2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
65 struct btrfs_iget_args
{
66 struct btrfs_key
*location
;
67 struct btrfs_root
*root
;
70 struct btrfs_dio_data
{
71 u64 outstanding_extents
;
73 u64 unsubmitted_oe_range_start
;
74 u64 unsubmitted_oe_range_end
;
77 static const struct inode_operations btrfs_dir_inode_operations
;
78 static const struct inode_operations btrfs_symlink_inode_operations
;
79 static const struct inode_operations btrfs_dir_ro_inode_operations
;
80 static const struct inode_operations btrfs_special_inode_operations
;
81 static const struct inode_operations btrfs_file_inode_operations
;
82 static const struct address_space_operations btrfs_aops
;
83 static const struct address_space_operations btrfs_symlink_aops
;
84 static const struct file_operations btrfs_dir_file_operations
;
85 static const struct extent_io_ops btrfs_extent_io_ops
;
87 static struct kmem_cache
*btrfs_inode_cachep
;
88 struct kmem_cache
*btrfs_trans_handle_cachep
;
89 struct kmem_cache
*btrfs_transaction_cachep
;
90 struct kmem_cache
*btrfs_path_cachep
;
91 struct kmem_cache
*btrfs_free_space_cachep
;
94 static const unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
95 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
96 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
97 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
98 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
99 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
100 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
101 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
104 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
105 static int btrfs_truncate(struct inode
*inode
);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
107 static noinline
int cow_file_range(struct inode
*inode
,
108 struct page
*locked_page
,
109 u64 start
, u64 end
, u64 delalloc_end
,
110 int *page_started
, unsigned long *nr_written
,
111 int unlock
, struct btrfs_dedupe_hash
*hash
);
112 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
113 u64 len
, u64 orig_start
,
114 u64 block_start
, u64 block_len
,
115 u64 orig_block_len
, u64 ram_bytes
,
118 static int btrfs_dirty_inode(struct inode
*inode
);
120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121 void btrfs_test_inode_set_ops(struct inode
*inode
)
123 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
127 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
128 struct inode
*inode
, struct inode
*dir
,
129 const struct qstr
*qstr
)
133 err
= btrfs_init_acl(trans
, inode
, dir
);
135 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
144 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
145 struct btrfs_path
*path
, int extent_inserted
,
146 struct btrfs_root
*root
, struct inode
*inode
,
147 u64 start
, size_t size
, size_t compressed_size
,
149 struct page
**compressed_pages
)
151 struct extent_buffer
*leaf
;
152 struct page
*page
= NULL
;
155 struct btrfs_file_extent_item
*ei
;
158 size_t cur_size
= size
;
159 unsigned long offset
;
161 if (compressed_size
&& compressed_pages
)
162 cur_size
= compressed_size
;
164 inode_add_bytes(inode
, size
);
166 if (!extent_inserted
) {
167 struct btrfs_key key
;
170 key
.objectid
= btrfs_ino(inode
);
172 key
.type
= BTRFS_EXTENT_DATA_KEY
;
174 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
175 path
->leave_spinning
= 1;
176 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
183 leaf
= path
->nodes
[0];
184 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
185 struct btrfs_file_extent_item
);
186 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
187 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
188 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
189 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
190 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
191 ptr
= btrfs_file_extent_inline_start(ei
);
193 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
196 while (compressed_size
> 0) {
197 cpage
= compressed_pages
[i
];
198 cur_size
= min_t(unsigned long, compressed_size
,
201 kaddr
= kmap_atomic(cpage
);
202 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
203 kunmap_atomic(kaddr
);
207 compressed_size
-= cur_size
;
209 btrfs_set_file_extent_compression(leaf
, ei
,
212 page
= find_get_page(inode
->i_mapping
,
213 start
>> PAGE_SHIFT
);
214 btrfs_set_file_extent_compression(leaf
, ei
, 0);
215 kaddr
= kmap_atomic(page
);
216 offset
= start
& (PAGE_SIZE
- 1);
217 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
218 kunmap_atomic(kaddr
);
221 btrfs_mark_buffer_dirty(leaf
);
222 btrfs_release_path(path
);
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
233 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
234 ret
= btrfs_update_inode(trans
, root
, inode
);
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
247 static noinline
int cow_file_range_inline(struct btrfs_root
*root
,
248 struct inode
*inode
, u64 start
,
249 u64 end
, size_t compressed_size
,
251 struct page
**compressed_pages
)
253 struct btrfs_trans_handle
*trans
;
254 u64 isize
= i_size_read(inode
);
255 u64 actual_end
= min(end
+ 1, isize
);
256 u64 inline_len
= actual_end
- start
;
257 u64 aligned_end
= ALIGN(end
, root
->sectorsize
);
258 u64 data_len
= inline_len
;
260 struct btrfs_path
*path
;
261 int extent_inserted
= 0;
262 u32 extent_item_size
;
265 data_len
= compressed_size
;
268 actual_end
> root
->sectorsize
||
269 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
271 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
273 data_len
> root
->fs_info
->max_inline
) {
277 path
= btrfs_alloc_path();
281 trans
= btrfs_join_transaction(root
);
283 btrfs_free_path(path
);
284 return PTR_ERR(trans
);
286 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
288 if (compressed_size
&& compressed_pages
)
289 extent_item_size
= btrfs_file_extent_calc_inline_size(
292 extent_item_size
= btrfs_file_extent_calc_inline_size(
295 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
296 start
, aligned_end
, NULL
,
297 1, 1, extent_item_size
, &extent_inserted
);
299 btrfs_abort_transaction(trans
, ret
);
303 if (isize
> actual_end
)
304 inline_len
= min_t(u64
, isize
, actual_end
);
305 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
307 inline_len
, compressed_size
,
308 compress_type
, compressed_pages
);
309 if (ret
&& ret
!= -ENOSPC
) {
310 btrfs_abort_transaction(trans
, ret
);
312 } else if (ret
== -ENOSPC
) {
317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
318 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
319 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
322 * Don't forget to free the reserved space, as for inlined extent
323 * it won't count as data extent, free them directly here.
324 * And at reserve time, it's always aligned to page size, so
325 * just free one page here.
327 btrfs_qgroup_free_data(inode
, 0, PAGE_SIZE
);
328 btrfs_free_path(path
);
329 btrfs_end_transaction(trans
, root
);
333 struct async_extent
{
338 unsigned long nr_pages
;
340 struct list_head list
;
345 struct btrfs_root
*root
;
346 struct page
*locked_page
;
349 struct list_head extents
;
350 struct btrfs_work work
;
353 static noinline
int add_async_extent(struct async_cow
*cow
,
354 u64 start
, u64 ram_size
,
357 unsigned long nr_pages
,
360 struct async_extent
*async_extent
;
362 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
363 BUG_ON(!async_extent
); /* -ENOMEM */
364 async_extent
->start
= start
;
365 async_extent
->ram_size
= ram_size
;
366 async_extent
->compressed_size
= compressed_size
;
367 async_extent
->pages
= pages
;
368 async_extent
->nr_pages
= nr_pages
;
369 async_extent
->compress_type
= compress_type
;
370 list_add_tail(&async_extent
->list
, &cow
->extents
);
374 static inline int inode_need_compress(struct inode
*inode
)
376 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
379 if (btrfs_test_opt(root
->fs_info
, FORCE_COMPRESS
))
381 /* bad compression ratios */
382 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
384 if (btrfs_test_opt(root
->fs_info
, COMPRESS
) ||
385 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
386 BTRFS_I(inode
)->force_compress
)
392 * we create compressed extents in two phases. The first
393 * phase compresses a range of pages that have already been
394 * locked (both pages and state bits are locked).
396 * This is done inside an ordered work queue, and the compression
397 * is spread across many cpus. The actual IO submission is step
398 * two, and the ordered work queue takes care of making sure that
399 * happens in the same order things were put onto the queue by
400 * writepages and friends.
402 * If this code finds it can't get good compression, it puts an
403 * entry onto the work queue to write the uncompressed bytes. This
404 * makes sure that both compressed inodes and uncompressed inodes
405 * are written in the same order that the flusher thread sent them
408 static noinline
void compress_file_range(struct inode
*inode
,
409 struct page
*locked_page
,
411 struct async_cow
*async_cow
,
414 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
416 u64 blocksize
= root
->sectorsize
;
418 u64 isize
= i_size_read(inode
);
420 struct page
**pages
= NULL
;
421 unsigned long nr_pages
;
422 unsigned long nr_pages_ret
= 0;
423 unsigned long total_compressed
= 0;
424 unsigned long total_in
= 0;
425 unsigned long max_compressed
= SZ_128K
;
426 unsigned long max_uncompressed
= SZ_128K
;
429 int compress_type
= root
->fs_info
->compress_type
;
432 /* if this is a small write inside eof, kick off a defrag */
433 if ((end
- start
+ 1) < SZ_16K
&&
434 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
435 btrfs_add_inode_defrag(NULL
, inode
);
437 actual_end
= min_t(u64
, isize
, end
+ 1);
440 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
441 nr_pages
= min_t(unsigned long, nr_pages
, SZ_128K
/ PAGE_SIZE
);
444 * we don't want to send crud past the end of i_size through
445 * compression, that's just a waste of CPU time. So, if the
446 * end of the file is before the start of our current
447 * requested range of bytes, we bail out to the uncompressed
448 * cleanup code that can deal with all of this.
450 * It isn't really the fastest way to fix things, but this is a
451 * very uncommon corner.
453 if (actual_end
<= start
)
454 goto cleanup_and_bail_uncompressed
;
456 total_compressed
= actual_end
- start
;
459 * skip compression for a small file range(<=blocksize) that
460 * isn't an inline extent, since it doesn't save disk space at all.
462 if (total_compressed
<= blocksize
&&
463 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
464 goto cleanup_and_bail_uncompressed
;
466 /* we want to make sure that amount of ram required to uncompress
467 * an extent is reasonable, so we limit the total size in ram
468 * of a compressed extent to 128k. This is a crucial number
469 * because it also controls how easily we can spread reads across
470 * cpus for decompression.
472 * We also want to make sure the amount of IO required to do
473 * a random read is reasonably small, so we limit the size of
474 * a compressed extent to 128k.
476 total_compressed
= min(total_compressed
, max_uncompressed
);
477 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
478 num_bytes
= max(blocksize
, num_bytes
);
483 * we do compression for mount -o compress and when the
484 * inode has not been flagged as nocompress. This flag can
485 * change at any time if we discover bad compression ratios.
487 if (inode_need_compress(inode
)) {
489 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
491 /* just bail out to the uncompressed code */
495 if (BTRFS_I(inode
)->force_compress
)
496 compress_type
= BTRFS_I(inode
)->force_compress
;
499 * we need to call clear_page_dirty_for_io on each
500 * page in the range. Otherwise applications with the file
501 * mmap'd can wander in and change the page contents while
502 * we are compressing them.
504 * If the compression fails for any reason, we set the pages
505 * dirty again later on.
507 extent_range_clear_dirty_for_io(inode
, start
, end
);
509 ret
= btrfs_compress_pages(compress_type
,
510 inode
->i_mapping
, start
,
511 total_compressed
, pages
,
512 nr_pages
, &nr_pages_ret
,
518 unsigned long offset
= total_compressed
&
520 struct page
*page
= pages
[nr_pages_ret
- 1];
523 /* zero the tail end of the last page, we might be
524 * sending it down to disk
527 kaddr
= kmap_atomic(page
);
528 memset(kaddr
+ offset
, 0,
530 kunmap_atomic(kaddr
);
537 /* lets try to make an inline extent */
538 if (ret
|| total_in
< (actual_end
- start
)) {
539 /* we didn't compress the entire range, try
540 * to make an uncompressed inline extent.
542 ret
= cow_file_range_inline(root
, inode
, start
, end
,
545 /* try making a compressed inline extent */
546 ret
= cow_file_range_inline(root
, inode
, start
, end
,
548 compress_type
, pages
);
551 unsigned long clear_flags
= EXTENT_DELALLOC
|
553 unsigned long page_error_op
;
555 clear_flags
|= (ret
< 0) ? EXTENT_DO_ACCOUNTING
: 0;
556 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
559 * inline extent creation worked or returned error,
560 * we don't need to create any more async work items.
561 * Unlock and free up our temp pages.
563 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
564 clear_flags
, PAGE_UNLOCK
|
575 * we aren't doing an inline extent round the compressed size
576 * up to a block size boundary so the allocator does sane
579 total_compressed
= ALIGN(total_compressed
, blocksize
);
582 * one last check to make sure the compression is really a
583 * win, compare the page count read with the blocks on disk
585 total_in
= ALIGN(total_in
, PAGE_SIZE
);
586 if (total_compressed
>= total_in
) {
589 num_bytes
= total_in
;
593 * The async work queues will take care of doing actual
594 * allocation on disk for these compressed pages, and
595 * will submit them to the elevator.
597 add_async_extent(async_cow
, start
, num_bytes
,
598 total_compressed
, pages
, nr_pages_ret
,
601 if (start
+ num_bytes
< end
) {
612 * the compression code ran but failed to make things smaller,
613 * free any pages it allocated and our page pointer array
615 for (i
= 0; i
< nr_pages_ret
; i
++) {
616 WARN_ON(pages
[i
]->mapping
);
621 total_compressed
= 0;
624 /* flag the file so we don't compress in the future */
625 if (!btrfs_test_opt(root
->fs_info
, FORCE_COMPRESS
) &&
626 !(BTRFS_I(inode
)->force_compress
)) {
627 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
630 cleanup_and_bail_uncompressed
:
632 * No compression, but we still need to write the pages in the file
633 * we've been given so far. redirty the locked page if it corresponds
634 * to our extent and set things up for the async work queue to run
635 * cow_file_range to do the normal delalloc dance.
637 if (page_offset(locked_page
) >= start
&&
638 page_offset(locked_page
) <= end
)
639 __set_page_dirty_nobuffers(locked_page
);
640 /* unlocked later on in the async handlers */
643 extent_range_redirty_for_io(inode
, start
, end
);
644 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0,
645 BTRFS_COMPRESS_NONE
);
651 for (i
= 0; i
< nr_pages_ret
; i
++) {
652 WARN_ON(pages
[i
]->mapping
);
658 static void free_async_extent_pages(struct async_extent
*async_extent
)
662 if (!async_extent
->pages
)
665 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
666 WARN_ON(async_extent
->pages
[i
]->mapping
);
667 put_page(async_extent
->pages
[i
]);
669 kfree(async_extent
->pages
);
670 async_extent
->nr_pages
= 0;
671 async_extent
->pages
= NULL
;
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
680 static noinline
void submit_compressed_extents(struct inode
*inode
,
681 struct async_cow
*async_cow
)
683 struct async_extent
*async_extent
;
685 struct btrfs_key ins
;
686 struct extent_map
*em
;
687 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
688 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
689 struct extent_io_tree
*io_tree
;
693 while (!list_empty(&async_cow
->extents
)) {
694 async_extent
= list_entry(async_cow
->extents
.next
,
695 struct async_extent
, list
);
696 list_del(&async_extent
->list
);
698 io_tree
= &BTRFS_I(inode
)->io_tree
;
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent
->pages
) {
703 int page_started
= 0;
704 unsigned long nr_written
= 0;
706 lock_extent(io_tree
, async_extent
->start
,
707 async_extent
->start
+
708 async_extent
->ram_size
- 1);
710 /* allocate blocks */
711 ret
= cow_file_range(inode
, async_cow
->locked_page
,
713 async_extent
->start
+
714 async_extent
->ram_size
- 1,
715 async_extent
->start
+
716 async_extent
->ram_size
- 1,
717 &page_started
, &nr_written
, 0,
723 * if page_started, cow_file_range inserted an
724 * inline extent and took care of all the unlocking
725 * and IO for us. Otherwise, we need to submit
726 * all those pages down to the drive.
728 if (!page_started
&& !ret
)
729 extent_write_locked_range(io_tree
,
730 inode
, async_extent
->start
,
731 async_extent
->start
+
732 async_extent
->ram_size
- 1,
736 unlock_page(async_cow
->locked_page
);
742 lock_extent(io_tree
, async_extent
->start
,
743 async_extent
->start
+ async_extent
->ram_size
- 1);
745 ret
= btrfs_reserve_extent(root
,
746 async_extent
->compressed_size
,
747 async_extent
->compressed_size
,
748 0, alloc_hint
, &ins
, 1, 1);
750 free_async_extent_pages(async_extent
);
752 if (ret
== -ENOSPC
) {
753 unlock_extent(io_tree
, async_extent
->start
,
754 async_extent
->start
+
755 async_extent
->ram_size
- 1);
758 * we need to redirty the pages if we decide to
759 * fallback to uncompressed IO, otherwise we
760 * will not submit these pages down to lower
763 extent_range_redirty_for_io(inode
,
765 async_extent
->start
+
766 async_extent
->ram_size
- 1);
773 * here we're doing allocation and writeback of the
776 btrfs_drop_extent_cache(inode
, async_extent
->start
,
777 async_extent
->start
+
778 async_extent
->ram_size
- 1, 0);
780 em
= alloc_extent_map();
783 goto out_free_reserve
;
785 em
->start
= async_extent
->start
;
786 em
->len
= async_extent
->ram_size
;
787 em
->orig_start
= em
->start
;
788 em
->mod_start
= em
->start
;
789 em
->mod_len
= em
->len
;
791 em
->block_start
= ins
.objectid
;
792 em
->block_len
= ins
.offset
;
793 em
->orig_block_len
= ins
.offset
;
794 em
->ram_bytes
= async_extent
->ram_size
;
795 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
796 em
->compress_type
= async_extent
->compress_type
;
797 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
798 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
802 write_lock(&em_tree
->lock
);
803 ret
= add_extent_mapping(em_tree
, em
, 1);
804 write_unlock(&em_tree
->lock
);
805 if (ret
!= -EEXIST
) {
809 btrfs_drop_extent_cache(inode
, async_extent
->start
,
810 async_extent
->start
+
811 async_extent
->ram_size
- 1, 0);
815 goto out_free_reserve
;
817 ret
= btrfs_add_ordered_extent_compress(inode
,
820 async_extent
->ram_size
,
822 BTRFS_ORDERED_COMPRESSED
,
823 async_extent
->compress_type
);
825 btrfs_drop_extent_cache(inode
, async_extent
->start
,
826 async_extent
->start
+
827 async_extent
->ram_size
- 1, 0);
828 goto out_free_reserve
;
830 btrfs_dec_block_group_reservations(root
->fs_info
, ins
.objectid
);
833 * clear dirty, set writeback and unlock the pages.
835 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
836 async_extent
->start
+
837 async_extent
->ram_size
- 1,
838 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
839 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
841 ret
= btrfs_submit_compressed_write(inode
,
843 async_extent
->ram_size
,
845 ins
.offset
, async_extent
->pages
,
846 async_extent
->nr_pages
);
848 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
849 struct page
*p
= async_extent
->pages
[0];
850 const u64 start
= async_extent
->start
;
851 const u64 end
= start
+ async_extent
->ram_size
- 1;
853 p
->mapping
= inode
->i_mapping
;
854 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
857 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
, 0,
860 free_async_extent_pages(async_extent
);
862 alloc_hint
= ins
.objectid
+ ins
.offset
;
868 btrfs_dec_block_group_reservations(root
->fs_info
, ins
.objectid
);
869 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
871 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
872 async_extent
->start
+
873 async_extent
->ram_size
- 1,
874 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
875 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
876 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
877 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
879 free_async_extent_pages(async_extent
);
884 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
887 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
888 struct extent_map
*em
;
891 read_lock(&em_tree
->lock
);
892 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
895 * if block start isn't an actual block number then find the
896 * first block in this inode and use that as a hint. If that
897 * block is also bogus then just don't worry about it.
899 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
901 em
= search_extent_mapping(em_tree
, 0, 0);
902 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
903 alloc_hint
= em
->block_start
;
907 alloc_hint
= em
->block_start
;
911 read_unlock(&em_tree
->lock
);
917 * when extent_io.c finds a delayed allocation range in the file,
918 * the call backs end up in this code. The basic idea is to
919 * allocate extents on disk for the range, and create ordered data structs
920 * in ram to track those extents.
922 * locked_page is the page that writepage had locked already. We use
923 * it to make sure we don't do extra locks or unlocks.
925 * *page_started is set to one if we unlock locked_page and do everything
926 * required to start IO on it. It may be clean and already done with
929 static noinline
int cow_file_range(struct inode
*inode
,
930 struct page
*locked_page
,
931 u64 start
, u64 end
, u64 delalloc_end
,
932 int *page_started
, unsigned long *nr_written
,
933 int unlock
, struct btrfs_dedupe_hash
*hash
)
935 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
938 unsigned long ram_size
;
941 u64 blocksize
= root
->sectorsize
;
942 struct btrfs_key ins
;
943 struct extent_map
*em
;
944 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
947 if (btrfs_is_free_space_inode(inode
)) {
953 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
954 num_bytes
= max(blocksize
, num_bytes
);
955 disk_num_bytes
= num_bytes
;
957 /* if this is a small write inside eof, kick off defrag */
958 if (num_bytes
< SZ_64K
&&
959 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
960 btrfs_add_inode_defrag(NULL
, inode
);
963 /* lets try to make an inline extent */
964 ret
= cow_file_range_inline(root
, inode
, start
, end
, 0, 0,
967 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
968 EXTENT_LOCKED
| EXTENT_DELALLOC
|
969 EXTENT_DEFRAG
, PAGE_UNLOCK
|
970 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
973 *nr_written
= *nr_written
+
974 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
977 } else if (ret
< 0) {
982 BUG_ON(disk_num_bytes
>
983 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
985 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
986 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
988 while (disk_num_bytes
> 0) {
991 cur_alloc_size
= disk_num_bytes
;
992 ret
= btrfs_reserve_extent(root
, cur_alloc_size
,
993 root
->sectorsize
, 0, alloc_hint
,
998 em
= alloc_extent_map();
1004 em
->orig_start
= em
->start
;
1005 ram_size
= ins
.offset
;
1006 em
->len
= ins
.offset
;
1007 em
->mod_start
= em
->start
;
1008 em
->mod_len
= em
->len
;
1010 em
->block_start
= ins
.objectid
;
1011 em
->block_len
= ins
.offset
;
1012 em
->orig_block_len
= ins
.offset
;
1013 em
->ram_bytes
= ram_size
;
1014 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1015 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1016 em
->generation
= -1;
1019 write_lock(&em_tree
->lock
);
1020 ret
= add_extent_mapping(em_tree
, em
, 1);
1021 write_unlock(&em_tree
->lock
);
1022 if (ret
!= -EEXIST
) {
1023 free_extent_map(em
);
1026 btrfs_drop_extent_cache(inode
, start
,
1027 start
+ ram_size
- 1, 0);
1032 cur_alloc_size
= ins
.offset
;
1033 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1034 ram_size
, cur_alloc_size
, 0);
1036 goto out_drop_extent_cache
;
1038 if (root
->root_key
.objectid
==
1039 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1040 ret
= btrfs_reloc_clone_csums(inode
, start
,
1043 goto out_drop_extent_cache
;
1046 btrfs_dec_block_group_reservations(root
->fs_info
, ins
.objectid
);
1048 if (disk_num_bytes
< cur_alloc_size
)
1051 /* we're not doing compressed IO, don't unlock the first
1052 * page (which the caller expects to stay locked), don't
1053 * clear any dirty bits and don't set any writeback bits
1055 * Do set the Private2 bit so we know this page was properly
1056 * setup for writepage
1058 op
= unlock
? PAGE_UNLOCK
: 0;
1059 op
|= PAGE_SET_PRIVATE2
;
1061 extent_clear_unlock_delalloc(inode
, start
,
1062 start
+ ram_size
- 1, locked_page
,
1063 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1065 disk_num_bytes
-= cur_alloc_size
;
1066 num_bytes
-= cur_alloc_size
;
1067 alloc_hint
= ins
.objectid
+ ins
.offset
;
1068 start
+= cur_alloc_size
;
1073 out_drop_extent_cache
:
1074 btrfs_drop_extent_cache(inode
, start
, start
+ ram_size
- 1, 0);
1076 btrfs_dec_block_group_reservations(root
->fs_info
, ins
.objectid
);
1077 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
1079 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1080 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
1081 EXTENT_DELALLOC
| EXTENT_DEFRAG
,
1082 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
1083 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
);
1088 * work queue call back to started compression on a file and pages
1090 static noinline
void async_cow_start(struct btrfs_work
*work
)
1092 struct async_cow
*async_cow
;
1094 async_cow
= container_of(work
, struct async_cow
, work
);
1096 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1097 async_cow
->start
, async_cow
->end
, async_cow
,
1099 if (num_added
== 0) {
1100 btrfs_add_delayed_iput(async_cow
->inode
);
1101 async_cow
->inode
= NULL
;
1106 * work queue call back to submit previously compressed pages
1108 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1110 struct async_cow
*async_cow
;
1111 struct btrfs_root
*root
;
1112 unsigned long nr_pages
;
1114 async_cow
= container_of(work
, struct async_cow
, work
);
1116 root
= async_cow
->root
;
1117 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_SIZE
) >>
1121 * atomic_sub_return implies a barrier for waitqueue_active
1123 if (atomic_sub_return(nr_pages
, &root
->fs_info
->async_delalloc_pages
) <
1125 waitqueue_active(&root
->fs_info
->async_submit_wait
))
1126 wake_up(&root
->fs_info
->async_submit_wait
);
1128 if (async_cow
->inode
)
1129 submit_compressed_extents(async_cow
->inode
, async_cow
);
1132 static noinline
void async_cow_free(struct btrfs_work
*work
)
1134 struct async_cow
*async_cow
;
1135 async_cow
= container_of(work
, struct async_cow
, work
);
1136 if (async_cow
->inode
)
1137 btrfs_add_delayed_iput(async_cow
->inode
);
1141 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1142 u64 start
, u64 end
, int *page_started
,
1143 unsigned long *nr_written
)
1145 struct async_cow
*async_cow
;
1146 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1147 unsigned long nr_pages
;
1149 int limit
= 10 * SZ_1M
;
1151 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1152 1, 0, NULL
, GFP_NOFS
);
1153 while (start
< end
) {
1154 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1155 BUG_ON(!async_cow
); /* -ENOMEM */
1156 async_cow
->inode
= igrab(inode
);
1157 async_cow
->root
= root
;
1158 async_cow
->locked_page
= locked_page
;
1159 async_cow
->start
= start
;
1161 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1162 !btrfs_test_opt(root
->fs_info
, FORCE_COMPRESS
))
1165 cur_end
= min(end
, start
+ SZ_512K
- 1);
1167 async_cow
->end
= cur_end
;
1168 INIT_LIST_HEAD(&async_cow
->extents
);
1170 btrfs_init_work(&async_cow
->work
,
1171 btrfs_delalloc_helper
,
1172 async_cow_start
, async_cow_submit
,
1175 nr_pages
= (cur_end
- start
+ PAGE_SIZE
) >>
1177 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
1179 btrfs_queue_work(root
->fs_info
->delalloc_workers
,
1182 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
1183 wait_event(root
->fs_info
->async_submit_wait
,
1184 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1188 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1189 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1190 wait_event(root
->fs_info
->async_submit_wait
,
1191 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1195 *nr_written
+= nr_pages
;
1196 start
= cur_end
+ 1;
1202 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1203 u64 bytenr
, u64 num_bytes
)
1206 struct btrfs_ordered_sum
*sums
;
1209 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1210 bytenr
+ num_bytes
- 1, &list
, 0);
1211 if (ret
== 0 && list_empty(&list
))
1214 while (!list_empty(&list
)) {
1215 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1216 list_del(&sums
->list
);
1223 * when nowcow writeback call back. This checks for snapshots or COW copies
1224 * of the extents that exist in the file, and COWs the file as required.
1226 * If no cow copies or snapshots exist, we write directly to the existing
1229 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1230 struct page
*locked_page
,
1231 u64 start
, u64 end
, int *page_started
, int force
,
1232 unsigned long *nr_written
)
1234 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1235 struct btrfs_trans_handle
*trans
;
1236 struct extent_buffer
*leaf
;
1237 struct btrfs_path
*path
;
1238 struct btrfs_file_extent_item
*fi
;
1239 struct btrfs_key found_key
;
1254 u64 ino
= btrfs_ino(inode
);
1256 path
= btrfs_alloc_path();
1258 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1259 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1260 EXTENT_DO_ACCOUNTING
|
1261 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1263 PAGE_SET_WRITEBACK
|
1264 PAGE_END_WRITEBACK
);
1268 nolock
= btrfs_is_free_space_inode(inode
);
1271 trans
= btrfs_join_transaction_nolock(root
);
1273 trans
= btrfs_join_transaction(root
);
1275 if (IS_ERR(trans
)) {
1276 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1277 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1278 EXTENT_DO_ACCOUNTING
|
1279 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1281 PAGE_SET_WRITEBACK
|
1282 PAGE_END_WRITEBACK
);
1283 btrfs_free_path(path
);
1284 return PTR_ERR(trans
);
1287 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1289 cow_start
= (u64
)-1;
1292 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1296 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1297 leaf
= path
->nodes
[0];
1298 btrfs_item_key_to_cpu(leaf
, &found_key
,
1299 path
->slots
[0] - 1);
1300 if (found_key
.objectid
== ino
&&
1301 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1306 leaf
= path
->nodes
[0];
1307 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1308 ret
= btrfs_next_leaf(root
, path
);
1313 leaf
= path
->nodes
[0];
1319 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1321 if (found_key
.objectid
> ino
)
1323 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1324 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1328 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1329 found_key
.offset
> end
)
1332 if (found_key
.offset
> cur_offset
) {
1333 extent_end
= found_key
.offset
;
1338 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1339 struct btrfs_file_extent_item
);
1340 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1342 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1343 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1344 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1345 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1346 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1347 extent_end
= found_key
.offset
+
1348 btrfs_file_extent_num_bytes(leaf
, fi
);
1350 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1351 if (extent_end
<= start
) {
1355 if (disk_bytenr
== 0)
1357 if (btrfs_file_extent_compression(leaf
, fi
) ||
1358 btrfs_file_extent_encryption(leaf
, fi
) ||
1359 btrfs_file_extent_other_encoding(leaf
, fi
))
1361 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1363 if (btrfs_extent_readonly(root
, disk_bytenr
))
1365 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1367 extent_offset
, disk_bytenr
))
1369 disk_bytenr
+= extent_offset
;
1370 disk_bytenr
+= cur_offset
- found_key
.offset
;
1371 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1373 * if there are pending snapshots for this root,
1374 * we fall into common COW way.
1377 err
= btrfs_start_write_no_snapshoting(root
);
1382 * force cow if csum exists in the range.
1383 * this ensure that csum for a given extent are
1384 * either valid or do not exist.
1386 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1388 if (!btrfs_inc_nocow_writers(root
->fs_info
,
1392 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1393 extent_end
= found_key
.offset
+
1394 btrfs_file_extent_inline_len(leaf
,
1395 path
->slots
[0], fi
);
1396 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1401 if (extent_end
<= start
) {
1403 if (!nolock
&& nocow
)
1404 btrfs_end_write_no_snapshoting(root
);
1406 btrfs_dec_nocow_writers(root
->fs_info
,
1411 if (cow_start
== (u64
)-1)
1412 cow_start
= cur_offset
;
1413 cur_offset
= extent_end
;
1414 if (cur_offset
> end
)
1420 btrfs_release_path(path
);
1421 if (cow_start
!= (u64
)-1) {
1422 ret
= cow_file_range(inode
, locked_page
,
1423 cow_start
, found_key
.offset
- 1,
1424 end
, page_started
, nr_written
, 1,
1427 if (!nolock
&& nocow
)
1428 btrfs_end_write_no_snapshoting(root
);
1430 btrfs_dec_nocow_writers(root
->fs_info
,
1434 cow_start
= (u64
)-1;
1437 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1438 struct extent_map
*em
;
1439 struct extent_map_tree
*em_tree
;
1440 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1441 em
= alloc_extent_map();
1442 BUG_ON(!em
); /* -ENOMEM */
1443 em
->start
= cur_offset
;
1444 em
->orig_start
= found_key
.offset
- extent_offset
;
1445 em
->len
= num_bytes
;
1446 em
->block_len
= num_bytes
;
1447 em
->block_start
= disk_bytenr
;
1448 em
->orig_block_len
= disk_num_bytes
;
1449 em
->ram_bytes
= ram_bytes
;
1450 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1451 em
->mod_start
= em
->start
;
1452 em
->mod_len
= em
->len
;
1453 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1454 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
1455 em
->generation
= -1;
1457 write_lock(&em_tree
->lock
);
1458 ret
= add_extent_mapping(em_tree
, em
, 1);
1459 write_unlock(&em_tree
->lock
);
1460 if (ret
!= -EEXIST
) {
1461 free_extent_map(em
);
1464 btrfs_drop_extent_cache(inode
, em
->start
,
1465 em
->start
+ em
->len
- 1, 0);
1467 type
= BTRFS_ORDERED_PREALLOC
;
1469 type
= BTRFS_ORDERED_NOCOW
;
1472 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1473 num_bytes
, num_bytes
, type
);
1475 btrfs_dec_nocow_writers(root
->fs_info
, disk_bytenr
);
1476 BUG_ON(ret
); /* -ENOMEM */
1478 if (root
->root_key
.objectid
==
1479 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1480 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1483 if (!nolock
&& nocow
)
1484 btrfs_end_write_no_snapshoting(root
);
1489 extent_clear_unlock_delalloc(inode
, cur_offset
,
1490 cur_offset
+ num_bytes
- 1,
1491 locked_page
, EXTENT_LOCKED
|
1492 EXTENT_DELALLOC
, PAGE_UNLOCK
|
1494 if (!nolock
&& nocow
)
1495 btrfs_end_write_no_snapshoting(root
);
1496 cur_offset
= extent_end
;
1497 if (cur_offset
> end
)
1500 btrfs_release_path(path
);
1502 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1503 cow_start
= cur_offset
;
1507 if (cow_start
!= (u64
)-1) {
1508 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
, end
,
1509 page_started
, nr_written
, 1, NULL
);
1515 err
= btrfs_end_transaction(trans
, root
);
1519 if (ret
&& cur_offset
< end
)
1520 extent_clear_unlock_delalloc(inode
, cur_offset
, end
,
1521 locked_page
, EXTENT_LOCKED
|
1522 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1523 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1525 PAGE_SET_WRITEBACK
|
1526 PAGE_END_WRITEBACK
);
1527 btrfs_free_path(path
);
1531 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1534 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1535 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1539 * @defrag_bytes is a hint value, no spinlock held here,
1540 * if is not zero, it means the file is defragging.
1541 * Force cow if given extent needs to be defragged.
1543 if (BTRFS_I(inode
)->defrag_bytes
&&
1544 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1545 EXTENT_DEFRAG
, 0, NULL
))
1552 * extent_io.c call back to do delayed allocation processing
1554 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1555 u64 start
, u64 end
, int *page_started
,
1556 unsigned long *nr_written
)
1559 int force_cow
= need_force_cow(inode
, start
, end
);
1561 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1562 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1563 page_started
, 1, nr_written
);
1564 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1565 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1566 page_started
, 0, nr_written
);
1567 } else if (!inode_need_compress(inode
)) {
1568 ret
= cow_file_range(inode
, locked_page
, start
, end
, end
,
1569 page_started
, nr_written
, 1, NULL
);
1571 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1572 &BTRFS_I(inode
)->runtime_flags
);
1573 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1574 page_started
, nr_written
);
1579 static void btrfs_split_extent_hook(struct inode
*inode
,
1580 struct extent_state
*orig
, u64 split
)
1584 /* not delalloc, ignore it */
1585 if (!(orig
->state
& EXTENT_DELALLOC
))
1588 size
= orig
->end
- orig
->start
+ 1;
1589 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1594 * See the explanation in btrfs_merge_extent_hook, the same
1595 * applies here, just in reverse.
1597 new_size
= orig
->end
- split
+ 1;
1598 num_extents
= div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1599 BTRFS_MAX_EXTENT_SIZE
);
1600 new_size
= split
- orig
->start
;
1601 num_extents
+= div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1602 BTRFS_MAX_EXTENT_SIZE
);
1603 if (div64_u64(size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1604 BTRFS_MAX_EXTENT_SIZE
) >= num_extents
)
1608 spin_lock(&BTRFS_I(inode
)->lock
);
1609 BTRFS_I(inode
)->outstanding_extents
++;
1610 spin_unlock(&BTRFS_I(inode
)->lock
);
1614 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1615 * extents so we can keep track of new extents that are just merged onto old
1616 * extents, such as when we are doing sequential writes, so we can properly
1617 * account for the metadata space we'll need.
1619 static void btrfs_merge_extent_hook(struct inode
*inode
,
1620 struct extent_state
*new,
1621 struct extent_state
*other
)
1623 u64 new_size
, old_size
;
1626 /* not delalloc, ignore it */
1627 if (!(other
->state
& EXTENT_DELALLOC
))
1630 if (new->start
> other
->start
)
1631 new_size
= new->end
- other
->start
+ 1;
1633 new_size
= other
->end
- new->start
+ 1;
1635 /* we're not bigger than the max, unreserve the space and go */
1636 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1637 spin_lock(&BTRFS_I(inode
)->lock
);
1638 BTRFS_I(inode
)->outstanding_extents
--;
1639 spin_unlock(&BTRFS_I(inode
)->lock
);
1644 * We have to add up either side to figure out how many extents were
1645 * accounted for before we merged into one big extent. If the number of
1646 * extents we accounted for is <= the amount we need for the new range
1647 * then we can return, otherwise drop. Think of it like this
1651 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1652 * need 2 outstanding extents, on one side we have 1 and the other side
1653 * we have 1 so they are == and we can return. But in this case
1655 * [MAX_SIZE+4k][MAX_SIZE+4k]
1657 * Each range on their own accounts for 2 extents, but merged together
1658 * they are only 3 extents worth of accounting, so we need to drop in
1661 old_size
= other
->end
- other
->start
+ 1;
1662 num_extents
= div64_u64(old_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1663 BTRFS_MAX_EXTENT_SIZE
);
1664 old_size
= new->end
- new->start
+ 1;
1665 num_extents
+= div64_u64(old_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1666 BTRFS_MAX_EXTENT_SIZE
);
1668 if (div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1669 BTRFS_MAX_EXTENT_SIZE
) >= num_extents
)
1672 spin_lock(&BTRFS_I(inode
)->lock
);
1673 BTRFS_I(inode
)->outstanding_extents
--;
1674 spin_unlock(&BTRFS_I(inode
)->lock
);
1677 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1678 struct inode
*inode
)
1680 spin_lock(&root
->delalloc_lock
);
1681 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1682 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1683 &root
->delalloc_inodes
);
1684 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1685 &BTRFS_I(inode
)->runtime_flags
);
1686 root
->nr_delalloc_inodes
++;
1687 if (root
->nr_delalloc_inodes
== 1) {
1688 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1689 BUG_ON(!list_empty(&root
->delalloc_root
));
1690 list_add_tail(&root
->delalloc_root
,
1691 &root
->fs_info
->delalloc_roots
);
1692 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1695 spin_unlock(&root
->delalloc_lock
);
1698 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1699 struct inode
*inode
)
1701 spin_lock(&root
->delalloc_lock
);
1702 if (!list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1703 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1704 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1705 &BTRFS_I(inode
)->runtime_flags
);
1706 root
->nr_delalloc_inodes
--;
1707 if (!root
->nr_delalloc_inodes
) {
1708 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1709 BUG_ON(list_empty(&root
->delalloc_root
));
1710 list_del_init(&root
->delalloc_root
);
1711 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1714 spin_unlock(&root
->delalloc_lock
);
1718 * extent_io.c set_bit_hook, used to track delayed allocation
1719 * bytes in this file, and to maintain the list of inodes that
1720 * have pending delalloc work to be done.
1722 static void btrfs_set_bit_hook(struct inode
*inode
,
1723 struct extent_state
*state
, unsigned *bits
)
1726 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1729 * set_bit and clear bit hooks normally require _irqsave/restore
1730 * but in this case, we are only testing for the DELALLOC
1731 * bit, which is only set or cleared with irqs on
1733 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1734 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1735 u64 len
= state
->end
+ 1 - state
->start
;
1736 bool do_list
= !btrfs_is_free_space_inode(inode
);
1738 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1739 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1741 spin_lock(&BTRFS_I(inode
)->lock
);
1742 BTRFS_I(inode
)->outstanding_extents
++;
1743 spin_unlock(&BTRFS_I(inode
)->lock
);
1746 /* For sanity tests */
1747 if (btrfs_is_testing(root
->fs_info
))
1750 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, len
,
1751 root
->fs_info
->delalloc_batch
);
1752 spin_lock(&BTRFS_I(inode
)->lock
);
1753 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1754 if (*bits
& EXTENT_DEFRAG
)
1755 BTRFS_I(inode
)->defrag_bytes
+= len
;
1756 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1757 &BTRFS_I(inode
)->runtime_flags
))
1758 btrfs_add_delalloc_inodes(root
, inode
);
1759 spin_unlock(&BTRFS_I(inode
)->lock
);
1764 * extent_io.c clear_bit_hook, see set_bit_hook for why
1766 static void btrfs_clear_bit_hook(struct inode
*inode
,
1767 struct extent_state
*state
,
1770 u64 len
= state
->end
+ 1 - state
->start
;
1771 u64 num_extents
= div64_u64(len
+ BTRFS_MAX_EXTENT_SIZE
-1,
1772 BTRFS_MAX_EXTENT_SIZE
);
1774 spin_lock(&BTRFS_I(inode
)->lock
);
1775 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
))
1776 BTRFS_I(inode
)->defrag_bytes
-= len
;
1777 spin_unlock(&BTRFS_I(inode
)->lock
);
1780 * set_bit and clear bit hooks normally require _irqsave/restore
1781 * but in this case, we are only testing for the DELALLOC
1782 * bit, which is only set or cleared with irqs on
1784 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1785 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1786 bool do_list
= !btrfs_is_free_space_inode(inode
);
1788 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1789 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1790 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1791 spin_lock(&BTRFS_I(inode
)->lock
);
1792 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
1793 spin_unlock(&BTRFS_I(inode
)->lock
);
1797 * We don't reserve metadata space for space cache inodes so we
1798 * don't need to call dellalloc_release_metadata if there is an
1801 if (*bits
& EXTENT_DO_ACCOUNTING
&&
1802 root
!= root
->fs_info
->tree_root
)
1803 btrfs_delalloc_release_metadata(inode
, len
);
1805 /* For sanity tests. */
1806 if (btrfs_is_testing(root
->fs_info
))
1809 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1810 && do_list
&& !(state
->state
& EXTENT_NORESERVE
))
1811 btrfs_free_reserved_data_space_noquota(inode
,
1814 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, -len
,
1815 root
->fs_info
->delalloc_batch
);
1816 spin_lock(&BTRFS_I(inode
)->lock
);
1817 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1818 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1819 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1820 &BTRFS_I(inode
)->runtime_flags
))
1821 btrfs_del_delalloc_inode(root
, inode
);
1822 spin_unlock(&BTRFS_I(inode
)->lock
);
1827 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1828 * we don't create bios that span stripes or chunks
1830 * return 1 if page cannot be merged to bio
1831 * return 0 if page can be merged to bio
1832 * return error otherwise
1834 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1835 size_t size
, struct bio
*bio
,
1836 unsigned long bio_flags
)
1838 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1839 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1844 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1847 length
= bio
->bi_iter
.bi_size
;
1848 map_length
= length
;
1849 ret
= btrfs_map_block(root
->fs_info
, bio_op(bio
), logical
,
1850 &map_length
, NULL
, 0);
1853 if (map_length
< length
+ size
)
1859 * in order to insert checksums into the metadata in large chunks,
1860 * we wait until bio submission time. All the pages in the bio are
1861 * checksummed and sums are attached onto the ordered extent record.
1863 * At IO completion time the cums attached on the ordered extent record
1864 * are inserted into the btree
1866 static int __btrfs_submit_bio_start(struct inode
*inode
, struct bio
*bio
,
1867 int mirror_num
, unsigned long bio_flags
,
1870 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1873 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1874 BUG_ON(ret
); /* -ENOMEM */
1879 * in order to insert checksums into the metadata in large chunks,
1880 * we wait until bio submission time. All the pages in the bio are
1881 * checksummed and sums are attached onto the ordered extent record.
1883 * At IO completion time the cums attached on the ordered extent record
1884 * are inserted into the btree
1886 static int __btrfs_submit_bio_done(struct inode
*inode
, struct bio
*bio
,
1887 int mirror_num
, unsigned long bio_flags
,
1890 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1893 ret
= btrfs_map_bio(root
, bio
, mirror_num
, 1);
1895 bio
->bi_error
= ret
;
1902 * extent_io.c submission hook. This does the right thing for csum calculation
1903 * on write, or reading the csums from the tree before a read
1905 static int btrfs_submit_bio_hook(struct inode
*inode
, struct bio
*bio
,
1906 int mirror_num
, unsigned long bio_flags
,
1909 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1910 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
1913 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1915 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1917 if (btrfs_is_free_space_inode(inode
))
1918 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
1920 if (bio_op(bio
) != REQ_OP_WRITE
) {
1921 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, metadata
);
1925 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1926 ret
= btrfs_submit_compressed_read(inode
, bio
,
1930 } else if (!skip_sum
) {
1931 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1936 } else if (async
&& !skip_sum
) {
1937 /* csum items have already been cloned */
1938 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1940 /* we're doing a write, do the async checksumming */
1941 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1942 inode
, bio
, mirror_num
,
1943 bio_flags
, bio_offset
,
1944 __btrfs_submit_bio_start
,
1945 __btrfs_submit_bio_done
);
1947 } else if (!skip_sum
) {
1948 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1954 ret
= btrfs_map_bio(root
, bio
, mirror_num
, 0);
1958 bio
->bi_error
= ret
;
1965 * given a list of ordered sums record them in the inode. This happens
1966 * at IO completion time based on sums calculated at bio submission time.
1968 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1969 struct inode
*inode
, u64 file_offset
,
1970 struct list_head
*list
)
1972 struct btrfs_ordered_sum
*sum
;
1974 list_for_each_entry(sum
, list
, list
) {
1975 trans
->adding_csums
= 1;
1976 btrfs_csum_file_blocks(trans
,
1977 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1978 trans
->adding_csums
= 0;
1983 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1984 struct extent_state
**cached_state
)
1986 WARN_ON((end
& (PAGE_SIZE
- 1)) == 0);
1987 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1991 /* see btrfs_writepage_start_hook for details on why this is required */
1992 struct btrfs_writepage_fixup
{
1994 struct btrfs_work work
;
1997 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1999 struct btrfs_writepage_fixup
*fixup
;
2000 struct btrfs_ordered_extent
*ordered
;
2001 struct extent_state
*cached_state
= NULL
;
2003 struct inode
*inode
;
2008 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2012 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2013 ClearPageChecked(page
);
2017 inode
= page
->mapping
->host
;
2018 page_start
= page_offset(page
);
2019 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2021 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2024 /* already ordered? We're done */
2025 if (PagePrivate2(page
))
2028 ordered
= btrfs_lookup_ordered_range(inode
, page_start
,
2031 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2032 page_end
, &cached_state
, GFP_NOFS
);
2034 btrfs_start_ordered_extent(inode
, ordered
, 1);
2035 btrfs_put_ordered_extent(ordered
);
2039 ret
= btrfs_delalloc_reserve_space(inode
, page_start
,
2042 mapping_set_error(page
->mapping
, ret
);
2043 end_extent_writepage(page
, ret
, page_start
, page_end
);
2044 ClearPageChecked(page
);
2048 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
2049 ClearPageChecked(page
);
2050 set_page_dirty(page
);
2052 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2053 &cached_state
, GFP_NOFS
);
2061 * There are a few paths in the higher layers of the kernel that directly
2062 * set the page dirty bit without asking the filesystem if it is a
2063 * good idea. This causes problems because we want to make sure COW
2064 * properly happens and the data=ordered rules are followed.
2066 * In our case any range that doesn't have the ORDERED bit set
2067 * hasn't been properly setup for IO. We kick off an async process
2068 * to fix it up. The async helper will wait for ordered extents, set
2069 * the delalloc bit and make it safe to write the page.
2071 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2073 struct inode
*inode
= page
->mapping
->host
;
2074 struct btrfs_writepage_fixup
*fixup
;
2075 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2077 /* this page is properly in the ordered list */
2078 if (TestClearPagePrivate2(page
))
2081 if (PageChecked(page
))
2084 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2088 SetPageChecked(page
);
2090 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2091 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2093 btrfs_queue_work(root
->fs_info
->fixup_workers
, &fixup
->work
);
2097 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2098 struct inode
*inode
, u64 file_pos
,
2099 u64 disk_bytenr
, u64 disk_num_bytes
,
2100 u64 num_bytes
, u64 ram_bytes
,
2101 u8 compression
, u8 encryption
,
2102 u16 other_encoding
, int extent_type
)
2104 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2105 struct btrfs_file_extent_item
*fi
;
2106 struct btrfs_path
*path
;
2107 struct extent_buffer
*leaf
;
2108 struct btrfs_key ins
;
2109 int extent_inserted
= 0;
2112 path
= btrfs_alloc_path();
2117 * we may be replacing one extent in the tree with another.
2118 * The new extent is pinned in the extent map, and we don't want
2119 * to drop it from the cache until it is completely in the btree.
2121 * So, tell btrfs_drop_extents to leave this extent in the cache.
2122 * the caller is expected to unpin it and allow it to be merged
2125 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2126 file_pos
+ num_bytes
, NULL
, 0,
2127 1, sizeof(*fi
), &extent_inserted
);
2131 if (!extent_inserted
) {
2132 ins
.objectid
= btrfs_ino(inode
);
2133 ins
.offset
= file_pos
;
2134 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2136 path
->leave_spinning
= 1;
2137 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2142 leaf
= path
->nodes
[0];
2143 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2144 struct btrfs_file_extent_item
);
2145 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2146 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2147 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2148 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2149 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2150 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2151 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2152 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2153 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2154 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2156 btrfs_mark_buffer_dirty(leaf
);
2157 btrfs_release_path(path
);
2159 inode_add_bytes(inode
, num_bytes
);
2161 ins
.objectid
= disk_bytenr
;
2162 ins
.offset
= disk_num_bytes
;
2163 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2164 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2165 root
->root_key
.objectid
,
2166 btrfs_ino(inode
), file_pos
,
2169 * Release the reserved range from inode dirty range map, as it is
2170 * already moved into delayed_ref_head
2172 btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2174 btrfs_free_path(path
);
2179 /* snapshot-aware defrag */
2180 struct sa_defrag_extent_backref
{
2181 struct rb_node node
;
2182 struct old_sa_defrag_extent
*old
;
2191 struct old_sa_defrag_extent
{
2192 struct list_head list
;
2193 struct new_sa_defrag_extent
*new;
2202 struct new_sa_defrag_extent
{
2203 struct rb_root root
;
2204 struct list_head head
;
2205 struct btrfs_path
*path
;
2206 struct inode
*inode
;
2214 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2215 struct sa_defrag_extent_backref
*b2
)
2217 if (b1
->root_id
< b2
->root_id
)
2219 else if (b1
->root_id
> b2
->root_id
)
2222 if (b1
->inum
< b2
->inum
)
2224 else if (b1
->inum
> b2
->inum
)
2227 if (b1
->file_pos
< b2
->file_pos
)
2229 else if (b1
->file_pos
> b2
->file_pos
)
2233 * [------------------------------] ===> (a range of space)
2234 * |<--->| |<---->| =============> (fs/file tree A)
2235 * |<---------------------------->| ===> (fs/file tree B)
2237 * A range of space can refer to two file extents in one tree while
2238 * refer to only one file extent in another tree.
2240 * So we may process a disk offset more than one time(two extents in A)
2241 * and locate at the same extent(one extent in B), then insert two same
2242 * backrefs(both refer to the extent in B).
2247 static void backref_insert(struct rb_root
*root
,
2248 struct sa_defrag_extent_backref
*backref
)
2250 struct rb_node
**p
= &root
->rb_node
;
2251 struct rb_node
*parent
= NULL
;
2252 struct sa_defrag_extent_backref
*entry
;
2257 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2259 ret
= backref_comp(backref
, entry
);
2263 p
= &(*p
)->rb_right
;
2266 rb_link_node(&backref
->node
, parent
, p
);
2267 rb_insert_color(&backref
->node
, root
);
2271 * Note the backref might has changed, and in this case we just return 0.
2273 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2276 struct btrfs_file_extent_item
*extent
;
2277 struct btrfs_fs_info
*fs_info
;
2278 struct old_sa_defrag_extent
*old
= ctx
;
2279 struct new_sa_defrag_extent
*new = old
->new;
2280 struct btrfs_path
*path
= new->path
;
2281 struct btrfs_key key
;
2282 struct btrfs_root
*root
;
2283 struct sa_defrag_extent_backref
*backref
;
2284 struct extent_buffer
*leaf
;
2285 struct inode
*inode
= new->inode
;
2291 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2292 inum
== btrfs_ino(inode
))
2295 key
.objectid
= root_id
;
2296 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2297 key
.offset
= (u64
)-1;
2299 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2300 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2302 if (PTR_ERR(root
) == -ENOENT
)
2305 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2306 inum
, offset
, root_id
);
2307 return PTR_ERR(root
);
2310 key
.objectid
= inum
;
2311 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2312 if (offset
> (u64
)-1 << 32)
2315 key
.offset
= offset
;
2317 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2318 if (WARN_ON(ret
< 0))
2325 leaf
= path
->nodes
[0];
2326 slot
= path
->slots
[0];
2328 if (slot
>= btrfs_header_nritems(leaf
)) {
2329 ret
= btrfs_next_leaf(root
, path
);
2332 } else if (ret
> 0) {
2341 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2343 if (key
.objectid
> inum
)
2346 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2349 extent
= btrfs_item_ptr(leaf
, slot
,
2350 struct btrfs_file_extent_item
);
2352 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2356 * 'offset' refers to the exact key.offset,
2357 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2358 * (key.offset - extent_offset).
2360 if (key
.offset
!= offset
)
2363 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2364 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2366 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2367 old
->len
|| extent_offset
+ num_bytes
<=
2368 old
->extent_offset
+ old
->offset
)
2373 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2379 backref
->root_id
= root_id
;
2380 backref
->inum
= inum
;
2381 backref
->file_pos
= offset
;
2382 backref
->num_bytes
= num_bytes
;
2383 backref
->extent_offset
= extent_offset
;
2384 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2386 backref_insert(&new->root
, backref
);
2389 btrfs_release_path(path
);
2394 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2395 struct new_sa_defrag_extent
*new)
2397 struct btrfs_fs_info
*fs_info
= BTRFS_I(new->inode
)->root
->fs_info
;
2398 struct old_sa_defrag_extent
*old
, *tmp
;
2403 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2404 ret
= iterate_inodes_from_logical(old
->bytenr
+
2405 old
->extent_offset
, fs_info
,
2406 path
, record_one_backref
,
2408 if (ret
< 0 && ret
!= -ENOENT
)
2411 /* no backref to be processed for this extent */
2413 list_del(&old
->list
);
2418 if (list_empty(&new->head
))
2424 static int relink_is_mergable(struct extent_buffer
*leaf
,
2425 struct btrfs_file_extent_item
*fi
,
2426 struct new_sa_defrag_extent
*new)
2428 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2431 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2434 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2437 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2438 btrfs_file_extent_other_encoding(leaf
, fi
))
2445 * Note the backref might has changed, and in this case we just return 0.
2447 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2448 struct sa_defrag_extent_backref
*prev
,
2449 struct sa_defrag_extent_backref
*backref
)
2451 struct btrfs_file_extent_item
*extent
;
2452 struct btrfs_file_extent_item
*item
;
2453 struct btrfs_ordered_extent
*ordered
;
2454 struct btrfs_trans_handle
*trans
;
2455 struct btrfs_fs_info
*fs_info
;
2456 struct btrfs_root
*root
;
2457 struct btrfs_key key
;
2458 struct extent_buffer
*leaf
;
2459 struct old_sa_defrag_extent
*old
= backref
->old
;
2460 struct new_sa_defrag_extent
*new = old
->new;
2461 struct inode
*src_inode
= new->inode
;
2462 struct inode
*inode
;
2463 struct extent_state
*cached
= NULL
;
2472 if (prev
&& prev
->root_id
== backref
->root_id
&&
2473 prev
->inum
== backref
->inum
&&
2474 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2477 /* step 1: get root */
2478 key
.objectid
= backref
->root_id
;
2479 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2480 key
.offset
= (u64
)-1;
2482 fs_info
= BTRFS_I(src_inode
)->root
->fs_info
;
2483 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2485 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2487 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2488 if (PTR_ERR(root
) == -ENOENT
)
2490 return PTR_ERR(root
);
2493 if (btrfs_root_readonly(root
)) {
2494 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2498 /* step 2: get inode */
2499 key
.objectid
= backref
->inum
;
2500 key
.type
= BTRFS_INODE_ITEM_KEY
;
2503 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2504 if (IS_ERR(inode
)) {
2505 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2509 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2511 /* step 3: relink backref */
2512 lock_start
= backref
->file_pos
;
2513 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2514 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2517 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2519 btrfs_put_ordered_extent(ordered
);
2523 trans
= btrfs_join_transaction(root
);
2524 if (IS_ERR(trans
)) {
2525 ret
= PTR_ERR(trans
);
2529 key
.objectid
= backref
->inum
;
2530 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2531 key
.offset
= backref
->file_pos
;
2533 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2536 } else if (ret
> 0) {
2541 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2542 struct btrfs_file_extent_item
);
2544 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2545 backref
->generation
)
2548 btrfs_release_path(path
);
2550 start
= backref
->file_pos
;
2551 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2552 start
+= old
->extent_offset
+ old
->offset
-
2553 backref
->extent_offset
;
2555 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2556 old
->extent_offset
+ old
->offset
+ old
->len
);
2557 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2559 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2564 key
.objectid
= btrfs_ino(inode
);
2565 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2568 path
->leave_spinning
= 1;
2570 struct btrfs_file_extent_item
*fi
;
2572 struct btrfs_key found_key
;
2574 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2579 leaf
= path
->nodes
[0];
2580 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2582 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2583 struct btrfs_file_extent_item
);
2584 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2586 if (extent_len
+ found_key
.offset
== start
&&
2587 relink_is_mergable(leaf
, fi
, new)) {
2588 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2590 btrfs_mark_buffer_dirty(leaf
);
2591 inode_add_bytes(inode
, len
);
2597 btrfs_release_path(path
);
2602 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2605 btrfs_abort_transaction(trans
, ret
);
2609 leaf
= path
->nodes
[0];
2610 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2611 struct btrfs_file_extent_item
);
2612 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2613 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2614 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2615 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2616 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2617 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2618 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2619 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2620 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2621 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2623 btrfs_mark_buffer_dirty(leaf
);
2624 inode_add_bytes(inode
, len
);
2625 btrfs_release_path(path
);
2627 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2629 backref
->root_id
, backref
->inum
,
2630 new->file_pos
); /* start - extent_offset */
2632 btrfs_abort_transaction(trans
, ret
);
2638 btrfs_release_path(path
);
2639 path
->leave_spinning
= 0;
2640 btrfs_end_transaction(trans
, root
);
2642 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2648 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2650 struct old_sa_defrag_extent
*old
, *tmp
;
2655 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2661 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2663 struct btrfs_path
*path
;
2664 struct sa_defrag_extent_backref
*backref
;
2665 struct sa_defrag_extent_backref
*prev
= NULL
;
2666 struct inode
*inode
;
2667 struct btrfs_root
*root
;
2668 struct rb_node
*node
;
2672 root
= BTRFS_I(inode
)->root
;
2674 path
= btrfs_alloc_path();
2678 if (!record_extent_backrefs(path
, new)) {
2679 btrfs_free_path(path
);
2682 btrfs_release_path(path
);
2685 node
= rb_first(&new->root
);
2688 rb_erase(node
, &new->root
);
2690 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2692 ret
= relink_extent_backref(path
, prev
, backref
);
2705 btrfs_free_path(path
);
2707 free_sa_defrag_extent(new);
2709 atomic_dec(&root
->fs_info
->defrag_running
);
2710 wake_up(&root
->fs_info
->transaction_wait
);
2713 static struct new_sa_defrag_extent
*
2714 record_old_file_extents(struct inode
*inode
,
2715 struct btrfs_ordered_extent
*ordered
)
2717 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2718 struct btrfs_path
*path
;
2719 struct btrfs_key key
;
2720 struct old_sa_defrag_extent
*old
;
2721 struct new_sa_defrag_extent
*new;
2724 new = kmalloc(sizeof(*new), GFP_NOFS
);
2729 new->file_pos
= ordered
->file_offset
;
2730 new->len
= ordered
->len
;
2731 new->bytenr
= ordered
->start
;
2732 new->disk_len
= ordered
->disk_len
;
2733 new->compress_type
= ordered
->compress_type
;
2734 new->root
= RB_ROOT
;
2735 INIT_LIST_HEAD(&new->head
);
2737 path
= btrfs_alloc_path();
2741 key
.objectid
= btrfs_ino(inode
);
2742 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2743 key
.offset
= new->file_pos
;
2745 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2748 if (ret
> 0 && path
->slots
[0] > 0)
2751 /* find out all the old extents for the file range */
2753 struct btrfs_file_extent_item
*extent
;
2754 struct extent_buffer
*l
;
2763 slot
= path
->slots
[0];
2765 if (slot
>= btrfs_header_nritems(l
)) {
2766 ret
= btrfs_next_leaf(root
, path
);
2774 btrfs_item_key_to_cpu(l
, &key
, slot
);
2776 if (key
.objectid
!= btrfs_ino(inode
))
2778 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2780 if (key
.offset
>= new->file_pos
+ new->len
)
2783 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2785 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2786 if (key
.offset
+ num_bytes
< new->file_pos
)
2789 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2793 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2795 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2799 offset
= max(new->file_pos
, key
.offset
);
2800 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2802 old
->bytenr
= disk_bytenr
;
2803 old
->extent_offset
= extent_offset
;
2804 old
->offset
= offset
- key
.offset
;
2805 old
->len
= end
- offset
;
2808 list_add_tail(&old
->list
, &new->head
);
2814 btrfs_free_path(path
);
2815 atomic_inc(&root
->fs_info
->defrag_running
);
2820 btrfs_free_path(path
);
2822 free_sa_defrag_extent(new);
2826 static void btrfs_release_delalloc_bytes(struct btrfs_root
*root
,
2829 struct btrfs_block_group_cache
*cache
;
2831 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
2834 spin_lock(&cache
->lock
);
2835 cache
->delalloc_bytes
-= len
;
2836 spin_unlock(&cache
->lock
);
2838 btrfs_put_block_group(cache
);
2841 /* as ordered data IO finishes, this gets called so we can finish
2842 * an ordered extent if the range of bytes in the file it covers are
2845 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2847 struct inode
*inode
= ordered_extent
->inode
;
2848 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2849 struct btrfs_trans_handle
*trans
= NULL
;
2850 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2851 struct extent_state
*cached_state
= NULL
;
2852 struct new_sa_defrag_extent
*new = NULL
;
2853 int compress_type
= 0;
2855 u64 logical_len
= ordered_extent
->len
;
2857 bool truncated
= false;
2859 nolock
= btrfs_is_free_space_inode(inode
);
2861 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2866 btrfs_free_io_failure_record(inode
, ordered_extent
->file_offset
,
2867 ordered_extent
->file_offset
+
2868 ordered_extent
->len
- 1);
2870 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2872 logical_len
= ordered_extent
->truncated_len
;
2873 /* Truncated the entire extent, don't bother adding */
2878 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2879 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2882 * For mwrite(mmap + memset to write) case, we still reserve
2883 * space for NOCOW range.
2884 * As NOCOW won't cause a new delayed ref, just free the space
2886 btrfs_qgroup_free_data(inode
, ordered_extent
->file_offset
,
2887 ordered_extent
->len
);
2888 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2890 trans
= btrfs_join_transaction_nolock(root
);
2892 trans
= btrfs_join_transaction(root
);
2893 if (IS_ERR(trans
)) {
2894 ret
= PTR_ERR(trans
);
2898 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2899 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2900 if (ret
) /* -ENOMEM or corruption */
2901 btrfs_abort_transaction(trans
, ret
);
2905 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
2906 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2909 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
2910 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2911 EXTENT_DEFRAG
, 1, cached_state
);
2913 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
2914 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
2915 /* the inode is shared */
2916 new = record_old_file_extents(inode
, ordered_extent
);
2918 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
2919 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2920 EXTENT_DEFRAG
, 0, 0, &cached_state
, GFP_NOFS
);
2924 trans
= btrfs_join_transaction_nolock(root
);
2926 trans
= btrfs_join_transaction(root
);
2927 if (IS_ERR(trans
)) {
2928 ret
= PTR_ERR(trans
);
2933 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2935 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2936 compress_type
= ordered_extent
->compress_type
;
2937 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2938 BUG_ON(compress_type
);
2939 ret
= btrfs_mark_extent_written(trans
, inode
,
2940 ordered_extent
->file_offset
,
2941 ordered_extent
->file_offset
+
2944 BUG_ON(root
== root
->fs_info
->tree_root
);
2945 ret
= insert_reserved_file_extent(trans
, inode
,
2946 ordered_extent
->file_offset
,
2947 ordered_extent
->start
,
2948 ordered_extent
->disk_len
,
2949 logical_len
, logical_len
,
2950 compress_type
, 0, 0,
2951 BTRFS_FILE_EXTENT_REG
);
2953 btrfs_release_delalloc_bytes(root
,
2954 ordered_extent
->start
,
2955 ordered_extent
->disk_len
);
2957 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
2958 ordered_extent
->file_offset
, ordered_extent
->len
,
2961 btrfs_abort_transaction(trans
, ret
);
2965 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
2966 &ordered_extent
->list
);
2968 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2969 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2970 if (ret
) { /* -ENOMEM or corruption */
2971 btrfs_abort_transaction(trans
, ret
);
2976 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
2977 ordered_extent
->file_offset
+
2978 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
2980 if (root
!= root
->fs_info
->tree_root
)
2981 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
2983 btrfs_end_transaction(trans
, root
);
2985 if (ret
|| truncated
) {
2989 start
= ordered_extent
->file_offset
+ logical_len
;
2991 start
= ordered_extent
->file_offset
;
2992 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
2993 clear_extent_uptodate(io_tree
, start
, end
, NULL
, GFP_NOFS
);
2995 /* Drop the cache for the part of the extent we didn't write. */
2996 btrfs_drop_extent_cache(inode
, start
, end
, 0);
2999 * If the ordered extent had an IOERR or something else went
3000 * wrong we need to return the space for this ordered extent
3001 * back to the allocator. We only free the extent in the
3002 * truncated case if we didn't write out the extent at all.
3004 if ((ret
|| !logical_len
) &&
3005 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
3006 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
3007 btrfs_free_reserved_extent(root
, ordered_extent
->start
,
3008 ordered_extent
->disk_len
, 1);
3013 * This needs to be done to make sure anybody waiting knows we are done
3014 * updating everything for this ordered extent.
3016 btrfs_remove_ordered_extent(inode
, ordered_extent
);
3018 /* for snapshot-aware defrag */
3021 free_sa_defrag_extent(new);
3022 atomic_dec(&root
->fs_info
->defrag_running
);
3024 relink_file_extents(new);
3029 btrfs_put_ordered_extent(ordered_extent
);
3030 /* once for the tree */
3031 btrfs_put_ordered_extent(ordered_extent
);
3036 static void finish_ordered_fn(struct btrfs_work
*work
)
3038 struct btrfs_ordered_extent
*ordered_extent
;
3039 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
3040 btrfs_finish_ordered_io(ordered_extent
);
3043 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
3044 struct extent_state
*state
, int uptodate
)
3046 struct inode
*inode
= page
->mapping
->host
;
3047 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3048 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
3049 struct btrfs_workqueue
*wq
;
3050 btrfs_work_func_t func
;
3052 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
3054 ClearPagePrivate2(page
);
3055 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
3056 end
- start
+ 1, uptodate
))
3059 if (btrfs_is_free_space_inode(inode
)) {
3060 wq
= root
->fs_info
->endio_freespace_worker
;
3061 func
= btrfs_freespace_write_helper
;
3063 wq
= root
->fs_info
->endio_write_workers
;
3064 func
= btrfs_endio_write_helper
;
3067 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3069 btrfs_queue_work(wq
, &ordered_extent
->work
);
3074 static int __readpage_endio_check(struct inode
*inode
,
3075 struct btrfs_io_bio
*io_bio
,
3076 int icsum
, struct page
*page
,
3077 int pgoff
, u64 start
, size_t len
)
3083 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3085 kaddr
= kmap_atomic(page
);
3086 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3087 btrfs_csum_final(csum
, (char *)&csum
);
3088 if (csum
!= csum_expected
)
3091 kunmap_atomic(kaddr
);
3094 btrfs_warn_rl(BTRFS_I(inode
)->root
->fs_info
,
3095 "csum failed ino %llu off %llu csum %u expected csum %u",
3096 btrfs_ino(inode
), start
, csum
, csum_expected
);
3097 memset(kaddr
+ pgoff
, 1, len
);
3098 flush_dcache_page(page
);
3099 kunmap_atomic(kaddr
);
3100 if (csum_expected
== 0)
3106 * when reads are done, we need to check csums to verify the data is correct
3107 * if there's a match, we allow the bio to finish. If not, the code in
3108 * extent_io.c will try to find good copies for us.
3110 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3111 u64 phy_offset
, struct page
*page
,
3112 u64 start
, u64 end
, int mirror
)
3114 size_t offset
= start
- page_offset(page
);
3115 struct inode
*inode
= page
->mapping
->host
;
3116 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3117 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3119 if (PageChecked(page
)) {
3120 ClearPageChecked(page
);
3124 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3127 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3128 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3129 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3133 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3134 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3135 start
, (size_t)(end
- start
+ 1));
3138 void btrfs_add_delayed_iput(struct inode
*inode
)
3140 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
3141 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3143 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3146 spin_lock(&fs_info
->delayed_iput_lock
);
3147 if (binode
->delayed_iput_count
== 0) {
3148 ASSERT(list_empty(&binode
->delayed_iput
));
3149 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3151 binode
->delayed_iput_count
++;
3153 spin_unlock(&fs_info
->delayed_iput_lock
);
3156 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
3158 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3160 spin_lock(&fs_info
->delayed_iput_lock
);
3161 while (!list_empty(&fs_info
->delayed_iputs
)) {
3162 struct btrfs_inode
*inode
;
3164 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3165 struct btrfs_inode
, delayed_iput
);
3166 if (inode
->delayed_iput_count
) {
3167 inode
->delayed_iput_count
--;
3168 list_move_tail(&inode
->delayed_iput
,
3169 &fs_info
->delayed_iputs
);
3171 list_del_init(&inode
->delayed_iput
);
3173 spin_unlock(&fs_info
->delayed_iput_lock
);
3174 iput(&inode
->vfs_inode
);
3175 spin_lock(&fs_info
->delayed_iput_lock
);
3177 spin_unlock(&fs_info
->delayed_iput_lock
);
3181 * This is called in transaction commit time. If there are no orphan
3182 * files in the subvolume, it removes orphan item and frees block_rsv
3185 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
3186 struct btrfs_root
*root
)
3188 struct btrfs_block_rsv
*block_rsv
;
3191 if (atomic_read(&root
->orphan_inodes
) ||
3192 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
3195 spin_lock(&root
->orphan_lock
);
3196 if (atomic_read(&root
->orphan_inodes
)) {
3197 spin_unlock(&root
->orphan_lock
);
3201 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
3202 spin_unlock(&root
->orphan_lock
);
3206 block_rsv
= root
->orphan_block_rsv
;
3207 root
->orphan_block_rsv
= NULL
;
3208 spin_unlock(&root
->orphan_lock
);
3210 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
) &&
3211 btrfs_root_refs(&root
->root_item
) > 0) {
3212 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
3213 root
->root_key
.objectid
);
3215 btrfs_abort_transaction(trans
, ret
);
3217 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
3222 WARN_ON(block_rsv
->size
> 0);
3223 btrfs_free_block_rsv(root
, block_rsv
);
3228 * This creates an orphan entry for the given inode in case something goes
3229 * wrong in the middle of an unlink/truncate.
3231 * NOTE: caller of this function should reserve 5 units of metadata for
3234 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
3236 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3237 struct btrfs_block_rsv
*block_rsv
= NULL
;
3242 if (!root
->orphan_block_rsv
) {
3243 block_rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
3248 spin_lock(&root
->orphan_lock
);
3249 if (!root
->orphan_block_rsv
) {
3250 root
->orphan_block_rsv
= block_rsv
;
3251 } else if (block_rsv
) {
3252 btrfs_free_block_rsv(root
, block_rsv
);
3256 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3257 &BTRFS_I(inode
)->runtime_flags
)) {
3260 * For proper ENOSPC handling, we should do orphan
3261 * cleanup when mounting. But this introduces backward
3262 * compatibility issue.
3264 if (!xchg(&root
->orphan_item_inserted
, 1))
3270 atomic_inc(&root
->orphan_inodes
);
3273 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3274 &BTRFS_I(inode
)->runtime_flags
))
3276 spin_unlock(&root
->orphan_lock
);
3278 /* grab metadata reservation from transaction handle */
3280 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
3283 atomic_dec(&root
->orphan_inodes
);
3284 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3285 &BTRFS_I(inode
)->runtime_flags
);
3287 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3288 &BTRFS_I(inode
)->runtime_flags
);
3293 /* insert an orphan item to track this unlinked/truncated file */
3295 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
3297 atomic_dec(&root
->orphan_inodes
);
3299 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3300 &BTRFS_I(inode
)->runtime_flags
);
3301 btrfs_orphan_release_metadata(inode
);
3303 if (ret
!= -EEXIST
) {
3304 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3305 &BTRFS_I(inode
)->runtime_flags
);
3306 btrfs_abort_transaction(trans
, ret
);
3313 /* insert an orphan item to track subvolume contains orphan files */
3315 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
3316 root
->root_key
.objectid
);
3317 if (ret
&& ret
!= -EEXIST
) {
3318 btrfs_abort_transaction(trans
, ret
);
3326 * We have done the truncate/delete so we can go ahead and remove the orphan
3327 * item for this particular inode.
3329 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3330 struct inode
*inode
)
3332 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3333 int delete_item
= 0;
3334 int release_rsv
= 0;
3337 spin_lock(&root
->orphan_lock
);
3338 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3339 &BTRFS_I(inode
)->runtime_flags
))
3342 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3343 &BTRFS_I(inode
)->runtime_flags
))
3345 spin_unlock(&root
->orphan_lock
);
3348 atomic_dec(&root
->orphan_inodes
);
3350 ret
= btrfs_del_orphan_item(trans
, root
,
3355 btrfs_orphan_release_metadata(inode
);
3361 * this cleans up any orphans that may be left on the list from the last use
3364 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3366 struct btrfs_path
*path
;
3367 struct extent_buffer
*leaf
;
3368 struct btrfs_key key
, found_key
;
3369 struct btrfs_trans_handle
*trans
;
3370 struct inode
*inode
;
3371 u64 last_objectid
= 0;
3372 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3374 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3377 path
= btrfs_alloc_path();
3382 path
->reada
= READA_BACK
;
3384 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3385 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3386 key
.offset
= (u64
)-1;
3389 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3394 * if ret == 0 means we found what we were searching for, which
3395 * is weird, but possible, so only screw with path if we didn't
3396 * find the key and see if we have stuff that matches
3400 if (path
->slots
[0] == 0)
3405 /* pull out the item */
3406 leaf
= path
->nodes
[0];
3407 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3409 /* make sure the item matches what we want */
3410 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3412 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3415 /* release the path since we're done with it */
3416 btrfs_release_path(path
);
3419 * this is where we are basically btrfs_lookup, without the
3420 * crossing root thing. we store the inode number in the
3421 * offset of the orphan item.
3424 if (found_key
.offset
== last_objectid
) {
3425 btrfs_err(root
->fs_info
,
3426 "Error removing orphan entry, stopping orphan cleanup");
3431 last_objectid
= found_key
.offset
;
3433 found_key
.objectid
= found_key
.offset
;
3434 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3435 found_key
.offset
= 0;
3436 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
3437 ret
= PTR_ERR_OR_ZERO(inode
);
3438 if (ret
&& ret
!= -ENOENT
)
3441 if (ret
== -ENOENT
&& root
== root
->fs_info
->tree_root
) {
3442 struct btrfs_root
*dead_root
;
3443 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3444 int is_dead_root
= 0;
3447 * this is an orphan in the tree root. Currently these
3448 * could come from 2 sources:
3449 * a) a snapshot deletion in progress
3450 * b) a free space cache inode
3451 * We need to distinguish those two, as the snapshot
3452 * orphan must not get deleted.
3453 * find_dead_roots already ran before us, so if this
3454 * is a snapshot deletion, we should find the root
3455 * in the dead_roots list
3457 spin_lock(&fs_info
->trans_lock
);
3458 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3460 if (dead_root
->root_key
.objectid
==
3461 found_key
.objectid
) {
3466 spin_unlock(&fs_info
->trans_lock
);
3468 /* prevent this orphan from being found again */
3469 key
.offset
= found_key
.objectid
- 1;
3474 * Inode is already gone but the orphan item is still there,
3475 * kill the orphan item.
3477 if (ret
== -ENOENT
) {
3478 trans
= btrfs_start_transaction(root
, 1);
3479 if (IS_ERR(trans
)) {
3480 ret
= PTR_ERR(trans
);
3483 btrfs_debug(root
->fs_info
, "auto deleting %Lu",
3484 found_key
.objectid
);
3485 ret
= btrfs_del_orphan_item(trans
, root
,
3486 found_key
.objectid
);
3487 btrfs_end_transaction(trans
, root
);
3494 * add this inode to the orphan list so btrfs_orphan_del does
3495 * the proper thing when we hit it
3497 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3498 &BTRFS_I(inode
)->runtime_flags
);
3499 atomic_inc(&root
->orphan_inodes
);
3501 /* if we have links, this was a truncate, lets do that */
3502 if (inode
->i_nlink
) {
3503 if (WARN_ON(!S_ISREG(inode
->i_mode
))) {
3509 /* 1 for the orphan item deletion. */
3510 trans
= btrfs_start_transaction(root
, 1);
3511 if (IS_ERR(trans
)) {
3513 ret
= PTR_ERR(trans
);
3516 ret
= btrfs_orphan_add(trans
, inode
);
3517 btrfs_end_transaction(trans
, root
);
3523 ret
= btrfs_truncate(inode
);
3525 btrfs_orphan_del(NULL
, inode
);
3530 /* this will do delete_inode and everything for us */
3535 /* release the path since we're done with it */
3536 btrfs_release_path(path
);
3538 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3540 if (root
->orphan_block_rsv
)
3541 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
3544 if (root
->orphan_block_rsv
||
3545 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3546 trans
= btrfs_join_transaction(root
);
3548 btrfs_end_transaction(trans
, root
);
3552 btrfs_debug(root
->fs_info
, "unlinked %d orphans", nr_unlink
);
3554 btrfs_debug(root
->fs_info
, "truncated %d orphans", nr_truncate
);
3558 btrfs_err(root
->fs_info
,
3559 "could not do orphan cleanup %d", ret
);
3560 btrfs_free_path(path
);
3565 * very simple check to peek ahead in the leaf looking for xattrs. If we
3566 * don't find any xattrs, we know there can't be any acls.
3568 * slot is the slot the inode is in, objectid is the objectid of the inode
3570 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3571 int slot
, u64 objectid
,
3572 int *first_xattr_slot
)
3574 u32 nritems
= btrfs_header_nritems(leaf
);
3575 struct btrfs_key found_key
;
3576 static u64 xattr_access
= 0;
3577 static u64 xattr_default
= 0;
3580 if (!xattr_access
) {
3581 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3582 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3583 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3584 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3588 *first_xattr_slot
= -1;
3589 while (slot
< nritems
) {
3590 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3592 /* we found a different objectid, there must not be acls */
3593 if (found_key
.objectid
!= objectid
)
3596 /* we found an xattr, assume we've got an acl */
3597 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3598 if (*first_xattr_slot
== -1)
3599 *first_xattr_slot
= slot
;
3600 if (found_key
.offset
== xattr_access
||
3601 found_key
.offset
== xattr_default
)
3606 * we found a key greater than an xattr key, there can't
3607 * be any acls later on
3609 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3616 * it goes inode, inode backrefs, xattrs, extents,
3617 * so if there are a ton of hard links to an inode there can
3618 * be a lot of backrefs. Don't waste time searching too hard,
3619 * this is just an optimization
3624 /* we hit the end of the leaf before we found an xattr or
3625 * something larger than an xattr. We have to assume the inode
3628 if (*first_xattr_slot
== -1)
3629 *first_xattr_slot
= slot
;
3634 * read an inode from the btree into the in-memory inode
3636 static int btrfs_read_locked_inode(struct inode
*inode
)
3638 struct btrfs_path
*path
;
3639 struct extent_buffer
*leaf
;
3640 struct btrfs_inode_item
*inode_item
;
3641 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3642 struct btrfs_key location
;
3647 bool filled
= false;
3648 int first_xattr_slot
;
3650 ret
= btrfs_fill_inode(inode
, &rdev
);
3654 path
= btrfs_alloc_path();
3660 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3662 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3669 leaf
= path
->nodes
[0];
3674 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3675 struct btrfs_inode_item
);
3676 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3677 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3678 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3679 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3680 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
3682 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3683 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3685 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3686 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3688 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3689 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3691 BTRFS_I(inode
)->i_otime
.tv_sec
=
3692 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3693 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3694 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3696 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3697 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3698 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3700 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
3701 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3703 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3705 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3706 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3710 * If we were modified in the current generation and evicted from memory
3711 * and then re-read we need to do a full sync since we don't have any
3712 * idea about which extents were modified before we were evicted from
3715 * This is required for both inode re-read from disk and delayed inode
3716 * in delayed_nodes_tree.
3718 if (BTRFS_I(inode
)->last_trans
== root
->fs_info
->generation
)
3719 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3720 &BTRFS_I(inode
)->runtime_flags
);
3723 * We don't persist the id of the transaction where an unlink operation
3724 * against the inode was last made. So here we assume the inode might
3725 * have been evicted, and therefore the exact value of last_unlink_trans
3726 * lost, and set it to last_trans to avoid metadata inconsistencies
3727 * between the inode and its parent if the inode is fsync'ed and the log
3728 * replayed. For example, in the scenario:
3731 * ln mydir/foo mydir/bar
3734 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3735 * xfs_io -c fsync mydir/foo
3737 * mount fs, triggers fsync log replay
3739 * We must make sure that when we fsync our inode foo we also log its
3740 * parent inode, otherwise after log replay the parent still has the
3741 * dentry with the "bar" name but our inode foo has a link count of 1
3742 * and doesn't have an inode ref with the name "bar" anymore.
3744 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3745 * but it guarantees correctness at the expense of occasional full
3746 * transaction commits on fsync if our inode is a directory, or if our
3747 * inode is not a directory, logging its parent unnecessarily.
3749 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3752 if (inode
->i_nlink
!= 1 ||
3753 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3756 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3757 if (location
.objectid
!= btrfs_ino(inode
))
3760 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3761 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3762 struct btrfs_inode_ref
*ref
;
3764 ref
= (struct btrfs_inode_ref
*)ptr
;
3765 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3766 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3767 struct btrfs_inode_extref
*extref
;
3769 extref
= (struct btrfs_inode_extref
*)ptr
;
3770 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3775 * try to precache a NULL acl entry for files that don't have
3776 * any xattrs or acls
3778 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3779 btrfs_ino(inode
), &first_xattr_slot
);
3780 if (first_xattr_slot
!= -1) {
3781 path
->slots
[0] = first_xattr_slot
;
3782 ret
= btrfs_load_inode_props(inode
, path
);
3784 btrfs_err(root
->fs_info
,
3785 "error loading props for ino %llu (root %llu): %d",
3787 root
->root_key
.objectid
, ret
);
3789 btrfs_free_path(path
);
3792 cache_no_acl(inode
);
3794 switch (inode
->i_mode
& S_IFMT
) {
3796 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3797 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3798 inode
->i_fop
= &btrfs_file_operations
;
3799 inode
->i_op
= &btrfs_file_inode_operations
;
3802 inode
->i_fop
= &btrfs_dir_file_operations
;
3803 if (root
== root
->fs_info
->tree_root
)
3804 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
3806 inode
->i_op
= &btrfs_dir_inode_operations
;
3809 inode
->i_op
= &btrfs_symlink_inode_operations
;
3810 inode_nohighmem(inode
);
3811 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3814 inode
->i_op
= &btrfs_special_inode_operations
;
3815 init_special_inode(inode
, inode
->i_mode
, rdev
);
3819 btrfs_update_iflags(inode
);
3823 btrfs_free_path(path
);
3824 make_bad_inode(inode
);
3829 * given a leaf and an inode, copy the inode fields into the leaf
3831 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3832 struct extent_buffer
*leaf
,
3833 struct btrfs_inode_item
*item
,
3834 struct inode
*inode
)
3836 struct btrfs_map_token token
;
3838 btrfs_init_map_token(&token
);
3840 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3841 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3842 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3844 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3845 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3847 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3848 inode
->i_atime
.tv_sec
, &token
);
3849 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3850 inode
->i_atime
.tv_nsec
, &token
);
3852 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3853 inode
->i_mtime
.tv_sec
, &token
);
3854 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3855 inode
->i_mtime
.tv_nsec
, &token
);
3857 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3858 inode
->i_ctime
.tv_sec
, &token
);
3859 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3860 inode
->i_ctime
.tv_nsec
, &token
);
3862 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3863 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3864 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3865 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3867 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3869 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3871 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3872 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3873 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3874 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3875 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3879 * copy everything in the in-memory inode into the btree.
3881 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3882 struct btrfs_root
*root
, struct inode
*inode
)
3884 struct btrfs_inode_item
*inode_item
;
3885 struct btrfs_path
*path
;
3886 struct extent_buffer
*leaf
;
3889 path
= btrfs_alloc_path();
3893 path
->leave_spinning
= 1;
3894 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3902 leaf
= path
->nodes
[0];
3903 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3904 struct btrfs_inode_item
);
3906 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3907 btrfs_mark_buffer_dirty(leaf
);
3908 btrfs_set_inode_last_trans(trans
, inode
);
3911 btrfs_free_path(path
);
3916 * copy everything in the in-memory inode into the btree.
3918 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3919 struct btrfs_root
*root
, struct inode
*inode
)
3924 * If the inode is a free space inode, we can deadlock during commit
3925 * if we put it into the delayed code.
3927 * The data relocation inode should also be directly updated
3930 if (!btrfs_is_free_space_inode(inode
)
3931 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3932 && !root
->fs_info
->log_root_recovering
) {
3933 btrfs_update_root_times(trans
, root
);
3935 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3937 btrfs_set_inode_last_trans(trans
, inode
);
3941 return btrfs_update_inode_item(trans
, root
, inode
);
3944 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3945 struct btrfs_root
*root
,
3946 struct inode
*inode
)
3950 ret
= btrfs_update_inode(trans
, root
, inode
);
3952 return btrfs_update_inode_item(trans
, root
, inode
);
3957 * unlink helper that gets used here in inode.c and in the tree logging
3958 * recovery code. It remove a link in a directory with a given name, and
3959 * also drops the back refs in the inode to the directory
3961 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3962 struct btrfs_root
*root
,
3963 struct inode
*dir
, struct inode
*inode
,
3964 const char *name
, int name_len
)
3966 struct btrfs_path
*path
;
3968 struct extent_buffer
*leaf
;
3969 struct btrfs_dir_item
*di
;
3970 struct btrfs_key key
;
3972 u64 ino
= btrfs_ino(inode
);
3973 u64 dir_ino
= btrfs_ino(dir
);
3975 path
= btrfs_alloc_path();
3981 path
->leave_spinning
= 1;
3982 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3983 name
, name_len
, -1);
3992 leaf
= path
->nodes
[0];
3993 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3994 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3997 btrfs_release_path(path
);
4000 * If we don't have dir index, we have to get it by looking up
4001 * the inode ref, since we get the inode ref, remove it directly,
4002 * it is unnecessary to do delayed deletion.
4004 * But if we have dir index, needn't search inode ref to get it.
4005 * Since the inode ref is close to the inode item, it is better
4006 * that we delay to delete it, and just do this deletion when
4007 * we update the inode item.
4009 if (BTRFS_I(inode
)->dir_index
) {
4010 ret
= btrfs_delayed_delete_inode_ref(inode
);
4012 index
= BTRFS_I(inode
)->dir_index
;
4017 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
4020 btrfs_info(root
->fs_info
,
4021 "failed to delete reference to %.*s, inode %llu parent %llu",
4022 name_len
, name
, ino
, dir_ino
);
4023 btrfs_abort_transaction(trans
, ret
);
4027 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
4029 btrfs_abort_transaction(trans
, ret
);
4033 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
4035 if (ret
!= 0 && ret
!= -ENOENT
) {
4036 btrfs_abort_transaction(trans
, ret
);
4040 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
4045 btrfs_abort_transaction(trans
, ret
);
4047 btrfs_free_path(path
);
4051 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
4052 inode_inc_iversion(inode
);
4053 inode_inc_iversion(dir
);
4054 inode
->i_ctime
= dir
->i_mtime
=
4055 dir
->i_ctime
= current_fs_time(inode
->i_sb
);
4056 ret
= btrfs_update_inode(trans
, root
, dir
);
4061 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4062 struct btrfs_root
*root
,
4063 struct inode
*dir
, struct inode
*inode
,
4064 const char *name
, int name_len
)
4067 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
4070 ret
= btrfs_update_inode(trans
, root
, inode
);
4076 * helper to start transaction for unlink and rmdir.
4078 * unlink and rmdir are special in btrfs, they do not always free space, so
4079 * if we cannot make our reservations the normal way try and see if there is
4080 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4081 * allow the unlink to occur.
4083 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
4085 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4088 * 1 for the possible orphan item
4089 * 1 for the dir item
4090 * 1 for the dir index
4091 * 1 for the inode ref
4094 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
4097 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4099 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4100 struct btrfs_trans_handle
*trans
;
4101 struct inode
*inode
= d_inode(dentry
);
4104 trans
= __unlink_start_trans(dir
);
4106 return PTR_ERR(trans
);
4108 btrfs_record_unlink_dir(trans
, dir
, d_inode(dentry
), 0);
4110 ret
= btrfs_unlink_inode(trans
, root
, dir
, d_inode(dentry
),
4111 dentry
->d_name
.name
, dentry
->d_name
.len
);
4115 if (inode
->i_nlink
== 0) {
4116 ret
= btrfs_orphan_add(trans
, inode
);
4122 btrfs_end_transaction(trans
, root
);
4123 btrfs_btree_balance_dirty(root
);
4127 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4128 struct btrfs_root
*root
,
4129 struct inode
*dir
, u64 objectid
,
4130 const char *name
, int name_len
)
4132 struct btrfs_path
*path
;
4133 struct extent_buffer
*leaf
;
4134 struct btrfs_dir_item
*di
;
4135 struct btrfs_key key
;
4138 u64 dir_ino
= btrfs_ino(dir
);
4140 path
= btrfs_alloc_path();
4144 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4145 name
, name_len
, -1);
4146 if (IS_ERR_OR_NULL(di
)) {
4154 leaf
= path
->nodes
[0];
4155 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4156 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4157 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4159 btrfs_abort_transaction(trans
, ret
);
4162 btrfs_release_path(path
);
4164 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
4165 objectid
, root
->root_key
.objectid
,
4166 dir_ino
, &index
, name
, name_len
);
4168 if (ret
!= -ENOENT
) {
4169 btrfs_abort_transaction(trans
, ret
);
4172 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4174 if (IS_ERR_OR_NULL(di
)) {
4179 btrfs_abort_transaction(trans
, ret
);
4183 leaf
= path
->nodes
[0];
4184 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4185 btrfs_release_path(path
);
4188 btrfs_release_path(path
);
4190 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
4192 btrfs_abort_transaction(trans
, ret
);
4196 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
4197 inode_inc_iversion(dir
);
4198 dir
->i_mtime
= dir
->i_ctime
= current_fs_time(dir
->i_sb
);
4199 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4201 btrfs_abort_transaction(trans
, ret
);
4203 btrfs_free_path(path
);
4207 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4209 struct inode
*inode
= d_inode(dentry
);
4211 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4212 struct btrfs_trans_handle
*trans
;
4213 u64 last_unlink_trans
;
4215 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4217 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
4220 trans
= __unlink_start_trans(dir
);
4222 return PTR_ERR(trans
);
4224 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4225 err
= btrfs_unlink_subvol(trans
, root
, dir
,
4226 BTRFS_I(inode
)->location
.objectid
,
4227 dentry
->d_name
.name
,
4228 dentry
->d_name
.len
);
4232 err
= btrfs_orphan_add(trans
, inode
);
4236 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4238 /* now the directory is empty */
4239 err
= btrfs_unlink_inode(trans
, root
, dir
, d_inode(dentry
),
4240 dentry
->d_name
.name
, dentry
->d_name
.len
);
4242 btrfs_i_size_write(inode
, 0);
4244 * Propagate the last_unlink_trans value of the deleted dir to
4245 * its parent directory. This is to prevent an unrecoverable
4246 * log tree in the case we do something like this:
4248 * 2) create snapshot under dir foo
4249 * 3) delete the snapshot
4252 * 6) fsync foo or some file inside foo
4254 if (last_unlink_trans
>= trans
->transid
)
4255 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4258 btrfs_end_transaction(trans
, root
);
4259 btrfs_btree_balance_dirty(root
);
4264 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4265 struct btrfs_root
*root
,
4271 * This is only used to apply pressure to the enospc system, we don't
4272 * intend to use this reservation at all.
4274 bytes_deleted
= btrfs_csum_bytes_to_leaves(root
, bytes_deleted
);
4275 bytes_deleted
*= root
->nodesize
;
4276 ret
= btrfs_block_rsv_add(root
, &root
->fs_info
->trans_block_rsv
,
4277 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4279 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
4282 trans
->bytes_reserved
+= bytes_deleted
;
4288 static int truncate_inline_extent(struct inode
*inode
,
4289 struct btrfs_path
*path
,
4290 struct btrfs_key
*found_key
,
4294 struct extent_buffer
*leaf
= path
->nodes
[0];
4295 int slot
= path
->slots
[0];
4296 struct btrfs_file_extent_item
*fi
;
4297 u32 size
= (u32
)(new_size
- found_key
->offset
);
4298 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4300 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
4302 if (btrfs_file_extent_compression(leaf
, fi
) != BTRFS_COMPRESS_NONE
) {
4303 loff_t offset
= new_size
;
4304 loff_t page_end
= ALIGN(offset
, PAGE_SIZE
);
4307 * Zero out the remaining of the last page of our inline extent,
4308 * instead of directly truncating our inline extent here - that
4309 * would be much more complex (decompressing all the data, then
4310 * compressing the truncated data, which might be bigger than
4311 * the size of the inline extent, resize the extent, etc).
4312 * We release the path because to get the page we might need to
4313 * read the extent item from disk (data not in the page cache).
4315 btrfs_release_path(path
);
4316 return btrfs_truncate_block(inode
, offset
, page_end
- offset
,
4320 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4321 size
= btrfs_file_extent_calc_inline_size(size
);
4322 btrfs_truncate_item(root
, path
, size
, 1);
4324 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4325 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4331 * this can truncate away extent items, csum items and directory items.
4332 * It starts at a high offset and removes keys until it can't find
4333 * any higher than new_size
4335 * csum items that cross the new i_size are truncated to the new size
4338 * min_type is the minimum key type to truncate down to. If set to 0, this
4339 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4341 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4342 struct btrfs_root
*root
,
4343 struct inode
*inode
,
4344 u64 new_size
, u32 min_type
)
4346 struct btrfs_path
*path
;
4347 struct extent_buffer
*leaf
;
4348 struct btrfs_file_extent_item
*fi
;
4349 struct btrfs_key key
;
4350 struct btrfs_key found_key
;
4351 u64 extent_start
= 0;
4352 u64 extent_num_bytes
= 0;
4353 u64 extent_offset
= 0;
4355 u64 last_size
= new_size
;
4356 u32 found_type
= (u8
)-1;
4359 int pending_del_nr
= 0;
4360 int pending_del_slot
= 0;
4361 int extent_type
= -1;
4364 u64 ino
= btrfs_ino(inode
);
4365 u64 bytes_deleted
= 0;
4367 bool should_throttle
= 0;
4368 bool should_end
= 0;
4370 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4373 * for non-free space inodes and ref cows, we want to back off from
4376 if (!btrfs_is_free_space_inode(inode
) &&
4377 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4380 path
= btrfs_alloc_path();
4383 path
->reada
= READA_BACK
;
4386 * We want to drop from the next block forward in case this new size is
4387 * not block aligned since we will be keeping the last block of the
4388 * extent just the way it is.
4390 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4391 root
== root
->fs_info
->tree_root
)
4392 btrfs_drop_extent_cache(inode
, ALIGN(new_size
,
4393 root
->sectorsize
), (u64
)-1, 0);
4396 * This function is also used to drop the items in the log tree before
4397 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4398 * it is used to drop the loged items. So we shouldn't kill the delayed
4401 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4402 btrfs_kill_delayed_inode_items(inode
);
4405 key
.offset
= (u64
)-1;
4410 * with a 16K leaf size and 128MB extents, you can actually queue
4411 * up a huge file in a single leaf. Most of the time that
4412 * bytes_deleted is > 0, it will be huge by the time we get here
4414 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4415 if (btrfs_should_end_transaction(trans
, root
)) {
4422 path
->leave_spinning
= 1;
4423 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4430 /* there are no items in the tree for us to truncate, we're
4433 if (path
->slots
[0] == 0)
4440 leaf
= path
->nodes
[0];
4441 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4442 found_type
= found_key
.type
;
4444 if (found_key
.objectid
!= ino
)
4447 if (found_type
< min_type
)
4450 item_end
= found_key
.offset
;
4451 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4452 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4453 struct btrfs_file_extent_item
);
4454 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4455 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4457 btrfs_file_extent_num_bytes(leaf
, fi
);
4458 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4459 item_end
+= btrfs_file_extent_inline_len(leaf
,
4460 path
->slots
[0], fi
);
4464 if (found_type
> min_type
) {
4467 if (item_end
< new_size
)
4469 if (found_key
.offset
>= new_size
)
4475 /* FIXME, shrink the extent if the ref count is only 1 */
4476 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4480 last_size
= found_key
.offset
;
4482 last_size
= new_size
;
4484 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4486 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4488 u64 orig_num_bytes
=
4489 btrfs_file_extent_num_bytes(leaf
, fi
);
4490 extent_num_bytes
= ALIGN(new_size
-
4493 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4495 num_dec
= (orig_num_bytes
-
4497 if (test_bit(BTRFS_ROOT_REF_COWS
,
4500 inode_sub_bytes(inode
, num_dec
);
4501 btrfs_mark_buffer_dirty(leaf
);
4504 btrfs_file_extent_disk_num_bytes(leaf
,
4506 extent_offset
= found_key
.offset
-
4507 btrfs_file_extent_offset(leaf
, fi
);
4509 /* FIXME blocksize != 4096 */
4510 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4511 if (extent_start
!= 0) {
4513 if (test_bit(BTRFS_ROOT_REF_COWS
,
4515 inode_sub_bytes(inode
, num_dec
);
4518 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4520 * we can't truncate inline items that have had
4524 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4525 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
4528 * Need to release path in order to truncate a
4529 * compressed extent. So delete any accumulated
4530 * extent items so far.
4532 if (btrfs_file_extent_compression(leaf
, fi
) !=
4533 BTRFS_COMPRESS_NONE
&& pending_del_nr
) {
4534 err
= btrfs_del_items(trans
, root
, path
,
4538 btrfs_abort_transaction(trans
,
4545 err
= truncate_inline_extent(inode
, path
,
4550 btrfs_abort_transaction(trans
, err
);
4553 } else if (test_bit(BTRFS_ROOT_REF_COWS
,
4555 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4560 if (!pending_del_nr
) {
4561 /* no pending yet, add ourselves */
4562 pending_del_slot
= path
->slots
[0];
4564 } else if (pending_del_nr
&&
4565 path
->slots
[0] + 1 == pending_del_slot
) {
4566 /* hop on the pending chunk */
4568 pending_del_slot
= path
->slots
[0];
4575 should_throttle
= 0;
4578 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4579 root
== root
->fs_info
->tree_root
)) {
4580 btrfs_set_path_blocking(path
);
4581 bytes_deleted
+= extent_num_bytes
;
4582 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4583 extent_num_bytes
, 0,
4584 btrfs_header_owner(leaf
),
4585 ino
, extent_offset
);
4587 if (btrfs_should_throttle_delayed_refs(trans
, root
))
4588 btrfs_async_run_delayed_refs(root
,
4590 trans
->delayed_ref_updates
* 2, 0);
4592 if (truncate_space_check(trans
, root
,
4593 extent_num_bytes
)) {
4596 if (btrfs_should_throttle_delayed_refs(trans
,
4598 should_throttle
= 1;
4603 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4606 if (path
->slots
[0] == 0 ||
4607 path
->slots
[0] != pending_del_slot
||
4608 should_throttle
|| should_end
) {
4609 if (pending_del_nr
) {
4610 ret
= btrfs_del_items(trans
, root
, path
,
4614 btrfs_abort_transaction(trans
, ret
);
4619 btrfs_release_path(path
);
4620 if (should_throttle
) {
4621 unsigned long updates
= trans
->delayed_ref_updates
;
4623 trans
->delayed_ref_updates
= 0;
4624 ret
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
4630 * if we failed to refill our space rsv, bail out
4631 * and let the transaction restart
4643 if (pending_del_nr
) {
4644 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4647 btrfs_abort_transaction(trans
, ret
);
4650 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
4651 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4653 btrfs_free_path(path
);
4655 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4656 unsigned long updates
= trans
->delayed_ref_updates
;
4658 trans
->delayed_ref_updates
= 0;
4659 ret
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
4668 * btrfs_truncate_block - read, zero a chunk and write a block
4669 * @inode - inode that we're zeroing
4670 * @from - the offset to start zeroing
4671 * @len - the length to zero, 0 to zero the entire range respective to the
4673 * @front - zero up to the offset instead of from the offset on
4675 * This will find the block for the "from" offset and cow the block and zero the
4676 * part we want to zero. This is used with truncate and hole punching.
4678 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4681 struct address_space
*mapping
= inode
->i_mapping
;
4682 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4683 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4684 struct btrfs_ordered_extent
*ordered
;
4685 struct extent_state
*cached_state
= NULL
;
4687 u32 blocksize
= root
->sectorsize
;
4688 pgoff_t index
= from
>> PAGE_SHIFT
;
4689 unsigned offset
= from
& (blocksize
- 1);
4691 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4696 if ((offset
& (blocksize
- 1)) == 0 &&
4697 (!len
|| ((len
& (blocksize
- 1)) == 0)))
4700 ret
= btrfs_delalloc_reserve_space(inode
,
4701 round_down(from
, blocksize
), blocksize
);
4706 page
= find_or_create_page(mapping
, index
, mask
);
4708 btrfs_delalloc_release_space(inode
,
4709 round_down(from
, blocksize
),
4715 block_start
= round_down(from
, blocksize
);
4716 block_end
= block_start
+ blocksize
- 1;
4718 if (!PageUptodate(page
)) {
4719 ret
= btrfs_readpage(NULL
, page
);
4721 if (page
->mapping
!= mapping
) {
4726 if (!PageUptodate(page
)) {
4731 wait_on_page_writeback(page
);
4733 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4734 set_page_extent_mapped(page
);
4736 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4738 unlock_extent_cached(io_tree
, block_start
, block_end
,
4739 &cached_state
, GFP_NOFS
);
4742 btrfs_start_ordered_extent(inode
, ordered
, 1);
4743 btrfs_put_ordered_extent(ordered
);
4747 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4748 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4749 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4750 0, 0, &cached_state
, GFP_NOFS
);
4752 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
,
4755 unlock_extent_cached(io_tree
, block_start
, block_end
,
4756 &cached_state
, GFP_NOFS
);
4760 if (offset
!= blocksize
) {
4762 len
= blocksize
- offset
;
4765 memset(kaddr
+ (block_start
- page_offset(page
)),
4768 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4770 flush_dcache_page(page
);
4773 ClearPageChecked(page
);
4774 set_page_dirty(page
);
4775 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
,
4780 btrfs_delalloc_release_space(inode
, block_start
,
4788 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4789 u64 offset
, u64 len
)
4791 struct btrfs_trans_handle
*trans
;
4795 * Still need to make sure the inode looks like it's been updated so
4796 * that any holes get logged if we fsync.
4798 if (btrfs_fs_incompat(root
->fs_info
, NO_HOLES
)) {
4799 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
4800 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4801 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4806 * 1 - for the one we're dropping
4807 * 1 - for the one we're adding
4808 * 1 - for updating the inode.
4810 trans
= btrfs_start_transaction(root
, 3);
4812 return PTR_ERR(trans
);
4814 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4816 btrfs_abort_transaction(trans
, ret
);
4817 btrfs_end_transaction(trans
, root
);
4821 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
4822 0, 0, len
, 0, len
, 0, 0, 0);
4824 btrfs_abort_transaction(trans
, ret
);
4826 btrfs_update_inode(trans
, root
, inode
);
4827 btrfs_end_transaction(trans
, root
);
4832 * This function puts in dummy file extents for the area we're creating a hole
4833 * for. So if we are truncating this file to a larger size we need to insert
4834 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4835 * the range between oldsize and size
4837 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4839 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4840 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4841 struct extent_map
*em
= NULL
;
4842 struct extent_state
*cached_state
= NULL
;
4843 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4844 u64 hole_start
= ALIGN(oldsize
, root
->sectorsize
);
4845 u64 block_end
= ALIGN(size
, root
->sectorsize
);
4852 * If our size started in the middle of a block we need to zero out the
4853 * rest of the block before we expand the i_size, otherwise we could
4854 * expose stale data.
4856 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
4860 if (size
<= hole_start
)
4864 struct btrfs_ordered_extent
*ordered
;
4866 lock_extent_bits(io_tree
, hole_start
, block_end
- 1,
4868 ordered
= btrfs_lookup_ordered_range(inode
, hole_start
,
4869 block_end
- hole_start
);
4872 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4873 &cached_state
, GFP_NOFS
);
4874 btrfs_start_ordered_extent(inode
, ordered
, 1);
4875 btrfs_put_ordered_extent(ordered
);
4878 cur_offset
= hole_start
;
4880 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
4881 block_end
- cur_offset
, 0);
4887 last_byte
= min(extent_map_end(em
), block_end
);
4888 last_byte
= ALIGN(last_byte
, root
->sectorsize
);
4889 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4890 struct extent_map
*hole_em
;
4891 hole_size
= last_byte
- cur_offset
;
4893 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4897 btrfs_drop_extent_cache(inode
, cur_offset
,
4898 cur_offset
+ hole_size
- 1, 0);
4899 hole_em
= alloc_extent_map();
4901 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4902 &BTRFS_I(inode
)->runtime_flags
);
4905 hole_em
->start
= cur_offset
;
4906 hole_em
->len
= hole_size
;
4907 hole_em
->orig_start
= cur_offset
;
4909 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4910 hole_em
->block_len
= 0;
4911 hole_em
->orig_block_len
= 0;
4912 hole_em
->ram_bytes
= hole_size
;
4913 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4914 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4915 hole_em
->generation
= root
->fs_info
->generation
;
4918 write_lock(&em_tree
->lock
);
4919 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4920 write_unlock(&em_tree
->lock
);
4923 btrfs_drop_extent_cache(inode
, cur_offset
,
4927 free_extent_map(hole_em
);
4930 free_extent_map(em
);
4932 cur_offset
= last_byte
;
4933 if (cur_offset
>= block_end
)
4936 free_extent_map(em
);
4937 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
4942 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4944 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4945 struct btrfs_trans_handle
*trans
;
4946 loff_t oldsize
= i_size_read(inode
);
4947 loff_t newsize
= attr
->ia_size
;
4948 int mask
= attr
->ia_valid
;
4952 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4953 * special case where we need to update the times despite not having
4954 * these flags set. For all other operations the VFS set these flags
4955 * explicitly if it wants a timestamp update.
4957 if (newsize
!= oldsize
) {
4958 inode_inc_iversion(inode
);
4959 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
4960 inode
->i_ctime
= inode
->i_mtime
=
4961 current_fs_time(inode
->i_sb
);
4964 if (newsize
> oldsize
) {
4966 * Don't do an expanding truncate while snapshoting is ongoing.
4967 * This is to ensure the snapshot captures a fully consistent
4968 * state of this file - if the snapshot captures this expanding
4969 * truncation, it must capture all writes that happened before
4972 btrfs_wait_for_snapshot_creation(root
);
4973 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
4975 btrfs_end_write_no_snapshoting(root
);
4979 trans
= btrfs_start_transaction(root
, 1);
4980 if (IS_ERR(trans
)) {
4981 btrfs_end_write_no_snapshoting(root
);
4982 return PTR_ERR(trans
);
4985 i_size_write(inode
, newsize
);
4986 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
4987 pagecache_isize_extended(inode
, oldsize
, newsize
);
4988 ret
= btrfs_update_inode(trans
, root
, inode
);
4989 btrfs_end_write_no_snapshoting(root
);
4990 btrfs_end_transaction(trans
, root
);
4994 * We're truncating a file that used to have good data down to
4995 * zero. Make sure it gets into the ordered flush list so that
4996 * any new writes get down to disk quickly.
4999 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
5000 &BTRFS_I(inode
)->runtime_flags
);
5003 * 1 for the orphan item we're going to add
5004 * 1 for the orphan item deletion.
5006 trans
= btrfs_start_transaction(root
, 2);
5008 return PTR_ERR(trans
);
5011 * We need to do this in case we fail at _any_ point during the
5012 * actual truncate. Once we do the truncate_setsize we could
5013 * invalidate pages which forces any outstanding ordered io to
5014 * be instantly completed which will give us extents that need
5015 * to be truncated. If we fail to get an orphan inode down we
5016 * could have left over extents that were never meant to live,
5017 * so we need to guarantee from this point on that everything
5018 * will be consistent.
5020 ret
= btrfs_orphan_add(trans
, inode
);
5021 btrfs_end_transaction(trans
, root
);
5025 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5026 truncate_setsize(inode
, newsize
);
5028 /* Disable nonlocked read DIO to avoid the end less truncate */
5029 btrfs_inode_block_unlocked_dio(inode
);
5030 inode_dio_wait(inode
);
5031 btrfs_inode_resume_unlocked_dio(inode
);
5033 ret
= btrfs_truncate(inode
);
5034 if (ret
&& inode
->i_nlink
) {
5038 * failed to truncate, disk_i_size is only adjusted down
5039 * as we remove extents, so it should represent the true
5040 * size of the inode, so reset the in memory size and
5041 * delete our orphan entry.
5043 trans
= btrfs_join_transaction(root
);
5044 if (IS_ERR(trans
)) {
5045 btrfs_orphan_del(NULL
, inode
);
5048 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5049 err
= btrfs_orphan_del(trans
, inode
);
5051 btrfs_abort_transaction(trans
, err
);
5052 btrfs_end_transaction(trans
, root
);
5059 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5061 struct inode
*inode
= d_inode(dentry
);
5062 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5065 if (btrfs_root_readonly(root
))
5068 err
= inode_change_ok(inode
, attr
);
5072 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5073 err
= btrfs_setsize(inode
, attr
);
5078 if (attr
->ia_valid
) {
5079 setattr_copy(inode
, attr
);
5080 inode_inc_iversion(inode
);
5081 err
= btrfs_dirty_inode(inode
);
5083 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5084 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5091 * While truncating the inode pages during eviction, we get the VFS calling
5092 * btrfs_invalidatepage() against each page of the inode. This is slow because
5093 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5094 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5095 * extent_state structures over and over, wasting lots of time.
5097 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5098 * those expensive operations on a per page basis and do only the ordered io
5099 * finishing, while we release here the extent_map and extent_state structures,
5100 * without the excessive merging and splitting.
5102 static void evict_inode_truncate_pages(struct inode
*inode
)
5104 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5105 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5106 struct rb_node
*node
;
5108 ASSERT(inode
->i_state
& I_FREEING
);
5109 truncate_inode_pages_final(&inode
->i_data
);
5111 write_lock(&map_tree
->lock
);
5112 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
5113 struct extent_map
*em
;
5115 node
= rb_first(&map_tree
->map
);
5116 em
= rb_entry(node
, struct extent_map
, rb_node
);
5117 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5118 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5119 remove_extent_mapping(map_tree
, em
);
5120 free_extent_map(em
);
5121 if (need_resched()) {
5122 write_unlock(&map_tree
->lock
);
5124 write_lock(&map_tree
->lock
);
5127 write_unlock(&map_tree
->lock
);
5130 * Keep looping until we have no more ranges in the io tree.
5131 * We can have ongoing bios started by readpages (called from readahead)
5132 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5133 * still in progress (unlocked the pages in the bio but did not yet
5134 * unlocked the ranges in the io tree). Therefore this means some
5135 * ranges can still be locked and eviction started because before
5136 * submitting those bios, which are executed by a separate task (work
5137 * queue kthread), inode references (inode->i_count) were not taken
5138 * (which would be dropped in the end io callback of each bio).
5139 * Therefore here we effectively end up waiting for those bios and
5140 * anyone else holding locked ranges without having bumped the inode's
5141 * reference count - if we don't do it, when they access the inode's
5142 * io_tree to unlock a range it may be too late, leading to an
5143 * use-after-free issue.
5145 spin_lock(&io_tree
->lock
);
5146 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5147 struct extent_state
*state
;
5148 struct extent_state
*cached_state
= NULL
;
5152 node
= rb_first(&io_tree
->state
);
5153 state
= rb_entry(node
, struct extent_state
, rb_node
);
5154 start
= state
->start
;
5156 spin_unlock(&io_tree
->lock
);
5158 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5161 * If still has DELALLOC flag, the extent didn't reach disk,
5162 * and its reserved space won't be freed by delayed_ref.
5163 * So we need to free its reserved space here.
5164 * (Refer to comment in btrfs_invalidatepage, case 2)
5166 * Note, end is the bytenr of last byte, so we need + 1 here.
5168 if (state
->state
& EXTENT_DELALLOC
)
5169 btrfs_qgroup_free_data(inode
, start
, end
- start
+ 1);
5171 clear_extent_bit(io_tree
, start
, end
,
5172 EXTENT_LOCKED
| EXTENT_DIRTY
|
5173 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5174 EXTENT_DEFRAG
, 1, 1,
5175 &cached_state
, GFP_NOFS
);
5178 spin_lock(&io_tree
->lock
);
5180 spin_unlock(&io_tree
->lock
);
5183 void btrfs_evict_inode(struct inode
*inode
)
5185 struct btrfs_trans_handle
*trans
;
5186 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5187 struct btrfs_block_rsv
*rsv
, *global_rsv
;
5188 int steal_from_global
= 0;
5192 trace_btrfs_inode_evict(inode
);
5195 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
5199 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
5201 evict_inode_truncate_pages(inode
);
5203 if (inode
->i_nlink
&&
5204 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5205 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5206 btrfs_is_free_space_inode(inode
)))
5209 if (is_bad_inode(inode
)) {
5210 btrfs_orphan_del(NULL
, inode
);
5213 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5214 if (!special_file(inode
->i_mode
))
5215 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5217 btrfs_free_io_failure_record(inode
, 0, (u64
)-1);
5219 if (root
->fs_info
->log_root_recovering
) {
5220 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
5221 &BTRFS_I(inode
)->runtime_flags
));
5225 if (inode
->i_nlink
> 0) {
5226 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5227 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5231 ret
= btrfs_commit_inode_delayed_inode(inode
);
5233 btrfs_orphan_del(NULL
, inode
);
5237 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
5239 btrfs_orphan_del(NULL
, inode
);
5242 rsv
->size
= min_size
;
5244 global_rsv
= &root
->fs_info
->global_block_rsv
;
5246 btrfs_i_size_write(inode
, 0);
5249 * This is a bit simpler than btrfs_truncate since we've already
5250 * reserved our space for our orphan item in the unlink, so we just
5251 * need to reserve some slack space in case we add bytes and update
5252 * inode item when doing the truncate.
5255 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
5256 BTRFS_RESERVE_FLUSH_LIMIT
);
5259 * Try and steal from the global reserve since we will
5260 * likely not use this space anyway, we want to try as
5261 * hard as possible to get this to work.
5264 steal_from_global
++;
5266 steal_from_global
= 0;
5270 * steal_from_global == 0: we reserved stuff, hooray!
5271 * steal_from_global == 1: we didn't reserve stuff, boo!
5272 * steal_from_global == 2: we've committed, still not a lot of
5273 * room but maybe we'll have room in the global reserve this
5275 * steal_from_global == 3: abandon all hope!
5277 if (steal_from_global
> 2) {
5278 btrfs_warn(root
->fs_info
,
5279 "Could not get space for a delete, will truncate on mount %d",
5281 btrfs_orphan_del(NULL
, inode
);
5282 btrfs_free_block_rsv(root
, rsv
);
5286 trans
= btrfs_join_transaction(root
);
5287 if (IS_ERR(trans
)) {
5288 btrfs_orphan_del(NULL
, inode
);
5289 btrfs_free_block_rsv(root
, rsv
);
5294 * We can't just steal from the global reserve, we need to make
5295 * sure there is room to do it, if not we need to commit and try
5298 if (steal_from_global
) {
5299 if (!btrfs_check_space_for_delayed_refs(trans
, root
))
5300 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
,
5307 * Couldn't steal from the global reserve, we have too much
5308 * pending stuff built up, commit the transaction and try it
5312 ret
= btrfs_commit_transaction(trans
, root
);
5314 btrfs_orphan_del(NULL
, inode
);
5315 btrfs_free_block_rsv(root
, rsv
);
5320 steal_from_global
= 0;
5323 trans
->block_rsv
= rsv
;
5325 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5326 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5329 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
5330 btrfs_end_transaction(trans
, root
);
5332 btrfs_btree_balance_dirty(root
);
5335 btrfs_free_block_rsv(root
, rsv
);
5338 * Errors here aren't a big deal, it just means we leave orphan items
5339 * in the tree. They will be cleaned up on the next mount.
5342 trans
->block_rsv
= root
->orphan_block_rsv
;
5343 btrfs_orphan_del(trans
, inode
);
5345 btrfs_orphan_del(NULL
, inode
);
5348 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
5349 if (!(root
== root
->fs_info
->tree_root
||
5350 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5351 btrfs_return_ino(root
, btrfs_ino(inode
));
5353 btrfs_end_transaction(trans
, root
);
5354 btrfs_btree_balance_dirty(root
);
5356 btrfs_remove_delayed_node(inode
);
5361 * this returns the key found in the dir entry in the location pointer.
5362 * If no dir entries were found, location->objectid is 0.
5364 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5365 struct btrfs_key
*location
)
5367 const char *name
= dentry
->d_name
.name
;
5368 int namelen
= dentry
->d_name
.len
;
5369 struct btrfs_dir_item
*di
;
5370 struct btrfs_path
*path
;
5371 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5374 path
= btrfs_alloc_path();
5378 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
5383 if (IS_ERR_OR_NULL(di
))
5386 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5388 btrfs_free_path(path
);
5391 location
->objectid
= 0;
5396 * when we hit a tree root in a directory, the btrfs part of the inode
5397 * needs to be changed to reflect the root directory of the tree root. This
5398 * is kind of like crossing a mount point.
5400 static int fixup_tree_root_location(struct btrfs_root
*root
,
5402 struct dentry
*dentry
,
5403 struct btrfs_key
*location
,
5404 struct btrfs_root
**sub_root
)
5406 struct btrfs_path
*path
;
5407 struct btrfs_root
*new_root
;
5408 struct btrfs_root_ref
*ref
;
5409 struct extent_buffer
*leaf
;
5410 struct btrfs_key key
;
5414 path
= btrfs_alloc_path();
5421 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5422 key
.type
= BTRFS_ROOT_REF_KEY
;
5423 key
.offset
= location
->objectid
;
5425 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
, &key
, path
,
5433 leaf
= path
->nodes
[0];
5434 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5435 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
5436 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5439 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5440 (unsigned long)(ref
+ 1),
5441 dentry
->d_name
.len
);
5445 btrfs_release_path(path
);
5447 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
5448 if (IS_ERR(new_root
)) {
5449 err
= PTR_ERR(new_root
);
5453 *sub_root
= new_root
;
5454 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5455 location
->type
= BTRFS_INODE_ITEM_KEY
;
5456 location
->offset
= 0;
5459 btrfs_free_path(path
);
5463 static void inode_tree_add(struct inode
*inode
)
5465 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5466 struct btrfs_inode
*entry
;
5468 struct rb_node
*parent
;
5469 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5470 u64 ino
= btrfs_ino(inode
);
5472 if (inode_unhashed(inode
))
5475 spin_lock(&root
->inode_lock
);
5476 p
= &root
->inode_tree
.rb_node
;
5479 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5481 if (ino
< btrfs_ino(&entry
->vfs_inode
))
5482 p
= &parent
->rb_left
;
5483 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
5484 p
= &parent
->rb_right
;
5486 WARN_ON(!(entry
->vfs_inode
.i_state
&
5487 (I_WILL_FREE
| I_FREEING
)));
5488 rb_replace_node(parent
, new, &root
->inode_tree
);
5489 RB_CLEAR_NODE(parent
);
5490 spin_unlock(&root
->inode_lock
);
5494 rb_link_node(new, parent
, p
);
5495 rb_insert_color(new, &root
->inode_tree
);
5496 spin_unlock(&root
->inode_lock
);
5499 static void inode_tree_del(struct inode
*inode
)
5501 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5504 spin_lock(&root
->inode_lock
);
5505 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5506 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5507 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5508 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5510 spin_unlock(&root
->inode_lock
);
5512 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5513 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
5514 spin_lock(&root
->inode_lock
);
5515 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5516 spin_unlock(&root
->inode_lock
);
5518 btrfs_add_dead_root(root
);
5522 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
5524 struct rb_node
*node
;
5525 struct rb_node
*prev
;
5526 struct btrfs_inode
*entry
;
5527 struct inode
*inode
;
5530 if (!test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
5531 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
5533 spin_lock(&root
->inode_lock
);
5535 node
= root
->inode_tree
.rb_node
;
5539 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5541 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
5542 node
= node
->rb_left
;
5543 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
5544 node
= node
->rb_right
;
5550 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
5551 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
5555 prev
= rb_next(prev
);
5559 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5560 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
5561 inode
= igrab(&entry
->vfs_inode
);
5563 spin_unlock(&root
->inode_lock
);
5564 if (atomic_read(&inode
->i_count
) > 1)
5565 d_prune_aliases(inode
);
5567 * btrfs_drop_inode will have it removed from
5568 * the inode cache when its usage count
5573 spin_lock(&root
->inode_lock
);
5577 if (cond_resched_lock(&root
->inode_lock
))
5580 node
= rb_next(node
);
5582 spin_unlock(&root
->inode_lock
);
5585 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5587 struct btrfs_iget_args
*args
= p
;
5588 inode
->i_ino
= args
->location
->objectid
;
5589 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5590 sizeof(*args
->location
));
5591 BTRFS_I(inode
)->root
= args
->root
;
5595 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5597 struct btrfs_iget_args
*args
= opaque
;
5598 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5599 args
->root
== BTRFS_I(inode
)->root
;
5602 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5603 struct btrfs_key
*location
,
5604 struct btrfs_root
*root
)
5606 struct inode
*inode
;
5607 struct btrfs_iget_args args
;
5608 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5610 args
.location
= location
;
5613 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5614 btrfs_init_locked_inode
,
5619 /* Get an inode object given its location and corresponding root.
5620 * Returns in *is_new if the inode was read from disk
5622 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5623 struct btrfs_root
*root
, int *new)
5625 struct inode
*inode
;
5627 inode
= btrfs_iget_locked(s
, location
, root
);
5629 return ERR_PTR(-ENOMEM
);
5631 if (inode
->i_state
& I_NEW
) {
5634 ret
= btrfs_read_locked_inode(inode
);
5635 if (!is_bad_inode(inode
)) {
5636 inode_tree_add(inode
);
5637 unlock_new_inode(inode
);
5641 unlock_new_inode(inode
);
5644 inode
= ERR_PTR(ret
< 0 ? ret
: -ESTALE
);
5651 static struct inode
*new_simple_dir(struct super_block
*s
,
5652 struct btrfs_key
*key
,
5653 struct btrfs_root
*root
)
5655 struct inode
*inode
= new_inode(s
);
5658 return ERR_PTR(-ENOMEM
);
5660 BTRFS_I(inode
)->root
= root
;
5661 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5662 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5664 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5665 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5666 inode
->i_fop
= &simple_dir_operations
;
5667 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5668 inode
->i_mtime
= current_fs_time(inode
->i_sb
);
5669 inode
->i_atime
= inode
->i_mtime
;
5670 inode
->i_ctime
= inode
->i_mtime
;
5671 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5676 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5678 struct inode
*inode
;
5679 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5680 struct btrfs_root
*sub_root
= root
;
5681 struct btrfs_key location
;
5685 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5686 return ERR_PTR(-ENAMETOOLONG
);
5688 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5690 return ERR_PTR(ret
);
5692 if (location
.objectid
== 0)
5693 return ERR_PTR(-ENOENT
);
5695 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5696 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5700 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
5702 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
5703 ret
= fixup_tree_root_location(root
, dir
, dentry
,
5704 &location
, &sub_root
);
5707 inode
= ERR_PTR(ret
);
5709 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5711 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5713 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
5715 if (!IS_ERR(inode
) && root
!= sub_root
) {
5716 down_read(&root
->fs_info
->cleanup_work_sem
);
5717 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
5718 ret
= btrfs_orphan_cleanup(sub_root
);
5719 up_read(&root
->fs_info
->cleanup_work_sem
);
5722 inode
= ERR_PTR(ret
);
5729 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5731 struct btrfs_root
*root
;
5732 struct inode
*inode
= d_inode(dentry
);
5734 if (!inode
&& !IS_ROOT(dentry
))
5735 inode
= d_inode(dentry
->d_parent
);
5738 root
= BTRFS_I(inode
)->root
;
5739 if (btrfs_root_refs(&root
->root_item
) == 0)
5742 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5748 static void btrfs_dentry_release(struct dentry
*dentry
)
5750 kfree(dentry
->d_fsdata
);
5753 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5756 struct inode
*inode
;
5758 inode
= btrfs_lookup_dentry(dir
, dentry
);
5759 if (IS_ERR(inode
)) {
5760 if (PTR_ERR(inode
) == -ENOENT
)
5763 return ERR_CAST(inode
);
5766 return d_splice_alias(inode
, dentry
);
5769 unsigned char btrfs_filetype_table
[] = {
5770 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5773 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5775 struct inode
*inode
= file_inode(file
);
5776 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5777 struct btrfs_item
*item
;
5778 struct btrfs_dir_item
*di
;
5779 struct btrfs_key key
;
5780 struct btrfs_key found_key
;
5781 struct btrfs_path
*path
;
5782 struct list_head ins_list
;
5783 struct list_head del_list
;
5785 struct extent_buffer
*leaf
;
5787 unsigned char d_type
;
5792 int key_type
= BTRFS_DIR_INDEX_KEY
;
5796 int is_curr
= 0; /* ctx->pos points to the current index? */
5800 /* FIXME, use a real flag for deciding about the key type */
5801 if (root
->fs_info
->tree_root
== root
)
5802 key_type
= BTRFS_DIR_ITEM_KEY
;
5804 if (!dir_emit_dots(file
, ctx
))
5807 path
= btrfs_alloc_path();
5811 path
->reada
= READA_FORWARD
;
5813 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5814 INIT_LIST_HEAD(&ins_list
);
5815 INIT_LIST_HEAD(&del_list
);
5816 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
,
5820 key
.type
= key_type
;
5821 key
.offset
= ctx
->pos
;
5822 key
.objectid
= btrfs_ino(inode
);
5824 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5830 leaf
= path
->nodes
[0];
5831 slot
= path
->slots
[0];
5832 if (slot
>= btrfs_header_nritems(leaf
)) {
5833 ret
= btrfs_next_leaf(root
, path
);
5841 item
= btrfs_item_nr(slot
);
5842 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5844 if (found_key
.objectid
!= key
.objectid
)
5846 if (found_key
.type
!= key_type
)
5848 if (found_key
.offset
< ctx
->pos
)
5850 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
5851 btrfs_should_delete_dir_index(&del_list
,
5855 ctx
->pos
= found_key
.offset
;
5858 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5860 di_total
= btrfs_item_size(leaf
, item
);
5862 while (di_cur
< di_total
) {
5863 struct btrfs_key location
;
5865 if (verify_dir_item(root
, leaf
, di
))
5868 name_len
= btrfs_dir_name_len(leaf
, di
);
5869 if (name_len
<= sizeof(tmp_name
)) {
5870 name_ptr
= tmp_name
;
5872 name_ptr
= kmalloc(name_len
, GFP_KERNEL
);
5878 read_extent_buffer(leaf
, name_ptr
,
5879 (unsigned long)(di
+ 1), name_len
);
5881 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
5882 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5885 /* is this a reference to our own snapshot? If so
5888 * In contrast to old kernels, we insert the snapshot's
5889 * dir item and dir index after it has been created, so
5890 * we won't find a reference to our own snapshot. We
5891 * still keep the following code for backward
5894 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
5895 location
.objectid
== root
->root_key
.objectid
) {
5899 over
= !dir_emit(ctx
, name_ptr
, name_len
,
5900 location
.objectid
, d_type
);
5903 if (name_ptr
!= tmp_name
)
5909 di_len
= btrfs_dir_name_len(leaf
, di
) +
5910 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
5912 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
5918 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5921 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
, &emitted
);
5927 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5928 * it was was set to the termination value in previous call. We assume
5929 * that "." and ".." were emitted if we reach this point and set the
5930 * termination value as well for an empty directory.
5932 if (ctx
->pos
> 2 && !emitted
)
5935 /* Reached end of directory/root. Bump pos past the last item. */
5939 * Stop new entries from being returned after we return the last
5942 * New directory entries are assigned a strictly increasing
5943 * offset. This means that new entries created during readdir
5944 * are *guaranteed* to be seen in the future by that readdir.
5945 * This has broken buggy programs which operate on names as
5946 * they're returned by readdir. Until we re-use freed offsets
5947 * we have this hack to stop new entries from being returned
5948 * under the assumption that they'll never reach this huge
5951 * This is being careful not to overflow 32bit loff_t unless the
5952 * last entry requires it because doing so has broken 32bit apps
5955 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5956 if (ctx
->pos
>= INT_MAX
)
5957 ctx
->pos
= LLONG_MAX
;
5965 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
5966 btrfs_free_path(path
);
5970 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5972 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5973 struct btrfs_trans_handle
*trans
;
5975 bool nolock
= false;
5977 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5980 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(inode
))
5983 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
5985 trans
= btrfs_join_transaction_nolock(root
);
5987 trans
= btrfs_join_transaction(root
);
5989 return PTR_ERR(trans
);
5990 ret
= btrfs_commit_transaction(trans
, root
);
5996 * This is somewhat expensive, updating the tree every time the
5997 * inode changes. But, it is most likely to find the inode in cache.
5998 * FIXME, needs more benchmarking...there are no reasons other than performance
5999 * to keep or drop this code.
6001 static int btrfs_dirty_inode(struct inode
*inode
)
6003 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6004 struct btrfs_trans_handle
*trans
;
6007 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6010 trans
= btrfs_join_transaction(root
);
6012 return PTR_ERR(trans
);
6014 ret
= btrfs_update_inode(trans
, root
, inode
);
6015 if (ret
&& ret
== -ENOSPC
) {
6016 /* whoops, lets try again with the full transaction */
6017 btrfs_end_transaction(trans
, root
);
6018 trans
= btrfs_start_transaction(root
, 1);
6020 return PTR_ERR(trans
);
6022 ret
= btrfs_update_inode(trans
, root
, inode
);
6024 btrfs_end_transaction(trans
, root
);
6025 if (BTRFS_I(inode
)->delayed_node
)
6026 btrfs_balance_delayed_items(root
);
6032 * This is a copy of file_update_time. We need this so we can return error on
6033 * ENOSPC for updating the inode in the case of file write and mmap writes.
6035 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
6038 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6040 if (btrfs_root_readonly(root
))
6043 if (flags
& S_VERSION
)
6044 inode_inc_iversion(inode
);
6045 if (flags
& S_CTIME
)
6046 inode
->i_ctime
= *now
;
6047 if (flags
& S_MTIME
)
6048 inode
->i_mtime
= *now
;
6049 if (flags
& S_ATIME
)
6050 inode
->i_atime
= *now
;
6051 return btrfs_dirty_inode(inode
);
6055 * find the highest existing sequence number in a directory
6056 * and then set the in-memory index_cnt variable to reflect
6057 * free sequence numbers
6059 static int btrfs_set_inode_index_count(struct inode
*inode
)
6061 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6062 struct btrfs_key key
, found_key
;
6063 struct btrfs_path
*path
;
6064 struct extent_buffer
*leaf
;
6067 key
.objectid
= btrfs_ino(inode
);
6068 key
.type
= BTRFS_DIR_INDEX_KEY
;
6069 key
.offset
= (u64
)-1;
6071 path
= btrfs_alloc_path();
6075 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6078 /* FIXME: we should be able to handle this */
6084 * MAGIC NUMBER EXPLANATION:
6085 * since we search a directory based on f_pos we have to start at 2
6086 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6087 * else has to start at 2
6089 if (path
->slots
[0] == 0) {
6090 BTRFS_I(inode
)->index_cnt
= 2;
6096 leaf
= path
->nodes
[0];
6097 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6099 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6100 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6101 BTRFS_I(inode
)->index_cnt
= 2;
6105 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
6107 btrfs_free_path(path
);
6112 * helper to find a free sequence number in a given directory. This current
6113 * code is very simple, later versions will do smarter things in the btree
6115 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
6119 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
6120 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6122 ret
= btrfs_set_inode_index_count(dir
);
6128 *index
= BTRFS_I(dir
)->index_cnt
;
6129 BTRFS_I(dir
)->index_cnt
++;
6134 static int btrfs_insert_inode_locked(struct inode
*inode
)
6136 struct btrfs_iget_args args
;
6137 args
.location
= &BTRFS_I(inode
)->location
;
6138 args
.root
= BTRFS_I(inode
)->root
;
6140 return insert_inode_locked4(inode
,
6141 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6142 btrfs_find_actor
, &args
);
6145 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6146 struct btrfs_root
*root
,
6148 const char *name
, int name_len
,
6149 u64 ref_objectid
, u64 objectid
,
6150 umode_t mode
, u64
*index
)
6152 struct inode
*inode
;
6153 struct btrfs_inode_item
*inode_item
;
6154 struct btrfs_key
*location
;
6155 struct btrfs_path
*path
;
6156 struct btrfs_inode_ref
*ref
;
6157 struct btrfs_key key
[2];
6159 int nitems
= name
? 2 : 1;
6163 path
= btrfs_alloc_path();
6165 return ERR_PTR(-ENOMEM
);
6167 inode
= new_inode(root
->fs_info
->sb
);
6169 btrfs_free_path(path
);
6170 return ERR_PTR(-ENOMEM
);
6174 * O_TMPFILE, set link count to 0, so that after this point,
6175 * we fill in an inode item with the correct link count.
6178 set_nlink(inode
, 0);
6181 * we have to initialize this early, so we can reclaim the inode
6182 * number if we fail afterwards in this function.
6184 inode
->i_ino
= objectid
;
6187 trace_btrfs_inode_request(dir
);
6189 ret
= btrfs_set_inode_index(dir
, index
);
6191 btrfs_free_path(path
);
6193 return ERR_PTR(ret
);
6199 * index_cnt is ignored for everything but a dir,
6200 * btrfs_get_inode_index_count has an explanation for the magic
6203 BTRFS_I(inode
)->index_cnt
= 2;
6204 BTRFS_I(inode
)->dir_index
= *index
;
6205 BTRFS_I(inode
)->root
= root
;
6206 BTRFS_I(inode
)->generation
= trans
->transid
;
6207 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6210 * We could have gotten an inode number from somebody who was fsynced
6211 * and then removed in this same transaction, so let's just set full
6212 * sync since it will be a full sync anyway and this will blow away the
6213 * old info in the log.
6215 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6217 key
[0].objectid
= objectid
;
6218 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6221 sizes
[0] = sizeof(struct btrfs_inode_item
);
6225 * Start new inodes with an inode_ref. This is slightly more
6226 * efficient for small numbers of hard links since they will
6227 * be packed into one item. Extended refs will kick in if we
6228 * add more hard links than can fit in the ref item.
6230 key
[1].objectid
= objectid
;
6231 key
[1].type
= BTRFS_INODE_REF_KEY
;
6232 key
[1].offset
= ref_objectid
;
6234 sizes
[1] = name_len
+ sizeof(*ref
);
6237 location
= &BTRFS_I(inode
)->location
;
6238 location
->objectid
= objectid
;
6239 location
->offset
= 0;
6240 location
->type
= BTRFS_INODE_ITEM_KEY
;
6242 ret
= btrfs_insert_inode_locked(inode
);
6246 path
->leave_spinning
= 1;
6247 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6251 inode_init_owner(inode
, dir
, mode
);
6252 inode_set_bytes(inode
, 0);
6254 inode
->i_mtime
= current_fs_time(inode
->i_sb
);
6255 inode
->i_atime
= inode
->i_mtime
;
6256 inode
->i_ctime
= inode
->i_mtime
;
6257 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6259 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6260 struct btrfs_inode_item
);
6261 memset_extent_buffer(path
->nodes
[0], 0, (unsigned long)inode_item
,
6262 sizeof(*inode_item
));
6263 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6266 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6267 struct btrfs_inode_ref
);
6268 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6269 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6270 ptr
= (unsigned long)(ref
+ 1);
6271 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6274 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6275 btrfs_free_path(path
);
6277 btrfs_inherit_iflags(inode
, dir
);
6279 if (S_ISREG(mode
)) {
6280 if (btrfs_test_opt(root
->fs_info
, NODATASUM
))
6281 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6282 if (btrfs_test_opt(root
->fs_info
, NODATACOW
))
6283 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6284 BTRFS_INODE_NODATASUM
;
6287 inode_tree_add(inode
);
6289 trace_btrfs_inode_new(inode
);
6290 btrfs_set_inode_last_trans(trans
, inode
);
6292 btrfs_update_root_times(trans
, root
);
6294 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6296 btrfs_err(root
->fs_info
,
6297 "error inheriting props for ino %llu (root %llu): %d",
6298 btrfs_ino(inode
), root
->root_key
.objectid
, ret
);
6303 unlock_new_inode(inode
);
6306 BTRFS_I(dir
)->index_cnt
--;
6307 btrfs_free_path(path
);
6309 return ERR_PTR(ret
);
6312 static inline u8
btrfs_inode_type(struct inode
*inode
)
6314 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6318 * utility function to add 'inode' into 'parent_inode' with
6319 * a give name and a given sequence number.
6320 * if 'add_backref' is true, also insert a backref from the
6321 * inode to the parent directory.
6323 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6324 struct inode
*parent_inode
, struct inode
*inode
,
6325 const char *name
, int name_len
, int add_backref
, u64 index
)
6328 struct btrfs_key key
;
6329 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
6330 u64 ino
= btrfs_ino(inode
);
6331 u64 parent_ino
= btrfs_ino(parent_inode
);
6333 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6334 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
6337 key
.type
= BTRFS_INODE_ITEM_KEY
;
6341 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6342 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
6343 key
.objectid
, root
->root_key
.objectid
,
6344 parent_ino
, index
, name
, name_len
);
6345 } else if (add_backref
) {
6346 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6350 /* Nothing to clean up yet */
6354 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
6356 btrfs_inode_type(inode
), index
);
6357 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6360 btrfs_abort_transaction(trans
, ret
);
6364 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
6366 inode_inc_iversion(parent_inode
);
6367 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
6368 current_fs_time(parent_inode
->i_sb
);
6369 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
6371 btrfs_abort_transaction(trans
, ret
);
6375 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6378 err
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
6379 key
.objectid
, root
->root_key
.objectid
,
6380 parent_ino
, &local_index
, name
, name_len
);
6382 } else if (add_backref
) {
6386 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6387 ino
, parent_ino
, &local_index
);
6392 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6393 struct inode
*dir
, struct dentry
*dentry
,
6394 struct inode
*inode
, int backref
, u64 index
)
6396 int err
= btrfs_add_link(trans
, dir
, inode
,
6397 dentry
->d_name
.name
, dentry
->d_name
.len
,
6404 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6405 umode_t mode
, dev_t rdev
)
6407 struct btrfs_trans_handle
*trans
;
6408 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6409 struct inode
*inode
= NULL
;
6416 * 2 for inode item and ref
6418 * 1 for xattr if selinux is on
6420 trans
= btrfs_start_transaction(root
, 5);
6422 return PTR_ERR(trans
);
6424 err
= btrfs_find_free_ino(root
, &objectid
);
6428 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6429 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6431 if (IS_ERR(inode
)) {
6432 err
= PTR_ERR(inode
);
6437 * If the active LSM wants to access the inode during
6438 * d_instantiate it needs these. Smack checks to see
6439 * if the filesystem supports xattrs by looking at the
6442 inode
->i_op
= &btrfs_special_inode_operations
;
6443 init_special_inode(inode
, inode
->i_mode
, rdev
);
6445 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6447 goto out_unlock_inode
;
6449 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6451 goto out_unlock_inode
;
6453 btrfs_update_inode(trans
, root
, inode
);
6454 unlock_new_inode(inode
);
6455 d_instantiate(dentry
, inode
);
6459 btrfs_end_transaction(trans
, root
);
6460 btrfs_balance_delayed_items(root
);
6461 btrfs_btree_balance_dirty(root
);
6463 inode_dec_link_count(inode
);
6470 unlock_new_inode(inode
);
6475 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6476 umode_t mode
, bool excl
)
6478 struct btrfs_trans_handle
*trans
;
6479 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6480 struct inode
*inode
= NULL
;
6481 int drop_inode_on_err
= 0;
6487 * 2 for inode item and ref
6489 * 1 for xattr if selinux is on
6491 trans
= btrfs_start_transaction(root
, 5);
6493 return PTR_ERR(trans
);
6495 err
= btrfs_find_free_ino(root
, &objectid
);
6499 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6500 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6502 if (IS_ERR(inode
)) {
6503 err
= PTR_ERR(inode
);
6506 drop_inode_on_err
= 1;
6508 * If the active LSM wants to access the inode during
6509 * d_instantiate it needs these. Smack checks to see
6510 * if the filesystem supports xattrs by looking at the
6513 inode
->i_fop
= &btrfs_file_operations
;
6514 inode
->i_op
= &btrfs_file_inode_operations
;
6515 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6517 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6519 goto out_unlock_inode
;
6521 err
= btrfs_update_inode(trans
, root
, inode
);
6523 goto out_unlock_inode
;
6525 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6527 goto out_unlock_inode
;
6529 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6530 unlock_new_inode(inode
);
6531 d_instantiate(dentry
, inode
);
6534 btrfs_end_transaction(trans
, root
);
6535 if (err
&& drop_inode_on_err
) {
6536 inode_dec_link_count(inode
);
6539 btrfs_balance_delayed_items(root
);
6540 btrfs_btree_balance_dirty(root
);
6544 unlock_new_inode(inode
);
6549 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6550 struct dentry
*dentry
)
6552 struct btrfs_trans_handle
*trans
= NULL
;
6553 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6554 struct inode
*inode
= d_inode(old_dentry
);
6559 /* do not allow sys_link's with other subvols of the same device */
6560 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
6563 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6566 err
= btrfs_set_inode_index(dir
, &index
);
6571 * 2 items for inode and inode ref
6572 * 2 items for dir items
6573 * 1 item for parent inode
6575 trans
= btrfs_start_transaction(root
, 5);
6576 if (IS_ERR(trans
)) {
6577 err
= PTR_ERR(trans
);
6582 /* There are several dir indexes for this inode, clear the cache. */
6583 BTRFS_I(inode
)->dir_index
= 0ULL;
6585 inode_inc_iversion(inode
);
6586 inode
->i_ctime
= current_fs_time(inode
->i_sb
);
6588 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6590 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
6595 struct dentry
*parent
= dentry
->d_parent
;
6596 err
= btrfs_update_inode(trans
, root
, inode
);
6599 if (inode
->i_nlink
== 1) {
6601 * If new hard link count is 1, it's a file created
6602 * with open(2) O_TMPFILE flag.
6604 err
= btrfs_orphan_del(trans
, inode
);
6608 d_instantiate(dentry
, inode
);
6609 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
6612 btrfs_balance_delayed_items(root
);
6615 btrfs_end_transaction(trans
, root
);
6617 inode_dec_link_count(inode
);
6620 btrfs_btree_balance_dirty(root
);
6624 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6626 struct inode
*inode
= NULL
;
6627 struct btrfs_trans_handle
*trans
;
6628 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6630 int drop_on_err
= 0;
6635 * 2 items for inode and ref
6636 * 2 items for dir items
6637 * 1 for xattr if selinux is on
6639 trans
= btrfs_start_transaction(root
, 5);
6641 return PTR_ERR(trans
);
6643 err
= btrfs_find_free_ino(root
, &objectid
);
6647 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6648 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6649 S_IFDIR
| mode
, &index
);
6650 if (IS_ERR(inode
)) {
6651 err
= PTR_ERR(inode
);
6656 /* these must be set before we unlock the inode */
6657 inode
->i_op
= &btrfs_dir_inode_operations
;
6658 inode
->i_fop
= &btrfs_dir_file_operations
;
6660 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6662 goto out_fail_inode
;
6664 btrfs_i_size_write(inode
, 0);
6665 err
= btrfs_update_inode(trans
, root
, inode
);
6667 goto out_fail_inode
;
6669 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
6670 dentry
->d_name
.len
, 0, index
);
6672 goto out_fail_inode
;
6674 d_instantiate(dentry
, inode
);
6676 * mkdir is special. We're unlocking after we call d_instantiate
6677 * to avoid a race with nfsd calling d_instantiate.
6679 unlock_new_inode(inode
);
6683 btrfs_end_transaction(trans
, root
);
6685 inode_dec_link_count(inode
);
6688 btrfs_balance_delayed_items(root
);
6689 btrfs_btree_balance_dirty(root
);
6693 unlock_new_inode(inode
);
6697 /* Find next extent map of a given extent map, caller needs to ensure locks */
6698 static struct extent_map
*next_extent_map(struct extent_map
*em
)
6700 struct rb_node
*next
;
6702 next
= rb_next(&em
->rb_node
);
6705 return container_of(next
, struct extent_map
, rb_node
);
6708 static struct extent_map
*prev_extent_map(struct extent_map
*em
)
6710 struct rb_node
*prev
;
6712 prev
= rb_prev(&em
->rb_node
);
6715 return container_of(prev
, struct extent_map
, rb_node
);
6718 /* helper for btfs_get_extent. Given an existing extent in the tree,
6719 * the existing extent is the nearest extent to map_start,
6720 * and an extent that you want to insert, deal with overlap and insert
6721 * the best fitted new extent into the tree.
6723 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
6724 struct extent_map
*existing
,
6725 struct extent_map
*em
,
6728 struct extent_map
*prev
;
6729 struct extent_map
*next
;
6734 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
6736 if (existing
->start
> map_start
) {
6738 prev
= prev_extent_map(next
);
6741 next
= next_extent_map(prev
);
6744 start
= prev
? extent_map_end(prev
) : em
->start
;
6745 start
= max_t(u64
, start
, em
->start
);
6746 end
= next
? next
->start
: extent_map_end(em
);
6747 end
= min_t(u64
, end
, extent_map_end(em
));
6748 start_diff
= start
- em
->start
;
6750 em
->len
= end
- start
;
6751 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
6752 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
6753 em
->block_start
+= start_diff
;
6754 em
->block_len
-= start_diff
;
6756 return add_extent_mapping(em_tree
, em
, 0);
6759 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6761 size_t pg_offset
, u64 extent_offset
,
6762 struct btrfs_file_extent_item
*item
)
6765 struct extent_buffer
*leaf
= path
->nodes
[0];
6768 unsigned long inline_size
;
6772 WARN_ON(pg_offset
!= 0);
6773 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6774 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6775 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6776 btrfs_item_nr(path
->slots
[0]));
6777 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6780 ptr
= btrfs_file_extent_inline_start(item
);
6782 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6784 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6785 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6786 extent_offset
, inline_size
, max_size
);
6792 * a bit scary, this does extent mapping from logical file offset to the disk.
6793 * the ugly parts come from merging extents from the disk with the in-ram
6794 * representation. This gets more complex because of the data=ordered code,
6795 * where the in-ram extents might be locked pending data=ordered completion.
6797 * This also copies inline extents directly into the page.
6800 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
6801 size_t pg_offset
, u64 start
, u64 len
,
6806 u64 extent_start
= 0;
6808 u64 objectid
= btrfs_ino(inode
);
6810 struct btrfs_path
*path
= NULL
;
6811 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6812 struct btrfs_file_extent_item
*item
;
6813 struct extent_buffer
*leaf
;
6814 struct btrfs_key found_key
;
6815 struct extent_map
*em
= NULL
;
6816 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
6817 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6818 struct btrfs_trans_handle
*trans
= NULL
;
6819 const bool new_inline
= !page
|| create
;
6822 read_lock(&em_tree
->lock
);
6823 em
= lookup_extent_mapping(em_tree
, start
, len
);
6825 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6826 read_unlock(&em_tree
->lock
);
6829 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6830 free_extent_map(em
);
6831 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6832 free_extent_map(em
);
6836 em
= alloc_extent_map();
6841 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6842 em
->start
= EXTENT_MAP_HOLE
;
6843 em
->orig_start
= EXTENT_MAP_HOLE
;
6845 em
->block_len
= (u64
)-1;
6848 path
= btrfs_alloc_path();
6854 * Chances are we'll be called again, so go ahead and do
6857 path
->reada
= READA_FORWARD
;
6860 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
6861 objectid
, start
, trans
!= NULL
);
6868 if (path
->slots
[0] == 0)
6873 leaf
= path
->nodes
[0];
6874 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6875 struct btrfs_file_extent_item
);
6876 /* are we inside the extent that was found? */
6877 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6878 found_type
= found_key
.type
;
6879 if (found_key
.objectid
!= objectid
||
6880 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6882 * If we backup past the first extent we want to move forward
6883 * and see if there is an extent in front of us, otherwise we'll
6884 * say there is a hole for our whole search range which can
6891 found_type
= btrfs_file_extent_type(leaf
, item
);
6892 extent_start
= found_key
.offset
;
6893 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6894 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6895 extent_end
= extent_start
+
6896 btrfs_file_extent_num_bytes(leaf
, item
);
6897 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6899 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6900 extent_end
= ALIGN(extent_start
+ size
, root
->sectorsize
);
6903 if (start
>= extent_end
) {
6905 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6906 ret
= btrfs_next_leaf(root
, path
);
6913 leaf
= path
->nodes
[0];
6915 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6916 if (found_key
.objectid
!= objectid
||
6917 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6919 if (start
+ len
<= found_key
.offset
)
6921 if (start
> found_key
.offset
)
6924 em
->orig_start
= start
;
6925 em
->len
= found_key
.offset
- start
;
6929 btrfs_extent_item_to_extent_map(inode
, path
, item
, new_inline
, em
);
6931 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6932 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6934 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6938 size_t extent_offset
;
6944 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6945 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6946 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
6947 size
- extent_offset
);
6948 em
->start
= extent_start
+ extent_offset
;
6949 em
->len
= ALIGN(copy_size
, root
->sectorsize
);
6950 em
->orig_block_len
= em
->len
;
6951 em
->orig_start
= em
->start
;
6952 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6953 if (create
== 0 && !PageUptodate(page
)) {
6954 if (btrfs_file_extent_compression(leaf
, item
) !=
6955 BTRFS_COMPRESS_NONE
) {
6956 ret
= uncompress_inline(path
, page
, pg_offset
,
6957 extent_offset
, item
);
6964 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6966 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
6967 memset(map
+ pg_offset
+ copy_size
, 0,
6968 PAGE_SIZE
- pg_offset
-
6973 flush_dcache_page(page
);
6974 } else if (create
&& PageUptodate(page
)) {
6978 free_extent_map(em
);
6981 btrfs_release_path(path
);
6982 trans
= btrfs_join_transaction(root
);
6985 return ERR_CAST(trans
);
6989 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6992 btrfs_mark_buffer_dirty(leaf
);
6994 set_extent_uptodate(io_tree
, em
->start
,
6995 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
7000 em
->orig_start
= start
;
7003 em
->block_start
= EXTENT_MAP_HOLE
;
7004 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
7006 btrfs_release_path(path
);
7007 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
7008 btrfs_err(root
->fs_info
, "bad extent! em: [%llu %llu] passed [%llu %llu]",
7009 em
->start
, em
->len
, start
, len
);
7015 write_lock(&em_tree
->lock
);
7016 ret
= add_extent_mapping(em_tree
, em
, 0);
7017 /* it is possible that someone inserted the extent into the tree
7018 * while we had the lock dropped. It is also possible that
7019 * an overlapping map exists in the tree
7021 if (ret
== -EEXIST
) {
7022 struct extent_map
*existing
;
7026 existing
= search_extent_mapping(em_tree
, start
, len
);
7028 * existing will always be non-NULL, since there must be
7029 * extent causing the -EEXIST.
7031 if (existing
->start
== em
->start
&&
7032 extent_map_end(existing
) == extent_map_end(em
) &&
7033 em
->block_start
== existing
->block_start
) {
7035 * these two extents are the same, it happens
7036 * with inlines especially
7038 free_extent_map(em
);
7042 } else if (start
>= extent_map_end(existing
) ||
7043 start
<= existing
->start
) {
7045 * The existing extent map is the one nearest to
7046 * the [start, start + len) range which overlaps
7048 err
= merge_extent_mapping(em_tree
, existing
,
7050 free_extent_map(existing
);
7052 free_extent_map(em
);
7056 free_extent_map(em
);
7061 write_unlock(&em_tree
->lock
);
7064 trace_btrfs_get_extent(root
, em
);
7066 btrfs_free_path(path
);
7068 ret
= btrfs_end_transaction(trans
, root
);
7073 free_extent_map(em
);
7074 return ERR_PTR(err
);
7076 BUG_ON(!em
); /* Error is always set */
7080 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
7081 size_t pg_offset
, u64 start
, u64 len
,
7084 struct extent_map
*em
;
7085 struct extent_map
*hole_em
= NULL
;
7086 u64 range_start
= start
;
7092 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
7099 * - a pre-alloc extent,
7100 * there might actually be delalloc bytes behind it.
7102 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
7103 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7109 /* check to see if we've wrapped (len == -1 or similar) */
7118 /* ok, we didn't find anything, lets look for delalloc */
7119 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
7120 end
, len
, EXTENT_DELALLOC
, 1);
7121 found_end
= range_start
+ found
;
7122 if (found_end
< range_start
)
7123 found_end
= (u64
)-1;
7126 * we didn't find anything useful, return
7127 * the original results from get_extent()
7129 if (range_start
> end
|| found_end
<= start
) {
7135 /* adjust the range_start to make sure it doesn't
7136 * go backwards from the start they passed in
7138 range_start
= max(start
, range_start
);
7139 found
= found_end
- range_start
;
7142 u64 hole_start
= start
;
7145 em
= alloc_extent_map();
7151 * when btrfs_get_extent can't find anything it
7152 * returns one huge hole
7154 * make sure what it found really fits our range, and
7155 * adjust to make sure it is based on the start from
7159 u64 calc_end
= extent_map_end(hole_em
);
7161 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
7162 free_extent_map(hole_em
);
7165 hole_start
= max(hole_em
->start
, start
);
7166 hole_len
= calc_end
- hole_start
;
7170 if (hole_em
&& range_start
> hole_start
) {
7171 /* our hole starts before our delalloc, so we
7172 * have to return just the parts of the hole
7173 * that go until the delalloc starts
7175 em
->len
= min(hole_len
,
7176 range_start
- hole_start
);
7177 em
->start
= hole_start
;
7178 em
->orig_start
= hole_start
;
7180 * don't adjust block start at all,
7181 * it is fixed at EXTENT_MAP_HOLE
7183 em
->block_start
= hole_em
->block_start
;
7184 em
->block_len
= hole_len
;
7185 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7186 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7188 em
->start
= range_start
;
7190 em
->orig_start
= range_start
;
7191 em
->block_start
= EXTENT_MAP_DELALLOC
;
7192 em
->block_len
= found
;
7194 } else if (hole_em
) {
7199 free_extent_map(hole_em
);
7201 free_extent_map(em
);
7202 return ERR_PTR(err
);
7207 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
7210 const u64 orig_start
,
7211 const u64 block_start
,
7212 const u64 block_len
,
7213 const u64 orig_block_len
,
7214 const u64 ram_bytes
,
7217 struct extent_map
*em
= NULL
;
7220 down_read(&BTRFS_I(inode
)->dio_sem
);
7221 if (type
!= BTRFS_ORDERED_NOCOW
) {
7222 em
= create_pinned_em(inode
, start
, len
, orig_start
,
7223 block_start
, block_len
, orig_block_len
,
7228 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
7229 len
, block_len
, type
);
7232 free_extent_map(em
);
7233 btrfs_drop_extent_cache(inode
, start
,
7234 start
+ len
- 1, 0);
7239 up_read(&BTRFS_I(inode
)->dio_sem
);
7244 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7247 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7248 struct extent_map
*em
;
7249 struct btrfs_key ins
;
7253 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7254 ret
= btrfs_reserve_extent(root
, len
, root
->sectorsize
, 0,
7255 alloc_hint
, &ins
, 1, 1);
7257 return ERR_PTR(ret
);
7259 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7260 ins
.objectid
, ins
.offset
, ins
.offset
,
7262 btrfs_dec_block_group_reservations(root
->fs_info
, ins
.objectid
);
7264 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
7270 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7271 * block must be cow'd
7273 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7274 u64
*orig_start
, u64
*orig_block_len
,
7277 struct btrfs_trans_handle
*trans
;
7278 struct btrfs_path
*path
;
7280 struct extent_buffer
*leaf
;
7281 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7282 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7283 struct btrfs_file_extent_item
*fi
;
7284 struct btrfs_key key
;
7291 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7293 path
= btrfs_alloc_path();
7297 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
),
7302 slot
= path
->slots
[0];
7305 /* can't find the item, must cow */
7312 leaf
= path
->nodes
[0];
7313 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7314 if (key
.objectid
!= btrfs_ino(inode
) ||
7315 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7316 /* not our file or wrong item type, must cow */
7320 if (key
.offset
> offset
) {
7321 /* Wrong offset, must cow */
7325 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7326 found_type
= btrfs_file_extent_type(leaf
, fi
);
7327 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7328 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7329 /* not a regular extent, must cow */
7333 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7336 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7337 if (extent_end
<= offset
)
7340 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7341 if (disk_bytenr
== 0)
7344 if (btrfs_file_extent_compression(leaf
, fi
) ||
7345 btrfs_file_extent_encryption(leaf
, fi
) ||
7346 btrfs_file_extent_other_encoding(leaf
, fi
))
7349 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7352 *orig_start
= key
.offset
- backref_offset
;
7353 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7354 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7357 if (btrfs_extent_readonly(root
, disk_bytenr
))
7360 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7361 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7364 range_end
= round_up(offset
+ num_bytes
, root
->sectorsize
) - 1;
7365 ret
= test_range_bit(io_tree
, offset
, range_end
,
7366 EXTENT_DELALLOC
, 0, NULL
);
7373 btrfs_release_path(path
);
7376 * look for other files referencing this extent, if we
7377 * find any we must cow
7379 trans
= btrfs_join_transaction(root
);
7380 if (IS_ERR(trans
)) {
7385 ret
= btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
7386 key
.offset
- backref_offset
, disk_bytenr
);
7387 btrfs_end_transaction(trans
, root
);
7394 * adjust disk_bytenr and num_bytes to cover just the bytes
7395 * in this extent we are about to write. If there
7396 * are any csums in that range we have to cow in order
7397 * to keep the csums correct
7399 disk_bytenr
+= backref_offset
;
7400 disk_bytenr
+= offset
- key
.offset
;
7401 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
7404 * all of the above have passed, it is safe to overwrite this extent
7410 btrfs_free_path(path
);
7414 bool btrfs_page_exists_in_range(struct inode
*inode
, loff_t start
, loff_t end
)
7416 struct radix_tree_root
*root
= &inode
->i_mapping
->page_tree
;
7418 void **pagep
= NULL
;
7419 struct page
*page
= NULL
;
7423 start_idx
= start
>> PAGE_SHIFT
;
7426 * end is the last byte in the last page. end == start is legal
7428 end_idx
= end
>> PAGE_SHIFT
;
7432 /* Most of the code in this while loop is lifted from
7433 * find_get_page. It's been modified to begin searching from a
7434 * page and return just the first page found in that range. If the
7435 * found idx is less than or equal to the end idx then we know that
7436 * a page exists. If no pages are found or if those pages are
7437 * outside of the range then we're fine (yay!) */
7438 while (page
== NULL
&&
7439 radix_tree_gang_lookup_slot(root
, &pagep
, NULL
, start_idx
, 1)) {
7440 page
= radix_tree_deref_slot(pagep
);
7441 if (unlikely(!page
))
7444 if (radix_tree_exception(page
)) {
7445 if (radix_tree_deref_retry(page
)) {
7450 * Otherwise, shmem/tmpfs must be storing a swap entry
7451 * here as an exceptional entry: so return it without
7452 * attempting to raise page count.
7455 break; /* TODO: Is this relevant for this use case? */
7458 if (!page_cache_get_speculative(page
)) {
7464 * Has the page moved?
7465 * This is part of the lockless pagecache protocol. See
7466 * include/linux/pagemap.h for details.
7468 if (unlikely(page
!= *pagep
)) {
7475 if (page
->index
<= end_idx
)
7484 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7485 struct extent_state
**cached_state
, int writing
)
7487 struct btrfs_ordered_extent
*ordered
;
7491 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7494 * We're concerned with the entire range that we're going to be
7495 * doing DIO to, so we need to make sure there's no ordered
7496 * extents in this range.
7498 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
7499 lockend
- lockstart
+ 1);
7502 * We need to make sure there are no buffered pages in this
7503 * range either, we could have raced between the invalidate in
7504 * generic_file_direct_write and locking the extent. The
7505 * invalidate needs to happen so that reads after a write do not
7510 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)))
7513 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7514 cached_state
, GFP_NOFS
);
7518 * If we are doing a DIO read and the ordered extent we
7519 * found is for a buffered write, we can not wait for it
7520 * to complete and retry, because if we do so we can
7521 * deadlock with concurrent buffered writes on page
7522 * locks. This happens only if our DIO read covers more
7523 * than one extent map, if at this point has already
7524 * created an ordered extent for a previous extent map
7525 * and locked its range in the inode's io tree, and a
7526 * concurrent write against that previous extent map's
7527 * range and this range started (we unlock the ranges
7528 * in the io tree only when the bios complete and
7529 * buffered writes always lock pages before attempting
7530 * to lock range in the io tree).
7533 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7534 btrfs_start_ordered_extent(inode
, ordered
, 1);
7537 btrfs_put_ordered_extent(ordered
);
7540 * We could trigger writeback for this range (and wait
7541 * for it to complete) and then invalidate the pages for
7542 * this range (through invalidate_inode_pages2_range()),
7543 * but that can lead us to a deadlock with a concurrent
7544 * call to readpages() (a buffered read or a defrag call
7545 * triggered a readahead) on a page lock due to an
7546 * ordered dio extent we created before but did not have
7547 * yet a corresponding bio submitted (whence it can not
7548 * complete), which makes readpages() wait for that
7549 * ordered extent to complete while holding a lock on
7564 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
7565 u64 len
, u64 orig_start
,
7566 u64 block_start
, u64 block_len
,
7567 u64 orig_block_len
, u64 ram_bytes
,
7570 struct extent_map_tree
*em_tree
;
7571 struct extent_map
*em
;
7572 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7575 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7576 em
= alloc_extent_map();
7578 return ERR_PTR(-ENOMEM
);
7581 em
->orig_start
= orig_start
;
7582 em
->mod_start
= start
;
7585 em
->block_len
= block_len
;
7586 em
->block_start
= block_start
;
7587 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7588 em
->orig_block_len
= orig_block_len
;
7589 em
->ram_bytes
= ram_bytes
;
7590 em
->generation
= -1;
7591 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7592 if (type
== BTRFS_ORDERED_PREALLOC
)
7593 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7596 btrfs_drop_extent_cache(inode
, em
->start
,
7597 em
->start
+ em
->len
- 1, 0);
7598 write_lock(&em_tree
->lock
);
7599 ret
= add_extent_mapping(em_tree
, em
, 1);
7600 write_unlock(&em_tree
->lock
);
7601 } while (ret
== -EEXIST
);
7604 free_extent_map(em
);
7605 return ERR_PTR(ret
);
7611 static void adjust_dio_outstanding_extents(struct inode
*inode
,
7612 struct btrfs_dio_data
*dio_data
,
7615 unsigned num_extents
;
7617 num_extents
= (unsigned) div64_u64(len
+ BTRFS_MAX_EXTENT_SIZE
- 1,
7618 BTRFS_MAX_EXTENT_SIZE
);
7620 * If we have an outstanding_extents count still set then we're
7621 * within our reservation, otherwise we need to adjust our inode
7622 * counter appropriately.
7624 if (dio_data
->outstanding_extents
) {
7625 dio_data
->outstanding_extents
-= num_extents
;
7627 spin_lock(&BTRFS_I(inode
)->lock
);
7628 BTRFS_I(inode
)->outstanding_extents
+= num_extents
;
7629 spin_unlock(&BTRFS_I(inode
)->lock
);
7633 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7634 struct buffer_head
*bh_result
, int create
)
7636 struct extent_map
*em
;
7637 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7638 struct extent_state
*cached_state
= NULL
;
7639 struct btrfs_dio_data
*dio_data
= NULL
;
7640 u64 start
= iblock
<< inode
->i_blkbits
;
7641 u64 lockstart
, lockend
;
7642 u64 len
= bh_result
->b_size
;
7643 int unlock_bits
= EXTENT_LOCKED
;
7647 unlock_bits
|= EXTENT_DIRTY
;
7649 len
= min_t(u64
, len
, root
->sectorsize
);
7652 lockend
= start
+ len
- 1;
7654 if (current
->journal_info
) {
7656 * Need to pull our outstanding extents and set journal_info to NULL so
7657 * that anything that needs to check if there's a transaction doesn't get
7660 dio_data
= current
->journal_info
;
7661 current
->journal_info
= NULL
;
7665 * If this errors out it's because we couldn't invalidate pagecache for
7666 * this range and we need to fallback to buffered.
7668 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7674 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
7681 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7682 * io. INLINE is special, and we could probably kludge it in here, but
7683 * it's still buffered so for safety lets just fall back to the generic
7686 * For COMPRESSED we _have_ to read the entire extent in so we can
7687 * decompress it, so there will be buffering required no matter what we
7688 * do, so go ahead and fallback to buffered.
7690 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7691 * to buffered IO. Don't blame me, this is the price we pay for using
7694 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7695 em
->block_start
== EXTENT_MAP_INLINE
) {
7696 free_extent_map(em
);
7701 /* Just a good old fashioned hole, return */
7702 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
7703 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
7704 free_extent_map(em
);
7709 * We don't allocate a new extent in the following cases
7711 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7713 * 2) The extent is marked as PREALLOC. We're good to go here and can
7714 * just use the extent.
7718 len
= min(len
, em
->len
- (start
- em
->start
));
7719 lockstart
= start
+ len
;
7723 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7724 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7725 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7727 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7729 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7730 type
= BTRFS_ORDERED_PREALLOC
;
7732 type
= BTRFS_ORDERED_NOCOW
;
7733 len
= min(len
, em
->len
- (start
- em
->start
));
7734 block_start
= em
->block_start
+ (start
- em
->start
);
7736 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7737 &orig_block_len
, &ram_bytes
) == 1 &&
7738 btrfs_inc_nocow_writers(root
->fs_info
, block_start
)) {
7739 struct extent_map
*em2
;
7741 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7742 orig_start
, block_start
,
7743 len
, orig_block_len
,
7745 btrfs_dec_nocow_writers(root
->fs_info
, block_start
);
7746 if (type
== BTRFS_ORDERED_PREALLOC
) {
7747 free_extent_map(em
);
7750 if (em2
&& IS_ERR(em2
)) {
7759 * this will cow the extent, reset the len in case we changed
7762 len
= bh_result
->b_size
;
7763 free_extent_map(em
);
7764 em
= btrfs_new_extent_direct(inode
, start
, len
);
7769 len
= min(len
, em
->len
- (start
- em
->start
));
7771 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7773 bh_result
->b_size
= len
;
7774 bh_result
->b_bdev
= em
->bdev
;
7775 set_buffer_mapped(bh_result
);
7777 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7778 set_buffer_new(bh_result
);
7781 * Need to update the i_size under the extent lock so buffered
7782 * readers will get the updated i_size when we unlock.
7784 if (start
+ len
> i_size_read(inode
))
7785 i_size_write(inode
, start
+ len
);
7787 adjust_dio_outstanding_extents(inode
, dio_data
, len
);
7788 btrfs_free_reserved_data_space(inode
, start
, len
);
7789 WARN_ON(dio_data
->reserve
< len
);
7790 dio_data
->reserve
-= len
;
7791 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7792 current
->journal_info
= dio_data
;
7796 * In the case of write we need to clear and unlock the entire range,
7797 * in the case of read we need to unlock only the end area that we
7798 * aren't using if there is any left over space.
7800 if (lockstart
< lockend
) {
7801 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7802 lockend
, unlock_bits
, 1, 0,
7803 &cached_state
, GFP_NOFS
);
7805 free_extent_state(cached_state
);
7808 free_extent_map(em
);
7813 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7814 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
7817 current
->journal_info
= dio_data
;
7819 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7820 * write less data then expected, so that we don't underflow our inode's
7821 * outstanding extents counter.
7823 if (create
&& dio_data
)
7824 adjust_dio_outstanding_extents(inode
, dio_data
, len
);
7829 static inline int submit_dio_repair_bio(struct inode
*inode
, struct bio
*bio
,
7832 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7835 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7839 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
,
7840 BTRFS_WQ_ENDIO_DIO_REPAIR
);
7844 ret
= btrfs_map_bio(root
, bio
, mirror_num
, 0);
7850 static int btrfs_check_dio_repairable(struct inode
*inode
,
7851 struct bio
*failed_bio
,
7852 struct io_failure_record
*failrec
,
7857 num_copies
= btrfs_num_copies(BTRFS_I(inode
)->root
->fs_info
,
7858 failrec
->logical
, failrec
->len
);
7859 if (num_copies
== 1) {
7861 * we only have a single copy of the data, so don't bother with
7862 * all the retry and error correction code that follows. no
7863 * matter what the error is, it is very likely to persist.
7865 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7866 num_copies
, failrec
->this_mirror
, failed_mirror
);
7870 failrec
->failed_mirror
= failed_mirror
;
7871 failrec
->this_mirror
++;
7872 if (failrec
->this_mirror
== failed_mirror
)
7873 failrec
->this_mirror
++;
7875 if (failrec
->this_mirror
> num_copies
) {
7876 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7877 num_copies
, failrec
->this_mirror
, failed_mirror
);
7884 static int dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7885 struct page
*page
, unsigned int pgoff
,
7886 u64 start
, u64 end
, int failed_mirror
,
7887 bio_end_io_t
*repair_endio
, void *repair_arg
)
7889 struct io_failure_record
*failrec
;
7895 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
7897 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7901 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7904 free_io_failure(inode
, failrec
);
7908 if ((failed_bio
->bi_vcnt
> 1)
7909 || (failed_bio
->bi_io_vec
->bv_len
7910 > BTRFS_I(inode
)->root
->sectorsize
))
7911 read_mode
= READ_SYNC
| REQ_FAILFAST_DEV
;
7913 read_mode
= READ_SYNC
;
7915 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7916 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7917 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7918 pgoff
, isector
, repair_endio
, repair_arg
);
7920 free_io_failure(inode
, failrec
);
7923 bio_set_op_attrs(bio
, REQ_OP_READ
, read_mode
);
7925 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7926 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7927 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7929 ret
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
7931 free_io_failure(inode
, failrec
);
7938 struct btrfs_retry_complete
{
7939 struct completion done
;
7940 struct inode
*inode
;
7945 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
7947 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7948 struct inode
*inode
;
7949 struct bio_vec
*bvec
;
7955 ASSERT(bio
->bi_vcnt
== 1);
7956 inode
= bio
->bi_io_vec
->bv_page
->mapping
->host
;
7957 ASSERT(bio
->bi_io_vec
->bv_len
== BTRFS_I(inode
)->root
->sectorsize
);
7960 bio_for_each_segment_all(bvec
, bio
, i
)
7961 clean_io_failure(done
->inode
, done
->start
, bvec
->bv_page
, 0);
7963 complete(&done
->done
);
7967 static int __btrfs_correct_data_nocsum(struct inode
*inode
,
7968 struct btrfs_io_bio
*io_bio
)
7970 struct btrfs_fs_info
*fs_info
;
7971 struct bio_vec
*bvec
;
7972 struct btrfs_retry_complete done
;
7980 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7981 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
7983 start
= io_bio
->logical
;
7986 bio_for_each_segment_all(bvec
, &io_bio
->bio
, i
) {
7987 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
->bv_len
);
7988 pgoff
= bvec
->bv_offset
;
7990 next_block_or_try_again
:
7993 init_completion(&done
.done
);
7995 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
->bv_page
,
7996 pgoff
, start
, start
+ sectorsize
- 1,
7998 btrfs_retry_endio_nocsum
, &done
);
8002 wait_for_completion(&done
.done
);
8004 if (!done
.uptodate
) {
8005 /* We might have another mirror, so try again */
8006 goto next_block_or_try_again
;
8009 start
+= sectorsize
;
8012 pgoff
+= sectorsize
;
8013 goto next_block_or_try_again
;
8020 static void btrfs_retry_endio(struct bio
*bio
)
8022 struct btrfs_retry_complete
*done
= bio
->bi_private
;
8023 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8024 struct inode
*inode
;
8025 struct bio_vec
*bvec
;
8036 start
= done
->start
;
8038 ASSERT(bio
->bi_vcnt
== 1);
8039 inode
= bio
->bi_io_vec
->bv_page
->mapping
->host
;
8040 ASSERT(bio
->bi_io_vec
->bv_len
== BTRFS_I(inode
)->root
->sectorsize
);
8042 bio_for_each_segment_all(bvec
, bio
, i
) {
8043 ret
= __readpage_endio_check(done
->inode
, io_bio
, i
,
8044 bvec
->bv_page
, bvec
->bv_offset
,
8045 done
->start
, bvec
->bv_len
);
8047 clean_io_failure(done
->inode
, done
->start
,
8048 bvec
->bv_page
, bvec
->bv_offset
);
8053 done
->uptodate
= uptodate
;
8055 complete(&done
->done
);
8059 static int __btrfs_subio_endio_read(struct inode
*inode
,
8060 struct btrfs_io_bio
*io_bio
, int err
)
8062 struct btrfs_fs_info
*fs_info
;
8063 struct bio_vec
*bvec
;
8064 struct btrfs_retry_complete done
;
8074 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8075 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
8078 start
= io_bio
->logical
;
8081 bio_for_each_segment_all(bvec
, &io_bio
->bio
, i
) {
8082 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
->bv_len
);
8084 pgoff
= bvec
->bv_offset
;
8086 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
8087 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
8088 bvec
->bv_page
, pgoff
, start
,
8095 init_completion(&done
.done
);
8097 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
->bv_page
,
8098 pgoff
, start
, start
+ sectorsize
- 1,
8100 btrfs_retry_endio
, &done
);
8106 wait_for_completion(&done
.done
);
8108 if (!done
.uptodate
) {
8109 /* We might have another mirror, so try again */
8113 offset
+= sectorsize
;
8114 start
+= sectorsize
;
8119 pgoff
+= sectorsize
;
8127 static int btrfs_subio_endio_read(struct inode
*inode
,
8128 struct btrfs_io_bio
*io_bio
, int err
)
8130 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8134 return __btrfs_correct_data_nocsum(inode
, io_bio
);
8138 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
8142 static void btrfs_endio_direct_read(struct bio
*bio
)
8144 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8145 struct inode
*inode
= dip
->inode
;
8146 struct bio
*dio_bio
;
8147 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8148 int err
= bio
->bi_error
;
8150 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
8151 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
8153 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
8154 dip
->logical_offset
+ dip
->bytes
- 1);
8155 dio_bio
= dip
->dio_bio
;
8159 dio_bio
->bi_error
= bio
->bi_error
;
8160 dio_end_io(dio_bio
, bio
->bi_error
);
8163 io_bio
->end_io(io_bio
, err
);
8167 static void btrfs_endio_direct_write_update_ordered(struct inode
*inode
,
8172 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8173 struct btrfs_ordered_extent
*ordered
= NULL
;
8174 u64 ordered_offset
= offset
;
8175 u64 ordered_bytes
= bytes
;
8179 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
8186 btrfs_init_work(&ordered
->work
, btrfs_endio_write_helper
,
8187 finish_ordered_fn
, NULL
, NULL
);
8188 btrfs_queue_work(root
->fs_info
->endio_write_workers
,
8192 * our bio might span multiple ordered extents. If we haven't
8193 * completed the accounting for the whole dio, go back and try again
8195 if (ordered_offset
< offset
+ bytes
) {
8196 ordered_bytes
= offset
+ bytes
- ordered_offset
;
8202 static void btrfs_endio_direct_write(struct bio
*bio
)
8204 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8205 struct bio
*dio_bio
= dip
->dio_bio
;
8207 btrfs_endio_direct_write_update_ordered(dip
->inode
,
8208 dip
->logical_offset
,
8214 dio_bio
->bi_error
= bio
->bi_error
;
8215 dio_end_io(dio_bio
, bio
->bi_error
);
8219 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
,
8220 struct bio
*bio
, int mirror_num
,
8221 unsigned long bio_flags
, u64 offset
)
8224 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8225 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
8226 BUG_ON(ret
); /* -ENOMEM */
8230 static void btrfs_end_dio_bio(struct bio
*bio
)
8232 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8233 int err
= bio
->bi_error
;
8236 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
8237 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8238 btrfs_ino(dip
->inode
), bio_op(bio
), bio
->bi_opf
,
8239 (unsigned long long)bio
->bi_iter
.bi_sector
,
8240 bio
->bi_iter
.bi_size
, err
);
8242 if (dip
->subio_endio
)
8243 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
8249 * before atomic variable goto zero, we must make sure
8250 * dip->errors is perceived to be set.
8252 smp_mb__before_atomic();
8255 /* if there are more bios still pending for this dio, just exit */
8256 if (!atomic_dec_and_test(&dip
->pending_bios
))
8260 bio_io_error(dip
->orig_bio
);
8262 dip
->dio_bio
->bi_error
= 0;
8263 bio_endio(dip
->orig_bio
);
8269 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
8270 u64 first_sector
, gfp_t gfp_flags
)
8273 bio
= btrfs_bio_alloc(bdev
, first_sector
, BIO_MAX_PAGES
, gfp_flags
);
8275 bio_associate_current(bio
);
8279 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root
*root
,
8280 struct inode
*inode
,
8281 struct btrfs_dio_private
*dip
,
8285 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8286 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8290 * We load all the csum data we need when we submit
8291 * the first bio to reduce the csum tree search and
8294 if (dip
->logical_offset
== file_offset
) {
8295 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, dip
->orig_bio
,
8301 if (bio
== dip
->orig_bio
)
8304 file_offset
-= dip
->logical_offset
;
8305 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8306 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8311 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
8312 u64 file_offset
, int skip_sum
,
8315 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8316 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
8317 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8321 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8326 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
,
8327 BTRFS_WQ_ENDIO_DATA
);
8335 if (write
&& async_submit
) {
8336 ret
= btrfs_wq_submit_bio(root
->fs_info
,
8337 inode
, bio
, 0, 0, file_offset
,
8338 __btrfs_submit_bio_start_direct_io
,
8339 __btrfs_submit_bio_done
);
8343 * If we aren't doing async submit, calculate the csum of the
8346 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
8350 ret
= btrfs_lookup_and_bind_dio_csum(root
, inode
, dip
, bio
,
8356 ret
= btrfs_map_bio(root
, bio
, 0, async_submit
);
8362 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
,
8365 struct inode
*inode
= dip
->inode
;
8366 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8368 struct bio
*orig_bio
= dip
->orig_bio
;
8369 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
8370 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8371 u64 file_offset
= dip
->logical_offset
;
8374 u32 blocksize
= root
->sectorsize
;
8375 int async_submit
= 0;
8380 map_length
= orig_bio
->bi_iter
.bi_size
;
8381 ret
= btrfs_map_block(root
->fs_info
, bio_op(orig_bio
),
8382 start_sector
<< 9, &map_length
, NULL
, 0);
8386 if (map_length
>= orig_bio
->bi_iter
.bi_size
) {
8388 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8392 /* async crcs make it difficult to collect full stripe writes. */
8393 if (btrfs_get_alloc_profile(root
, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8398 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
8402 bio_set_op_attrs(bio
, bio_op(orig_bio
), orig_bio
->bi_opf
);
8403 bio
->bi_private
= dip
;
8404 bio
->bi_end_io
= btrfs_end_dio_bio
;
8405 btrfs_io_bio(bio
)->logical
= file_offset
;
8406 atomic_inc(&dip
->pending_bios
);
8408 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
8409 nr_sectors
= BTRFS_BYTES_TO_BLKS(root
->fs_info
, bvec
->bv_len
);
8412 if (unlikely(map_length
< submit_len
+ blocksize
||
8413 bio_add_page(bio
, bvec
->bv_page
, blocksize
,
8414 bvec
->bv_offset
+ (i
* blocksize
)) < blocksize
)) {
8416 * inc the count before we submit the bio so
8417 * we know the end IO handler won't happen before
8418 * we inc the count. Otherwise, the dip might get freed
8419 * before we're done setting it up
8421 atomic_inc(&dip
->pending_bios
);
8422 ret
= __btrfs_submit_dio_bio(bio
, inode
,
8423 file_offset
, skip_sum
,
8427 atomic_dec(&dip
->pending_bios
);
8431 start_sector
+= submit_len
>> 9;
8432 file_offset
+= submit_len
;
8436 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
8437 start_sector
, GFP_NOFS
);
8440 bio_set_op_attrs(bio
, bio_op(orig_bio
), orig_bio
->bi_opf
);
8441 bio
->bi_private
= dip
;
8442 bio
->bi_end_io
= btrfs_end_dio_bio
;
8443 btrfs_io_bio(bio
)->logical
= file_offset
;
8445 map_length
= orig_bio
->bi_iter
.bi_size
;
8446 ret
= btrfs_map_block(root
->fs_info
, bio_op(orig_bio
),
8448 &map_length
, NULL
, 0);
8456 submit_len
+= blocksize
;
8466 ret
= __btrfs_submit_dio_bio(bio
, inode
, file_offset
, skip_sum
,
8475 * before atomic variable goto zero, we must
8476 * make sure dip->errors is perceived to be set.
8478 smp_mb__before_atomic();
8479 if (atomic_dec_and_test(&dip
->pending_bios
))
8480 bio_io_error(dip
->orig_bio
);
8482 /* bio_end_io() will handle error, so we needn't return it */
8486 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
8489 struct btrfs_dio_private
*dip
= NULL
;
8490 struct bio
*io_bio
= NULL
;
8491 struct btrfs_io_bio
*btrfs_bio
;
8493 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
8496 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8498 io_bio
= btrfs_bio_clone(dio_bio
, GFP_NOFS
);
8504 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8510 dip
->private = dio_bio
->bi_private
;
8512 dip
->logical_offset
= file_offset
;
8513 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8514 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8515 io_bio
->bi_private
= dip
;
8516 dip
->orig_bio
= io_bio
;
8517 dip
->dio_bio
= dio_bio
;
8518 atomic_set(&dip
->pending_bios
, 0);
8519 btrfs_bio
= btrfs_io_bio(io_bio
);
8520 btrfs_bio
->logical
= file_offset
;
8523 io_bio
->bi_end_io
= btrfs_endio_direct_write
;
8525 io_bio
->bi_end_io
= btrfs_endio_direct_read
;
8526 dip
->subio_endio
= btrfs_subio_endio_read
;
8530 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8531 * even if we fail to submit a bio, because in such case we do the
8532 * corresponding error handling below and it must not be done a second
8533 * time by btrfs_direct_IO().
8536 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8538 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8540 dio_data
->unsubmitted_oe_range_start
=
8541 dio_data
->unsubmitted_oe_range_end
;
8544 ret
= btrfs_submit_direct_hook(dip
, skip_sum
);
8548 if (btrfs_bio
->end_io
)
8549 btrfs_bio
->end_io(btrfs_bio
, ret
);
8553 * If we arrived here it means either we failed to submit the dip
8554 * or we either failed to clone the dio_bio or failed to allocate the
8555 * dip. If we cloned the dio_bio and allocated the dip, we can just
8556 * call bio_endio against our io_bio so that we get proper resource
8557 * cleanup if we fail to submit the dip, otherwise, we must do the
8558 * same as btrfs_endio_direct_[write|read] because we can't call these
8559 * callbacks - they require an allocated dip and a clone of dio_bio.
8561 if (io_bio
&& dip
) {
8562 io_bio
->bi_error
= -EIO
;
8565 * The end io callbacks free our dip, do the final put on io_bio
8566 * and all the cleanup and final put for dio_bio (through
8573 btrfs_endio_direct_write_update_ordered(inode
,
8575 dio_bio
->bi_iter
.bi_size
,
8578 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8579 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8581 dio_bio
->bi_error
= -EIO
;
8583 * Releases and cleans up our dio_bio, no need to bio_put()
8584 * nor bio_endio()/bio_io_error() against dio_bio.
8586 dio_end_io(dio_bio
, ret
);
8593 static ssize_t
check_direct_IO(struct btrfs_root
*root
, struct kiocb
*iocb
,
8594 const struct iov_iter
*iter
, loff_t offset
)
8598 unsigned blocksize_mask
= root
->sectorsize
- 1;
8599 ssize_t retval
= -EINVAL
;
8601 if (offset
& blocksize_mask
)
8604 if (iov_iter_alignment(iter
) & blocksize_mask
)
8607 /* If this is a write we don't need to check anymore */
8608 if (iov_iter_rw(iter
) == WRITE
)
8611 * Check to make sure we don't have duplicate iov_base's in this
8612 * iovec, if so return EINVAL, otherwise we'll get csum errors
8613 * when reading back.
8615 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8616 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8617 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8626 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8628 struct file
*file
= iocb
->ki_filp
;
8629 struct inode
*inode
= file
->f_mapping
->host
;
8630 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8631 struct btrfs_dio_data dio_data
= { 0 };
8632 loff_t offset
= iocb
->ki_pos
;
8636 bool relock
= false;
8639 if (check_direct_IO(BTRFS_I(inode
)->root
, iocb
, iter
, offset
))
8642 inode_dio_begin(inode
);
8643 smp_mb__after_atomic();
8646 * The generic stuff only does filemap_write_and_wait_range, which
8647 * isn't enough if we've written compressed pages to this area, so
8648 * we need to flush the dirty pages again to make absolutely sure
8649 * that any outstanding dirty pages are on disk.
8651 count
= iov_iter_count(iter
);
8652 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8653 &BTRFS_I(inode
)->runtime_flags
))
8654 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8655 offset
+ count
- 1);
8657 if (iov_iter_rw(iter
) == WRITE
) {
8659 * If the write DIO is beyond the EOF, we need update
8660 * the isize, but it is protected by i_mutex. So we can
8661 * not unlock the i_mutex at this case.
8663 if (offset
+ count
<= inode
->i_size
) {
8664 inode_unlock(inode
);
8667 ret
= btrfs_delalloc_reserve_space(inode
, offset
, count
);
8670 dio_data
.outstanding_extents
= div64_u64(count
+
8671 BTRFS_MAX_EXTENT_SIZE
- 1,
8672 BTRFS_MAX_EXTENT_SIZE
);
8675 * We need to know how many extents we reserved so that we can
8676 * do the accounting properly if we go over the number we
8677 * originally calculated. Abuse current->journal_info for this.
8679 dio_data
.reserve
= round_up(count
, root
->sectorsize
);
8680 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8681 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8682 current
->journal_info
= &dio_data
;
8683 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8684 &BTRFS_I(inode
)->runtime_flags
)) {
8685 inode_dio_end(inode
);
8686 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8690 ret
= __blockdev_direct_IO(iocb
, inode
,
8691 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
8692 iter
, btrfs_get_blocks_direct
, NULL
,
8693 btrfs_submit_direct
, flags
);
8694 if (iov_iter_rw(iter
) == WRITE
) {
8695 current
->journal_info
= NULL
;
8696 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8697 if (dio_data
.reserve
)
8698 btrfs_delalloc_release_space(inode
, offset
,
8701 * On error we might have left some ordered extents
8702 * without submitting corresponding bios for them, so
8703 * cleanup them up to avoid other tasks getting them
8704 * and waiting for them to complete forever.
8706 if (dio_data
.unsubmitted_oe_range_start
<
8707 dio_data
.unsubmitted_oe_range_end
)
8708 btrfs_endio_direct_write_update_ordered(inode
,
8709 dio_data
.unsubmitted_oe_range_start
,
8710 dio_data
.unsubmitted_oe_range_end
-
8711 dio_data
.unsubmitted_oe_range_start
,
8713 } else if (ret
>= 0 && (size_t)ret
< count
)
8714 btrfs_delalloc_release_space(inode
, offset
,
8715 count
- (size_t)ret
);
8719 inode_dio_end(inode
);
8726 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8728 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8729 __u64 start
, __u64 len
)
8733 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8737 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
8740 int btrfs_readpage(struct file
*file
, struct page
*page
)
8742 struct extent_io_tree
*tree
;
8743 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8744 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8747 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8749 struct extent_io_tree
*tree
;
8750 struct inode
*inode
= page
->mapping
->host
;
8753 if (current
->flags
& PF_MEMALLOC
) {
8754 redirty_page_for_writepage(wbc
, page
);
8760 * If we are under memory pressure we will call this directly from the
8761 * VM, we need to make sure we have the inode referenced for the ordered
8762 * extent. If not just return like we didn't do anything.
8764 if (!igrab(inode
)) {
8765 redirty_page_for_writepage(wbc
, page
);
8766 return AOP_WRITEPAGE_ACTIVATE
;
8768 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8769 ret
= extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
8770 btrfs_add_delayed_iput(inode
);
8774 static int btrfs_writepages(struct address_space
*mapping
,
8775 struct writeback_control
*wbc
)
8777 struct extent_io_tree
*tree
;
8779 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8780 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
8784 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8785 struct list_head
*pages
, unsigned nr_pages
)
8787 struct extent_io_tree
*tree
;
8788 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8789 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
8792 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8794 struct extent_io_tree
*tree
;
8795 struct extent_map_tree
*map
;
8798 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8799 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
8800 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
8802 ClearPagePrivate(page
);
8803 set_page_private(page
, 0);
8809 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8811 if (PageWriteback(page
) || PageDirty(page
))
8813 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
8816 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8817 unsigned int length
)
8819 struct inode
*inode
= page
->mapping
->host
;
8820 struct extent_io_tree
*tree
;
8821 struct btrfs_ordered_extent
*ordered
;
8822 struct extent_state
*cached_state
= NULL
;
8823 u64 page_start
= page_offset(page
);
8824 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8827 int inode_evicting
= inode
->i_state
& I_FREEING
;
8830 * we have the page locked, so new writeback can't start,
8831 * and the dirty bit won't be cleared while we are here.
8833 * Wait for IO on this page so that we can safely clear
8834 * the PagePrivate2 bit and do ordered accounting
8836 wait_on_page_writeback(page
);
8838 tree
= &BTRFS_I(inode
)->io_tree
;
8840 btrfs_releasepage(page
, GFP_NOFS
);
8844 if (!inode_evicting
)
8845 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8848 ordered
= btrfs_lookup_ordered_range(inode
, start
,
8849 page_end
- start
+ 1);
8851 end
= min(page_end
, ordered
->file_offset
+ ordered
->len
- 1);
8853 * IO on this page will never be started, so we need
8854 * to account for any ordered extents now
8856 if (!inode_evicting
)
8857 clear_extent_bit(tree
, start
, end
,
8858 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8859 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8860 EXTENT_DEFRAG
, 1, 0, &cached_state
,
8863 * whoever cleared the private bit is responsible
8864 * for the finish_ordered_io
8866 if (TestClearPagePrivate2(page
)) {
8867 struct btrfs_ordered_inode_tree
*tree
;
8870 tree
= &BTRFS_I(inode
)->ordered_tree
;
8872 spin_lock_irq(&tree
->lock
);
8873 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8874 new_len
= start
- ordered
->file_offset
;
8875 if (new_len
< ordered
->truncated_len
)
8876 ordered
->truncated_len
= new_len
;
8877 spin_unlock_irq(&tree
->lock
);
8879 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8881 end
- start
+ 1, 1))
8882 btrfs_finish_ordered_io(ordered
);
8884 btrfs_put_ordered_extent(ordered
);
8885 if (!inode_evicting
) {
8886 cached_state
= NULL
;
8887 lock_extent_bits(tree
, start
, end
,
8892 if (start
< page_end
)
8897 * Qgroup reserved space handler
8898 * Page here will be either
8899 * 1) Already written to disk
8900 * In this case, its reserved space is released from data rsv map
8901 * and will be freed by delayed_ref handler finally.
8902 * So even we call qgroup_free_data(), it won't decrease reserved
8904 * 2) Not written to disk
8905 * This means the reserved space should be freed here.
8907 btrfs_qgroup_free_data(inode
, page_start
, PAGE_SIZE
);
8908 if (!inode_evicting
) {
8909 clear_extent_bit(tree
, page_start
, page_end
,
8910 EXTENT_LOCKED
| EXTENT_DIRTY
|
8911 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
8912 EXTENT_DEFRAG
, 1, 1,
8913 &cached_state
, GFP_NOFS
);
8915 __btrfs_releasepage(page
, GFP_NOFS
);
8918 ClearPageChecked(page
);
8919 if (PagePrivate(page
)) {
8920 ClearPagePrivate(page
);
8921 set_page_private(page
, 0);
8927 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8928 * called from a page fault handler when a page is first dirtied. Hence we must
8929 * be careful to check for EOF conditions here. We set the page up correctly
8930 * for a written page which means we get ENOSPC checking when writing into
8931 * holes and correct delalloc and unwritten extent mapping on filesystems that
8932 * support these features.
8934 * We are not allowed to take the i_mutex here so we have to play games to
8935 * protect against truncate races as the page could now be beyond EOF. Because
8936 * vmtruncate() writes the inode size before removing pages, once we have the
8937 * page lock we can determine safely if the page is beyond EOF. If it is not
8938 * beyond EOF, then the page is guaranteed safe against truncation until we
8941 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
8943 struct page
*page
= vmf
->page
;
8944 struct inode
*inode
= file_inode(vma
->vm_file
);
8945 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8946 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8947 struct btrfs_ordered_extent
*ordered
;
8948 struct extent_state
*cached_state
= NULL
;
8950 unsigned long zero_start
;
8959 reserved_space
= PAGE_SIZE
;
8961 sb_start_pagefault(inode
->i_sb
);
8962 page_start
= page_offset(page
);
8963 page_end
= page_start
+ PAGE_SIZE
- 1;
8967 * Reserving delalloc space after obtaining the page lock can lead to
8968 * deadlock. For example, if a dirty page is locked by this function
8969 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8970 * dirty page write out, then the btrfs_writepage() function could
8971 * end up waiting indefinitely to get a lock on the page currently
8972 * being processed by btrfs_page_mkwrite() function.
8974 ret
= btrfs_delalloc_reserve_space(inode
, page_start
,
8977 ret
= file_update_time(vma
->vm_file
);
8983 else /* -ENOSPC, -EIO, etc */
8984 ret
= VM_FAULT_SIGBUS
;
8990 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8993 size
= i_size_read(inode
);
8995 if ((page
->mapping
!= inode
->i_mapping
) ||
8996 (page_start
>= size
)) {
8997 /* page got truncated out from underneath us */
9000 wait_on_page_writeback(page
);
9002 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
9003 set_page_extent_mapped(page
);
9006 * we can't set the delalloc bits if there are pending ordered
9007 * extents. Drop our locks and wait for them to finish
9009 ordered
= btrfs_lookup_ordered_range(inode
, page_start
, page_end
);
9011 unlock_extent_cached(io_tree
, page_start
, page_end
,
9012 &cached_state
, GFP_NOFS
);
9014 btrfs_start_ordered_extent(inode
, ordered
, 1);
9015 btrfs_put_ordered_extent(ordered
);
9019 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
9020 reserved_space
= round_up(size
- page_start
, root
->sectorsize
);
9021 if (reserved_space
< PAGE_SIZE
) {
9022 end
= page_start
+ reserved_space
- 1;
9023 spin_lock(&BTRFS_I(inode
)->lock
);
9024 BTRFS_I(inode
)->outstanding_extents
++;
9025 spin_unlock(&BTRFS_I(inode
)->lock
);
9026 btrfs_delalloc_release_space(inode
, page_start
,
9027 PAGE_SIZE
- reserved_space
);
9032 * XXX - page_mkwrite gets called every time the page is dirtied, even
9033 * if it was already dirty, so for space accounting reasons we need to
9034 * clear any delalloc bits for the range we are fixing to save. There
9035 * is probably a better way to do this, but for now keep consistent with
9036 * prepare_pages in the normal write path.
9038 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
9039 EXTENT_DIRTY
| EXTENT_DELALLOC
|
9040 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
9041 0, 0, &cached_state
, GFP_NOFS
);
9043 ret
= btrfs_set_extent_delalloc(inode
, page_start
, end
,
9046 unlock_extent_cached(io_tree
, page_start
, page_end
,
9047 &cached_state
, GFP_NOFS
);
9048 ret
= VM_FAULT_SIGBUS
;
9053 /* page is wholly or partially inside EOF */
9054 if (page_start
+ PAGE_SIZE
> size
)
9055 zero_start
= size
& ~PAGE_MASK
;
9057 zero_start
= PAGE_SIZE
;
9059 if (zero_start
!= PAGE_SIZE
) {
9061 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
9062 flush_dcache_page(page
);
9065 ClearPageChecked(page
);
9066 set_page_dirty(page
);
9067 SetPageUptodate(page
);
9069 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
9070 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
9071 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
9073 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
9077 sb_end_pagefault(inode
->i_sb
);
9078 return VM_FAULT_LOCKED
;
9082 btrfs_delalloc_release_space(inode
, page_start
, reserved_space
);
9084 sb_end_pagefault(inode
->i_sb
);
9088 static int btrfs_truncate(struct inode
*inode
)
9090 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9091 struct btrfs_block_rsv
*rsv
;
9094 struct btrfs_trans_handle
*trans
;
9095 u64 mask
= root
->sectorsize
- 1;
9096 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
9098 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
9104 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9105 * 3 things going on here
9107 * 1) We need to reserve space for our orphan item and the space to
9108 * delete our orphan item. Lord knows we don't want to have a dangling
9109 * orphan item because we didn't reserve space to remove it.
9111 * 2) We need to reserve space to update our inode.
9113 * 3) We need to have something to cache all the space that is going to
9114 * be free'd up by the truncate operation, but also have some slack
9115 * space reserved in case it uses space during the truncate (thank you
9116 * very much snapshotting).
9118 * And we need these to all be separate. The fact is we can use a lot of
9119 * space doing the truncate, and we have no earthly idea how much space
9120 * we will use, so we need the truncate reservation to be separate so it
9121 * doesn't end up using space reserved for updating the inode or
9122 * removing the orphan item. We also need to be able to stop the
9123 * transaction and start a new one, which means we need to be able to
9124 * update the inode several times, and we have no idea of knowing how
9125 * many times that will be, so we can't just reserve 1 item for the
9126 * entirety of the operation, so that has to be done separately as well.
9127 * Then there is the orphan item, which does indeed need to be held on
9128 * to for the whole operation, and we need nobody to touch this reserved
9129 * space except the orphan code.
9131 * So that leaves us with
9133 * 1) root->orphan_block_rsv - for the orphan deletion.
9134 * 2) rsv - for the truncate reservation, which we will steal from the
9135 * transaction reservation.
9136 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9137 * updating the inode.
9139 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
9142 rsv
->size
= min_size
;
9146 * 1 for the truncate slack space
9147 * 1 for updating the inode.
9149 trans
= btrfs_start_transaction(root
, 2);
9150 if (IS_ERR(trans
)) {
9151 err
= PTR_ERR(trans
);
9155 /* Migrate the slack space for the truncate to our reserve */
9156 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
9161 * So if we truncate and then write and fsync we normally would just
9162 * write the extents that changed, which is a problem if we need to
9163 * first truncate that entire inode. So set this flag so we write out
9164 * all of the extents in the inode to the sync log so we're completely
9167 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
9168 trans
->block_rsv
= rsv
;
9171 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
9173 BTRFS_EXTENT_DATA_KEY
);
9174 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
) {
9179 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
9180 ret
= btrfs_update_inode(trans
, root
, inode
);
9186 btrfs_end_transaction(trans
, root
);
9187 btrfs_btree_balance_dirty(root
);
9189 trans
= btrfs_start_transaction(root
, 2);
9190 if (IS_ERR(trans
)) {
9191 ret
= err
= PTR_ERR(trans
);
9196 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
9198 BUG_ON(ret
); /* shouldn't happen */
9199 trans
->block_rsv
= rsv
;
9202 if (ret
== 0 && inode
->i_nlink
> 0) {
9203 trans
->block_rsv
= root
->orphan_block_rsv
;
9204 ret
= btrfs_orphan_del(trans
, inode
);
9210 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
9211 ret
= btrfs_update_inode(trans
, root
, inode
);
9215 ret
= btrfs_end_transaction(trans
, root
);
9216 btrfs_btree_balance_dirty(root
);
9219 btrfs_free_block_rsv(root
, rsv
);
9228 * create a new subvolume directory/inode (helper for the ioctl).
9230 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
9231 struct btrfs_root
*new_root
,
9232 struct btrfs_root
*parent_root
,
9235 struct inode
*inode
;
9239 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
9240 new_dirid
, new_dirid
,
9241 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
9244 return PTR_ERR(inode
);
9245 inode
->i_op
= &btrfs_dir_inode_operations
;
9246 inode
->i_fop
= &btrfs_dir_file_operations
;
9248 set_nlink(inode
, 1);
9249 btrfs_i_size_write(inode
, 0);
9250 unlock_new_inode(inode
);
9252 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
9254 btrfs_err(new_root
->fs_info
,
9255 "error inheriting subvolume %llu properties: %d",
9256 new_root
->root_key
.objectid
, err
);
9258 err
= btrfs_update_inode(trans
, new_root
, inode
);
9264 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
9266 struct btrfs_inode
*ei
;
9267 struct inode
*inode
;
9269 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
9276 ei
->last_sub_trans
= 0;
9277 ei
->logged_trans
= 0;
9278 ei
->delalloc_bytes
= 0;
9279 ei
->defrag_bytes
= 0;
9280 ei
->disk_i_size
= 0;
9283 ei
->index_cnt
= (u64
)-1;
9285 ei
->last_unlink_trans
= 0;
9286 ei
->last_log_commit
= 0;
9287 ei
->delayed_iput_count
= 0;
9289 spin_lock_init(&ei
->lock
);
9290 ei
->outstanding_extents
= 0;
9291 ei
->reserved_extents
= 0;
9293 ei
->runtime_flags
= 0;
9294 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
9296 ei
->delayed_node
= NULL
;
9298 ei
->i_otime
.tv_sec
= 0;
9299 ei
->i_otime
.tv_nsec
= 0;
9301 inode
= &ei
->vfs_inode
;
9302 extent_map_tree_init(&ei
->extent_tree
);
9303 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
9304 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
9305 ei
->io_tree
.track_uptodate
= 1;
9306 ei
->io_failure_tree
.track_uptodate
= 1;
9307 atomic_set(&ei
->sync_writers
, 0);
9308 mutex_init(&ei
->log_mutex
);
9309 mutex_init(&ei
->delalloc_mutex
);
9310 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
9311 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
9312 INIT_LIST_HEAD(&ei
->delayed_iput
);
9313 RB_CLEAR_NODE(&ei
->rb_node
);
9314 init_rwsem(&ei
->dio_sem
);
9319 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9320 void btrfs_test_destroy_inode(struct inode
*inode
)
9322 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
9323 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9327 static void btrfs_i_callback(struct rcu_head
*head
)
9329 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
9330 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9333 void btrfs_destroy_inode(struct inode
*inode
)
9335 struct btrfs_ordered_extent
*ordered
;
9336 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9338 WARN_ON(!hlist_empty(&inode
->i_dentry
));
9339 WARN_ON(inode
->i_data
.nrpages
);
9340 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
9341 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
9342 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
9343 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
9344 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
9347 * This can happen where we create an inode, but somebody else also
9348 * created the same inode and we need to destroy the one we already
9354 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
9355 &BTRFS_I(inode
)->runtime_flags
)) {
9356 btrfs_info(root
->fs_info
, "inode %llu still on the orphan list",
9358 atomic_dec(&root
->orphan_inodes
);
9362 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
9366 btrfs_err(root
->fs_info
, "found ordered extent %llu %llu on inode cleanup",
9367 ordered
->file_offset
, ordered
->len
);
9368 btrfs_remove_ordered_extent(inode
, ordered
);
9369 btrfs_put_ordered_extent(ordered
);
9370 btrfs_put_ordered_extent(ordered
);
9373 btrfs_qgroup_check_reserved_leak(inode
);
9374 inode_tree_del(inode
);
9375 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
9377 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
9380 int btrfs_drop_inode(struct inode
*inode
)
9382 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9387 /* the snap/subvol tree is on deleting */
9388 if (btrfs_root_refs(&root
->root_item
) == 0)
9391 return generic_drop_inode(inode
);
9394 static void init_once(void *foo
)
9396 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9398 inode_init_once(&ei
->vfs_inode
);
9401 void btrfs_destroy_cachep(void)
9404 * Make sure all delayed rcu free inodes are flushed before we
9408 kmem_cache_destroy(btrfs_inode_cachep
);
9409 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9410 kmem_cache_destroy(btrfs_transaction_cachep
);
9411 kmem_cache_destroy(btrfs_path_cachep
);
9412 kmem_cache_destroy(btrfs_free_space_cachep
);
9415 int btrfs_init_cachep(void)
9417 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9418 sizeof(struct btrfs_inode
), 0,
9419 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
9421 if (!btrfs_inode_cachep
)
9424 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9425 sizeof(struct btrfs_trans_handle
), 0,
9426 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9427 if (!btrfs_trans_handle_cachep
)
9430 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction",
9431 sizeof(struct btrfs_transaction
), 0,
9432 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9433 if (!btrfs_transaction_cachep
)
9436 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9437 sizeof(struct btrfs_path
), 0,
9438 SLAB_MEM_SPREAD
, NULL
);
9439 if (!btrfs_path_cachep
)
9442 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9443 sizeof(struct btrfs_free_space
), 0,
9444 SLAB_MEM_SPREAD
, NULL
);
9445 if (!btrfs_free_space_cachep
)
9450 btrfs_destroy_cachep();
9454 static int btrfs_getattr(struct vfsmount
*mnt
,
9455 struct dentry
*dentry
, struct kstat
*stat
)
9458 struct inode
*inode
= d_inode(dentry
);
9459 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9461 generic_fillattr(inode
, stat
);
9462 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9464 spin_lock(&BTRFS_I(inode
)->lock
);
9465 delalloc_bytes
= BTRFS_I(inode
)->delalloc_bytes
;
9466 spin_unlock(&BTRFS_I(inode
)->lock
);
9467 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9468 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9472 static int btrfs_rename_exchange(struct inode
*old_dir
,
9473 struct dentry
*old_dentry
,
9474 struct inode
*new_dir
,
9475 struct dentry
*new_dentry
)
9477 struct btrfs_trans_handle
*trans
;
9478 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9479 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9480 struct inode
*new_inode
= new_dentry
->d_inode
;
9481 struct inode
*old_inode
= old_dentry
->d_inode
;
9482 struct timespec ctime
= CURRENT_TIME
;
9483 struct dentry
*parent
;
9484 u64 old_ino
= btrfs_ino(old_inode
);
9485 u64 new_ino
= btrfs_ino(new_inode
);
9490 bool root_log_pinned
= false;
9491 bool dest_log_pinned
= false;
9493 /* we only allow rename subvolume link between subvolumes */
9494 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9497 /* close the race window with snapshot create/destroy ioctl */
9498 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9499 down_read(&root
->fs_info
->subvol_sem
);
9500 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9501 down_read(&dest
->fs_info
->subvol_sem
);
9504 * We want to reserve the absolute worst case amount of items. So if
9505 * both inodes are subvols and we need to unlink them then that would
9506 * require 4 item modifications, but if they are both normal inodes it
9507 * would require 5 item modifications, so we'll assume their normal
9508 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9509 * should cover the worst case number of items we'll modify.
9511 trans
= btrfs_start_transaction(root
, 12);
9512 if (IS_ERR(trans
)) {
9513 ret
= PTR_ERR(trans
);
9518 * We need to find a free sequence number both in the source and
9519 * in the destination directory for the exchange.
9521 ret
= btrfs_set_inode_index(new_dir
, &old_idx
);
9524 ret
= btrfs_set_inode_index(old_dir
, &new_idx
);
9528 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9529 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9531 /* Reference for the source. */
9532 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9533 /* force full log commit if subvolume involved. */
9534 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9536 btrfs_pin_log_trans(root
);
9537 root_log_pinned
= true;
9538 ret
= btrfs_insert_inode_ref(trans
, dest
,
9539 new_dentry
->d_name
.name
,
9540 new_dentry
->d_name
.len
,
9542 btrfs_ino(new_dir
), old_idx
);
9547 /* And now for the dest. */
9548 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9549 /* force full log commit if subvolume involved. */
9550 btrfs_set_log_full_commit(dest
->fs_info
, trans
);
9552 btrfs_pin_log_trans(dest
);
9553 dest_log_pinned
= true;
9554 ret
= btrfs_insert_inode_ref(trans
, root
,
9555 old_dentry
->d_name
.name
,
9556 old_dentry
->d_name
.len
,
9558 btrfs_ino(old_dir
), new_idx
);
9563 /* Update inode version and ctime/mtime. */
9564 inode_inc_iversion(old_dir
);
9565 inode_inc_iversion(new_dir
);
9566 inode_inc_iversion(old_inode
);
9567 inode_inc_iversion(new_inode
);
9568 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9569 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9570 old_inode
->i_ctime
= ctime
;
9571 new_inode
->i_ctime
= ctime
;
9573 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9574 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
9575 btrfs_record_unlink_dir(trans
, new_dir
, new_inode
, 1);
9578 /* src is a subvolume */
9579 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9580 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9581 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
,
9583 old_dentry
->d_name
.name
,
9584 old_dentry
->d_name
.len
);
9585 } else { /* src is an inode */
9586 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
9587 old_dentry
->d_inode
,
9588 old_dentry
->d_name
.name
,
9589 old_dentry
->d_name
.len
);
9591 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9594 btrfs_abort_transaction(trans
, ret
);
9598 /* dest is a subvolume */
9599 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9600 root_objectid
= BTRFS_I(new_inode
)->root
->root_key
.objectid
;
9601 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9603 new_dentry
->d_name
.name
,
9604 new_dentry
->d_name
.len
);
9605 } else { /* dest is an inode */
9606 ret
= __btrfs_unlink_inode(trans
, dest
, new_dir
,
9607 new_dentry
->d_inode
,
9608 new_dentry
->d_name
.name
,
9609 new_dentry
->d_name
.len
);
9611 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9614 btrfs_abort_transaction(trans
, ret
);
9618 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
9619 new_dentry
->d_name
.name
,
9620 new_dentry
->d_name
.len
, 0, old_idx
);
9622 btrfs_abort_transaction(trans
, ret
);
9626 ret
= btrfs_add_link(trans
, old_dir
, new_inode
,
9627 old_dentry
->d_name
.name
,
9628 old_dentry
->d_name
.len
, 0, new_idx
);
9630 btrfs_abort_transaction(trans
, ret
);
9634 if (old_inode
->i_nlink
== 1)
9635 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9636 if (new_inode
->i_nlink
== 1)
9637 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9639 if (root_log_pinned
) {
9640 parent
= new_dentry
->d_parent
;
9641 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
9642 btrfs_end_log_trans(root
);
9643 root_log_pinned
= false;
9645 if (dest_log_pinned
) {
9646 parent
= old_dentry
->d_parent
;
9647 btrfs_log_new_name(trans
, new_inode
, new_dir
, parent
);
9648 btrfs_end_log_trans(dest
);
9649 dest_log_pinned
= false;
9653 * If we have pinned a log and an error happened, we unpin tasks
9654 * trying to sync the log and force them to fallback to a transaction
9655 * commit if the log currently contains any of the inodes involved in
9656 * this rename operation (to ensure we do not persist a log with an
9657 * inconsistent state for any of these inodes or leading to any
9658 * inconsistencies when replayed). If the transaction was aborted, the
9659 * abortion reason is propagated to userspace when attempting to commit
9660 * the transaction. If the log does not contain any of these inodes, we
9661 * allow the tasks to sync it.
9663 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9664 if (btrfs_inode_in_log(old_dir
, root
->fs_info
->generation
) ||
9665 btrfs_inode_in_log(new_dir
, root
->fs_info
->generation
) ||
9666 btrfs_inode_in_log(old_inode
, root
->fs_info
->generation
) ||
9668 btrfs_inode_in_log(new_inode
, root
->fs_info
->generation
)))
9669 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9671 if (root_log_pinned
) {
9672 btrfs_end_log_trans(root
);
9673 root_log_pinned
= false;
9675 if (dest_log_pinned
) {
9676 btrfs_end_log_trans(dest
);
9677 dest_log_pinned
= false;
9680 ret
= btrfs_end_transaction(trans
, root
);
9682 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9683 up_read(&dest
->fs_info
->subvol_sem
);
9684 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9685 up_read(&root
->fs_info
->subvol_sem
);
9690 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9691 struct btrfs_root
*root
,
9693 struct dentry
*dentry
)
9696 struct inode
*inode
;
9700 ret
= btrfs_find_free_ino(root
, &objectid
);
9704 inode
= btrfs_new_inode(trans
, root
, dir
,
9705 dentry
->d_name
.name
,
9709 S_IFCHR
| WHITEOUT_MODE
,
9712 if (IS_ERR(inode
)) {
9713 ret
= PTR_ERR(inode
);
9717 inode
->i_op
= &btrfs_special_inode_operations
;
9718 init_special_inode(inode
, inode
->i_mode
,
9721 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9726 ret
= btrfs_add_nondir(trans
, dir
, dentry
,
9731 ret
= btrfs_update_inode(trans
, root
, inode
);
9733 unlock_new_inode(inode
);
9735 inode_dec_link_count(inode
);
9741 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9742 struct inode
*new_dir
, struct dentry
*new_dentry
,
9745 struct btrfs_trans_handle
*trans
;
9746 unsigned int trans_num_items
;
9747 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9748 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9749 struct inode
*new_inode
= d_inode(new_dentry
);
9750 struct inode
*old_inode
= d_inode(old_dentry
);
9754 u64 old_ino
= btrfs_ino(old_inode
);
9755 bool log_pinned
= false;
9757 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9760 /* we only allow rename subvolume link between subvolumes */
9761 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9764 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9765 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
9768 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9769 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9773 /* check for collisions, even if the name isn't there */
9774 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9775 new_dentry
->d_name
.name
,
9776 new_dentry
->d_name
.len
);
9779 if (ret
== -EEXIST
) {
9781 * eexist without a new_inode */
9782 if (WARN_ON(!new_inode
)) {
9786 /* maybe -EOVERFLOW */
9793 * we're using rename to replace one file with another. Start IO on it
9794 * now so we don't add too much work to the end of the transaction
9796 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9797 filemap_flush(old_inode
->i_mapping
);
9799 /* close the racy window with snapshot create/destroy ioctl */
9800 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9801 down_read(&root
->fs_info
->subvol_sem
);
9803 * We want to reserve the absolute worst case amount of items. So if
9804 * both inodes are subvols and we need to unlink them then that would
9805 * require 4 item modifications, but if they are both normal inodes it
9806 * would require 5 item modifications, so we'll assume they are normal
9807 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9808 * should cover the worst case number of items we'll modify.
9809 * If our rename has the whiteout flag, we need more 5 units for the
9810 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9811 * when selinux is enabled).
9813 trans_num_items
= 11;
9814 if (flags
& RENAME_WHITEOUT
)
9815 trans_num_items
+= 5;
9816 trans
= btrfs_start_transaction(root
, trans_num_items
);
9817 if (IS_ERR(trans
)) {
9818 ret
= PTR_ERR(trans
);
9823 btrfs_record_root_in_trans(trans
, dest
);
9825 ret
= btrfs_set_inode_index(new_dir
, &index
);
9829 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9830 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9831 /* force full log commit if subvolume involved. */
9832 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9834 btrfs_pin_log_trans(root
);
9836 ret
= btrfs_insert_inode_ref(trans
, dest
,
9837 new_dentry
->d_name
.name
,
9838 new_dentry
->d_name
.len
,
9840 btrfs_ino(new_dir
), index
);
9845 inode_inc_iversion(old_dir
);
9846 inode_inc_iversion(new_dir
);
9847 inode_inc_iversion(old_inode
);
9848 old_dir
->i_ctime
= old_dir
->i_mtime
=
9849 new_dir
->i_ctime
= new_dir
->i_mtime
=
9850 old_inode
->i_ctime
= current_fs_time(old_dir
->i_sb
);
9852 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9853 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
9855 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9856 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9857 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
9858 old_dentry
->d_name
.name
,
9859 old_dentry
->d_name
.len
);
9861 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
9862 d_inode(old_dentry
),
9863 old_dentry
->d_name
.name
,
9864 old_dentry
->d_name
.len
);
9866 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9869 btrfs_abort_transaction(trans
, ret
);
9874 inode_inc_iversion(new_inode
);
9875 new_inode
->i_ctime
= current_fs_time(new_inode
->i_sb
);
9876 if (unlikely(btrfs_ino(new_inode
) ==
9877 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9878 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
9879 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9881 new_dentry
->d_name
.name
,
9882 new_dentry
->d_name
.len
);
9883 BUG_ON(new_inode
->i_nlink
== 0);
9885 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
9886 d_inode(new_dentry
),
9887 new_dentry
->d_name
.name
,
9888 new_dentry
->d_name
.len
);
9890 if (!ret
&& new_inode
->i_nlink
== 0)
9891 ret
= btrfs_orphan_add(trans
, d_inode(new_dentry
));
9893 btrfs_abort_transaction(trans
, ret
);
9898 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
9899 new_dentry
->d_name
.name
,
9900 new_dentry
->d_name
.len
, 0, index
);
9902 btrfs_abort_transaction(trans
, ret
);
9906 if (old_inode
->i_nlink
== 1)
9907 BTRFS_I(old_inode
)->dir_index
= index
;
9910 struct dentry
*parent
= new_dentry
->d_parent
;
9912 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
9913 btrfs_end_log_trans(root
);
9917 if (flags
& RENAME_WHITEOUT
) {
9918 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
9922 btrfs_abort_transaction(trans
, ret
);
9928 * If we have pinned the log and an error happened, we unpin tasks
9929 * trying to sync the log and force them to fallback to a transaction
9930 * commit if the log currently contains any of the inodes involved in
9931 * this rename operation (to ensure we do not persist a log with an
9932 * inconsistent state for any of these inodes or leading to any
9933 * inconsistencies when replayed). If the transaction was aborted, the
9934 * abortion reason is propagated to userspace when attempting to commit
9935 * the transaction. If the log does not contain any of these inodes, we
9936 * allow the tasks to sync it.
9938 if (ret
&& log_pinned
) {
9939 if (btrfs_inode_in_log(old_dir
, root
->fs_info
->generation
) ||
9940 btrfs_inode_in_log(new_dir
, root
->fs_info
->generation
) ||
9941 btrfs_inode_in_log(old_inode
, root
->fs_info
->generation
) ||
9943 btrfs_inode_in_log(new_inode
, root
->fs_info
->generation
)))
9944 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9946 btrfs_end_log_trans(root
);
9949 btrfs_end_transaction(trans
, root
);
9951 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9952 up_read(&root
->fs_info
->subvol_sem
);
9957 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9958 struct inode
*new_dir
, struct dentry
*new_dentry
,
9961 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
9964 if (flags
& RENAME_EXCHANGE
)
9965 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
9968 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
9971 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9973 struct btrfs_delalloc_work
*delalloc_work
;
9974 struct inode
*inode
;
9976 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9978 inode
= delalloc_work
->inode
;
9979 filemap_flush(inode
->i_mapping
);
9980 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9981 &BTRFS_I(inode
)->runtime_flags
))
9982 filemap_flush(inode
->i_mapping
);
9984 if (delalloc_work
->delay_iput
)
9985 btrfs_add_delayed_iput(inode
);
9988 complete(&delalloc_work
->completion
);
9991 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
9994 struct btrfs_delalloc_work
*work
;
9996 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
10000 init_completion(&work
->completion
);
10001 INIT_LIST_HEAD(&work
->list
);
10002 work
->inode
= inode
;
10003 work
->delay_iput
= delay_iput
;
10004 WARN_ON_ONCE(!inode
);
10005 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
10006 btrfs_run_delalloc_work
, NULL
, NULL
);
10011 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
10013 wait_for_completion(&work
->completion
);
10018 * some fairly slow code that needs optimization. This walks the list
10019 * of all the inodes with pending delalloc and forces them to disk.
10021 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
,
10024 struct btrfs_inode
*binode
;
10025 struct inode
*inode
;
10026 struct btrfs_delalloc_work
*work
, *next
;
10027 struct list_head works
;
10028 struct list_head splice
;
10031 INIT_LIST_HEAD(&works
);
10032 INIT_LIST_HEAD(&splice
);
10034 mutex_lock(&root
->delalloc_mutex
);
10035 spin_lock(&root
->delalloc_lock
);
10036 list_splice_init(&root
->delalloc_inodes
, &splice
);
10037 while (!list_empty(&splice
)) {
10038 binode
= list_entry(splice
.next
, struct btrfs_inode
,
10041 list_move_tail(&binode
->delalloc_inodes
,
10042 &root
->delalloc_inodes
);
10043 inode
= igrab(&binode
->vfs_inode
);
10045 cond_resched_lock(&root
->delalloc_lock
);
10048 spin_unlock(&root
->delalloc_lock
);
10050 work
= btrfs_alloc_delalloc_work(inode
, delay_iput
);
10053 btrfs_add_delayed_iput(inode
);
10059 list_add_tail(&work
->list
, &works
);
10060 btrfs_queue_work(root
->fs_info
->flush_workers
,
10063 if (nr
!= -1 && ret
>= nr
)
10066 spin_lock(&root
->delalloc_lock
);
10068 spin_unlock(&root
->delalloc_lock
);
10071 list_for_each_entry_safe(work
, next
, &works
, list
) {
10072 list_del_init(&work
->list
);
10073 btrfs_wait_and_free_delalloc_work(work
);
10076 if (!list_empty_careful(&splice
)) {
10077 spin_lock(&root
->delalloc_lock
);
10078 list_splice_tail(&splice
, &root
->delalloc_inodes
);
10079 spin_unlock(&root
->delalloc_lock
);
10081 mutex_unlock(&root
->delalloc_mutex
);
10085 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
10089 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
10092 ret
= __start_delalloc_inodes(root
, delay_iput
, -1);
10096 * the filemap_flush will queue IO into the worker threads, but
10097 * we have to make sure the IO is actually started and that
10098 * ordered extents get created before we return
10100 atomic_inc(&root
->fs_info
->async_submit_draining
);
10101 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
10102 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
10103 wait_event(root
->fs_info
->async_submit_wait
,
10104 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
10105 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
10107 atomic_dec(&root
->fs_info
->async_submit_draining
);
10111 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int delay_iput
,
10114 struct btrfs_root
*root
;
10115 struct list_head splice
;
10118 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10121 INIT_LIST_HEAD(&splice
);
10123 mutex_lock(&fs_info
->delalloc_root_mutex
);
10124 spin_lock(&fs_info
->delalloc_root_lock
);
10125 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
10126 while (!list_empty(&splice
) && nr
) {
10127 root
= list_first_entry(&splice
, struct btrfs_root
,
10129 root
= btrfs_grab_fs_root(root
);
10131 list_move_tail(&root
->delalloc_root
,
10132 &fs_info
->delalloc_roots
);
10133 spin_unlock(&fs_info
->delalloc_root_lock
);
10135 ret
= __start_delalloc_inodes(root
, delay_iput
, nr
);
10136 btrfs_put_fs_root(root
);
10144 spin_lock(&fs_info
->delalloc_root_lock
);
10146 spin_unlock(&fs_info
->delalloc_root_lock
);
10149 atomic_inc(&fs_info
->async_submit_draining
);
10150 while (atomic_read(&fs_info
->nr_async_submits
) ||
10151 atomic_read(&fs_info
->async_delalloc_pages
)) {
10152 wait_event(fs_info
->async_submit_wait
,
10153 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
10154 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
10156 atomic_dec(&fs_info
->async_submit_draining
);
10158 if (!list_empty_careful(&splice
)) {
10159 spin_lock(&fs_info
->delalloc_root_lock
);
10160 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
10161 spin_unlock(&fs_info
->delalloc_root_lock
);
10163 mutex_unlock(&fs_info
->delalloc_root_mutex
);
10167 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
10168 const char *symname
)
10170 struct btrfs_trans_handle
*trans
;
10171 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10172 struct btrfs_path
*path
;
10173 struct btrfs_key key
;
10174 struct inode
*inode
= NULL
;
10176 int drop_inode
= 0;
10182 struct btrfs_file_extent_item
*ei
;
10183 struct extent_buffer
*leaf
;
10185 name_len
= strlen(symname
);
10186 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
10187 return -ENAMETOOLONG
;
10190 * 2 items for inode item and ref
10191 * 2 items for dir items
10192 * 1 item for updating parent inode item
10193 * 1 item for the inline extent item
10194 * 1 item for xattr if selinux is on
10196 trans
= btrfs_start_transaction(root
, 7);
10198 return PTR_ERR(trans
);
10200 err
= btrfs_find_free_ino(root
, &objectid
);
10204 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
10205 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
10206 S_IFLNK
|S_IRWXUGO
, &index
);
10207 if (IS_ERR(inode
)) {
10208 err
= PTR_ERR(inode
);
10213 * If the active LSM wants to access the inode during
10214 * d_instantiate it needs these. Smack checks to see
10215 * if the filesystem supports xattrs by looking at the
10218 inode
->i_fop
= &btrfs_file_operations
;
10219 inode
->i_op
= &btrfs_file_inode_operations
;
10220 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10221 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10223 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
10225 goto out_unlock_inode
;
10227 path
= btrfs_alloc_path();
10230 goto out_unlock_inode
;
10232 key
.objectid
= btrfs_ino(inode
);
10234 key
.type
= BTRFS_EXTENT_DATA_KEY
;
10235 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
10236 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
10239 btrfs_free_path(path
);
10240 goto out_unlock_inode
;
10242 leaf
= path
->nodes
[0];
10243 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
10244 struct btrfs_file_extent_item
);
10245 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
10246 btrfs_set_file_extent_type(leaf
, ei
,
10247 BTRFS_FILE_EXTENT_INLINE
);
10248 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
10249 btrfs_set_file_extent_compression(leaf
, ei
, 0);
10250 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
10251 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
10253 ptr
= btrfs_file_extent_inline_start(ei
);
10254 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
10255 btrfs_mark_buffer_dirty(leaf
);
10256 btrfs_free_path(path
);
10258 inode
->i_op
= &btrfs_symlink_inode_operations
;
10259 inode_nohighmem(inode
);
10260 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
10261 inode_set_bytes(inode
, name_len
);
10262 btrfs_i_size_write(inode
, name_len
);
10263 err
= btrfs_update_inode(trans
, root
, inode
);
10265 * Last step, add directory indexes for our symlink inode. This is the
10266 * last step to avoid extra cleanup of these indexes if an error happens
10270 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
10273 goto out_unlock_inode
;
10276 unlock_new_inode(inode
);
10277 d_instantiate(dentry
, inode
);
10280 btrfs_end_transaction(trans
, root
);
10282 inode_dec_link_count(inode
);
10285 btrfs_btree_balance_dirty(root
);
10290 unlock_new_inode(inode
);
10294 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10295 u64 start
, u64 num_bytes
, u64 min_size
,
10296 loff_t actual_len
, u64
*alloc_hint
,
10297 struct btrfs_trans_handle
*trans
)
10299 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
10300 struct extent_map
*em
;
10301 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10302 struct btrfs_key ins
;
10303 u64 cur_offset
= start
;
10306 u64 last_alloc
= (u64
)-1;
10308 bool own_trans
= true;
10312 while (num_bytes
> 0) {
10314 trans
= btrfs_start_transaction(root
, 3);
10315 if (IS_ERR(trans
)) {
10316 ret
= PTR_ERR(trans
);
10321 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
10322 cur_bytes
= max(cur_bytes
, min_size
);
10324 * If we are severely fragmented we could end up with really
10325 * small allocations, so if the allocator is returning small
10326 * chunks lets make its job easier by only searching for those
10329 cur_bytes
= min(cur_bytes
, last_alloc
);
10330 ret
= btrfs_reserve_extent(root
, cur_bytes
, min_size
, 0,
10331 *alloc_hint
, &ins
, 1, 0);
10334 btrfs_end_transaction(trans
, root
);
10337 btrfs_dec_block_group_reservations(root
->fs_info
, ins
.objectid
);
10339 last_alloc
= ins
.offset
;
10340 ret
= insert_reserved_file_extent(trans
, inode
,
10341 cur_offset
, ins
.objectid
,
10342 ins
.offset
, ins
.offset
,
10343 ins
.offset
, 0, 0, 0,
10344 BTRFS_FILE_EXTENT_PREALLOC
);
10346 btrfs_free_reserved_extent(root
, ins
.objectid
,
10348 btrfs_abort_transaction(trans
, ret
);
10350 btrfs_end_transaction(trans
, root
);
10354 btrfs_drop_extent_cache(inode
, cur_offset
,
10355 cur_offset
+ ins
.offset
-1, 0);
10357 em
= alloc_extent_map();
10359 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
10360 &BTRFS_I(inode
)->runtime_flags
);
10364 em
->start
= cur_offset
;
10365 em
->orig_start
= cur_offset
;
10366 em
->len
= ins
.offset
;
10367 em
->block_start
= ins
.objectid
;
10368 em
->block_len
= ins
.offset
;
10369 em
->orig_block_len
= ins
.offset
;
10370 em
->ram_bytes
= ins
.offset
;
10371 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
10372 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
10373 em
->generation
= trans
->transid
;
10376 write_lock(&em_tree
->lock
);
10377 ret
= add_extent_mapping(em_tree
, em
, 1);
10378 write_unlock(&em_tree
->lock
);
10379 if (ret
!= -EEXIST
)
10381 btrfs_drop_extent_cache(inode
, cur_offset
,
10382 cur_offset
+ ins
.offset
- 1,
10385 free_extent_map(em
);
10387 num_bytes
-= ins
.offset
;
10388 cur_offset
+= ins
.offset
;
10389 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10391 inode_inc_iversion(inode
);
10392 inode
->i_ctime
= current_fs_time(inode
->i_sb
);
10393 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10394 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10395 (actual_len
> inode
->i_size
) &&
10396 (cur_offset
> inode
->i_size
)) {
10397 if (cur_offset
> actual_len
)
10398 i_size
= actual_len
;
10400 i_size
= cur_offset
;
10401 i_size_write(inode
, i_size
);
10402 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
10405 ret
= btrfs_update_inode(trans
, root
, inode
);
10408 btrfs_abort_transaction(trans
, ret
);
10410 btrfs_end_transaction(trans
, root
);
10415 btrfs_end_transaction(trans
, root
);
10420 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10421 u64 start
, u64 num_bytes
, u64 min_size
,
10422 loff_t actual_len
, u64
*alloc_hint
)
10424 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10425 min_size
, actual_len
, alloc_hint
,
10429 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10430 struct btrfs_trans_handle
*trans
, int mode
,
10431 u64 start
, u64 num_bytes
, u64 min_size
,
10432 loff_t actual_len
, u64
*alloc_hint
)
10434 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10435 min_size
, actual_len
, alloc_hint
, trans
);
10438 static int btrfs_set_page_dirty(struct page
*page
)
10440 return __set_page_dirty_nobuffers(page
);
10443 static int btrfs_permission(struct inode
*inode
, int mask
)
10445 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10446 umode_t mode
= inode
->i_mode
;
10448 if (mask
& MAY_WRITE
&&
10449 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10450 if (btrfs_root_readonly(root
))
10452 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10455 return generic_permission(inode
, mask
);
10458 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10460 struct btrfs_trans_handle
*trans
;
10461 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10462 struct inode
*inode
= NULL
;
10468 * 5 units required for adding orphan entry
10470 trans
= btrfs_start_transaction(root
, 5);
10472 return PTR_ERR(trans
);
10474 ret
= btrfs_find_free_ino(root
, &objectid
);
10478 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10479 btrfs_ino(dir
), objectid
, mode
, &index
);
10480 if (IS_ERR(inode
)) {
10481 ret
= PTR_ERR(inode
);
10486 inode
->i_fop
= &btrfs_file_operations
;
10487 inode
->i_op
= &btrfs_file_inode_operations
;
10489 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10490 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10492 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10496 ret
= btrfs_update_inode(trans
, root
, inode
);
10499 ret
= btrfs_orphan_add(trans
, inode
);
10504 * We set number of links to 0 in btrfs_new_inode(), and here we set
10505 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10508 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10510 set_nlink(inode
, 1);
10511 unlock_new_inode(inode
);
10512 d_tmpfile(dentry
, inode
);
10513 mark_inode_dirty(inode
);
10516 btrfs_end_transaction(trans
, root
);
10519 btrfs_balance_delayed_items(root
);
10520 btrfs_btree_balance_dirty(root
);
10524 unlock_new_inode(inode
);
10529 /* Inspired by filemap_check_errors() */
10530 int btrfs_inode_check_errors(struct inode
*inode
)
10534 if (test_bit(AS_ENOSPC
, &inode
->i_mapping
->flags
) &&
10535 test_and_clear_bit(AS_ENOSPC
, &inode
->i_mapping
->flags
))
10537 if (test_bit(AS_EIO
, &inode
->i_mapping
->flags
) &&
10538 test_and_clear_bit(AS_EIO
, &inode
->i_mapping
->flags
))
10544 static const struct inode_operations btrfs_dir_inode_operations
= {
10545 .getattr
= btrfs_getattr
,
10546 .lookup
= btrfs_lookup
,
10547 .create
= btrfs_create
,
10548 .unlink
= btrfs_unlink
,
10549 .link
= btrfs_link
,
10550 .mkdir
= btrfs_mkdir
,
10551 .rmdir
= btrfs_rmdir
,
10552 .rename2
= btrfs_rename2
,
10553 .symlink
= btrfs_symlink
,
10554 .setattr
= btrfs_setattr
,
10555 .mknod
= btrfs_mknod
,
10556 .setxattr
= generic_setxattr
,
10557 .getxattr
= generic_getxattr
,
10558 .listxattr
= btrfs_listxattr
,
10559 .removexattr
= generic_removexattr
,
10560 .permission
= btrfs_permission
,
10561 .get_acl
= btrfs_get_acl
,
10562 .set_acl
= btrfs_set_acl
,
10563 .update_time
= btrfs_update_time
,
10564 .tmpfile
= btrfs_tmpfile
,
10566 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
10567 .lookup
= btrfs_lookup
,
10568 .permission
= btrfs_permission
,
10569 .get_acl
= btrfs_get_acl
,
10570 .set_acl
= btrfs_set_acl
,
10571 .update_time
= btrfs_update_time
,
10574 static const struct file_operations btrfs_dir_file_operations
= {
10575 .llseek
= generic_file_llseek
,
10576 .read
= generic_read_dir
,
10577 .iterate_shared
= btrfs_real_readdir
,
10578 .unlocked_ioctl
= btrfs_ioctl
,
10579 #ifdef CONFIG_COMPAT
10580 .compat_ioctl
= btrfs_compat_ioctl
,
10582 .release
= btrfs_release_file
,
10583 .fsync
= btrfs_sync_file
,
10586 static const struct extent_io_ops btrfs_extent_io_ops
= {
10587 .fill_delalloc
= run_delalloc_range
,
10588 .submit_bio_hook
= btrfs_submit_bio_hook
,
10589 .merge_bio_hook
= btrfs_merge_bio_hook
,
10590 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10591 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
10592 .writepage_start_hook
= btrfs_writepage_start_hook
,
10593 .set_bit_hook
= btrfs_set_bit_hook
,
10594 .clear_bit_hook
= btrfs_clear_bit_hook
,
10595 .merge_extent_hook
= btrfs_merge_extent_hook
,
10596 .split_extent_hook
= btrfs_split_extent_hook
,
10600 * btrfs doesn't support the bmap operation because swapfiles
10601 * use bmap to make a mapping of extents in the file. They assume
10602 * these extents won't change over the life of the file and they
10603 * use the bmap result to do IO directly to the drive.
10605 * the btrfs bmap call would return logical addresses that aren't
10606 * suitable for IO and they also will change frequently as COW
10607 * operations happen. So, swapfile + btrfs == corruption.
10609 * For now we're avoiding this by dropping bmap.
10611 static const struct address_space_operations btrfs_aops
= {
10612 .readpage
= btrfs_readpage
,
10613 .writepage
= btrfs_writepage
,
10614 .writepages
= btrfs_writepages
,
10615 .readpages
= btrfs_readpages
,
10616 .direct_IO
= btrfs_direct_IO
,
10617 .invalidatepage
= btrfs_invalidatepage
,
10618 .releasepage
= btrfs_releasepage
,
10619 .set_page_dirty
= btrfs_set_page_dirty
,
10620 .error_remove_page
= generic_error_remove_page
,
10623 static const struct address_space_operations btrfs_symlink_aops
= {
10624 .readpage
= btrfs_readpage
,
10625 .writepage
= btrfs_writepage
,
10626 .invalidatepage
= btrfs_invalidatepage
,
10627 .releasepage
= btrfs_releasepage
,
10630 static const struct inode_operations btrfs_file_inode_operations
= {
10631 .getattr
= btrfs_getattr
,
10632 .setattr
= btrfs_setattr
,
10633 .setxattr
= generic_setxattr
,
10634 .getxattr
= generic_getxattr
,
10635 .listxattr
= btrfs_listxattr
,
10636 .removexattr
= generic_removexattr
,
10637 .permission
= btrfs_permission
,
10638 .fiemap
= btrfs_fiemap
,
10639 .get_acl
= btrfs_get_acl
,
10640 .set_acl
= btrfs_set_acl
,
10641 .update_time
= btrfs_update_time
,
10643 static const struct inode_operations btrfs_special_inode_operations
= {
10644 .getattr
= btrfs_getattr
,
10645 .setattr
= btrfs_setattr
,
10646 .permission
= btrfs_permission
,
10647 .setxattr
= generic_setxattr
,
10648 .getxattr
= generic_getxattr
,
10649 .listxattr
= btrfs_listxattr
,
10650 .removexattr
= generic_removexattr
,
10651 .get_acl
= btrfs_get_acl
,
10652 .set_acl
= btrfs_set_acl
,
10653 .update_time
= btrfs_update_time
,
10655 static const struct inode_operations btrfs_symlink_inode_operations
= {
10656 .readlink
= generic_readlink
,
10657 .get_link
= page_get_link
,
10658 .getattr
= btrfs_getattr
,
10659 .setattr
= btrfs_setattr
,
10660 .permission
= btrfs_permission
,
10661 .setxattr
= generic_setxattr
,
10662 .getxattr
= generic_getxattr
,
10663 .listxattr
= btrfs_listxattr
,
10664 .removexattr
= generic_removexattr
,
10665 .update_time
= btrfs_update_time
,
10668 const struct dentry_operations btrfs_dentry_operations
= {
10669 .d_delete
= btrfs_dentry_delete
,
10670 .d_release
= btrfs_dentry_release
,