 last_ptr
, search_start
,
7669 * now pull our allocation out of this
7672 offset
= btrfs_alloc_from_cluster(block_group
,
7678 /* we found one, proceed */
7679 spin_unlock(&last_ptr
->refill_lock
);
7680 trace_btrfs_reserve_extent_cluster(root
,
7681 block_group
, search_start
,
7685 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
7686 && !failed_cluster_refill
) {
7687 spin_unlock(&last_ptr
->refill_lock
);
7689 failed_cluster_refill
= true;
7690 wait_block_group_cache_progress(block_group
,
7691 num_bytes
+ empty_cluster
+ empty_size
);
7692 goto have_block_group
;
7696 * at this point we either didn't find a cluster
7697 * or we weren't able to allocate a block from our
7698 * cluster. Free the cluster we've been trying
7699 * to use, and go to the next block group
7701 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7702 spin_unlock(&last_ptr
->refill_lock
);
7708 * We are doing an unclustered alloc, set the fragmented flag so
7709 * we don't bother trying to setup a cluster again until we get
7712 if (unlikely(last_ptr
)) {
7713 spin_lock(&last_ptr
->lock
);
7714 last_ptr
->fragmented
= 1;
7715 spin_unlock(&last_ptr
->lock
);
7717 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
7719 block_group
->free_space_ctl
->free_space
<
7720 num_bytes
+ empty_cluster
+ empty_size
) {
7721 if (block_group
->free_space_ctl
->free_space
>
7724 block_group
->free_space_ctl
->free_space
;
7725 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7728 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7730 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7731 num_bytes
, empty_size
,
7734 * If we didn't find a chunk, and we haven't failed on this
7735 * block group before, and this block group is in the middle of
7736 * caching and we are ok with waiting, then go ahead and wait
7737 * for progress to be made, and set failed_alloc to true.
7739 * If failed_alloc is true then we've already waited on this
7740 * block group once and should move on to the next block group.
7742 if (!offset
&& !failed_alloc
&& !cached
&&
7743 loop
> LOOP_CACHING_NOWAIT
) {
7744 wait_block_group_cache_progress(block_group
,
7745 num_bytes
+ empty_size
);
7746 failed_alloc
= true;
7747 goto have_block_group
;
7748 } else if (!offset
) {
7752 search_start
= ALIGN(offset
, root
->stripesize
);
7754 /* move on to the next group */
7755 if (search_start
+ num_bytes
>
7756 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7757 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7761 if (offset
< search_start
)
7762 btrfs_add_free_space(block_group
, offset
,
7763 search_start
- offset
);
7764 BUG_ON(offset
> search_start
);
7766 ret
= btrfs_update_reserved_bytes(block_group
, num_bytes
,
7767 alloc_type
, delalloc
);
7768 if (ret
== -EAGAIN
) {
7769 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7772 btrfs_inc_block_group_reservations(block_group
);
7774 /* we are all good, lets return */
7775 ins
->objectid
= search_start
;
7776 ins
->offset
= num_bytes
;
7778 trace_btrfs_reserve_extent(orig_root
, block_group
,
7779 search_start
, num_bytes
);
7780 btrfs_release_block_group(block_group
, delalloc
);
7783 failed_cluster_refill
= false;
7784 failed_alloc
= false;
7785 BUG_ON(index
!= get_block_group_index(block_group
));
7786 btrfs_release_block_group(block_group
, delalloc
);
7788 up_read(&space_info
->groups_sem
);
7790 if ((loop
== LOOP_CACHING_NOWAIT
) && have_caching_bg
7791 && !orig_have_caching_bg
)
7792 orig_have_caching_bg
= true;
7794 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7797 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7801 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7802 * caching kthreads as we move along
7803 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7804 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7805 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7808 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7810 if (loop
== LOOP_CACHING_NOWAIT
) {
7812 * We want to skip the LOOP_CACHING_WAIT step if we
7813 * don't have any uncached bgs and we've already done a
7814 * full search through.
7816 if (orig_have_caching_bg
|| !full_search
)
7817 loop
= LOOP_CACHING_WAIT
;
7819 loop
= LOOP_ALLOC_CHUNK
;
7824 if (loop
== LOOP_ALLOC_CHUNK
) {
7825 struct btrfs_trans_handle
*trans
;
7828 trans
= current
->journal_info
;
7832 trans
= btrfs_join_transaction(root
);
7834 if (IS_ERR(trans
)) {
7835 ret
= PTR_ERR(trans
);
7839 ret
= do_chunk_alloc(trans
, root
, flags
,
7843 * If we can't allocate a new chunk we've already looped
7844 * through at least once, move on to the NO_EMPTY_SIZE
7848 loop
= LOOP_NO_EMPTY_SIZE
;
7851 * Do not bail out on ENOSPC since we
7852 * can do more things.
7854 if (ret
< 0 && ret
!= -ENOSPC
)
7855 btrfs_abort_transaction(trans
, ret
);
7859 btrfs_end_transaction(trans
, root
);
7864 if (loop
== LOOP_NO_EMPTY_SIZE
) {
7866 * Don't loop again if we already have no empty_size and
7869 if (empty_size
== 0 &&
7870 empty_cluster
== 0) {
7879 } else if (!ins
->objectid
) {
7881 } else if (ins
->objectid
) {
7882 if (!use_cluster
&& last_ptr
) {
7883 spin_lock(&last_ptr
->lock
);
7884 last_ptr
->window_start
= ins
->objectid
;
7885 spin_unlock(&last_ptr
->lock
);
7890 if (ret
== -ENOSPC
) {
7891 spin_lock(&space_info
->lock
);
7892 space_info
->max_extent_size
= max_extent_size
;
7893 spin_unlock(&space_info
->lock
);
7894 ins
->offset
= max_extent_size
;
7899 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
7900 int dump_block_groups
)
7902 struct btrfs_block_group_cache
*cache
;
7905 spin_lock(&info
->lock
);
7906 printk(KERN_INFO
"BTRFS: space_info %llu has %llu free, is %sfull\n",
7908 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
7909 info
->bytes_reserved
- info
->bytes_readonly
-
7910 info
->bytes_may_use
, (info
->full
) ? "" : "not ");
7911 printk(KERN_INFO
"BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7912 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7913 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
7914 info
->bytes_reserved
, info
->bytes_may_use
,
7915 info
->bytes_readonly
);
7916 spin_unlock(&info
->lock
);
7918 if (!dump_block_groups
)
7921 down_read(&info
->groups_sem
);
7923 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
7924 spin_lock(&cache
->lock
);
7925 printk(KERN_INFO
"BTRFS: "
7926 "block group %llu has %llu bytes, "
7927 "%llu used %llu pinned %llu reserved %s\n",
7928 cache
->key
.objectid
, cache
->key
.offset
,
7929 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
7930 cache
->reserved
, cache
->ro
? "[readonly]" : "");
7931 btrfs_dump_free_space(cache
, bytes
);
7932 spin_unlock(&cache
->lock
);
7934 if (++index
< BTRFS_NR_RAID_TYPES
)
7936 up_read(&info
->groups_sem
);
7939 int btrfs_reserve_extent(struct btrfs_root
*root
,
7940 u64 num_bytes
, u64 min_alloc_size
,
7941 u64 empty_size
, u64 hint_byte
,
7942 struct btrfs_key
*ins
, int is_data
, int delalloc
)
7944 bool final_tried
= num_bytes
== min_alloc_size
;
7948 flags
= btrfs_get_alloc_profile(root
, is_data
);
7950 WARN_ON(num_bytes
< root
->sectorsize
);
7951 ret
= find_free_extent(root
, num_bytes
, empty_size
, hint_byte
, ins
,
7953 if (!ret
&& !is_data
) {
7954 btrfs_dec_block_group_reservations(root
->fs_info
,
7956 } else if (ret
== -ENOSPC
) {
7957 if (!final_tried
&& ins
->offset
) {
7958 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
7959 num_bytes
= round_down(num_bytes
, root
->sectorsize
);
7960 num_bytes
= max(num_bytes
, min_alloc_size
);
7961 if (num_bytes
== min_alloc_size
)
7964 } else if (btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
7965 struct btrfs_space_info
*sinfo
;
7967 sinfo
= __find_space_info(root
->fs_info
, flags
);
7968 btrfs_err(root
->fs_info
, "allocation failed flags %llu, wanted %llu",
7971 dump_space_info(sinfo
, num_bytes
, 1);
7978 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
7980 int pin
, int delalloc
)
7982 struct btrfs_block_group_cache
*cache
;
7985 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
7987 btrfs_err(root
->fs_info
, "Unable to find block group for %llu",
7993 pin_down_extent(root
, cache
, start
, len
, 1);
7995 if (btrfs_test_opt(root
->fs_info
, DISCARD
))
7996 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
7997 btrfs_add_free_space(cache
, start
, len
);
7998 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
, delalloc
);
7999 trace_btrfs_reserved_extent_free(root
, start
, len
);
8002 btrfs_put_block_group(cache
);
8006 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
8007 u64 start
, u64 len
, int delalloc
)
8009 return __btrfs_free_reserved_extent(root
, start
, len
, 0, delalloc
);
8012 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
8015 return __btrfs_free_reserved_extent(root
, start
, len
, 1, 0);
8018 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8019 struct btrfs_root
*root
,
8020 u64 parent
, u64 root_objectid
,
8021 u64 flags
, u64 owner
, u64 offset
,
8022 struct btrfs_key
*ins
, int ref_mod
)
8025 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8026 struct btrfs_extent_item
*extent_item
;
8027 struct btrfs_extent_inline_ref
*iref
;
8028 struct btrfs_path
*path
;
8029 struct extent_buffer
*leaf
;
8034 type
= BTRFS_SHARED_DATA_REF_KEY
;
8036 type
= BTRFS_EXTENT_DATA_REF_KEY
;
8038 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
8040 path
= btrfs_alloc_path();
8044 path
->leave_spinning
= 1;
8045 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8048 btrfs_free_path(path
);
8052 leaf
= path
->nodes
[0];
8053 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8054 struct btrfs_extent_item
);
8055 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
8056 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8057 btrfs_set_extent_flags(leaf
, extent_item
,
8058 flags
| BTRFS_EXTENT_FLAG_DATA
);
8060 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8061 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
8063 struct btrfs_shared_data_ref
*ref
;
8064 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
8065 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8066 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
8068 struct btrfs_extent_data_ref
*ref
;
8069 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
8070 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
8071 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
8072 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
8073 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
8076 btrfs_mark_buffer_dirty(path
->nodes
[0]);
8077 btrfs_free_path(path
);
8079 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8084 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
8085 if (ret
) { /* -ENOENT, logic error */
8086 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8087 ins
->objectid
, ins
->offset
);
8090 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
8094 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
8095 struct btrfs_root
*root
,
8096 u64 parent
, u64 root_objectid
,
8097 u64 flags
, struct btrfs_disk_key
*key
,
8098 int level
, struct btrfs_key
*ins
)
8101 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8102 struct btrfs_extent_item
*extent_item
;
8103 struct btrfs_tree_block_info
*block_info
;
8104 struct btrfs_extent_inline_ref
*iref
;
8105 struct btrfs_path
*path
;
8106 struct extent_buffer
*leaf
;
8107 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
8108 u64 num_bytes
= ins
->offset
;
8109 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
8112 if (!skinny_metadata
)
8113 size
+= sizeof(*block_info
);
8115 path
= btrfs_alloc_path();
8117 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
8122 path
->leave_spinning
= 1;
8123 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8126 btrfs_free_path(path
);
8127 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
8132 leaf
= path
->nodes
[0];
8133 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8134 struct btrfs_extent_item
);
8135 btrfs_set_extent_refs(leaf
, extent_item
, 1);
8136 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8137 btrfs_set_extent_flags(leaf
, extent_item
,
8138 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
8140 if (skinny_metadata
) {
8141 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8142 num_bytes
= root
->nodesize
;
8144 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
8145 btrfs_set_tree_block_key(leaf
, block_info
, key
);
8146 btrfs_set_tree_block_level(leaf
, block_info
, level
);
8147 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
8151 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
8152 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8153 BTRFS_SHARED_BLOCK_REF_KEY
);
8154 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8156 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8157 BTRFS_TREE_BLOCK_REF_KEY
);
8158 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
8161 btrfs_mark_buffer_dirty(leaf
);
8162 btrfs_free_path(path
);
8164 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8169 ret
= update_block_group(trans
, root
, ins
->objectid
, root
->nodesize
,
8171 if (ret
) { /* -ENOENT, logic error */
8172 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8173 ins
->objectid
, ins
->offset
);
8177 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, root
->nodesize
);
8181 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8182 struct btrfs_root
*root
,
8183 u64 root_objectid
, u64 owner
,
8184 u64 offset
, u64 ram_bytes
,
8185 struct btrfs_key
*ins
)
8189 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
8191 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
8193 root_objectid
, owner
, offset
,
8194 ram_bytes
, BTRFS_ADD_DELAYED_EXTENT
,
8200 * this is used by the tree logging recovery code. It records that
8201 * an extent has been allocated and makes sure to clear the free
8202 * space cache bits as well
8204 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
8205 struct btrfs_root
*root
,
8206 u64 root_objectid
, u64 owner
, u64 offset
,
8207 struct btrfs_key
*ins
)
8210 struct btrfs_block_group_cache
*block_group
;
8213 * Mixed block groups will exclude before processing the log so we only
8214 * need to do the exclude dance if this fs isn't mixed.
8216 if (!btrfs_fs_incompat(root
->fs_info
, MIXED_GROUPS
)) {
8217 ret
= __exclude_logged_extent(root
, ins
->objectid
, ins
->offset
);
8222 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
8226 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
8227 RESERVE_ALLOC_NO_ACCOUNT
, 0);
8228 BUG_ON(ret
); /* logic error */
8229 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
8230 0, owner
, offset
, ins
, 1);
8231 btrfs_put_block_group(block_group
);
8235 static struct extent_buffer
*
8236 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
8237 u64 bytenr
, int level
)
8239 struct extent_buffer
*buf
;
8241 buf
= btrfs_find_create_tree_block(root
, bytenr
);
8245 btrfs_set_header_generation(buf
, trans
->transid
);
8246 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
8247 btrfs_tree_lock(buf
);
8248 clean_tree_block(trans
, root
->fs_info
, buf
);
8249 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
8251 btrfs_set_lock_blocking(buf
);
8252 set_extent_buffer_uptodate(buf
);
8254 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
8255 buf
->log_index
= root
->log_transid
% 2;
8257 * we allow two log transactions at a time, use different
8258 * EXENT bit to differentiate dirty pages.
8260 if (buf
->log_index
== 0)
8261 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
8262 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8264 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
8265 buf
->start
+ buf
->len
- 1);
8267 buf
->log_index
= -1;
8268 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
8269 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8271 trans
->dirty
= true;
8272 /* this returns a buffer locked for blocking */
8276 static struct btrfs_block_rsv
*
8277 use_block_rsv(struct btrfs_trans_handle
*trans
,
8278 struct btrfs_root
*root
, u32 blocksize
)
8280 struct btrfs_block_rsv
*block_rsv
;
8281 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
8283 bool global_updated
= false;
8285 block_rsv
= get_block_rsv(trans
, root
);
8287 if (unlikely(block_rsv
->size
== 0))
8290 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
8294 if (block_rsv
->failfast
)
8295 return ERR_PTR(ret
);
8297 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
8298 global_updated
= true;
8299 update_global_block_rsv(root
->fs_info
);
8303 if (btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
8304 static DEFINE_RATELIMIT_STATE(_rs
,
8305 DEFAULT_RATELIMIT_INTERVAL
* 10,
8306 /*DEFAULT_RATELIMIT_BURST*/ 1);
8307 if (__ratelimit(&_rs
))
8309 "BTRFS: block rsv returned %d\n", ret
);
8312 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
8313 BTRFS_RESERVE_NO_FLUSH
);
8317 * If we couldn't reserve metadata bytes try and use some from
8318 * the global reserve if its space type is the same as the global
8321 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
8322 block_rsv
->space_info
== global_rsv
->space_info
) {
8323 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
8327 return ERR_PTR(ret
);
8330 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
8331 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
8333 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
8334 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
8338 * finds a free extent and does all the dirty work required for allocation
8339 * returns the tree buffer or an ERR_PTR on error.
8341 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
8342 struct btrfs_root
*root
,
8343 u64 parent
, u64 root_objectid
,
8344 struct btrfs_disk_key
*key
, int level
,
8345 u64 hint
, u64 empty_size
)
8347 struct btrfs_key ins
;
8348 struct btrfs_block_rsv
*block_rsv
;
8349 struct extent_buffer
*buf
;
8350 struct btrfs_delayed_extent_op
*extent_op
;
8353 u32 blocksize
= root
->nodesize
;
8354 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
8357 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8358 if (btrfs_is_testing(root
->fs_info
)) {
8359 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
8362 root
->alloc_bytenr
+= blocksize
;
8367 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
8368 if (IS_ERR(block_rsv
))
8369 return ERR_CAST(block_rsv
);
8371 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
,
8372 empty_size
, hint
, &ins
, 0, 0);
8376 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
8379 goto out_free_reserved
;
8382 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
8384 parent
= ins
.objectid
;
8385 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8389 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
8390 extent_op
= btrfs_alloc_delayed_extent_op();
8396 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
8398 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
8399 extent_op
->flags_to_set
= flags
;
8400 extent_op
->update_key
= skinny_metadata
? false : true;
8401 extent_op
->update_flags
= true;
8402 extent_op
->is_data
= false;
8403 extent_op
->level
= level
;
8405 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
8406 ins
.objectid
, ins
.offset
,
8407 parent
, root_objectid
, level
,
8408 BTRFS_ADD_DELAYED_EXTENT
,
8411 goto out_free_delayed
;
8416 btrfs_free_delayed_extent_op(extent_op
);
8418 free_extent_buffer(buf
);
8420 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 0);
8422 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
8423 return ERR_PTR(ret
);
8426 struct walk_control
{
8427 u64 refs
[BTRFS_MAX_LEVEL
];
8428 u64 flags
[BTRFS_MAX_LEVEL
];
8429 struct btrfs_key update_progress
;
8440 #define DROP_REFERENCE 1
8441 #define UPDATE_BACKREF 2
8443 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
8444 struct btrfs_root
*root
,
8445 struct walk_control
*wc
,
8446 struct btrfs_path
*path
)
8454 struct btrfs_key key
;
8455 struct extent_buffer
*eb
;
8460 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
8461 wc
->reada_count
= wc
->reada_count
* 2 / 3;
8462 wc
->reada_count
= max(wc
->reada_count
, 2);
8464 wc
->reada_count
= wc
->reada_count
* 3 / 2;
8465 wc
->reada_count
= min_t(int, wc
->reada_count
,
8466 BTRFS_NODEPTRS_PER_BLOCK(root
));
8469 eb
= path
->nodes
[wc
->level
];
8470 nritems
= btrfs_header_nritems(eb
);
8471 blocksize
= root
->nodesize
;
8473 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
8474 if (nread
>= wc
->reada_count
)
8478 bytenr
= btrfs_node_blockptr(eb
, slot
);
8479 generation
= btrfs_node_ptr_generation(eb
, slot
);
8481 if (slot
== path
->slots
[wc
->level
])
8484 if (wc
->stage
== UPDATE_BACKREF
&&
8485 generation
<= root
->root_key
.offset
)
8488 /* We don't lock the tree block, it's OK to be racy here */
8489 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
,
8490 wc
->level
- 1, 1, &refs
,
8492 /* We don't care about errors in readahead. */
8497 if (wc
->stage
== DROP_REFERENCE
) {
8501 if (wc
->level
== 1 &&
8502 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8504 if (!wc
->update_ref
||
8505 generation
<= root
->root_key
.offset
)
8507 btrfs_node_key_to_cpu(eb
, &key
, slot
);
8508 ret
= btrfs_comp_cpu_keys(&key
,
8509 &wc
->update_progress
);
8513 if (wc
->level
== 1 &&
8514 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8518 readahead_tree_block(root
, bytenr
);
8521 wc
->reada_slot
= slot
;
8525 * These may not be seen by the usual inc/dec ref code so we have to
8528 static int record_one_subtree_extent(struct btrfs_trans_handle
*trans
,
8529 struct btrfs_root
*root
, u64 bytenr
,
8532 struct btrfs_qgroup_extent_record
*qrecord
;
8533 struct btrfs_delayed_ref_root
*delayed_refs
;
8535 qrecord
= kmalloc(sizeof(*qrecord
), GFP_NOFS
);
8539 qrecord
->bytenr
= bytenr
;
8540 qrecord
->num_bytes
= num_bytes
;
8541 qrecord
->old_roots
= NULL
;
8543 delayed_refs
= &trans
->transaction
->delayed_refs
;
8544 spin_lock(&delayed_refs
->lock
);
8545 if (btrfs_qgroup_insert_dirty_extent(trans
->fs_info
,
8546 delayed_refs
, qrecord
))
8548 spin_unlock(&delayed_refs
->lock
);
8553 static int account_leaf_items(struct btrfs_trans_handle
*trans
,
8554 struct btrfs_root
*root
,
8555 struct extent_buffer
*eb
)
8557 int nr
= btrfs_header_nritems(eb
);
8558 int i
, extent_type
, ret
;
8559 struct btrfs_key key
;
8560 struct btrfs_file_extent_item
*fi
;
8561 u64 bytenr
, num_bytes
;
8563 /* We can be called directly from walk_up_proc() */
8564 if (!root
->fs_info
->quota_enabled
)
8567 for (i
= 0; i
< nr
; i
++) {
8568 btrfs_item_key_to_cpu(eb
, &key
, i
);
8570 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
8573 fi
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
8574 /* filter out non qgroup-accountable extents */
8575 extent_type
= btrfs_file_extent_type(eb
, fi
);
8577 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
8580 bytenr
= btrfs_file_extent_disk_bytenr(eb
, fi
);
8584 num_bytes
= btrfs_file_extent_disk_num_bytes(eb
, fi
);
8586 ret
= record_one_subtree_extent(trans
, root
, bytenr
, num_bytes
);
8594 * Walk up the tree from the bottom, freeing leaves and any interior
8595 * nodes which have had all slots visited. If a node (leaf or
8596 * interior) is freed, the node above it will have it's slot
8597 * incremented. The root node will never be freed.
8599 * At the end of this function, we should have a path which has all
8600 * slots incremented to the next position for a search. If we need to
8601 * read a new node it will be NULL and the node above it will have the
8602 * correct slot selected for a later read.
8604 * If we increment the root nodes slot counter past the number of
8605 * elements, 1 is returned to signal completion of the search.
8607 static int adjust_slots_upwards(struct btrfs_root
*root
,
8608 struct btrfs_path
*path
, int root_level
)
8612 struct extent_buffer
*eb
;
8614 if (root_level
== 0)
8617 while (level
<= root_level
) {
8618 eb
= path
->nodes
[level
];
8619 nr
= btrfs_header_nritems(eb
);
8620 path
->slots
[level
]++;
8621 slot
= path
->slots
[level
];
8622 if (slot
>= nr
|| level
== 0) {
8624 * Don't free the root - we will detect this
8625 * condition after our loop and return a
8626 * positive value for caller to stop walking the tree.
8628 if (level
!= root_level
) {
8629 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8630 path
->locks
[level
] = 0;
8632 free_extent_buffer(eb
);
8633 path
->nodes
[level
] = NULL
;
8634 path
->slots
[level
] = 0;
8638 * We have a valid slot to walk back down
8639 * from. Stop here so caller can process these
8648 eb
= path
->nodes
[root_level
];
8649 if (path
->slots
[root_level
] >= btrfs_header_nritems(eb
))
8656 * root_eb is the subtree root and is locked before this function is called.
8658 static int account_shared_subtree(struct btrfs_trans_handle
*trans
,
8659 struct btrfs_root
*root
,
8660 struct extent_buffer
*root_eb
,
8666 struct extent_buffer
*eb
= root_eb
;
8667 struct btrfs_path
*path
= NULL
;
8669 BUG_ON(root_level
< 0 || root_level
> BTRFS_MAX_LEVEL
);
8670 BUG_ON(root_eb
== NULL
);
8672 if (!root
->fs_info
->quota_enabled
)
8675 if (!extent_buffer_uptodate(root_eb
)) {
8676 ret
= btrfs_read_buffer(root_eb
, root_gen
);
8681 if (root_level
== 0) {
8682 ret
= account_leaf_items(trans
, root
, root_eb
);
8686 path
= btrfs_alloc_path();
8691 * Walk down the tree. Missing extent blocks are filled in as
8692 * we go. Metadata is accounted every time we read a new
8695 * When we reach a leaf, we account for file extent items in it,
8696 * walk back up the tree (adjusting slot pointers as we go)
8697 * and restart the search process.
8699 extent_buffer_get(root_eb
); /* For path */
8700 path
->nodes
[root_level
] = root_eb
;
8701 path
->slots
[root_level
] = 0;
8702 path
->locks
[root_level
] = 0; /* so release_path doesn't try to unlock */
8705 while (level
>= 0) {
8706 if (path
->nodes
[level
] == NULL
) {
8711 /* We need to get child blockptr/gen from
8712 * parent before we can read it. */
8713 eb
= path
->nodes
[level
+ 1];
8714 parent_slot
= path
->slots
[level
+ 1];
8715 child_bytenr
= btrfs_node_blockptr(eb
, parent_slot
);
8716 child_gen
= btrfs_node_ptr_generation(eb
, parent_slot
);
8718 eb
= read_tree_block(root
, child_bytenr
, child_gen
);
8722 } else if (!extent_buffer_uptodate(eb
)) {
8723 free_extent_buffer(eb
);
8728 path
->nodes
[level
] = eb
;
8729 path
->slots
[level
] = 0;
8731 btrfs_tree_read_lock(eb
);
8732 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
8733 path
->locks
[level
] = BTRFS_READ_LOCK_BLOCKING
;
8735 ret
= record_one_subtree_extent(trans
, root
, child_bytenr
,
8742 ret
= account_leaf_items(trans
, root
, path
->nodes
[level
]);
8746 /* Nonzero return here means we completed our search */
8747 ret
= adjust_slots_upwards(root
, path
, root_level
);
8751 /* Restart search with new slots */
8760 btrfs_free_path(path
);
8766 * helper to process tree block while walking down the tree.
8768 * when wc->stage == UPDATE_BACKREF, this function updates
8769 * back refs for pointers in the block.
8771 * NOTE: return value 1 means we should stop walking down.
8773 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
8774 struct btrfs_root
*root
,
8775 struct btrfs_path
*path
,
8776 struct walk_control
*wc
, int lookup_info
)
8778 int level
= wc
->level
;
8779 struct extent_buffer
*eb
= path
->nodes
[level
];
8780 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8783 if (wc
->stage
== UPDATE_BACKREF
&&
8784 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
8788 * when reference count of tree block is 1, it won't increase
8789 * again. once full backref flag is set, we never clear it.
8792 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
8793 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
8794 BUG_ON(!path
->locks
[level
]);
8795 ret
= btrfs_lookup_extent_info(trans
, root
,
8796 eb
->start
, level
, 1,
8799 BUG_ON(ret
== -ENOMEM
);
8802 BUG_ON(wc
->refs
[level
] == 0);
8805 if (wc
->stage
== DROP_REFERENCE
) {
8806 if (wc
->refs
[level
] > 1)
8809 if (path
->locks
[level
] && !wc
->keep_locks
) {
8810 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8811 path
->locks
[level
] = 0;
8816 /* wc->stage == UPDATE_BACKREF */
8817 if (!(wc
->flags
[level
] & flag
)) {
8818 BUG_ON(!path
->locks
[level
]);
8819 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8820 BUG_ON(ret
); /* -ENOMEM */
8821 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8822 BUG_ON(ret
); /* -ENOMEM */
8823 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
8825 btrfs_header_level(eb
), 0);
8826 BUG_ON(ret
); /* -ENOMEM */
8827 wc
->flags
[level
] |= flag
;
8831 * the block is shared by multiple trees, so it's not good to
8832 * keep the tree lock
8834 if (path
->locks
[level
] && level
> 0) {
8835 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8836 path
->locks
[level
] = 0;
8842 * helper to process tree block pointer.
8844 * when wc->stage == DROP_REFERENCE, this function checks
8845 * reference count of the block pointed to. if the block
8846 * is shared and we need update back refs for the subtree
8847 * rooted at the block, this function changes wc->stage to
8848 * UPDATE_BACKREF. if the block is shared and there is no
8849 * need to update back, this function drops the reference
8852 * NOTE: return value 1 means we should stop walking down.
8854 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8855 struct btrfs_root
*root
,
8856 struct btrfs_path
*path
,
8857 struct walk_control
*wc
, int *lookup_info
)
8863 struct btrfs_key key
;
8864 struct extent_buffer
*next
;
8865 int level
= wc
->level
;
8868 bool need_account
= false;
8870 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8871 path
->slots
[level
]);
8873 * if the lower level block was created before the snapshot
8874 * was created, we know there is no need to update back refs
8877 if (wc
->stage
== UPDATE_BACKREF
&&
8878 generation
<= root
->root_key
.offset
) {
8883 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8884 blocksize
= root
->nodesize
;
8886 next
= btrfs_find_tree_block(root
->fs_info
, bytenr
);
8888 next
= btrfs_find_create_tree_block(root
, bytenr
);
8890 return PTR_ERR(next
);
8892 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8896 btrfs_tree_lock(next
);
8897 btrfs_set_lock_blocking(next
);
8899 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, level
- 1, 1,
8900 &wc
->refs
[level
- 1],
8901 &wc
->flags
[level
- 1]);
8903 btrfs_tree_unlock(next
);
8907 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8908 btrfs_err(root
->fs_info
, "Missing references.");
8913 if (wc
->stage
== DROP_REFERENCE
) {
8914 if (wc
->refs
[level
- 1] > 1) {
8915 need_account
= true;
8917 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8920 if (!wc
->update_ref
||
8921 generation
<= root
->root_key
.offset
)
8924 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8925 path
->slots
[level
]);
8926 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8930 wc
->stage
= UPDATE_BACKREF
;
8931 wc
->shared_level
= level
- 1;
8935 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8939 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8940 btrfs_tree_unlock(next
);
8941 free_extent_buffer(next
);
8947 if (reada
&& level
== 1)
8948 reada_walk_down(trans
, root
, wc
, path
);
8949 next
= read_tree_block(root
, bytenr
, generation
);
8951 return PTR_ERR(next
);
8952 } else if (!extent_buffer_uptodate(next
)) {
8953 free_extent_buffer(next
);
8956 btrfs_tree_lock(next
);
8957 btrfs_set_lock_blocking(next
);
8961 BUG_ON(level
!= btrfs_header_level(next
));
8962 path
->nodes
[level
] = next
;
8963 path
->slots
[level
] = 0;
8964 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8970 wc
->refs
[level
- 1] = 0;
8971 wc
->flags
[level
- 1] = 0;
8972 if (wc
->stage
== DROP_REFERENCE
) {
8973 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8974 parent
= path
->nodes
[level
]->start
;
8976 BUG_ON(root
->root_key
.objectid
!=
8977 btrfs_header_owner(path
->nodes
[level
]));
8982 ret
= account_shared_subtree(trans
, root
, next
,
8983 generation
, level
- 1);
8985 btrfs_err_rl(root
->fs_info
,
8987 "%d accounting shared subtree. Quota "
8988 "is out of sync, rescan required.",
8992 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
8993 root
->root_key
.objectid
, level
- 1, 0);
8994 BUG_ON(ret
); /* -ENOMEM */
8996 btrfs_tree_unlock(next
);
8997 free_extent_buffer(next
);
9003 * helper to process tree block while walking up the tree.
9005 * when wc->stage == DROP_REFERENCE, this function drops
9006 * reference count on the block.
9008 * when wc->stage == UPDATE_BACKREF, this function changes
9009 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9010 * to UPDATE_BACKREF previously while processing the block.
9012 * NOTE: return value 1 means we should stop walking up.
9014 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
9015 struct btrfs_root
*root
,
9016 struct btrfs_path
*path
,
9017 struct walk_control
*wc
)
9020 int level
= wc
->level
;
9021 struct extent_buffer
*eb
= path
->nodes
[level
];
9024 if (wc
->stage
== UPDATE_BACKREF
) {
9025 BUG_ON(wc
->shared_level
< level
);
9026 if (level
< wc
->shared_level
)
9029 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
9033 wc
->stage
= DROP_REFERENCE
;
9034 wc
->shared_level
= -1;
9035 path
->slots
[level
] = 0;
9038 * check reference count again if the block isn't locked.
9039 * we should start walking down the tree again if reference
9042 if (!path
->locks
[level
]) {
9044 btrfs_tree_lock(eb
);
9045 btrfs_set_lock_blocking(eb
);
9046 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9048 ret
= btrfs_lookup_extent_info(trans
, root
,
9049 eb
->start
, level
, 1,
9053 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
9054 path
->locks
[level
] = 0;
9057 BUG_ON(wc
->refs
[level
] == 0);
9058 if (wc
->refs
[level
] == 1) {
9059 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
9060 path
->locks
[level
] = 0;
9066 /* wc->stage == DROP_REFERENCE */
9067 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
9069 if (wc
->refs
[level
] == 1) {
9071 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9072 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
9074 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
9075 BUG_ON(ret
); /* -ENOMEM */
9076 ret
= account_leaf_items(trans
, root
, eb
);
9078 btrfs_err_rl(root
->fs_info
,
9080 "%d accounting leaf items. Quota "
9081 "is out of sync, rescan required.",
9085 /* make block locked assertion in clean_tree_block happy */
9086 if (!path
->locks
[level
] &&
9087 btrfs_header_generation(eb
) == trans
->transid
) {
9088 btrfs_tree_lock(eb
);
9089 btrfs_set_lock_blocking(eb
);
9090 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9092 clean_tree_block(trans
, root
->fs_info
, eb
);
9095 if (eb
== root
->node
) {
9096 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9099 BUG_ON(root
->root_key
.objectid
!=
9100 btrfs_header_owner(eb
));
9102 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9103 parent
= path
->nodes
[level
+ 1]->start
;
9105 BUG_ON(root
->root_key
.objectid
!=
9106 btrfs_header_owner(path
->nodes
[level
+ 1]));
9109 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
9111 wc
->refs
[level
] = 0;
9112 wc
->flags
[level
] = 0;
9116 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
9117 struct btrfs_root
*root
,
9118 struct btrfs_path
*path
,
9119 struct walk_control
*wc
)
9121 int level
= wc
->level
;
9122 int lookup_info
= 1;
9125 while (level
>= 0) {
9126 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
9133 if (path
->slots
[level
] >=
9134 btrfs_header_nritems(path
->nodes
[level
]))
9137 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
9139 path
->slots
[level
]++;
9148 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
9149 struct btrfs_root
*root
,
9150 struct btrfs_path
*path
,
9151 struct walk_control
*wc
, int max_level
)
9153 int level
= wc
->level
;
9156 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
9157 while (level
< max_level
&& path
->nodes
[level
]) {
9159 if (path
->slots
[level
] + 1 <
9160 btrfs_header_nritems(path
->nodes
[level
])) {
9161 path
->slots
[level
]++;
9164 ret
= walk_up_proc(trans
, root
, path
, wc
);
9168 if (path
->locks
[level
]) {
9169 btrfs_tree_unlock_rw(path
->nodes
[level
],
9170 path
->locks
[level
]);
9171 path
->locks
[level
] = 0;
9173 free_extent_buffer(path
->nodes
[level
]);
9174 path
->nodes
[level
] = NULL
;
9182 * drop a subvolume tree.
9184 * this function traverses the tree freeing any blocks that only
9185 * referenced by the tree.
9187 * when a shared tree block is found. this function decreases its
9188 * reference count by one. if update_ref is true, this function
9189 * also make sure backrefs for the shared block and all lower level
9190 * blocks are properly updated.
9192 * If called with for_reloc == 0, may exit early with -EAGAIN
9194 int btrfs_drop_snapshot(struct btrfs_root
*root
,
9195 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
9198 struct btrfs_path
*path
;
9199 struct btrfs_trans_handle
*trans
;
9200 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
9201 struct btrfs_root_item
*root_item
= &root
->root_item
;
9202 struct walk_control
*wc
;
9203 struct btrfs_key key
;
9207 bool root_dropped
= false;
9209 btrfs_debug(root
->fs_info
, "Drop subvolume %llu", root
->objectid
);
9211 path
= btrfs_alloc_path();
9217 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9219 btrfs_free_path(path
);
9224 trans
= btrfs_start_transaction(tree_root
, 0);
9225 if (IS_ERR(trans
)) {
9226 err
= PTR_ERR(trans
);
9231 trans
->block_rsv
= block_rsv
;
9233 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
9234 level
= btrfs_header_level(root
->node
);
9235 path
->nodes
[level
] = btrfs_lock_root_node(root
);
9236 btrfs_set_lock_blocking(path
->nodes
[level
]);
9237 path
->slots
[level
] = 0;
9238 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9239 memset(&wc
->update_progress
, 0,
9240 sizeof(wc
->update_progress
));
9242 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
9243 memcpy(&wc
->update_progress
, &key
,
9244 sizeof(wc
->update_progress
));
9246 level
= root_item
->drop_level
;
9248 path
->lowest_level
= level
;
9249 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
9250 path
->lowest_level
= 0;
9258 * unlock our path, this is safe because only this
9259 * function is allowed to delete this snapshot
9261 btrfs_unlock_up_safe(path
, 0);
9263 level
= btrfs_header_level(root
->node
);
9265 btrfs_tree_lock(path
->nodes
[level
]);
9266 btrfs_set_lock_blocking(path
->nodes
[level
]);
9267 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9269 ret
= btrfs_lookup_extent_info(trans
, root
,
9270 path
->nodes
[level
]->start
,
9271 level
, 1, &wc
->refs
[level
],
9277 BUG_ON(wc
->refs
[level
] == 0);
9279 if (level
== root_item
->drop_level
)
9282 btrfs_tree_unlock(path
->nodes
[level
]);
9283 path
->locks
[level
] = 0;
9284 WARN_ON(wc
->refs
[level
] != 1);
9290 wc
->shared_level
= -1;
9291 wc
->stage
= DROP_REFERENCE
;
9292 wc
->update_ref
= update_ref
;
9294 wc
->for_reloc
= for_reloc
;
9295 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
9299 ret
= walk_down_tree(trans
, root
, path
, wc
);
9305 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
9312 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
9316 if (wc
->stage
== DROP_REFERENCE
) {
9318 btrfs_node_key(path
->nodes
[level
],
9319 &root_item
->drop_progress
,
9320 path
->slots
[level
]);
9321 root_item
->drop_level
= level
;
9324 BUG_ON(wc
->level
== 0);
9325 if (btrfs_should_end_transaction(trans
, tree_root
) ||
9326 (!for_reloc
&& btrfs_need_cleaner_sleep(root
))) {
9327 ret
= btrfs_update_root(trans
, tree_root
,
9331 btrfs_abort_transaction(trans
, ret
);
9336 btrfs_end_transaction_throttle(trans
, tree_root
);
9337 if (!for_reloc
&& btrfs_need_cleaner_sleep(root
)) {
9338 pr_debug("BTRFS: drop snapshot early exit\n");
9343 trans
= btrfs_start_transaction(tree_root
, 0);
9344 if (IS_ERR(trans
)) {
9345 err
= PTR_ERR(trans
);
9349 trans
->block_rsv
= block_rsv
;
9352 btrfs_release_path(path
);
9356 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
9358 btrfs_abort_transaction(trans
, ret
);
9362 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
9363 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
9366 btrfs_abort_transaction(trans
, ret
);
9369 } else if (ret
> 0) {
9370 /* if we fail to delete the orphan item this time
9371 * around, it'll get picked up the next time.
9373 * The most common failure here is just -ENOENT.
9375 btrfs_del_orphan_item(trans
, tree_root
,
9376 root
->root_key
.objectid
);
9380 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
9381 btrfs_add_dropped_root(trans
, root
);
9383 free_extent_buffer(root
->node
);
9384 free_extent_buffer(root
->commit_root
);
9385 btrfs_put_fs_root(root
);
9387 root_dropped
= true;
9389 btrfs_end_transaction_throttle(trans
, tree_root
);
9392 btrfs_free_path(path
);
9395 * So if we need to stop dropping the snapshot for whatever reason we
9396 * need to make sure to add it back to the dead root list so that we
9397 * keep trying to do the work later. This also cleans up roots if we
9398 * don't have it in the radix (like when we recover after a power fail
9399 * or unmount) so we don't leak memory.
9401 if (!for_reloc
&& root_dropped
== false)
9402 btrfs_add_dead_root(root
);
9403 if (err
&& err
!= -EAGAIN
)
9404 btrfs_handle_fs_error(root
->fs_info
, err
, NULL
);
9409 * drop subtree rooted at tree block 'node'.
9411 * NOTE: this function will unlock and release tree block 'node'
9412 * only used by relocation code
9414 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
9415 struct btrfs_root
*root
,
9416 struct extent_buffer
*node
,
9417 struct extent_buffer
*parent
)
9419 struct btrfs_path
*path
;
9420 struct walk_control
*wc
;
9426 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
9428 path
= btrfs_alloc_path();
9432 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9434 btrfs_free_path(path
);
9438 btrfs_assert_tree_locked(parent
);
9439 parent_level
= btrfs_header_level(parent
);
9440 extent_buffer_get(parent
);
9441 path
->nodes
[parent_level
] = parent
;
9442 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
9444 btrfs_assert_tree_locked(node
);
9445 level
= btrfs_header_level(node
);
9446 path
->nodes
[level
] = node
;
9447 path
->slots
[level
] = 0;
9448 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9450 wc
->refs
[parent_level
] = 1;
9451 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
9453 wc
->shared_level
= -1;
9454 wc
->stage
= DROP_REFERENCE
;
9458 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
9461 wret
= walk_down_tree(trans
, root
, path
, wc
);
9467 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
9475 btrfs_free_path(path
);
9479 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
9485 * if restripe for this chunk_type is on pick target profile and
9486 * return, otherwise do the usual balance
9488 stripped
= get_restripe_target(root
->fs_info
, flags
);
9490 return extended_to_chunk(stripped
);
9492 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
9494 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
9495 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
9496 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
9498 if (num_devices
== 1) {
9499 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9500 stripped
= flags
& ~stripped
;
9502 /* turn raid0 into single device chunks */
9503 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
9506 /* turn mirroring into duplication */
9507 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9508 BTRFS_BLOCK_GROUP_RAID10
))
9509 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
9511 /* they already had raid on here, just return */
9512 if (flags
& stripped
)
9515 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9516 stripped
= flags
& ~stripped
;
9518 /* switch duplicated blocks with raid1 */
9519 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
9520 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
9522 /* this is drive concat, leave it alone */
9528 static int inc_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
9530 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9532 u64 min_allocable_bytes
;
9536 * We need some metadata space and system metadata space for
9537 * allocating chunks in some corner cases until we force to set
9538 * it to be readonly.
9541 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
9543 min_allocable_bytes
= SZ_1M
;
9545 min_allocable_bytes
= 0;
9547 spin_lock(&sinfo
->lock
);
9548 spin_lock(&cache
->lock
);
9556 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
9557 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
9559 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
9560 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
9561 min_allocable_bytes
<= sinfo
->total_bytes
) {
9562 sinfo
->bytes_readonly
+= num_bytes
;
9564 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
9568 spin_unlock(&cache
->lock
);
9569 spin_unlock(&sinfo
->lock
);
9573 int btrfs_inc_block_group_ro(struct btrfs_root
*root
,
9574 struct btrfs_block_group_cache
*cache
)
9577 struct btrfs_trans_handle
*trans
;
9582 trans
= btrfs_join_transaction(root
);
9584 return PTR_ERR(trans
);
9587 * we're not allowed to set block groups readonly after the dirty
9588 * block groups cache has started writing. If it already started,
9589 * back off and let this transaction commit
9591 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
9592 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
9593 u64 transid
= trans
->transid
;
9595 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
9596 btrfs_end_transaction(trans
, root
);
9598 ret
= btrfs_wait_for_commit(root
, transid
);
9605 * if we are changing raid levels, try to allocate a corresponding
9606 * block group with the new raid level.
9608 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
9609 if (alloc_flags
!= cache
->flags
) {
9610 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
9613 * ENOSPC is allowed here, we may have enough space
9614 * already allocated at the new raid level to
9623 ret
= inc_block_group_ro(cache
, 0);
9626 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
9627 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
9631 ret
= inc_block_group_ro(cache
, 0);
9633 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
9634 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
9635 lock_chunks(root
->fs_info
->chunk_root
);
9636 check_system_chunk(trans
, root
, alloc_flags
);
9637 unlock_chunks(root
->fs_info
->chunk_root
);
9639 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
9641 btrfs_end_transaction(trans
, root
);
9645 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
9646 struct btrfs_root
*root
, u64 type
)
9648 u64 alloc_flags
= get_alloc_profile(root
, type
);
9649 return do_chunk_alloc(trans
, root
, alloc_flags
,
9654 * helper to account the unused space of all the readonly block group in the
9655 * space_info. takes mirrors into account.
9657 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
9659 struct btrfs_block_group_cache
*block_group
;
9663 /* It's df, we don't care if it's racy */
9664 if (list_empty(&sinfo
->ro_bgs
))
9667 spin_lock(&sinfo
->lock
);
9668 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
9669 spin_lock(&block_group
->lock
);
9671 if (!block_group
->ro
) {
9672 spin_unlock(&block_group
->lock
);
9676 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9677 BTRFS_BLOCK_GROUP_RAID10
|
9678 BTRFS_BLOCK_GROUP_DUP
))
9683 free_bytes
+= (block_group
->key
.offset
-
9684 btrfs_block_group_used(&block_group
->item
)) *
9687 spin_unlock(&block_group
->lock
);
9689 spin_unlock(&sinfo
->lock
);
9694 void btrfs_dec_block_group_ro(struct btrfs_root
*root
,
9695 struct btrfs_block_group_cache
*cache
)
9697 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9702 spin_lock(&sinfo
->lock
);
9703 spin_lock(&cache
->lock
);
9705 num_bytes
= cache
->key
.offset
- cache
->reserved
-
9706 cache
->pinned
- cache
->bytes_super
-
9707 btrfs_block_group_used(&cache
->item
);
9708 sinfo
->bytes_readonly
-= num_bytes
;
9709 list_del_init(&cache
->ro_list
);
9711 spin_unlock(&cache
->lock
);
9712 spin_unlock(&sinfo
->lock
);
9716 * checks to see if its even possible to relocate this block group.
9718 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9719 * ok to go ahead and try.
9721 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
9723 struct btrfs_block_group_cache
*block_group
;
9724 struct btrfs_space_info
*space_info
;
9725 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
9726 struct btrfs_device
*device
;
9727 struct btrfs_trans_handle
*trans
;
9737 debug
= btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
);
9739 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
9741 /* odd, couldn't find the block group, leave it alone */
9744 btrfs_warn(root
->fs_info
,
9745 "can't find block group for bytenr %llu",
9750 min_free
= btrfs_block_group_used(&block_group
->item
);
9752 /* no bytes used, we're good */
9756 space_info
= block_group
->space_info
;
9757 spin_lock(&space_info
->lock
);
9759 full
= space_info
->full
;
9762 * if this is the last block group we have in this space, we can't
9763 * relocate it unless we're able to allocate a new chunk below.
9765 * Otherwise, we need to make sure we have room in the space to handle
9766 * all of the extents from this block group. If we can, we're good
9768 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
9769 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
9770 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
9771 min_free
< space_info
->total_bytes
)) {
9772 spin_unlock(&space_info
->lock
);
9775 spin_unlock(&space_info
->lock
);
9778 * ok we don't have enough space, but maybe we have free space on our
9779 * devices to allocate new chunks for relocation, so loop through our
9780 * alloc devices and guess if we have enough space. if this block
9781 * group is going to be restriped, run checks against the target
9782 * profile instead of the current one.
9794 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
9796 index
= __get_raid_index(extended_to_chunk(target
));
9799 * this is just a balance, so if we were marked as full
9800 * we know there is no space for a new chunk
9804 btrfs_warn(root
->fs_info
,
9805 "no space to alloc new chunk for block group %llu",
9806 block_group
->key
.objectid
);
9810 index
= get_block_group_index(block_group
);
9813 if (index
== BTRFS_RAID_RAID10
) {
9817 } else if (index
== BTRFS_RAID_RAID1
) {
9819 } else if (index
== BTRFS_RAID_DUP
) {
9822 } else if (index
== BTRFS_RAID_RAID0
) {
9823 dev_min
= fs_devices
->rw_devices
;
9824 min_free
= div64_u64(min_free
, dev_min
);
9827 /* We need to do this so that we can look at pending chunks */
9828 trans
= btrfs_join_transaction(root
);
9829 if (IS_ERR(trans
)) {
9830 ret
= PTR_ERR(trans
);
9834 mutex_lock(&root
->fs_info
->chunk_mutex
);
9835 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9839 * check to make sure we can actually find a chunk with enough
9840 * space to fit our block group in.
9842 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9843 !device
->is_tgtdev_for_dev_replace
) {
9844 ret
= find_free_dev_extent(trans
, device
, min_free
,
9849 if (dev_nr
>= dev_min
)
9855 if (debug
&& ret
== -1)
9856 btrfs_warn(root
->fs_info
,
9857 "no space to allocate a new chunk for block group %llu",
9858 block_group
->key
.objectid
);
9859 mutex_unlock(&root
->fs_info
->chunk_mutex
);
9860 btrfs_end_transaction(trans
, root
);
9862 btrfs_put_block_group(block_group
);
9866 static int find_first_block_group(struct btrfs_root
*root
,
9867 struct btrfs_path
*path
, struct btrfs_key
*key
)
9870 struct btrfs_key found_key
;
9871 struct extent_buffer
*leaf
;
9874 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9879 slot
= path
->slots
[0];
9880 leaf
= path
->nodes
[0];
9881 if (slot
>= btrfs_header_nritems(leaf
)) {
9882 ret
= btrfs_next_leaf(root
, path
);
9889 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9891 if (found_key
.objectid
>= key
->objectid
&&
9892 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9893 struct extent_map_tree
*em_tree
;
9894 struct extent_map
*em
;
9896 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9897 read_lock(&em_tree
->lock
);
9898 em
= lookup_extent_mapping(em_tree
, found_key
.objectid
,
9900 read_unlock(&em_tree
->lock
);
9902 btrfs_err(root
->fs_info
,
9903 "logical %llu len %llu found bg but no related chunk",
9904 found_key
.objectid
, found_key
.offset
);
9917 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9919 struct btrfs_block_group_cache
*block_group
;
9923 struct inode
*inode
;
9925 block_group
= btrfs_lookup_first_block_group(info
, last
);
9926 while (block_group
) {
9927 spin_lock(&block_group
->lock
);
9928 if (block_group
->iref
)
9930 spin_unlock(&block_group
->lock
);
9931 block_group
= next_block_group(info
->tree_root
,
9941 inode
= block_group
->inode
;
9942 block_group
->iref
= 0;
9943 block_group
->inode
= NULL
;
9944 spin_unlock(&block_group
->lock
);
9946 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9947 btrfs_put_block_group(block_group
);
9951 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9953 struct btrfs_block_group_cache
*block_group
;
9954 struct btrfs_space_info
*space_info
;
9955 struct btrfs_caching_control
*caching_ctl
;
9958 down_write(&info
->commit_root_sem
);
9959 while (!list_empty(&info
->caching_block_groups
)) {
9960 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9961 struct btrfs_caching_control
, list
);
9962 list_del(&caching_ctl
->list
);
9963 put_caching_control(caching_ctl
);
9965 up_write(&info
->commit_root_sem
);
9967 spin_lock(&info
->unused_bgs_lock
);
9968 while (!list_empty(&info
->unused_bgs
)) {
9969 block_group
= list_first_entry(&info
->unused_bgs
,
9970 struct btrfs_block_group_cache
,
9972 list_del_init(&block_group
->bg_list
);
9973 btrfs_put_block_group(block_group
);
9975 spin_unlock(&info
->unused_bgs_lock
);
9977 spin_lock(&info
->block_group_cache_lock
);
9978 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9979 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9981 rb_erase(&block_group
->cache_node
,
9982 &info
->block_group_cache_tree
);
9983 RB_CLEAR_NODE(&block_group
->cache_node
);
9984 spin_unlock(&info
->block_group_cache_lock
);
9986 down_write(&block_group
->space_info
->groups_sem
);
9987 list_del(&block_group
->list
);
9988 up_write(&block_group
->space_info
->groups_sem
);
9990 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9991 wait_block_group_cache_done(block_group
);
9994 * We haven't cached this block group, which means we could
9995 * possibly have excluded extents on this block group.
9997 if (block_group
->cached
== BTRFS_CACHE_NO
||
9998 block_group
->cached
== BTRFS_CACHE_ERROR
)
9999 free_excluded_extents(info
->extent_root
, block_group
);
10001 btrfs_remove_free_space_cache(block_group
);
10002 btrfs_put_block_group(block_group
);
10004 spin_lock(&info
->block_group_cache_lock
);
10006 spin_unlock(&info
->block_group_cache_lock
);
10008 /* now that all the block groups are freed, go through and
10009 * free all the space_info structs. This is only called during
10010 * the final stages of unmount, and so we know nobody is
10011 * using them. We call synchronize_rcu() once before we start,
10012 * just to be on the safe side.
10016 release_global_block_rsv(info
);
10018 while (!list_empty(&info
->space_info
)) {
10021 space_info
= list_entry(info
->space_info
.next
,
10022 struct btrfs_space_info
,
10026 * Do not hide this behind enospc_debug, this is actually
10027 * important and indicates a real bug if this happens.
10029 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
10030 space_info
->bytes_reserved
> 0 ||
10031 space_info
->bytes_may_use
> 0))
10032 dump_space_info(space_info
, 0, 0);
10033 list_del(&space_info
->list
);
10034 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
10035 struct kobject
*kobj
;
10036 kobj
= space_info
->block_group_kobjs
[i
];
10037 space_info
->block_group_kobjs
[i
] = NULL
;
10043 kobject_del(&space_info
->kobj
);
10044 kobject_put(&space_info
->kobj
);
10049 static void __link_block_group(struct btrfs_space_info
*space_info
,
10050 struct btrfs_block_group_cache
*cache
)
10052 int index
= get_block_group_index(cache
);
10053 bool first
= false;
10055 down_write(&space_info
->groups_sem
);
10056 if (list_empty(&space_info
->block_groups
[index
]))
10058 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
10059 up_write(&space_info
->groups_sem
);
10062 struct raid_kobject
*rkobj
;
10065 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
10068 rkobj
->raid_type
= index
;
10069 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
10070 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
10071 "%s", get_raid_name(index
));
10073 kobject_put(&rkobj
->kobj
);
10076 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
10081 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
10084 static struct btrfs_block_group_cache
*
10085 btrfs_create_block_group_cache(struct btrfs_root
*root
, u64 start
, u64 size
)
10087 struct btrfs_block_group_cache
*cache
;
10089 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
10093 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
10095 if (!cache
->free_space_ctl
) {
10100 cache
->key
.objectid
= start
;
10101 cache
->key
.offset
= size
;
10102 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10104 cache
->sectorsize
= root
->sectorsize
;
10105 cache
->fs_info
= root
->fs_info
;
10106 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
10107 &root
->fs_info
->mapping_tree
,
10109 set_free_space_tree_thresholds(cache
);
10111 atomic_set(&cache
->count
, 1);
10112 spin_lock_init(&cache
->lock
);
10113 init_rwsem(&cache
->data_rwsem
);
10114 INIT_LIST_HEAD(&cache
->list
);
10115 INIT_LIST_HEAD(&cache
->cluster_list
);
10116 INIT_LIST_HEAD(&cache
->bg_list
);
10117 INIT_LIST_HEAD(&cache
->ro_list
);
10118 INIT_LIST_HEAD(&cache
->dirty_list
);
10119 INIT_LIST_HEAD(&cache
->io_list
);
10120 btrfs_init_free_space_ctl(cache
);
10121 atomic_set(&cache
->trimming
, 0);
10122 mutex_init(&cache
->free_space_lock
);
10127 int btrfs_read_block_groups(struct btrfs_root
*root
)
10129 struct btrfs_path
*path
;
10131 struct btrfs_block_group_cache
*cache
;
10132 struct btrfs_fs_info
*info
= root
->fs_info
;
10133 struct btrfs_space_info
*space_info
;
10134 struct btrfs_key key
;
10135 struct btrfs_key found_key
;
10136 struct extent_buffer
*leaf
;
10137 int need_clear
= 0;
10140 root
= info
->extent_root
;
10143 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10144 path
= btrfs_alloc_path();
10147 path
->reada
= READA_FORWARD
;
10149 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
10150 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
) &&
10151 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
10153 if (btrfs_test_opt(root
->fs_info
, CLEAR_CACHE
))
10157 ret
= find_first_block_group(root
, path
, &key
);
10163 leaf
= path
->nodes
[0];
10164 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
10166 cache
= btrfs_create_block_group_cache(root
, found_key
.objectid
,
10175 * When we mount with old space cache, we need to
10176 * set BTRFS_DC_CLEAR and set dirty flag.
10178 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10179 * truncate the old free space cache inode and
10181 * b) Setting 'dirty flag' makes sure that we flush
10182 * the new space cache info onto disk.
10184 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
))
10185 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
10188 read_extent_buffer(leaf
, &cache
->item
,
10189 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
10190 sizeof(cache
->item
));
10191 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
10193 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
10194 btrfs_release_path(path
);
10197 * We need to exclude the super stripes now so that the space
10198 * info has super bytes accounted for, otherwise we'll think
10199 * we have more space than we actually do.
10201 ret
= exclude_super_stripes(root
, cache
);
10204 * We may have excluded something, so call this just in
10207 free_excluded_extents(root
, cache
);
10208 btrfs_put_block_group(cache
);
10213 * check for two cases, either we are full, and therefore
10214 * don't need to bother with the caching work since we won't
10215 * find any space, or we are empty, and we can just add all
10216 * the space in and be done with it. This saves us _alot_ of
10217 * time, particularly in the full case.
10219 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
10220 cache
->last_byte_to_unpin
= (u64
)-1;
10221 cache
->cached
= BTRFS_CACHE_FINISHED
;
10222 free_excluded_extents(root
, cache
);
10223 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10224 cache
->last_byte_to_unpin
= (u64
)-1;
10225 cache
->cached
= BTRFS_CACHE_FINISHED
;
10226 add_new_free_space(cache
, root
->fs_info
,
10227 found_key
.objectid
,
10228 found_key
.objectid
+
10230 free_excluded_extents(root
, cache
);
10233 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
10235 btrfs_remove_free_space_cache(cache
);
10236 btrfs_put_block_group(cache
);
10240 trace_btrfs_add_block_group(root
->fs_info
, cache
, 0);
10241 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
10242 btrfs_block_group_used(&cache
->item
),
10243 cache
->bytes_super
, &space_info
);
10245 btrfs_remove_free_space_cache(cache
);
10246 spin_lock(&info
->block_group_cache_lock
);
10247 rb_erase(&cache
->cache_node
,
10248 &info
->block_group_cache_tree
);
10249 RB_CLEAR_NODE(&cache
->cache_node
);
10250 spin_unlock(&info
->block_group_cache_lock
);
10251 btrfs_put_block_group(cache
);
10255 cache
->space_info
= space_info
;
10257 __link_block_group(space_info
, cache
);
10259 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
10260 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
)) {
10261 inc_block_group_ro(cache
, 1);
10262 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10263 spin_lock(&info
->unused_bgs_lock
);
10264 /* Should always be true but just in case. */
10265 if (list_empty(&cache
->bg_list
)) {
10266 btrfs_get_block_group(cache
);
10267 list_add_tail(&cache
->bg_list
,
10268 &info
->unused_bgs
);
10270 spin_unlock(&info
->unused_bgs_lock
);
10274 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
10275 if (!(get_alloc_profile(root
, space_info
->flags
) &
10276 (BTRFS_BLOCK_GROUP_RAID10
|
10277 BTRFS_BLOCK_GROUP_RAID1
|
10278 BTRFS_BLOCK_GROUP_RAID5
|
10279 BTRFS_BLOCK_GROUP_RAID6
|
10280 BTRFS_BLOCK_GROUP_DUP
)))
10283 * avoid allocating from un-mirrored block group if there are
10284 * mirrored block groups.
10286 list_for_each_entry(cache
,
10287 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
10289 inc_block_group_ro(cache
, 1);
10290 list_for_each_entry(cache
,
10291 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
10293 inc_block_group_ro(cache
, 1);
10296 init_global_block_rsv(info
);
10299 btrfs_free_path(path
);
10303 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
10304 struct btrfs_root
*root
)
10306 struct btrfs_block_group_cache
*block_group
, *tmp
;
10307 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
10308 struct btrfs_block_group_item item
;
10309 struct btrfs_key key
;
10311 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
10313 trans
->can_flush_pending_bgs
= false;
10314 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
10318 spin_lock(&block_group
->lock
);
10319 memcpy(&item
, &block_group
->item
, sizeof(item
));
10320 memcpy(&key
, &block_group
->key
, sizeof(key
));
10321 spin_unlock(&block_group
->lock
);
10323 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
10326 btrfs_abort_transaction(trans
, ret
);
10327 ret
= btrfs_finish_chunk_alloc(trans
, extent_root
,
10328 key
.objectid
, key
.offset
);
10330 btrfs_abort_transaction(trans
, ret
);
10331 add_block_group_free_space(trans
, root
->fs_info
, block_group
);
10332 /* already aborted the transaction if it failed. */
10334 list_del_init(&block_group
->bg_list
);
10336 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
10339 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
10340 struct btrfs_root
*root
, u64 bytes_used
,
10341 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
10345 struct btrfs_root
*extent_root
;
10346 struct btrfs_block_group_cache
*cache
;
10347 extent_root
= root
->fs_info
->extent_root
;
10349 btrfs_set_log_full_commit(root
->fs_info
, trans
);
10351 cache
= btrfs_create_block_group_cache(root
, chunk_offset
, size
);
10355 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
10356 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
10357 btrfs_set_block_group_flags(&cache
->item
, type
);
10359 cache
->flags
= type
;
10360 cache
->last_byte_to_unpin
= (u64
)-1;
10361 cache
->cached
= BTRFS_CACHE_FINISHED
;
10362 cache
->needs_free_space
= 1;
10363 ret
= exclude_super_stripes(root
, cache
);
10366 * We may have excluded something, so call this just in
10369 free_excluded_extents(root
, cache
);
10370 btrfs_put_block_group(cache
);
10374 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
10375 chunk_offset
+ size
);
10377 free_excluded_extents(root
, cache
);
10379 #ifdef CONFIG_BTRFS_DEBUG
10380 if (btrfs_should_fragment_free_space(root
, cache
)) {
10381 u64 new_bytes_used
= size
- bytes_used
;
10383 bytes_used
+= new_bytes_used
>> 1;
10384 fragment_free_space(root
, cache
);
10388 * Call to ensure the corresponding space_info object is created and
10389 * assigned to our block group, but don't update its counters just yet.
10390 * We want our bg to be added to the rbtree with its ->space_info set.
10392 ret
= update_space_info(root
->fs_info
, cache
->flags
, 0, 0, 0,
10393 &cache
->space_info
);
10395 btrfs_remove_free_space_cache(cache
);
10396 btrfs_put_block_group(cache
);
10400 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
10402 btrfs_remove_free_space_cache(cache
);
10403 btrfs_put_block_group(cache
);
10408 * Now that our block group has its ->space_info set and is inserted in
10409 * the rbtree, update the space info's counters.
10411 trace_btrfs_add_block_group(root
->fs_info
, cache
, 1);
10412 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
10413 cache
->bytes_super
, &cache
->space_info
);
10415 btrfs_remove_free_space_cache(cache
);
10416 spin_lock(&root
->fs_info
->block_group_cache_lock
);
10417 rb_erase(&cache
->cache_node
,
10418 &root
->fs_info
->block_group_cache_tree
);
10419 RB_CLEAR_NODE(&cache
->cache_node
);
10420 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
10421 btrfs_put_block_group(cache
);
10424 update_global_block_rsv(root
->fs_info
);
10426 __link_block_group(cache
->space_info
, cache
);
10428 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
10430 set_avail_alloc_bits(extent_root
->fs_info
, type
);
10434 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
10436 u64 extra_flags
= chunk_to_extended(flags
) &
10437 BTRFS_EXTENDED_PROFILE_MASK
;
10439 write_seqlock(&fs_info
->profiles_lock
);
10440 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
10441 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
10442 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
10443 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
10444 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
10445 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
10446 write_sequnlock(&fs_info
->profiles_lock
);
10449 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
10450 struct btrfs_root
*root
, u64 group_start
,
10451 struct extent_map
*em
)
10453 struct btrfs_path
*path
;
10454 struct btrfs_block_group_cache
*block_group
;
10455 struct btrfs_free_cluster
*cluster
;
10456 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
10457 struct btrfs_key key
;
10458 struct inode
*inode
;
10459 struct kobject
*kobj
= NULL
;
10463 struct btrfs_caching_control
*caching_ctl
= NULL
;
10466 root
= root
->fs_info
->extent_root
;
10468 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
10469 BUG_ON(!block_group
);
10470 BUG_ON(!block_group
->ro
);
10473 * Free the reserved super bytes from this block group before
10476 free_excluded_extents(root
, block_group
);
10478 memcpy(&key
, &block_group
->key
, sizeof(key
));
10479 index
= get_block_group_index(block_group
);
10480 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
10481 BTRFS_BLOCK_GROUP_RAID1
|
10482 BTRFS_BLOCK_GROUP_RAID10
))
10487 /* make sure this block group isn't part of an allocation cluster */
10488 cluster
= &root
->fs_info
->data_alloc_cluster
;
10489 spin_lock(&cluster
->refill_lock
);
10490 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10491 spin_unlock(&cluster
->refill_lock
);
10494 * make sure this block group isn't part of a metadata
10495 * allocation cluster
10497 cluster
= &root
->fs_info
->meta_alloc_cluster
;
10498 spin_lock(&cluster
->refill_lock
);
10499 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10500 spin_unlock(&cluster
->refill_lock
);
10502 path
= btrfs_alloc_path();
10509 * get the inode first so any iput calls done for the io_list
10510 * aren't the final iput (no unlinks allowed now)
10512 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
10514 mutex_lock(&trans
->transaction
->cache_write_mutex
);
10516 * make sure our free spache cache IO is done before remove the
10519 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10520 if (!list_empty(&block_group
->io_list
)) {
10521 list_del_init(&block_group
->io_list
);
10523 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
10525 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10526 btrfs_wait_cache_io(root
, trans
, block_group
,
10527 &block_group
->io_ctl
, path
,
10528 block_group
->key
.objectid
);
10529 btrfs_put_block_group(block_group
);
10530 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10533 if (!list_empty(&block_group
->dirty_list
)) {
10534 list_del_init(&block_group
->dirty_list
);
10535 btrfs_put_block_group(block_group
);
10537 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10538 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
10540 if (!IS_ERR(inode
)) {
10541 ret
= btrfs_orphan_add(trans
, inode
);
10543 btrfs_add_delayed_iput(inode
);
10546 clear_nlink(inode
);
10547 /* One for the block groups ref */
10548 spin_lock(&block_group
->lock
);
10549 if (block_group
->iref
) {
10550 block_group
->iref
= 0;
10551 block_group
->inode
= NULL
;
10552 spin_unlock(&block_group
->lock
);
10555 spin_unlock(&block_group
->lock
);
10557 /* One for our lookup ref */
10558 btrfs_add_delayed_iput(inode
);
10561 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
10562 key
.offset
= block_group
->key
.objectid
;
10565 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
10569 btrfs_release_path(path
);
10571 ret
= btrfs_del_item(trans
, tree_root
, path
);
10574 btrfs_release_path(path
);
10577 spin_lock(&root
->fs_info
->block_group_cache_lock
);
10578 rb_erase(&block_group
->cache_node
,
10579 &root
->fs_info
->block_group_cache_tree
);
10580 RB_CLEAR_NODE(&block_group
->cache_node
);
10582 if (root
->fs_info
->first_logical_byte
== block_group
->key
.objectid
)
10583 root
->fs_info
->first_logical_byte
= (u64
)-1;
10584 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
10586 down_write(&block_group
->space_info
->groups_sem
);
10588 * we must use list_del_init so people can check to see if they
10589 * are still on the list after taking the semaphore
10591 list_del_init(&block_group
->list
);
10592 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
10593 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
10594 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
10595 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
10597 up_write(&block_group
->space_info
->groups_sem
);
10603 if (block_group
->has_caching_ctl
)
10604 caching_ctl
= get_caching_control(block_group
);
10605 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
10606 wait_block_group_cache_done(block_group
);
10607 if (block_group
->has_caching_ctl
) {
10608 down_write(&root
->fs_info
->commit_root_sem
);
10609 if (!caching_ctl
) {
10610 struct btrfs_caching_control
*ctl
;
10612 list_for_each_entry(ctl
,
10613 &root
->fs_info
->caching_block_groups
, list
)
10614 if (ctl
->block_group
== block_group
) {
10616 atomic_inc(&caching_ctl
->count
);
10621 list_del_init(&caching_ctl
->list
);
10622 up_write(&root
->fs_info
->commit_root_sem
);
10624 /* Once for the caching bgs list and once for us. */
10625 put_caching_control(caching_ctl
);
10626 put_caching_control(caching_ctl
);
10630 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10631 if (!list_empty(&block_group
->dirty_list
)) {
10634 if (!list_empty(&block_group
->io_list
)) {
10637 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10638 btrfs_remove_free_space_cache(block_group
);
10640 spin_lock(&block_group
->space_info
->lock
);
10641 list_del_init(&block_group
->ro_list
);
10643 if (btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
10644 WARN_ON(block_group
->space_info
->total_bytes
10645 < block_group
->key
.offset
);
10646 WARN_ON(block_group
->space_info
->bytes_readonly
10647 < block_group
->key
.offset
);
10648 WARN_ON(block_group
->space_info
->disk_total
10649 < block_group
->key
.offset
* factor
);
10651 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
10652 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
10653 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
10655 spin_unlock(&block_group
->space_info
->lock
);
10657 memcpy(&key
, &block_group
->key
, sizeof(key
));
10660 if (!list_empty(&em
->list
)) {
10661 /* We're in the transaction->pending_chunks list. */
10662 free_extent_map(em
);
10664 spin_lock(&block_group
->lock
);
10665 block_group
->removed
= 1;
10667 * At this point trimming can't start on this block group, because we
10668 * removed the block group from the tree fs_info->block_group_cache_tree
10669 * so no one can't find it anymore and even if someone already got this
10670 * block group before we removed it from the rbtree, they have already
10671 * incremented block_group->trimming - if they didn't, they won't find
10672 * any free space entries because we already removed them all when we
10673 * called btrfs_remove_free_space_cache().
10675 * And we must not remove the extent map from the fs_info->mapping_tree
10676 * to prevent the same logical address range and physical device space
10677 * ranges from being reused for a new block group. This is because our
10678 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10679 * completely transactionless, so while it is trimming a range the
10680 * currently running transaction might finish and a new one start,
10681 * allowing for new block groups to be created that can reuse the same
10682 * physical device locations unless we take this special care.
10684 * There may also be an implicit trim operation if the file system
10685 * is mounted with -odiscard. The same protections must remain
10686 * in place until the extents have been discarded completely when
10687 * the transaction commit has completed.
10689 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
10691 * Make sure a trimmer task always sees the em in the pinned_chunks list
10692 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10693 * before checking block_group->removed).
10697 * Our em might be in trans->transaction->pending_chunks which
10698 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10699 * and so is the fs_info->pinned_chunks list.
10701 * So at this point we must be holding the chunk_mutex to avoid
10702 * any races with chunk allocation (more specifically at
10703 * volumes.c:contains_pending_extent()), to ensure it always
10704 * sees the em, either in the pending_chunks list or in the
10705 * pinned_chunks list.
10707 list_move_tail(&em
->list
, &root
->fs_info
->pinned_chunks
);
10709 spin_unlock(&block_group
->lock
);
10712 struct extent_map_tree
*em_tree
;
10714 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
10715 write_lock(&em_tree
->lock
);
10717 * The em might be in the pending_chunks list, so make sure the
10718 * chunk mutex is locked, since remove_extent_mapping() will
10719 * delete us from that list.
10721 remove_extent_mapping(em_tree
, em
);
10722 write_unlock(&em_tree
->lock
);
10723 /* once for the tree */
10724 free_extent_map(em
);
10727 unlock_chunks(root
);
10729 ret
= remove_block_group_free_space(trans
, root
->fs_info
, block_group
);
10733 btrfs_put_block_group(block_group
);
10734 btrfs_put_block_group(block_group
);
10736 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
10742 ret
= btrfs_del_item(trans
, root
, path
);
10744 btrfs_free_path(path
);
10748 struct btrfs_trans_handle
*
10749 btrfs_start_trans_remove_block_group(struct btrfs_fs_info
*fs_info
,
10750 const u64 chunk_offset
)
10752 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
.map_tree
;
10753 struct extent_map
*em
;
10754 struct map_lookup
*map
;
10755 unsigned int num_items
;
10757 read_lock(&em_tree
->lock
);
10758 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
10759 read_unlock(&em_tree
->lock
);
10760 ASSERT(em
&& em
->start
== chunk_offset
);
10763 * We need to reserve 3 + N units from the metadata space info in order
10764 * to remove a block group (done at btrfs_remove_chunk() and at
10765 * btrfs_remove_block_group()), which are used for:
10767 * 1 unit for adding the free space inode's orphan (located in the tree
10769 * 1 unit for deleting the block group item (located in the extent
10771 * 1 unit for deleting the free space item (located in tree of tree
10773 * N units for deleting N device extent items corresponding to each
10774 * stripe (located in the device tree).
10776 * In order to remove a block group we also need to reserve units in the
10777 * system space info in order to update the chunk tree (update one or
10778 * more device items and remove one chunk item), but this is done at
10779 * btrfs_remove_chunk() through a call to check_system_chunk().
10781 map
= em
->map_lookup
;
10782 num_items
= 3 + map
->num_stripes
;
10783 free_extent_map(em
);
10785 return btrfs_start_transaction_fallback_global_rsv(fs_info
->extent_root
,
10790 * Process the unused_bgs list and remove any that don't have any allocated
10791 * space inside of them.
10793 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
10795 struct btrfs_block_group_cache
*block_group
;
10796 struct btrfs_space_info
*space_info
;
10797 struct btrfs_root
*root
= fs_info
->extent_root
;
10798 struct btrfs_trans_handle
*trans
;
10801 if (!fs_info
->open
)
10804 spin_lock(&fs_info
->unused_bgs_lock
);
10805 while (!list_empty(&fs_info
->unused_bgs
)) {
10809 block_group
= list_first_entry(&fs_info
->unused_bgs
,
10810 struct btrfs_block_group_cache
,
10812 list_del_init(&block_group
->bg_list
);
10814 space_info
= block_group
->space_info
;
10816 if (ret
|| btrfs_mixed_space_info(space_info
)) {
10817 btrfs_put_block_group(block_group
);
10820 spin_unlock(&fs_info
->unused_bgs_lock
);
10822 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
10824 /* Don't want to race with allocators so take the groups_sem */
10825 down_write(&space_info
->groups_sem
);
10826 spin_lock(&block_group
->lock
);
10827 if (block_group
->reserved
||
10828 btrfs_block_group_used(&block_group
->item
) ||
10830 list_is_singular(&block_group
->list
)) {
10832 * We want to bail if we made new allocations or have
10833 * outstanding allocations in this block group. We do
10834 * the ro check in case balance is currently acting on
10835 * this block group.
10837 spin_unlock(&block_group
->lock
);
10838 up_write(&space_info
->groups_sem
);
10841 spin_unlock(&block_group
->lock
);
10843 /* We don't want to force the issue, only flip if it's ok. */
10844 ret
= inc_block_group_ro(block_group
, 0);
10845 up_write(&space_info
->groups_sem
);
10852 * Want to do this before we do anything else so we can recover
10853 * properly if we fail to join the transaction.
10855 trans
= btrfs_start_trans_remove_block_group(fs_info
,
10856 block_group
->key
.objectid
);
10857 if (IS_ERR(trans
)) {
10858 btrfs_dec_block_group_ro(root
, block_group
);
10859 ret
= PTR_ERR(trans
);
10864 * We could have pending pinned extents for this block group,
10865 * just delete them, we don't care about them anymore.
10867 start
= block_group
->key
.objectid
;
10868 end
= start
+ block_group
->key
.offset
- 1;
10870 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10871 * btrfs_finish_extent_commit(). If we are at transaction N,
10872 * another task might be running finish_extent_commit() for the
10873 * previous transaction N - 1, and have seen a range belonging
10874 * to the block group in freed_extents[] before we were able to
10875 * clear the whole block group range from freed_extents[]. This
10876 * means that task can lookup for the block group after we
10877 * unpinned it from freed_extents[] and removed it, leading to
10878 * a BUG_ON() at btrfs_unpin_extent_range().
10880 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
10881 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
10884 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10885 btrfs_dec_block_group_ro(root
, block_group
);
10888 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
10891 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10892 btrfs_dec_block_group_ro(root
, block_group
);
10895 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10897 /* Reset pinned so btrfs_put_block_group doesn't complain */
10898 spin_lock(&space_info
->lock
);
10899 spin_lock(&block_group
->lock
);
10901 space_info
->bytes_pinned
-= block_group
->pinned
;
10902 space_info
->bytes_readonly
+= block_group
->pinned
;
10903 percpu_counter_add(&space_info
->total_bytes_pinned
,
10904 -block_group
->pinned
);
10905 block_group
->pinned
= 0;
10907 spin_unlock(&block_group
->lock
);
10908 spin_unlock(&space_info
->lock
);
10910 /* DISCARD can flip during remount */
10911 trimming
= btrfs_test_opt(root
->fs_info
, DISCARD
);
10913 /* Implicit trim during transaction commit. */
10915 btrfs_get_block_group_trimming(block_group
);
10918 * Btrfs_remove_chunk will abort the transaction if things go
10921 ret
= btrfs_remove_chunk(trans
, root
,
10922 block_group
->key
.objectid
);
10926 btrfs_put_block_group_trimming(block_group
);
10931 * If we're not mounted with -odiscard, we can just forget
10932 * about this block group. Otherwise we'll need to wait
10933 * until transaction commit to do the actual discard.
10936 spin_lock(&fs_info
->unused_bgs_lock
);
10938 * A concurrent scrub might have added us to the list
10939 * fs_info->unused_bgs, so use a list_move operation
10940 * to add the block group to the deleted_bgs list.
10942 list_move(&block_group
->bg_list
,
10943 &trans
->transaction
->deleted_bgs
);
10944 spin_unlock(&fs_info
->unused_bgs_lock
);
10945 btrfs_get_block_group(block_group
);
10948 btrfs_end_transaction(trans
, root
);
10950 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
10951 btrfs_put_block_group(block_group
);
10952 spin_lock(&fs_info
->unused_bgs_lock
);
10954 spin_unlock(&fs_info
->unused_bgs_lock
);
10957 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
10959 struct btrfs_space_info
*space_info
;
10960 struct btrfs_super_block
*disk_super
;
10966 disk_super
= fs_info
->super_copy
;
10967 if (!btrfs_super_root(disk_super
))
10970 features
= btrfs_super_incompat_flags(disk_super
);
10971 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
10974 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
10975 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
10980 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
10981 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
10983 flags
= BTRFS_BLOCK_GROUP_METADATA
;
10984 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
10988 flags
= BTRFS_BLOCK_GROUP_DATA
;
10989 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
10995 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
10997 return unpin_extent_range(root
, start
, end
, false);
11001 * It used to be that old block groups would be left around forever.
11002 * Iterating over them would be enough to trim unused space. Since we
11003 * now automatically remove them, we also need to iterate over unallocated
11006 * We don't want a transaction for this since the discard may take a
11007 * substantial amount of time. We don't require that a transaction be
11008 * running, but we do need to take a running transaction into account
11009 * to ensure that we're not discarding chunks that were released in
11010 * the current transaction.
11012 * Holding the chunks lock will prevent other threads from allocating
11013 * or releasing chunks, but it won't prevent a running transaction
11014 * from committing and releasing the memory that the pending chunks
11015 * list head uses. For that, we need to take a reference to the
11018 static int btrfs_trim_free_extents(struct btrfs_device
*device
,
11019 u64 minlen
, u64
*trimmed
)
11021 u64 start
= 0, len
= 0;
11026 /* Not writeable = nothing to do. */
11027 if (!device
->writeable
)
11030 /* No free space = nothing to do. */
11031 if (device
->total_bytes
<= device
->bytes_used
)
11037 struct btrfs_fs_info
*fs_info
= device
->dev_root
->fs_info
;
11038 struct btrfs_transaction
*trans
;
11041 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
11045 down_read(&fs_info
->commit_root_sem
);
11047 spin_lock(&fs_info
->trans_lock
);
11048 trans
= fs_info
->running_transaction
;
11050 atomic_inc(&trans
->use_count
);
11051 spin_unlock(&fs_info
->trans_lock
);
11053 ret
= find_free_dev_extent_start(trans
, device
, minlen
, start
,
11056 btrfs_put_transaction(trans
);
11059 up_read(&fs_info
->commit_root_sem
);
11060 mutex_unlock(&fs_info
->chunk_mutex
);
11061 if (ret
== -ENOSPC
)
11066 ret
= btrfs_issue_discard(device
->bdev
, start
, len
, &bytes
);
11067 up_read(&fs_info
->commit_root_sem
);
11068 mutex_unlock(&fs_info
->chunk_mutex
);
11076 if (fatal_signal_pending(current
)) {
11077 ret
= -ERESTARTSYS
;
11087 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
11089 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
11090 struct btrfs_block_group_cache
*cache
= NULL
;
11091 struct btrfs_device
*device
;
11092 struct list_head
*devices
;
11097 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
11101 * try to trim all FS space, our block group may start from non-zero.
11103 if (range
->len
== total_bytes
)
11104 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
11106 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
11109 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
11110 btrfs_put_block_group(cache
);
11114 start
= max(range
->start
, cache
->key
.objectid
);
11115 end
= min(range
->start
+ range
->len
,
11116 cache
->key
.objectid
+ cache
->key
.offset
);
11118 if (end
- start
>= range
->minlen
) {
11119 if (!block_group_cache_done(cache
)) {
11120 ret
= cache_block_group(cache
, 0);
11122 btrfs_put_block_group(cache
);
11125 ret
= wait_block_group_cache_done(cache
);
11127 btrfs_put_block_group(cache
);
11131 ret
= btrfs_trim_block_group(cache
,
11137 trimmed
+= group_trimmed
;
11139 btrfs_put_block_group(cache
);
11144 cache
= next_block_group(fs_info
->tree_root
, cache
);
11147 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
11148 devices
= &root
->fs_info
->fs_devices
->alloc_list
;
11149 list_for_each_entry(device
, devices
, dev_alloc_list
) {
11150 ret
= btrfs_trim_free_extents(device
, range
->minlen
,
11155 trimmed
+= group_trimmed
;
11157 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
11159 range
->len
= trimmed
;
11164 * btrfs_{start,end}_write_no_snapshoting() are similar to
11165 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11166 * data into the page cache through nocow before the subvolume is snapshoted,
11167 * but flush the data into disk after the snapshot creation, or to prevent
11168 * operations while snapshoting is ongoing and that cause the snapshot to be
11169 * inconsistent (writes followed by expanding truncates for example).
11171 void btrfs_end_write_no_snapshoting(struct btrfs_root
*root
)
11173 percpu_counter_dec(&root
->subv_writers
->counter
);
11175 * Make sure counter is updated before we wake up waiters.
11178 if (waitqueue_active(&root
->subv_writers
->wait
))
11179 wake_up(&root
->subv_writers
->wait
);
11182 int btrfs_start_write_no_snapshoting(struct btrfs_root
*root
)
11184 if (atomic_read(&root
->will_be_snapshoted
))
11187 percpu_counter_inc(&root
->subv_writers
->counter
);
11189 * Make sure counter is updated before we check for snapshot creation.
11192 if (atomic_read(&root
->will_be_snapshoted
)) {
11193 btrfs_end_write_no_snapshoting(root
);
11199 static int wait_snapshoting_atomic_t(atomic_t
*a
)
11205 void btrfs_wait_for_snapshot_creation(struct btrfs_root
*root
)
11210 ret
= btrfs_start_write_no_snapshoting(root
);
11213 wait_on_atomic_t(&root
->will_be_snapshoted
,
11214 wait_snapshoting_atomic_t
,
11215 TASK_UNINTERRUPTIBLE
);