2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
63 #include "compression.h"
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
71 struct btrfs_ioctl_timespec_32
{
74 } __attribute__ ((__packed__
));
76 struct btrfs_ioctl_received_subvol_args_32
{
77 char uuid
[BTRFS_UUID_SIZE
]; /* in */
78 __u64 stransid
; /* in */
79 __u64 rtransid
; /* out */
80 struct btrfs_ioctl_timespec_32 stime
; /* in */
81 struct btrfs_ioctl_timespec_32 rtime
; /* out */
83 __u64 reserved
[16]; /* in */
84 } __attribute__ ((__packed__
));
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
91 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
92 u64 off
, u64 olen
, u64 olen_aligned
, u64 destoff
,
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
100 else if (S_ISREG(mode
))
101 return flags
& ~FS_DIRSYNC_FL
;
103 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
111 unsigned int iflags
= 0;
113 if (flags
& BTRFS_INODE_SYNC
)
114 iflags
|= FS_SYNC_FL
;
115 if (flags
& BTRFS_INODE_IMMUTABLE
)
116 iflags
|= FS_IMMUTABLE_FL
;
117 if (flags
& BTRFS_INODE_APPEND
)
118 iflags
|= FS_APPEND_FL
;
119 if (flags
& BTRFS_INODE_NODUMP
)
120 iflags
|= FS_NODUMP_FL
;
121 if (flags
& BTRFS_INODE_NOATIME
)
122 iflags
|= FS_NOATIME_FL
;
123 if (flags
& BTRFS_INODE_DIRSYNC
)
124 iflags
|= FS_DIRSYNC_FL
;
125 if (flags
& BTRFS_INODE_NODATACOW
)
126 iflags
|= FS_NOCOW_FL
;
128 if (flags
& BTRFS_INODE_NOCOMPRESS
)
129 iflags
|= FS_NOCOMP_FL
;
130 else if (flags
& BTRFS_INODE_COMPRESS
)
131 iflags
|= FS_COMPR_FL
;
137 * Update inode->i_flags based on the btrfs internal flags.
139 void btrfs_update_iflags(struct inode
*inode
)
141 struct btrfs_inode
*ip
= BTRFS_I(inode
);
142 unsigned int new_fl
= 0;
144 if (ip
->flags
& BTRFS_INODE_SYNC
)
146 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
147 new_fl
|= S_IMMUTABLE
;
148 if (ip
->flags
& BTRFS_INODE_APPEND
)
150 if (ip
->flags
& BTRFS_INODE_NOATIME
)
152 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
155 set_mask_bits(&inode
->i_flags
,
156 S_SYNC
| S_APPEND
| S_IMMUTABLE
| S_NOATIME
| S_DIRSYNC
,
161 * Inherit flags from the parent inode.
163 * Currently only the compression flags and the cow flags are inherited.
165 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
172 flags
= BTRFS_I(dir
)->flags
;
174 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
175 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
176 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
177 } else if (flags
& BTRFS_INODE_COMPRESS
) {
178 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
179 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
182 if (flags
& BTRFS_INODE_NODATACOW
) {
183 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
184 if (S_ISREG(inode
->i_mode
))
185 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
188 btrfs_update_iflags(inode
);
191 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
193 struct btrfs_inode
*ip
= BTRFS_I(file_inode(file
));
194 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
196 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
201 static int check_flags(unsigned int flags
)
203 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
204 FS_NOATIME_FL
| FS_NODUMP_FL
| \
205 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
206 FS_NOCOMP_FL
| FS_COMPR_FL
|
210 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
216 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
218 struct inode
*inode
= file_inode(file
);
219 struct btrfs_inode
*ip
= BTRFS_I(inode
);
220 struct btrfs_root
*root
= ip
->root
;
221 struct btrfs_trans_handle
*trans
;
222 unsigned int flags
, oldflags
;
225 unsigned int i_oldflags
;
228 if (!inode_owner_or_capable(inode
))
231 if (btrfs_root_readonly(root
))
234 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
237 ret
= check_flags(flags
);
241 ret
= mnt_want_write_file(file
);
247 ip_oldflags
= ip
->flags
;
248 i_oldflags
= inode
->i_flags
;
249 mode
= inode
->i_mode
;
251 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
252 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
253 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
254 if (!capable(CAP_LINUX_IMMUTABLE
)) {
260 if (flags
& FS_SYNC_FL
)
261 ip
->flags
|= BTRFS_INODE_SYNC
;
263 ip
->flags
&= ~BTRFS_INODE_SYNC
;
264 if (flags
& FS_IMMUTABLE_FL
)
265 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
267 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
268 if (flags
& FS_APPEND_FL
)
269 ip
->flags
|= BTRFS_INODE_APPEND
;
271 ip
->flags
&= ~BTRFS_INODE_APPEND
;
272 if (flags
& FS_NODUMP_FL
)
273 ip
->flags
|= BTRFS_INODE_NODUMP
;
275 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
276 if (flags
& FS_NOATIME_FL
)
277 ip
->flags
|= BTRFS_INODE_NOATIME
;
279 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
280 if (flags
& FS_DIRSYNC_FL
)
281 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
283 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
284 if (flags
& FS_NOCOW_FL
) {
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
291 if (inode
->i_size
== 0)
292 ip
->flags
|= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM
;
295 ip
->flags
|= BTRFS_INODE_NODATACOW
;
299 * Revert back under same assumptions as above
302 if (inode
->i_size
== 0)
303 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM
);
306 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
315 if (flags
& FS_NOCOMP_FL
) {
316 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
317 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
319 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
320 if (ret
&& ret
!= -ENODATA
)
322 } else if (flags
& FS_COMPR_FL
) {
325 ip
->flags
|= BTRFS_INODE_COMPRESS
;
326 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
328 if (root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
332 ret
= btrfs_set_prop(inode
, "btrfs.compression",
333 comp
, strlen(comp
), 0);
338 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
339 if (ret
&& ret
!= -ENODATA
)
341 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
344 trans
= btrfs_start_transaction(root
, 1);
346 ret
= PTR_ERR(trans
);
350 btrfs_update_iflags(inode
);
351 inode_inc_iversion(inode
);
352 inode
->i_ctime
= current_fs_time(inode
->i_sb
);
353 ret
= btrfs_update_inode(trans
, root
, inode
);
355 btrfs_end_transaction(trans
, root
);
358 ip
->flags
= ip_oldflags
;
359 inode
->i_flags
= i_oldflags
;
364 mnt_drop_write_file(file
);
368 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
370 struct inode
*inode
= file_inode(file
);
372 return put_user(inode
->i_generation
, arg
);
375 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
377 struct btrfs_fs_info
*fs_info
= btrfs_sb(file_inode(file
)->i_sb
);
378 struct btrfs_device
*device
;
379 struct request_queue
*q
;
380 struct fstrim_range range
;
381 u64 minlen
= ULLONG_MAX
;
383 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
386 if (!capable(CAP_SYS_ADMIN
))
390 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
394 q
= bdev_get_queue(device
->bdev
);
395 if (blk_queue_discard(q
)) {
397 minlen
= min((u64
)q
->limits
.discard_granularity
,
405 if (copy_from_user(&range
, arg
, sizeof(range
)))
407 if (range
.start
> total_bytes
||
408 range
.len
< fs_info
->sb
->s_blocksize
)
411 range
.len
= min(range
.len
, total_bytes
- range
.start
);
412 range
.minlen
= max(range
.minlen
, minlen
);
413 ret
= btrfs_trim_fs(fs_info
->tree_root
, &range
);
417 if (copy_to_user(arg
, &range
, sizeof(range
)))
423 int btrfs_is_empty_uuid(u8
*uuid
)
427 for (i
= 0; i
< BTRFS_UUID_SIZE
; i
++) {
434 static noinline
int create_subvol(struct inode
*dir
,
435 struct dentry
*dentry
,
436 char *name
, int namelen
,
438 struct btrfs_qgroup_inherit
*inherit
)
440 struct btrfs_trans_handle
*trans
;
441 struct btrfs_key key
;
442 struct btrfs_root_item
*root_item
;
443 struct btrfs_inode_item
*inode_item
;
444 struct extent_buffer
*leaf
;
445 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
446 struct btrfs_root
*new_root
;
447 struct btrfs_block_rsv block_rsv
;
448 struct timespec cur_time
= current_fs_time(dir
->i_sb
);
453 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
458 root_item
= kzalloc(sizeof(*root_item
), GFP_KERNEL
);
462 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
467 * Don't create subvolume whose level is not zero. Or qgroup will be
468 * screwed up since it assumes subvolume qgroup's level to be 0.
470 if (btrfs_qgroup_level(objectid
)) {
475 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
477 * The same as the snapshot creation, please see the comment
478 * of create_snapshot().
480 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
481 8, &qgroup_reserved
, false);
485 trans
= btrfs_start_transaction(root
, 0);
487 ret
= PTR_ERR(trans
);
488 btrfs_subvolume_release_metadata(root
, &block_rsv
,
492 trans
->block_rsv
= &block_rsv
;
493 trans
->bytes_reserved
= block_rsv
.size
;
495 ret
= btrfs_qgroup_inherit(trans
, root
->fs_info
, 0, objectid
, inherit
);
499 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
505 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
506 btrfs_set_header_bytenr(leaf
, leaf
->start
);
507 btrfs_set_header_generation(leaf
, trans
->transid
);
508 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
509 btrfs_set_header_owner(leaf
, objectid
);
511 write_extent_buffer(leaf
, root
->fs_info
->fsid
, btrfs_header_fsid(),
513 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
514 btrfs_header_chunk_tree_uuid(leaf
),
516 btrfs_mark_buffer_dirty(leaf
);
518 inode_item
= &root_item
->inode
;
519 btrfs_set_stack_inode_generation(inode_item
, 1);
520 btrfs_set_stack_inode_size(inode_item
, 3);
521 btrfs_set_stack_inode_nlink(inode_item
, 1);
522 btrfs_set_stack_inode_nbytes(inode_item
, root
->nodesize
);
523 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
525 btrfs_set_root_flags(root_item
, 0);
526 btrfs_set_root_limit(root_item
, 0);
527 btrfs_set_stack_inode_flags(inode_item
, BTRFS_INODE_ROOT_ITEM_INIT
);
529 btrfs_set_root_bytenr(root_item
, leaf
->start
);
530 btrfs_set_root_generation(root_item
, trans
->transid
);
531 btrfs_set_root_level(root_item
, 0);
532 btrfs_set_root_refs(root_item
, 1);
533 btrfs_set_root_used(root_item
, leaf
->len
);
534 btrfs_set_root_last_snapshot(root_item
, 0);
536 btrfs_set_root_generation_v2(root_item
,
537 btrfs_root_generation(root_item
));
538 uuid_le_gen(&new_uuid
);
539 memcpy(root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
540 btrfs_set_stack_timespec_sec(&root_item
->otime
, cur_time
.tv_sec
);
541 btrfs_set_stack_timespec_nsec(&root_item
->otime
, cur_time
.tv_nsec
);
542 root_item
->ctime
= root_item
->otime
;
543 btrfs_set_root_ctransid(root_item
, trans
->transid
);
544 btrfs_set_root_otransid(root_item
, trans
->transid
);
546 btrfs_tree_unlock(leaf
);
547 free_extent_buffer(leaf
);
550 btrfs_set_root_dirid(root_item
, new_dirid
);
552 key
.objectid
= objectid
;
554 key
.type
= BTRFS_ROOT_ITEM_KEY
;
555 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
560 key
.offset
= (u64
)-1;
561 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
562 if (IS_ERR(new_root
)) {
563 ret
= PTR_ERR(new_root
);
564 btrfs_abort_transaction(trans
, ret
);
568 btrfs_record_root_in_trans(trans
, new_root
);
570 ret
= btrfs_create_subvol_root(trans
, new_root
, root
, new_dirid
);
572 /* We potentially lose an unused inode item here */
573 btrfs_abort_transaction(trans
, ret
);
577 mutex_lock(&new_root
->objectid_mutex
);
578 new_root
->highest_objectid
= new_dirid
;
579 mutex_unlock(&new_root
->objectid_mutex
);
582 * insert the directory item
584 ret
= btrfs_set_inode_index(dir
, &index
);
586 btrfs_abort_transaction(trans
, ret
);
590 ret
= btrfs_insert_dir_item(trans
, root
,
591 name
, namelen
, dir
, &key
,
592 BTRFS_FT_DIR
, index
);
594 btrfs_abort_transaction(trans
, ret
);
598 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
599 ret
= btrfs_update_inode(trans
, root
, dir
);
602 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
603 objectid
, root
->root_key
.objectid
,
604 btrfs_ino(dir
), index
, name
, namelen
);
607 ret
= btrfs_uuid_tree_add(trans
, root
->fs_info
->uuid_root
,
608 root_item
->uuid
, BTRFS_UUID_KEY_SUBVOL
,
611 btrfs_abort_transaction(trans
, ret
);
615 trans
->block_rsv
= NULL
;
616 trans
->bytes_reserved
= 0;
617 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
620 *async_transid
= trans
->transid
;
621 err
= btrfs_commit_transaction_async(trans
, root
, 1);
623 err
= btrfs_commit_transaction(trans
, root
);
625 err
= btrfs_commit_transaction(trans
, root
);
631 inode
= btrfs_lookup_dentry(dir
, dentry
);
633 return PTR_ERR(inode
);
634 d_instantiate(dentry
, inode
);
643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root
*root
)
649 prepare_to_wait(&root
->subv_writers
->wait
, &wait
,
650 TASK_UNINTERRUPTIBLE
);
652 writers
= percpu_counter_sum(&root
->subv_writers
->counter
);
656 finish_wait(&root
->subv_writers
->wait
, &wait
);
660 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
661 struct dentry
*dentry
, char *name
, int namelen
,
662 u64
*async_transid
, bool readonly
,
663 struct btrfs_qgroup_inherit
*inherit
)
666 struct btrfs_pending_snapshot
*pending_snapshot
;
667 struct btrfs_trans_handle
*trans
;
670 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
673 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
674 if (!pending_snapshot
)
677 pending_snapshot
->root_item
= kzalloc(sizeof(struct btrfs_root_item
),
679 pending_snapshot
->path
= btrfs_alloc_path();
680 if (!pending_snapshot
->root_item
|| !pending_snapshot
->path
) {
685 atomic_inc(&root
->will_be_snapshoted
);
686 smp_mb__after_atomic();
687 btrfs_wait_for_no_snapshoting_writes(root
);
689 ret
= btrfs_start_delalloc_inodes(root
, 0);
693 btrfs_wait_ordered_extents(root
, -1, 0, (u64
)-1);
695 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
696 BTRFS_BLOCK_RSV_TEMP
);
698 * 1 - parent dir inode
701 * 2 - root ref/backref
702 * 1 - root of snapshot
705 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
706 &pending_snapshot
->block_rsv
, 8,
707 &pending_snapshot
->qgroup_reserved
,
712 pending_snapshot
->dentry
= dentry
;
713 pending_snapshot
->root
= root
;
714 pending_snapshot
->readonly
= readonly
;
715 pending_snapshot
->dir
= dir
;
716 pending_snapshot
->inherit
= inherit
;
718 trans
= btrfs_start_transaction(root
, 0);
720 ret
= PTR_ERR(trans
);
724 spin_lock(&root
->fs_info
->trans_lock
);
725 list_add(&pending_snapshot
->list
,
726 &trans
->transaction
->pending_snapshots
);
727 spin_unlock(&root
->fs_info
->trans_lock
);
729 *async_transid
= trans
->transid
;
730 ret
= btrfs_commit_transaction_async(trans
,
731 root
->fs_info
->extent_root
, 1);
733 ret
= btrfs_commit_transaction(trans
, root
);
735 ret
= btrfs_commit_transaction(trans
,
736 root
->fs_info
->extent_root
);
741 ret
= pending_snapshot
->error
;
745 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
749 inode
= btrfs_lookup_dentry(d_inode(dentry
->d_parent
), dentry
);
751 ret
= PTR_ERR(inode
);
755 d_instantiate(dentry
, inode
);
758 btrfs_subvolume_release_metadata(BTRFS_I(dir
)->root
,
759 &pending_snapshot
->block_rsv
,
760 pending_snapshot
->qgroup_reserved
);
762 if (atomic_dec_and_test(&root
->will_be_snapshoted
))
763 wake_up_atomic_t(&root
->will_be_snapshoted
);
765 kfree(pending_snapshot
->root_item
);
766 btrfs_free_path(pending_snapshot
->path
);
767 kfree(pending_snapshot
);
772 /* copy of may_delete in fs/namei.c()
773 * Check whether we can remove a link victim from directory dir, check
774 * whether the type of victim is right.
775 * 1. We can't do it if dir is read-only (done in permission())
776 * 2. We should have write and exec permissions on dir
777 * 3. We can't remove anything from append-only dir
778 * 4. We can't do anything with immutable dir (done in permission())
779 * 5. If the sticky bit on dir is set we should either
780 * a. be owner of dir, or
781 * b. be owner of victim, or
782 * c. have CAP_FOWNER capability
783 * 6. If the victim is append-only or immutable we can't do anything with
784 * links pointing to it.
785 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
786 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
787 * 9. We can't remove a root or mountpoint.
788 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
789 * nfs_async_unlink().
792 static int btrfs_may_delete(struct inode
*dir
, struct dentry
*victim
, int isdir
)
796 if (d_really_is_negative(victim
))
799 BUG_ON(d_inode(victim
->d_parent
) != dir
);
800 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
802 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
807 if (check_sticky(dir
, d_inode(victim
)) || IS_APPEND(d_inode(victim
)) ||
808 IS_IMMUTABLE(d_inode(victim
)) || IS_SWAPFILE(d_inode(victim
)))
811 if (!d_is_dir(victim
))
815 } else if (d_is_dir(victim
))
819 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
824 /* copy of may_create in fs/namei.c() */
825 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
827 if (d_really_is_positive(child
))
831 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
835 * Create a new subvolume below @parent. This is largely modeled after
836 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
837 * inside this filesystem so it's quite a bit simpler.
839 static noinline
int btrfs_mksubvol(struct path
*parent
,
840 char *name
, int namelen
,
841 struct btrfs_root
*snap_src
,
842 u64
*async_transid
, bool readonly
,
843 struct btrfs_qgroup_inherit
*inherit
)
845 struct inode
*dir
= d_inode(parent
->dentry
);
846 struct dentry
*dentry
;
849 error
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
853 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
854 error
= PTR_ERR(dentry
);
858 error
= btrfs_may_create(dir
, dentry
);
863 * even if this name doesn't exist, we may get hash collisions.
864 * check for them now when we can safely fail
866 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
872 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
874 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
878 error
= create_snapshot(snap_src
, dir
, dentry
, name
, namelen
,
879 async_transid
, readonly
, inherit
);
881 error
= create_subvol(dir
, dentry
, name
, namelen
,
882 async_transid
, inherit
);
885 fsnotify_mkdir(dir
, dentry
);
887 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
896 * When we're defragging a range, we don't want to kick it off again
897 * if it is really just waiting for delalloc to send it down.
898 * If we find a nice big extent or delalloc range for the bytes in the
899 * file you want to defrag, we return 0 to let you know to skip this
902 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, u32 thresh
)
904 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
905 struct extent_map
*em
= NULL
;
906 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
909 read_lock(&em_tree
->lock
);
910 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_SIZE
);
911 read_unlock(&em_tree
->lock
);
914 end
= extent_map_end(em
);
916 if (end
- offset
> thresh
)
919 /* if we already have a nice delalloc here, just stop */
921 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
922 thresh
, EXTENT_DELALLOC
, 1);
929 * helper function to walk through a file and find extents
930 * newer than a specific transid, and smaller than thresh.
932 * This is used by the defragging code to find new and small
935 static int find_new_extents(struct btrfs_root
*root
,
936 struct inode
*inode
, u64 newer_than
,
937 u64
*off
, u32 thresh
)
939 struct btrfs_path
*path
;
940 struct btrfs_key min_key
;
941 struct extent_buffer
*leaf
;
942 struct btrfs_file_extent_item
*extent
;
945 u64 ino
= btrfs_ino(inode
);
947 path
= btrfs_alloc_path();
951 min_key
.objectid
= ino
;
952 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
953 min_key
.offset
= *off
;
956 ret
= btrfs_search_forward(root
, &min_key
, path
, newer_than
);
960 if (min_key
.objectid
!= ino
)
962 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
965 leaf
= path
->nodes
[0];
966 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
967 struct btrfs_file_extent_item
);
969 type
= btrfs_file_extent_type(leaf
, extent
);
970 if (type
== BTRFS_FILE_EXTENT_REG
&&
971 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
972 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
973 *off
= min_key
.offset
;
974 btrfs_free_path(path
);
979 if (path
->slots
[0] < btrfs_header_nritems(leaf
)) {
980 btrfs_item_key_to_cpu(leaf
, &min_key
, path
->slots
[0]);
984 if (min_key
.offset
== (u64
)-1)
988 btrfs_release_path(path
);
991 btrfs_free_path(path
);
995 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
997 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
998 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
999 struct extent_map
*em
;
1000 u64 len
= PAGE_SIZE
;
1003 * hopefully we have this extent in the tree already, try without
1004 * the full extent lock
1006 read_lock(&em_tree
->lock
);
1007 em
= lookup_extent_mapping(em_tree
, start
, len
);
1008 read_unlock(&em_tree
->lock
);
1011 struct extent_state
*cached
= NULL
;
1012 u64 end
= start
+ len
- 1;
1014 /* get the big lock and read metadata off disk */
1015 lock_extent_bits(io_tree
, start
, end
, &cached
);
1016 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
1017 unlock_extent_cached(io_tree
, start
, end
, &cached
, GFP_NOFS
);
1026 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
1028 struct extent_map
*next
;
1031 /* this is the last extent */
1032 if (em
->start
+ em
->len
>= i_size_read(inode
))
1035 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
1036 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
1038 else if ((em
->block_start
+ em
->block_len
== next
->block_start
) &&
1039 (em
->block_len
> SZ_128K
&& next
->block_len
> SZ_128K
))
1042 free_extent_map(next
);
1046 static int should_defrag_range(struct inode
*inode
, u64 start
, u32 thresh
,
1047 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
1050 struct extent_map
*em
;
1052 bool next_mergeable
= true;
1053 bool prev_mergeable
= true;
1056 * make sure that once we start defragging an extent, we keep on
1059 if (start
< *defrag_end
)
1064 em
= defrag_lookup_extent(inode
, start
);
1068 /* this will cover holes, and inline extents */
1069 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1075 prev_mergeable
= false;
1077 next_mergeable
= defrag_check_next_extent(inode
, em
);
1079 * we hit a real extent, if it is big or the next extent is not a
1080 * real extent, don't bother defragging it
1082 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
1083 (em
->len
>= thresh
|| (!next_mergeable
&& !prev_mergeable
)))
1087 * last_len ends up being a counter of how many bytes we've defragged.
1088 * every time we choose not to defrag an extent, we reset *last_len
1089 * so that the next tiny extent will force a defrag.
1091 * The end result of this is that tiny extents before a single big
1092 * extent will force at least part of that big extent to be defragged.
1095 *defrag_end
= extent_map_end(em
);
1098 *skip
= extent_map_end(em
);
1102 free_extent_map(em
);
1107 * it doesn't do much good to defrag one or two pages
1108 * at a time. This pulls in a nice chunk of pages
1109 * to COW and defrag.
1111 * It also makes sure the delalloc code has enough
1112 * dirty data to avoid making new small extents as part
1115 * It's a good idea to start RA on this range
1116 * before calling this.
1118 static int cluster_pages_for_defrag(struct inode
*inode
,
1119 struct page
**pages
,
1120 unsigned long start_index
,
1121 unsigned long num_pages
)
1123 unsigned long file_end
;
1124 u64 isize
= i_size_read(inode
);
1131 struct btrfs_ordered_extent
*ordered
;
1132 struct extent_state
*cached_state
= NULL
;
1133 struct extent_io_tree
*tree
;
1134 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1136 file_end
= (isize
- 1) >> PAGE_SHIFT
;
1137 if (!isize
|| start_index
> file_end
)
1140 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1142 ret
= btrfs_delalloc_reserve_space(inode
,
1143 start_index
<< PAGE_SHIFT
,
1144 page_cnt
<< PAGE_SHIFT
);
1148 tree
= &BTRFS_I(inode
)->io_tree
;
1150 /* step one, lock all the pages */
1151 for (i
= 0; i
< page_cnt
; i
++) {
1154 page
= find_or_create_page(inode
->i_mapping
,
1155 start_index
+ i
, mask
);
1159 page_start
= page_offset(page
);
1160 page_end
= page_start
+ PAGE_SIZE
- 1;
1162 lock_extent_bits(tree
, page_start
, page_end
,
1164 ordered
= btrfs_lookup_ordered_extent(inode
,
1166 unlock_extent_cached(tree
, page_start
, page_end
,
1167 &cached_state
, GFP_NOFS
);
1172 btrfs_start_ordered_extent(inode
, ordered
, 1);
1173 btrfs_put_ordered_extent(ordered
);
1176 * we unlocked the page above, so we need check if
1177 * it was released or not.
1179 if (page
->mapping
!= inode
->i_mapping
) {
1186 if (!PageUptodate(page
)) {
1187 btrfs_readpage(NULL
, page
);
1189 if (!PageUptodate(page
)) {
1197 if (page
->mapping
!= inode
->i_mapping
) {
1209 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1213 * so now we have a nice long stream of locked
1214 * and up to date pages, lets wait on them
1216 for (i
= 0; i
< i_done
; i
++)
1217 wait_on_page_writeback(pages
[i
]);
1219 page_start
= page_offset(pages
[0]);
1220 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_SIZE
;
1222 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1223 page_start
, page_end
- 1, &cached_state
);
1224 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1225 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1226 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1227 &cached_state
, GFP_NOFS
);
1229 if (i_done
!= page_cnt
) {
1230 spin_lock(&BTRFS_I(inode
)->lock
);
1231 BTRFS_I(inode
)->outstanding_extents
++;
1232 spin_unlock(&BTRFS_I(inode
)->lock
);
1233 btrfs_delalloc_release_space(inode
,
1234 start_index
<< PAGE_SHIFT
,
1235 (page_cnt
- i_done
) << PAGE_SHIFT
);
1239 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1242 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1243 page_start
, page_end
- 1, &cached_state
,
1246 for (i
= 0; i
< i_done
; i
++) {
1247 clear_page_dirty_for_io(pages
[i
]);
1248 ClearPageChecked(pages
[i
]);
1249 set_page_extent_mapped(pages
[i
]);
1250 set_page_dirty(pages
[i
]);
1251 unlock_page(pages
[i
]);
1256 for (i
= 0; i
< i_done
; i
++) {
1257 unlock_page(pages
[i
]);
1260 btrfs_delalloc_release_space(inode
,
1261 start_index
<< PAGE_SHIFT
,
1262 page_cnt
<< PAGE_SHIFT
);
1267 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1268 struct btrfs_ioctl_defrag_range_args
*range
,
1269 u64 newer_than
, unsigned long max_to_defrag
)
1271 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1272 struct file_ra_state
*ra
= NULL
;
1273 unsigned long last_index
;
1274 u64 isize
= i_size_read(inode
);
1278 u64 newer_off
= range
->start
;
1280 unsigned long ra_index
= 0;
1282 int defrag_count
= 0;
1283 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1284 u32 extent_thresh
= range
->extent_thresh
;
1285 unsigned long max_cluster
= SZ_256K
>> PAGE_SHIFT
;
1286 unsigned long cluster
= max_cluster
;
1287 u64 new_align
= ~((u64
)SZ_128K
- 1);
1288 struct page
**pages
= NULL
;
1293 if (range
->start
>= isize
)
1296 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1297 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1299 if (range
->compress_type
)
1300 compress_type
= range
->compress_type
;
1303 if (extent_thresh
== 0)
1304 extent_thresh
= SZ_256K
;
1307 * if we were not given a file, allocate a readahead
1311 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1314 file_ra_state_init(ra
, inode
->i_mapping
);
1319 pages
= kmalloc_array(max_cluster
, sizeof(struct page
*),
1326 /* find the last page to defrag */
1327 if (range
->start
+ range
->len
> range
->start
) {
1328 last_index
= min_t(u64
, isize
- 1,
1329 range
->start
+ range
->len
- 1) >> PAGE_SHIFT
;
1331 last_index
= (isize
- 1) >> PAGE_SHIFT
;
1335 ret
= find_new_extents(root
, inode
, newer_than
,
1336 &newer_off
, SZ_64K
);
1338 range
->start
= newer_off
;
1340 * we always align our defrag to help keep
1341 * the extents in the file evenly spaced
1343 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1347 i
= range
->start
>> PAGE_SHIFT
;
1350 max_to_defrag
= last_index
- i
+ 1;
1353 * make writeback starts from i, so the defrag range can be
1354 * written sequentially.
1356 if (i
< inode
->i_mapping
->writeback_index
)
1357 inode
->i_mapping
->writeback_index
= i
;
1359 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1360 (i
< DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
))) {
1362 * make sure we stop running if someone unmounts
1365 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1368 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1369 btrfs_debug(root
->fs_info
, "defrag_file cancelled");
1374 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_SHIFT
,
1375 extent_thresh
, &last_len
, &skip
,
1376 &defrag_end
, range
->flags
&
1377 BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1380 * the should_defrag function tells us how much to skip
1381 * bump our counter by the suggested amount
1383 next
= DIV_ROUND_UP(skip
, PAGE_SIZE
);
1384 i
= max(i
+ 1, next
);
1389 cluster
= (PAGE_ALIGN(defrag_end
) >>
1391 cluster
= min(cluster
, max_cluster
);
1393 cluster
= max_cluster
;
1396 if (i
+ cluster
> ra_index
) {
1397 ra_index
= max(i
, ra_index
);
1398 btrfs_force_ra(inode
->i_mapping
, ra
, file
, ra_index
,
1400 ra_index
+= cluster
;
1404 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1405 BTRFS_I(inode
)->force_compress
= compress_type
;
1406 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1408 inode_unlock(inode
);
1412 defrag_count
+= ret
;
1413 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1414 inode_unlock(inode
);
1417 if (newer_off
== (u64
)-1)
1423 newer_off
= max(newer_off
+ 1,
1424 (u64
)i
<< PAGE_SHIFT
);
1426 ret
= find_new_extents(root
, inode
, newer_than
,
1427 &newer_off
, SZ_64K
);
1429 range
->start
= newer_off
;
1430 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1437 last_len
+= ret
<< PAGE_SHIFT
;
1445 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
)) {
1446 filemap_flush(inode
->i_mapping
);
1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1448 &BTRFS_I(inode
)->runtime_flags
))
1449 filemap_flush(inode
->i_mapping
);
1452 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1453 /* the filemap_flush will queue IO into the worker threads, but
1454 * we have to make sure the IO is actually started and that
1455 * ordered extents get created before we return
1457 atomic_inc(&root
->fs_info
->async_submit_draining
);
1458 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1459 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1460 wait_event(root
->fs_info
->async_submit_wait
,
1461 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1462 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1464 atomic_dec(&root
->fs_info
->async_submit_draining
);
1467 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1468 btrfs_set_fs_incompat(root
->fs_info
, COMPRESS_LZO
);
1474 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1476 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1477 inode_unlock(inode
);
1485 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1491 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
1492 struct btrfs_ioctl_vol_args
*vol_args
;
1493 struct btrfs_trans_handle
*trans
;
1494 struct btrfs_device
*device
= NULL
;
1497 char *devstr
= NULL
;
1501 if (!capable(CAP_SYS_ADMIN
))
1504 ret
= mnt_want_write_file(file
);
1508 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
1510 mnt_drop_write_file(file
);
1511 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
1514 mutex_lock(&root
->fs_info
->volume_mutex
);
1515 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1516 if (IS_ERR(vol_args
)) {
1517 ret
= PTR_ERR(vol_args
);
1521 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1523 sizestr
= vol_args
->name
;
1524 devstr
= strchr(sizestr
, ':');
1526 sizestr
= devstr
+ 1;
1528 devstr
= vol_args
->name
;
1529 ret
= kstrtoull(devstr
, 10, &devid
);
1536 btrfs_info(root
->fs_info
, "resizing devid %llu", devid
);
1539 device
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
1541 btrfs_info(root
->fs_info
, "resizer unable to find device %llu",
1547 if (!device
->writeable
) {
1548 btrfs_info(root
->fs_info
,
1549 "resizer unable to apply on readonly device %llu",
1555 if (!strcmp(sizestr
, "max"))
1556 new_size
= device
->bdev
->bd_inode
->i_size
;
1558 if (sizestr
[0] == '-') {
1561 } else if (sizestr
[0] == '+') {
1565 new_size
= memparse(sizestr
, &retptr
);
1566 if (*retptr
!= '\0' || new_size
== 0) {
1572 if (device
->is_tgtdev_for_dev_replace
) {
1577 old_size
= btrfs_device_get_total_bytes(device
);
1580 if (new_size
> old_size
) {
1584 new_size
= old_size
- new_size
;
1585 } else if (mod
> 0) {
1586 if (new_size
> ULLONG_MAX
- old_size
) {
1590 new_size
= old_size
+ new_size
;
1593 if (new_size
< SZ_256M
) {
1597 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1602 new_size
= div_u64(new_size
, root
->sectorsize
);
1603 new_size
*= root
->sectorsize
;
1605 btrfs_info_in_rcu(root
->fs_info
, "new size for %s is %llu",
1606 rcu_str_deref(device
->name
), new_size
);
1608 if (new_size
> old_size
) {
1609 trans
= btrfs_start_transaction(root
, 0);
1610 if (IS_ERR(trans
)) {
1611 ret
= PTR_ERR(trans
);
1614 ret
= btrfs_grow_device(trans
, device
, new_size
);
1615 btrfs_commit_transaction(trans
, root
);
1616 } else if (new_size
< old_size
) {
1617 ret
= btrfs_shrink_device(device
, new_size
);
1618 } /* equal, nothing need to do */
1623 mutex_unlock(&root
->fs_info
->volume_mutex
);
1624 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
1625 mnt_drop_write_file(file
);
1629 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1630 char *name
, unsigned long fd
, int subvol
,
1631 u64
*transid
, bool readonly
,
1632 struct btrfs_qgroup_inherit
*inherit
)
1637 ret
= mnt_want_write_file(file
);
1641 namelen
= strlen(name
);
1642 if (strchr(name
, '/')) {
1644 goto out_drop_write
;
1647 if (name
[0] == '.' &&
1648 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1650 goto out_drop_write
;
1654 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1655 NULL
, transid
, readonly
, inherit
);
1657 struct fd src
= fdget(fd
);
1658 struct inode
*src_inode
;
1661 goto out_drop_write
;
1664 src_inode
= file_inode(src
.file
);
1665 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1666 btrfs_info(BTRFS_I(file_inode(file
))->root
->fs_info
,
1667 "Snapshot src from another FS");
1669 } else if (!inode_owner_or_capable(src_inode
)) {
1671 * Subvolume creation is not restricted, but snapshots
1672 * are limited to own subvolumes only
1676 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1677 BTRFS_I(src_inode
)->root
,
1678 transid
, readonly
, inherit
);
1683 mnt_drop_write_file(file
);
1688 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1689 void __user
*arg
, int subvol
)
1691 struct btrfs_ioctl_vol_args
*vol_args
;
1694 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1695 if (IS_ERR(vol_args
))
1696 return PTR_ERR(vol_args
);
1697 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1699 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1700 vol_args
->fd
, subvol
,
1707 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1708 void __user
*arg
, int subvol
)
1710 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1714 bool readonly
= false;
1715 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1717 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1718 if (IS_ERR(vol_args
))
1719 return PTR_ERR(vol_args
);
1720 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1722 if (vol_args
->flags
&
1723 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1724 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1729 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1731 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1733 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1734 if (vol_args
->size
> PAGE_SIZE
) {
1738 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1739 if (IS_ERR(inherit
)) {
1740 ret
= PTR_ERR(inherit
);
1745 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1746 vol_args
->fd
, subvol
, ptr
,
1751 if (ptr
&& copy_to_user(arg
+
1752 offsetof(struct btrfs_ioctl_vol_args_v2
,
1764 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1767 struct inode
*inode
= file_inode(file
);
1768 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1772 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1775 down_read(&root
->fs_info
->subvol_sem
);
1776 if (btrfs_root_readonly(root
))
1777 flags
|= BTRFS_SUBVOL_RDONLY
;
1778 up_read(&root
->fs_info
->subvol_sem
);
1780 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1786 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1789 struct inode
*inode
= file_inode(file
);
1790 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1791 struct btrfs_trans_handle
*trans
;
1796 if (!inode_owner_or_capable(inode
))
1799 ret
= mnt_want_write_file(file
);
1803 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
1805 goto out_drop_write
;
1808 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1810 goto out_drop_write
;
1813 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1815 goto out_drop_write
;
1818 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1820 goto out_drop_write
;
1823 down_write(&root
->fs_info
->subvol_sem
);
1826 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1829 root_flags
= btrfs_root_flags(&root
->root_item
);
1830 if (flags
& BTRFS_SUBVOL_RDONLY
) {
1831 btrfs_set_root_flags(&root
->root_item
,
1832 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1835 * Block RO -> RW transition if this subvolume is involved in
1838 spin_lock(&root
->root_item_lock
);
1839 if (root
->send_in_progress
== 0) {
1840 btrfs_set_root_flags(&root
->root_item
,
1841 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1842 spin_unlock(&root
->root_item_lock
);
1844 spin_unlock(&root
->root_item_lock
);
1845 btrfs_warn(root
->fs_info
,
1846 "Attempt to set subvolume %llu read-write during send",
1847 root
->root_key
.objectid
);
1853 trans
= btrfs_start_transaction(root
, 1);
1854 if (IS_ERR(trans
)) {
1855 ret
= PTR_ERR(trans
);
1859 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1860 &root
->root_key
, &root
->root_item
);
1862 btrfs_commit_transaction(trans
, root
);
1865 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1867 up_write(&root
->fs_info
->subvol_sem
);
1869 mnt_drop_write_file(file
);
1875 * helper to check if the subvolume references other subvolumes
1877 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1879 struct btrfs_path
*path
;
1880 struct btrfs_dir_item
*di
;
1881 struct btrfs_key key
;
1885 path
= btrfs_alloc_path();
1889 /* Make sure this root isn't set as the default subvol */
1890 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
1891 di
= btrfs_lookup_dir_item(NULL
, root
->fs_info
->tree_root
, path
,
1892 dir_id
, "default", 7, 0);
1893 if (di
&& !IS_ERR(di
)) {
1894 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1895 if (key
.objectid
== root
->root_key
.objectid
) {
1897 btrfs_err(root
->fs_info
, "deleting default subvolume "
1898 "%llu is not allowed", key
.objectid
);
1901 btrfs_release_path(path
);
1904 key
.objectid
= root
->root_key
.objectid
;
1905 key
.type
= BTRFS_ROOT_REF_KEY
;
1906 key
.offset
= (u64
)-1;
1908 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1915 if (path
->slots
[0] > 0) {
1917 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1918 if (key
.objectid
== root
->root_key
.objectid
&&
1919 key
.type
== BTRFS_ROOT_REF_KEY
)
1923 btrfs_free_path(path
);
1927 static noinline
int key_in_sk(struct btrfs_key
*key
,
1928 struct btrfs_ioctl_search_key
*sk
)
1930 struct btrfs_key test
;
1933 test
.objectid
= sk
->min_objectid
;
1934 test
.type
= sk
->min_type
;
1935 test
.offset
= sk
->min_offset
;
1937 ret
= btrfs_comp_cpu_keys(key
, &test
);
1941 test
.objectid
= sk
->max_objectid
;
1942 test
.type
= sk
->max_type
;
1943 test
.offset
= sk
->max_offset
;
1945 ret
= btrfs_comp_cpu_keys(key
, &test
);
1951 static noinline
int copy_to_sk(struct btrfs_path
*path
,
1952 struct btrfs_key
*key
,
1953 struct btrfs_ioctl_search_key
*sk
,
1956 unsigned long *sk_offset
,
1960 struct extent_buffer
*leaf
;
1961 struct btrfs_ioctl_search_header sh
;
1962 struct btrfs_key test
;
1963 unsigned long item_off
;
1964 unsigned long item_len
;
1970 leaf
= path
->nodes
[0];
1971 slot
= path
->slots
[0];
1972 nritems
= btrfs_header_nritems(leaf
);
1974 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1978 found_transid
= btrfs_header_generation(leaf
);
1980 for (i
= slot
; i
< nritems
; i
++) {
1981 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1982 item_len
= btrfs_item_size_nr(leaf
, i
);
1984 btrfs_item_key_to_cpu(leaf
, key
, i
);
1985 if (!key_in_sk(key
, sk
))
1988 if (sizeof(sh
) + item_len
> *buf_size
) {
1995 * return one empty item back for v1, which does not
1999 *buf_size
= sizeof(sh
) + item_len
;
2004 if (sizeof(sh
) + item_len
+ *sk_offset
> *buf_size
) {
2009 sh
.objectid
= key
->objectid
;
2010 sh
.offset
= key
->offset
;
2011 sh
.type
= key
->type
;
2013 sh
.transid
= found_transid
;
2015 /* copy search result header */
2016 if (copy_to_user(ubuf
+ *sk_offset
, &sh
, sizeof(sh
))) {
2021 *sk_offset
+= sizeof(sh
);
2024 char __user
*up
= ubuf
+ *sk_offset
;
2026 if (read_extent_buffer_to_user(leaf
, up
,
2027 item_off
, item_len
)) {
2032 *sk_offset
+= item_len
;
2036 if (ret
) /* -EOVERFLOW from above */
2039 if (*num_found
>= sk
->nr_items
) {
2046 test
.objectid
= sk
->max_objectid
;
2047 test
.type
= sk
->max_type
;
2048 test
.offset
= sk
->max_offset
;
2049 if (btrfs_comp_cpu_keys(key
, &test
) >= 0)
2051 else if (key
->offset
< (u64
)-1)
2053 else if (key
->type
< (u8
)-1) {
2056 } else if (key
->objectid
< (u64
)-1) {
2064 * 0: all items from this leaf copied, continue with next
2065 * 1: * more items can be copied, but unused buffer is too small
2066 * * all items were found
2067 * Either way, it will stops the loop which iterates to the next
2069 * -EOVERFLOW: item was to large for buffer
2070 * -EFAULT: could not copy extent buffer back to userspace
2075 static noinline
int search_ioctl(struct inode
*inode
,
2076 struct btrfs_ioctl_search_key
*sk
,
2080 struct btrfs_root
*root
;
2081 struct btrfs_key key
;
2082 struct btrfs_path
*path
;
2083 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
2086 unsigned long sk_offset
= 0;
2088 if (*buf_size
< sizeof(struct btrfs_ioctl_search_header
)) {
2089 *buf_size
= sizeof(struct btrfs_ioctl_search_header
);
2093 path
= btrfs_alloc_path();
2097 if (sk
->tree_id
== 0) {
2098 /* search the root of the inode that was passed */
2099 root
= BTRFS_I(inode
)->root
;
2101 key
.objectid
= sk
->tree_id
;
2102 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2103 key
.offset
= (u64
)-1;
2104 root
= btrfs_read_fs_root_no_name(info
, &key
);
2106 btrfs_free_path(path
);
2111 key
.objectid
= sk
->min_objectid
;
2112 key
.type
= sk
->min_type
;
2113 key
.offset
= sk
->min_offset
;
2116 ret
= btrfs_search_forward(root
, &key
, path
, sk
->min_transid
);
2122 ret
= copy_to_sk(path
, &key
, sk
, buf_size
, ubuf
,
2123 &sk_offset
, &num_found
);
2124 btrfs_release_path(path
);
2132 sk
->nr_items
= num_found
;
2133 btrfs_free_path(path
);
2137 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
2140 struct btrfs_ioctl_search_args __user
*uargs
;
2141 struct btrfs_ioctl_search_key sk
;
2142 struct inode
*inode
;
2146 if (!capable(CAP_SYS_ADMIN
))
2149 uargs
= (struct btrfs_ioctl_search_args __user
*)argp
;
2151 if (copy_from_user(&sk
, &uargs
->key
, sizeof(sk
)))
2154 buf_size
= sizeof(uargs
->buf
);
2156 inode
= file_inode(file
);
2157 ret
= search_ioctl(inode
, &sk
, &buf_size
, uargs
->buf
);
2160 * In the origin implementation an overflow is handled by returning a
2161 * search header with a len of zero, so reset ret.
2163 if (ret
== -EOVERFLOW
)
2166 if (ret
== 0 && copy_to_user(&uargs
->key
, &sk
, sizeof(sk
)))
2171 static noinline
int btrfs_ioctl_tree_search_v2(struct file
*file
,
2174 struct btrfs_ioctl_search_args_v2 __user
*uarg
;
2175 struct btrfs_ioctl_search_args_v2 args
;
2176 struct inode
*inode
;
2179 const size_t buf_limit
= SZ_16M
;
2181 if (!capable(CAP_SYS_ADMIN
))
2184 /* copy search header and buffer size */
2185 uarg
= (struct btrfs_ioctl_search_args_v2 __user
*)argp
;
2186 if (copy_from_user(&args
, uarg
, sizeof(args
)))
2189 buf_size
= args
.buf_size
;
2191 if (buf_size
< sizeof(struct btrfs_ioctl_search_header
))
2194 /* limit result size to 16MB */
2195 if (buf_size
> buf_limit
)
2196 buf_size
= buf_limit
;
2198 inode
= file_inode(file
);
2199 ret
= search_ioctl(inode
, &args
.key
, &buf_size
,
2200 (char *)(&uarg
->buf
[0]));
2201 if (ret
== 0 && copy_to_user(&uarg
->key
, &args
.key
, sizeof(args
.key
)))
2203 else if (ret
== -EOVERFLOW
&&
2204 copy_to_user(&uarg
->buf_size
, &buf_size
, sizeof(buf_size
)))
2211 * Search INODE_REFs to identify path name of 'dirid' directory
2212 * in a 'tree_id' tree. and sets path name to 'name'.
2214 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
2215 u64 tree_id
, u64 dirid
, char *name
)
2217 struct btrfs_root
*root
;
2218 struct btrfs_key key
;
2224 struct btrfs_inode_ref
*iref
;
2225 struct extent_buffer
*l
;
2226 struct btrfs_path
*path
;
2228 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
2233 path
= btrfs_alloc_path();
2237 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
2239 key
.objectid
= tree_id
;
2240 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2241 key
.offset
= (u64
)-1;
2242 root
= btrfs_read_fs_root_no_name(info
, &key
);
2244 btrfs_err(info
, "could not find root %llu", tree_id
);
2249 key
.objectid
= dirid
;
2250 key
.type
= BTRFS_INODE_REF_KEY
;
2251 key
.offset
= (u64
)-1;
2254 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2258 ret
= btrfs_previous_item(root
, path
, dirid
,
2259 BTRFS_INODE_REF_KEY
);
2269 slot
= path
->slots
[0];
2270 btrfs_item_key_to_cpu(l
, &key
, slot
);
2272 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2273 len
= btrfs_inode_ref_name_len(l
, iref
);
2275 total_len
+= len
+ 1;
2277 ret
= -ENAMETOOLONG
;
2282 read_extent_buffer(l
, ptr
, (unsigned long)(iref
+ 1), len
);
2284 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2287 btrfs_release_path(path
);
2288 key
.objectid
= key
.offset
;
2289 key
.offset
= (u64
)-1;
2290 dirid
= key
.objectid
;
2292 memmove(name
, ptr
, total_len
);
2293 name
[total_len
] = '\0';
2296 btrfs_free_path(path
);
2300 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2303 struct btrfs_ioctl_ino_lookup_args
*args
;
2304 struct inode
*inode
;
2307 args
= memdup_user(argp
, sizeof(*args
));
2309 return PTR_ERR(args
);
2311 inode
= file_inode(file
);
2314 * Unprivileged query to obtain the containing subvolume root id. The
2315 * path is reset so it's consistent with btrfs_search_path_in_tree.
2317 if (args
->treeid
== 0)
2318 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2320 if (args
->objectid
== BTRFS_FIRST_FREE_OBJECTID
) {
2325 if (!capable(CAP_SYS_ADMIN
)) {
2330 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2331 args
->treeid
, args
->objectid
,
2335 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2342 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2345 struct dentry
*parent
= file
->f_path
.dentry
;
2346 struct dentry
*dentry
;
2347 struct inode
*dir
= d_inode(parent
);
2348 struct inode
*inode
;
2349 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2350 struct btrfs_root
*dest
= NULL
;
2351 struct btrfs_ioctl_vol_args
*vol_args
;
2352 struct btrfs_trans_handle
*trans
;
2353 struct btrfs_block_rsv block_rsv
;
2355 u64 qgroup_reserved
;
2360 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2361 if (IS_ERR(vol_args
))
2362 return PTR_ERR(vol_args
);
2364 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2365 namelen
= strlen(vol_args
->name
);
2366 if (strchr(vol_args
->name
, '/') ||
2367 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2372 err
= mnt_want_write_file(file
);
2377 err
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
2379 goto out_drop_write
;
2380 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2381 if (IS_ERR(dentry
)) {
2382 err
= PTR_ERR(dentry
);
2383 goto out_unlock_dir
;
2386 if (d_really_is_negative(dentry
)) {
2391 inode
= d_inode(dentry
);
2392 dest
= BTRFS_I(inode
)->root
;
2393 if (!capable(CAP_SYS_ADMIN
)) {
2395 * Regular user. Only allow this with a special mount
2396 * option, when the user has write+exec access to the
2397 * subvol root, and when rmdir(2) would have been
2400 * Note that this is _not_ check that the subvol is
2401 * empty or doesn't contain data that we wouldn't
2402 * otherwise be able to delete.
2404 * Users who want to delete empty subvols should try
2408 if (!btrfs_test_opt(root
->fs_info
, USER_SUBVOL_RM_ALLOWED
))
2412 * Do not allow deletion if the parent dir is the same
2413 * as the dir to be deleted. That means the ioctl
2414 * must be called on the dentry referencing the root
2415 * of the subvol, not a random directory contained
2422 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2427 /* check if subvolume may be deleted by a user */
2428 err
= btrfs_may_delete(dir
, dentry
, 1);
2432 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
2440 * Don't allow to delete a subvolume with send in progress. This is
2441 * inside the i_mutex so the error handling that has to drop the bit
2442 * again is not run concurrently.
2444 spin_lock(&dest
->root_item_lock
);
2445 root_flags
= btrfs_root_flags(&dest
->root_item
);
2446 if (dest
->send_in_progress
== 0) {
2447 btrfs_set_root_flags(&dest
->root_item
,
2448 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
2449 spin_unlock(&dest
->root_item_lock
);
2451 spin_unlock(&dest
->root_item_lock
);
2452 btrfs_warn(root
->fs_info
,
2453 "Attempt to delete subvolume %llu during send",
2454 dest
->root_key
.objectid
);
2456 goto out_unlock_inode
;
2459 down_write(&root
->fs_info
->subvol_sem
);
2461 err
= may_destroy_subvol(dest
);
2465 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
2467 * One for dir inode, two for dir entries, two for root
2470 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
2471 5, &qgroup_reserved
, true);
2475 trans
= btrfs_start_transaction(root
, 0);
2476 if (IS_ERR(trans
)) {
2477 err
= PTR_ERR(trans
);
2480 trans
->block_rsv
= &block_rsv
;
2481 trans
->bytes_reserved
= block_rsv
.size
;
2483 btrfs_record_snapshot_destroy(trans
, dir
);
2485 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2486 dest
->root_key
.objectid
,
2487 dentry
->d_name
.name
,
2488 dentry
->d_name
.len
);
2491 btrfs_abort_transaction(trans
, ret
);
2495 btrfs_record_root_in_trans(trans
, dest
);
2497 memset(&dest
->root_item
.drop_progress
, 0,
2498 sizeof(dest
->root_item
.drop_progress
));
2499 dest
->root_item
.drop_level
= 0;
2500 btrfs_set_root_refs(&dest
->root_item
, 0);
2502 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
2503 ret
= btrfs_insert_orphan_item(trans
,
2504 root
->fs_info
->tree_root
,
2505 dest
->root_key
.objectid
);
2507 btrfs_abort_transaction(trans
, ret
);
2513 ret
= btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
2514 dest
->root_item
.uuid
, BTRFS_UUID_KEY_SUBVOL
,
2515 dest
->root_key
.objectid
);
2516 if (ret
&& ret
!= -ENOENT
) {
2517 btrfs_abort_transaction(trans
, ret
);
2521 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
2522 ret
= btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
2523 dest
->root_item
.received_uuid
,
2524 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
2525 dest
->root_key
.objectid
);
2526 if (ret
&& ret
!= -ENOENT
) {
2527 btrfs_abort_transaction(trans
, ret
);
2534 trans
->block_rsv
= NULL
;
2535 trans
->bytes_reserved
= 0;
2536 ret
= btrfs_end_transaction(trans
, root
);
2539 inode
->i_flags
|= S_DEAD
;
2541 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
2543 up_write(&root
->fs_info
->subvol_sem
);
2545 spin_lock(&dest
->root_item_lock
);
2546 root_flags
= btrfs_root_flags(&dest
->root_item
);
2547 btrfs_set_root_flags(&dest
->root_item
,
2548 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
2549 spin_unlock(&dest
->root_item_lock
);
2552 inode_unlock(inode
);
2554 d_invalidate(dentry
);
2555 btrfs_invalidate_inodes(dest
);
2557 ASSERT(dest
->send_in_progress
== 0);
2560 if (dest
->ino_cache_inode
) {
2561 iput(dest
->ino_cache_inode
);
2562 dest
->ino_cache_inode
= NULL
;
2570 mnt_drop_write_file(file
);
2576 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2578 struct inode
*inode
= file_inode(file
);
2579 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2580 struct btrfs_ioctl_defrag_range_args
*range
;
2583 ret
= mnt_want_write_file(file
);
2587 if (btrfs_root_readonly(root
)) {
2592 switch (inode
->i_mode
& S_IFMT
) {
2594 if (!capable(CAP_SYS_ADMIN
)) {
2598 ret
= btrfs_defrag_root(root
);
2601 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
);
2604 if (!(file
->f_mode
& FMODE_WRITE
)) {
2609 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2616 if (copy_from_user(range
, argp
,
2622 /* compression requires us to start the IO */
2623 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2624 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2625 range
->extent_thresh
= (u32
)-1;
2628 /* the rest are all set to zero by kzalloc */
2629 range
->len
= (u64
)-1;
2631 ret
= btrfs_defrag_file(file_inode(file
), file
,
2641 mnt_drop_write_file(file
);
2645 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2647 struct btrfs_ioctl_vol_args
*vol_args
;
2650 if (!capable(CAP_SYS_ADMIN
))
2653 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2655 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2658 mutex_lock(&root
->fs_info
->volume_mutex
);
2659 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2660 if (IS_ERR(vol_args
)) {
2661 ret
= PTR_ERR(vol_args
);
2665 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2666 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2669 btrfs_info(root
->fs_info
, "disk added %s",vol_args
->name
);
2673 mutex_unlock(&root
->fs_info
->volume_mutex
);
2674 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2678 static long btrfs_ioctl_rm_dev_v2(struct file
*file
, void __user
*arg
)
2680 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
2681 struct btrfs_ioctl_vol_args_v2
*vol_args
;
2684 if (!capable(CAP_SYS_ADMIN
))
2687 ret
= mnt_want_write_file(file
);
2691 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2692 if (IS_ERR(vol_args
)) {
2693 ret
= PTR_ERR(vol_args
);
2697 /* Check for compatibility reject unknown flags */
2698 if (vol_args
->flags
& ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED
)
2701 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2703 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2707 mutex_lock(&root
->fs_info
->volume_mutex
);
2708 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
) {
2709 ret
= btrfs_rm_device(root
, NULL
, vol_args
->devid
);
2711 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
2712 ret
= btrfs_rm_device(root
, vol_args
->name
, 0);
2714 mutex_unlock(&root
->fs_info
->volume_mutex
);
2715 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2718 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
)
2719 btrfs_info(root
->fs_info
, "device deleted: id %llu",
2722 btrfs_info(root
->fs_info
, "device deleted: %s",
2728 mnt_drop_write_file(file
);
2732 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2734 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
2735 struct btrfs_ioctl_vol_args
*vol_args
;
2738 if (!capable(CAP_SYS_ADMIN
))
2741 ret
= mnt_want_write_file(file
);
2745 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2747 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2748 goto out_drop_write
;
2751 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2752 if (IS_ERR(vol_args
)) {
2753 ret
= PTR_ERR(vol_args
);
2757 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2758 mutex_lock(&root
->fs_info
->volume_mutex
);
2759 ret
= btrfs_rm_device(root
, vol_args
->name
, 0);
2760 mutex_unlock(&root
->fs_info
->volume_mutex
);
2763 btrfs_info(root
->fs_info
, "disk deleted %s",vol_args
->name
);
2766 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2768 mnt_drop_write_file(file
);
2773 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2775 struct btrfs_ioctl_fs_info_args
*fi_args
;
2776 struct btrfs_device
*device
;
2777 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2780 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2784 mutex_lock(&fs_devices
->device_list_mutex
);
2785 fi_args
->num_devices
= fs_devices
->num_devices
;
2786 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2788 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
2789 if (device
->devid
> fi_args
->max_id
)
2790 fi_args
->max_id
= device
->devid
;
2792 mutex_unlock(&fs_devices
->device_list_mutex
);
2794 fi_args
->nodesize
= root
->fs_info
->super_copy
->nodesize
;
2795 fi_args
->sectorsize
= root
->fs_info
->super_copy
->sectorsize
;
2796 fi_args
->clone_alignment
= root
->fs_info
->super_copy
->sectorsize
;
2798 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2805 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2807 struct btrfs_ioctl_dev_info_args
*di_args
;
2808 struct btrfs_device
*dev
;
2809 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2811 char *s_uuid
= NULL
;
2813 di_args
= memdup_user(arg
, sizeof(*di_args
));
2814 if (IS_ERR(di_args
))
2815 return PTR_ERR(di_args
);
2817 if (!btrfs_is_empty_uuid(di_args
->uuid
))
2818 s_uuid
= di_args
->uuid
;
2820 mutex_lock(&fs_devices
->device_list_mutex
);
2821 dev
= btrfs_find_device(root
->fs_info
, di_args
->devid
, s_uuid
, NULL
);
2828 di_args
->devid
= dev
->devid
;
2829 di_args
->bytes_used
= btrfs_device_get_bytes_used(dev
);
2830 di_args
->total_bytes
= btrfs_device_get_total_bytes(dev
);
2831 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2833 struct rcu_string
*name
;
2836 name
= rcu_dereference(dev
->name
);
2837 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2839 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2841 di_args
->path
[0] = '\0';
2845 mutex_unlock(&fs_devices
->device_list_mutex
);
2846 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2853 static struct page
*extent_same_get_page(struct inode
*inode
, pgoff_t index
)
2857 page
= grab_cache_page(inode
->i_mapping
, index
);
2859 return ERR_PTR(-ENOMEM
);
2861 if (!PageUptodate(page
)) {
2864 ret
= btrfs_readpage(NULL
, page
);
2866 return ERR_PTR(ret
);
2868 if (!PageUptodate(page
)) {
2871 return ERR_PTR(-EIO
);
2873 if (page
->mapping
!= inode
->i_mapping
) {
2876 return ERR_PTR(-EAGAIN
);
2883 static int gather_extent_pages(struct inode
*inode
, struct page
**pages
,
2884 int num_pages
, u64 off
)
2887 pgoff_t index
= off
>> PAGE_SHIFT
;
2889 for (i
= 0; i
< num_pages
; i
++) {
2891 pages
[i
] = extent_same_get_page(inode
, index
+ i
);
2892 if (IS_ERR(pages
[i
])) {
2893 int err
= PTR_ERR(pages
[i
]);
2904 static int lock_extent_range(struct inode
*inode
, u64 off
, u64 len
,
2905 bool retry_range_locking
)
2908 * Do any pending delalloc/csum calculations on inode, one way or
2909 * another, and lock file content.
2910 * The locking order is:
2913 * 2) range in the inode's io tree
2916 struct btrfs_ordered_extent
*ordered
;
2917 lock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2918 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2921 ordered
->file_offset
+ ordered
->len
<= off
||
2922 ordered
->file_offset
>= off
+ len
) &&
2923 !test_range_bit(&BTRFS_I(inode
)->io_tree
, off
,
2924 off
+ len
- 1, EXTENT_DELALLOC
, 0, NULL
)) {
2926 btrfs_put_ordered_extent(ordered
);
2929 unlock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2931 btrfs_put_ordered_extent(ordered
);
2932 if (!retry_range_locking
)
2934 btrfs_wait_ordered_range(inode
, off
, len
);
2939 static void btrfs_double_inode_unlock(struct inode
*inode1
, struct inode
*inode2
)
2941 inode_unlock(inode1
);
2942 inode_unlock(inode2
);
2945 static void btrfs_double_inode_lock(struct inode
*inode1
, struct inode
*inode2
)
2947 if (inode1
< inode2
)
2948 swap(inode1
, inode2
);
2950 inode_lock_nested(inode1
, I_MUTEX_PARENT
);
2951 inode_lock_nested(inode2
, I_MUTEX_CHILD
);
2954 static void btrfs_double_extent_unlock(struct inode
*inode1
, u64 loff1
,
2955 struct inode
*inode2
, u64 loff2
, u64 len
)
2957 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
, loff1
+ len
- 1);
2958 unlock_extent(&BTRFS_I(inode2
)->io_tree
, loff2
, loff2
+ len
- 1);
2961 static int btrfs_double_extent_lock(struct inode
*inode1
, u64 loff1
,
2962 struct inode
*inode2
, u64 loff2
, u64 len
,
2963 bool retry_range_locking
)
2967 if (inode1
< inode2
) {
2968 swap(inode1
, inode2
);
2971 ret
= lock_extent_range(inode1
, loff1
, len
, retry_range_locking
);
2974 ret
= lock_extent_range(inode2
, loff2
, len
, retry_range_locking
);
2976 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
,
2983 struct page
**src_pages
;
2984 struct page
**dst_pages
;
2987 static void btrfs_cmp_data_free(struct cmp_pages
*cmp
)
2992 for (i
= 0; i
< cmp
->num_pages
; i
++) {
2993 pg
= cmp
->src_pages
[i
];
2998 pg
= cmp
->dst_pages
[i
];
3004 kfree(cmp
->src_pages
);
3005 kfree(cmp
->dst_pages
);
3008 static int btrfs_cmp_data_prepare(struct inode
*src
, u64 loff
,
3009 struct inode
*dst
, u64 dst_loff
,
3010 u64 len
, struct cmp_pages
*cmp
)
3013 int num_pages
= PAGE_ALIGN(len
) >> PAGE_SHIFT
;
3014 struct page
**src_pgarr
, **dst_pgarr
;
3017 * We must gather up all the pages before we initiate our
3018 * extent locking. We use an array for the page pointers. Size
3019 * of the array is bounded by len, which is in turn bounded by
3020 * BTRFS_MAX_DEDUPE_LEN.
3022 src_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
3023 dst_pgarr
= kcalloc(num_pages
, sizeof(struct page
*), GFP_KERNEL
);
3024 if (!src_pgarr
|| !dst_pgarr
) {
3029 cmp
->num_pages
= num_pages
;
3030 cmp
->src_pages
= src_pgarr
;
3031 cmp
->dst_pages
= dst_pgarr
;
3033 ret
= gather_extent_pages(src
, cmp
->src_pages
, cmp
->num_pages
, loff
);
3037 ret
= gather_extent_pages(dst
, cmp
->dst_pages
, cmp
->num_pages
, dst_loff
);
3041 btrfs_cmp_data_free(cmp
);
3045 static int btrfs_cmp_data(struct inode
*src
, u64 loff
, struct inode
*dst
,
3046 u64 dst_loff
, u64 len
, struct cmp_pages
*cmp
)
3050 struct page
*src_page
, *dst_page
;
3051 unsigned int cmp_len
= PAGE_SIZE
;
3052 void *addr
, *dst_addr
;
3056 if (len
< PAGE_SIZE
)
3059 BUG_ON(i
>= cmp
->num_pages
);
3061 src_page
= cmp
->src_pages
[i
];
3062 dst_page
= cmp
->dst_pages
[i
];
3063 ASSERT(PageLocked(src_page
));
3064 ASSERT(PageLocked(dst_page
));
3066 addr
= kmap_atomic(src_page
);
3067 dst_addr
= kmap_atomic(dst_page
);
3069 flush_dcache_page(src_page
);
3070 flush_dcache_page(dst_page
);
3072 if (memcmp(addr
, dst_addr
, cmp_len
))
3075 kunmap_atomic(addr
);
3076 kunmap_atomic(dst_addr
);
3088 static int extent_same_check_offsets(struct inode
*inode
, u64 off
, u64
*plen
,
3092 u64 bs
= BTRFS_I(inode
)->root
->fs_info
->sb
->s_blocksize
;
3094 if (off
+ olen
> inode
->i_size
|| off
+ olen
< off
)
3097 /* if we extend to eof, continue to block boundary */
3098 if (off
+ len
== inode
->i_size
)
3099 *plen
= len
= ALIGN(inode
->i_size
, bs
) - off
;
3101 /* Check that we are block aligned - btrfs_clone() requires this */
3102 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
))
3108 static int btrfs_extent_same(struct inode
*src
, u64 loff
, u64 olen
,
3109 struct inode
*dst
, u64 dst_loff
)
3113 struct cmp_pages cmp
;
3115 u64 same_lock_start
= 0;
3116 u64 same_lock_len
= 0;
3127 ret
= extent_same_check_offsets(src
, loff
, &len
, olen
);
3130 ret
= extent_same_check_offsets(src
, dst_loff
, &len
, olen
);
3135 * Single inode case wants the same checks, except we
3136 * don't want our length pushed out past i_size as
3137 * comparing that data range makes no sense.
3139 * extent_same_check_offsets() will do this for an
3140 * unaligned length at i_size, so catch it here and
3141 * reject the request.
3143 * This effectively means we require aligned extents
3144 * for the single-inode case, whereas the other cases
3145 * allow an unaligned length so long as it ends at
3153 /* Check for overlapping ranges */
3154 if (dst_loff
+ len
> loff
&& dst_loff
< loff
+ len
) {
3159 same_lock_start
= min_t(u64
, loff
, dst_loff
);
3160 same_lock_len
= max_t(u64
, loff
, dst_loff
) + len
- same_lock_start
;
3162 btrfs_double_inode_lock(src
, dst
);
3164 ret
= extent_same_check_offsets(src
, loff
, &len
, olen
);
3168 ret
= extent_same_check_offsets(dst
, dst_loff
, &len
, olen
);
3173 /* don't make the dst file partly checksummed */
3174 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3175 (BTRFS_I(dst
)->flags
& BTRFS_INODE_NODATASUM
)) {
3181 ret
= btrfs_cmp_data_prepare(src
, loff
, dst
, dst_loff
, olen
, &cmp
);
3186 ret
= lock_extent_range(src
, same_lock_start
, same_lock_len
,
3189 ret
= btrfs_double_extent_lock(src
, loff
, dst
, dst_loff
, len
,
3192 * If one of the inodes has dirty pages in the respective range or
3193 * ordered extents, we need to flush dellaloc and wait for all ordered
3194 * extents in the range. We must unlock the pages and the ranges in the
3195 * io trees to avoid deadlocks when flushing delalloc (requires locking
3196 * pages) and when waiting for ordered extents to complete (they require
3199 if (ret
== -EAGAIN
) {
3201 * Ranges in the io trees already unlocked. Now unlock all
3202 * pages before waiting for all IO to complete.
3204 btrfs_cmp_data_free(&cmp
);
3206 btrfs_wait_ordered_range(src
, same_lock_start
,
3209 btrfs_wait_ordered_range(src
, loff
, len
);
3210 btrfs_wait_ordered_range(dst
, dst_loff
, len
);
3216 /* ranges in the io trees already unlocked */
3217 btrfs_cmp_data_free(&cmp
);
3221 /* pass original length for comparison so we stay within i_size */
3222 ret
= btrfs_cmp_data(src
, loff
, dst
, dst_loff
, olen
, &cmp
);
3224 ret
= btrfs_clone(src
, dst
, loff
, olen
, len
, dst_loff
, 1);
3227 unlock_extent(&BTRFS_I(src
)->io_tree
, same_lock_start
,
3228 same_lock_start
+ same_lock_len
- 1);
3230 btrfs_double_extent_unlock(src
, loff
, dst
, dst_loff
, len
);
3232 btrfs_cmp_data_free(&cmp
);
3237 btrfs_double_inode_unlock(src
, dst
);
3242 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3244 ssize_t
btrfs_dedupe_file_range(struct file
*src_file
, u64 loff
, u64 olen
,
3245 struct file
*dst_file
, u64 dst_loff
)
3247 struct inode
*src
= file_inode(src_file
);
3248 struct inode
*dst
= file_inode(dst_file
);
3249 u64 bs
= BTRFS_I(src
)->root
->fs_info
->sb
->s_blocksize
;
3252 if (olen
> BTRFS_MAX_DEDUPE_LEN
)
3253 olen
= BTRFS_MAX_DEDUPE_LEN
;
3255 if (WARN_ON_ONCE(bs
< PAGE_SIZE
)) {
3257 * Btrfs does not support blocksize < page_size. As a
3258 * result, btrfs_cmp_data() won't correctly handle
3259 * this situation without an update.
3264 res
= btrfs_extent_same(src
, loff
, olen
, dst
, dst_loff
);
3270 static int clone_finish_inode_update(struct btrfs_trans_handle
*trans
,
3271 struct inode
*inode
,
3277 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3280 inode_inc_iversion(inode
);
3281 if (!no_time_update
)
3282 inode
->i_mtime
= inode
->i_ctime
= current_fs_time(inode
->i_sb
);
3284 * We round up to the block size at eof when determining which
3285 * extents to clone above, but shouldn't round up the file size.
3287 if (endoff
> destoff
+ olen
)
3288 endoff
= destoff
+ olen
;
3289 if (endoff
> inode
->i_size
)
3290 btrfs_i_size_write(inode
, endoff
);
3292 ret
= btrfs_update_inode(trans
, root
, inode
);
3294 btrfs_abort_transaction(trans
, ret
);
3295 btrfs_end_transaction(trans
, root
);
3298 ret
= btrfs_end_transaction(trans
, root
);
3303 static void clone_update_extent_map(struct inode
*inode
,
3304 const struct btrfs_trans_handle
*trans
,
3305 const struct btrfs_path
*path
,
3306 const u64 hole_offset
,
3309 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
3310 struct extent_map
*em
;
3313 em
= alloc_extent_map();
3315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3316 &BTRFS_I(inode
)->runtime_flags
);
3321 struct btrfs_file_extent_item
*fi
;
3323 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3324 struct btrfs_file_extent_item
);
3325 btrfs_extent_item_to_extent_map(inode
, path
, fi
, false, em
);
3326 em
->generation
= -1;
3327 if (btrfs_file_extent_type(path
->nodes
[0], fi
) ==
3328 BTRFS_FILE_EXTENT_INLINE
)
3329 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3330 &BTRFS_I(inode
)->runtime_flags
);
3332 em
->start
= hole_offset
;
3334 em
->ram_bytes
= em
->len
;
3335 em
->orig_start
= hole_offset
;
3336 em
->block_start
= EXTENT_MAP_HOLE
;
3338 em
->orig_block_len
= 0;
3339 em
->compress_type
= BTRFS_COMPRESS_NONE
;
3340 em
->generation
= trans
->transid
;
3344 write_lock(&em_tree
->lock
);
3345 ret
= add_extent_mapping(em_tree
, em
, 1);
3346 write_unlock(&em_tree
->lock
);
3347 if (ret
!= -EEXIST
) {
3348 free_extent_map(em
);
3351 btrfs_drop_extent_cache(inode
, em
->start
,
3352 em
->start
+ em
->len
- 1, 0);
3356 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3357 &BTRFS_I(inode
)->runtime_flags
);
3361 * Make sure we do not end up inserting an inline extent into a file that has
3362 * already other (non-inline) extents. If a file has an inline extent it can
3363 * not have any other extents and the (single) inline extent must start at the
3364 * file offset 0. Failing to respect these rules will lead to file corruption,
3365 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3367 * We can have extents that have been already written to disk or we can have
3368 * dirty ranges still in delalloc, in which case the extent maps and items are
3369 * created only when we run delalloc, and the delalloc ranges might fall outside
3370 * the range we are currently locking in the inode's io tree. So we check the
3371 * inode's i_size because of that (i_size updates are done while holding the
3372 * i_mutex, which we are holding here).
3373 * We also check to see if the inode has a size not greater than "datal" but has
3374 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3375 * protected against such concurrent fallocate calls by the i_mutex).
3377 * If the file has no extents but a size greater than datal, do not allow the
3378 * copy because we would need turn the inline extent into a non-inline one (even
3379 * with NO_HOLES enabled). If we find our destination inode only has one inline
3380 * extent, just overwrite it with the source inline extent if its size is less
3381 * than the source extent's size, or we could copy the source inline extent's
3382 * data into the destination inode's inline extent if the later is greater then
3385 static int clone_copy_inline_extent(struct inode
*src
,
3387 struct btrfs_trans_handle
*trans
,
3388 struct btrfs_path
*path
,
3389 struct btrfs_key
*new_key
,
3390 const u64 drop_start
,
3396 struct btrfs_root
*root
= BTRFS_I(dst
)->root
;
3397 const u64 aligned_end
= ALIGN(new_key
->offset
+ datal
,
3400 struct btrfs_key key
;
3402 if (new_key
->offset
> 0)
3405 key
.objectid
= btrfs_ino(dst
);
3406 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3408 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3411 } else if (ret
> 0) {
3412 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
3413 ret
= btrfs_next_leaf(root
, path
);
3417 goto copy_inline_extent
;
3419 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
3420 if (key
.objectid
== btrfs_ino(dst
) &&
3421 key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3422 ASSERT(key
.offset
> 0);
3425 } else if (i_size_read(dst
) <= datal
) {
3426 struct btrfs_file_extent_item
*ei
;
3430 * If the file size is <= datal, make sure there are no other
3431 * extents following (can happen do to an fallocate call with
3432 * the flag FALLOC_FL_KEEP_SIZE).
3434 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3435 struct btrfs_file_extent_item
);
3437 * If it's an inline extent, it can not have other extents
3440 if (btrfs_file_extent_type(path
->nodes
[0], ei
) ==
3441 BTRFS_FILE_EXTENT_INLINE
)
3442 goto copy_inline_extent
;
3444 ext_len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
3445 if (ext_len
> aligned_end
)
3448 ret
= btrfs_next_item(root
, path
);
3451 } else if (ret
== 0) {
3452 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3454 if (key
.objectid
== btrfs_ino(dst
) &&
3455 key
.type
== BTRFS_EXTENT_DATA_KEY
)
3462 * We have no extent items, or we have an extent at offset 0 which may
3463 * or may not be inlined. All these cases are dealt the same way.
3465 if (i_size_read(dst
) > datal
) {
3467 * If the destination inode has an inline extent...
3468 * This would require copying the data from the source inline
3469 * extent into the beginning of the destination's inline extent.
3470 * But this is really complex, both extents can be compressed
3471 * or just one of them, which would require decompressing and
3472 * re-compressing data (which could increase the new compressed
3473 * size, not allowing the compressed data to fit anymore in an
3475 * So just don't support this case for now (it should be rare,
3476 * we are not really saving space when cloning inline extents).
3481 btrfs_release_path(path
);
3482 ret
= btrfs_drop_extents(trans
, root
, dst
, drop_start
, aligned_end
, 1);
3485 ret
= btrfs_insert_empty_item(trans
, root
, path
, new_key
, size
);
3490 const u32 start
= btrfs_file_extent_calc_inline_size(0);
3492 memmove(inline_data
+ start
, inline_data
+ start
+ skip
, datal
);
3495 write_extent_buffer(path
->nodes
[0], inline_data
,
3496 btrfs_item_ptr_offset(path
->nodes
[0],
3499 inode_add_bytes(dst
, datal
);
3505 * btrfs_clone() - clone a range from inode file to another
3507 * @src: Inode to clone from
3508 * @inode: Inode to clone to
3509 * @off: Offset within source to start clone from
3510 * @olen: Original length, passed by user, of range to clone
3511 * @olen_aligned: Block-aligned value of olen
3512 * @destoff: Offset within @inode to start clone
3513 * @no_time_update: Whether to update mtime/ctime on the target inode
3515 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
3516 const u64 off
, const u64 olen
, const u64 olen_aligned
,
3517 const u64 destoff
, int no_time_update
)
3519 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3520 struct btrfs_path
*path
= NULL
;
3521 struct extent_buffer
*leaf
;
3522 struct btrfs_trans_handle
*trans
;
3524 struct btrfs_key key
;
3528 const u64 len
= olen_aligned
;
3529 u64 last_dest_end
= destoff
;
3532 buf
= kmalloc(root
->nodesize
, GFP_KERNEL
| __GFP_NOWARN
);
3534 buf
= vmalloc(root
->nodesize
);
3539 path
= btrfs_alloc_path();
3545 path
->reada
= READA_FORWARD
;
3547 key
.objectid
= btrfs_ino(src
);
3548 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3552 u64 next_key_min_offset
= key
.offset
+ 1;
3555 * note the key will change type as we walk through the
3558 path
->leave_spinning
= 1;
3559 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
3564 * First search, if no extent item that starts at offset off was
3565 * found but the previous item is an extent item, it's possible
3566 * it might overlap our target range, therefore process it.
3568 if (key
.offset
== off
&& ret
> 0 && path
->slots
[0] > 0) {
3569 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3570 path
->slots
[0] - 1);
3571 if (key
.type
== BTRFS_EXTENT_DATA_KEY
)
3575 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3577 if (path
->slots
[0] >= nritems
) {
3578 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
3583 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3585 leaf
= path
->nodes
[0];
3586 slot
= path
->slots
[0];
3588 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3589 if (key
.type
> BTRFS_EXTENT_DATA_KEY
||
3590 key
.objectid
!= btrfs_ino(src
))
3593 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3594 struct btrfs_file_extent_item
*extent
;
3597 struct btrfs_key new_key
;
3598 u64 disko
= 0, diskl
= 0;
3599 u64 datao
= 0, datal
= 0;
3603 extent
= btrfs_item_ptr(leaf
, slot
,
3604 struct btrfs_file_extent_item
);
3605 comp
= btrfs_file_extent_compression(leaf
, extent
);
3606 type
= btrfs_file_extent_type(leaf
, extent
);
3607 if (type
== BTRFS_FILE_EXTENT_REG
||
3608 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3609 disko
= btrfs_file_extent_disk_bytenr(leaf
,
3611 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
3613 datao
= btrfs_file_extent_offset(leaf
, extent
);
3614 datal
= btrfs_file_extent_num_bytes(leaf
,
3616 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3617 /* take upper bound, may be compressed */
3618 datal
= btrfs_file_extent_ram_bytes(leaf
,
3623 * The first search might have left us at an extent
3624 * item that ends before our target range's start, can
3625 * happen if we have holes and NO_HOLES feature enabled.
3627 if (key
.offset
+ datal
<= off
) {
3630 } else if (key
.offset
>= off
+ len
) {
3633 next_key_min_offset
= key
.offset
+ datal
;
3634 size
= btrfs_item_size_nr(leaf
, slot
);
3635 read_extent_buffer(leaf
, buf
,
3636 btrfs_item_ptr_offset(leaf
, slot
),
3639 btrfs_release_path(path
);
3640 path
->leave_spinning
= 0;
3642 memcpy(&new_key
, &key
, sizeof(new_key
));
3643 new_key
.objectid
= btrfs_ino(inode
);
3644 if (off
<= key
.offset
)
3645 new_key
.offset
= key
.offset
+ destoff
- off
;
3647 new_key
.offset
= destoff
;
3650 * Deal with a hole that doesn't have an extent item
3651 * that represents it (NO_HOLES feature enabled).
3652 * This hole is either in the middle of the cloning
3653 * range or at the beginning (fully overlaps it or
3654 * partially overlaps it).
3656 if (new_key
.offset
!= last_dest_end
)
3657 drop_start
= last_dest_end
;
3659 drop_start
= new_key
.offset
;
3662 * 1 - adjusting old extent (we may have to split it)
3663 * 1 - add new extent
3666 trans
= btrfs_start_transaction(root
, 3);
3667 if (IS_ERR(trans
)) {
3668 ret
= PTR_ERR(trans
);
3672 if (type
== BTRFS_FILE_EXTENT_REG
||
3673 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3675 * a | --- range to clone ---| b
3676 * | ------------- extent ------------- |
3679 /* subtract range b */
3680 if (key
.offset
+ datal
> off
+ len
)
3681 datal
= off
+ len
- key
.offset
;
3683 /* subtract range a */
3684 if (off
> key
.offset
) {
3685 datao
+= off
- key
.offset
;
3686 datal
-= off
- key
.offset
;
3689 ret
= btrfs_drop_extents(trans
, root
, inode
,
3691 new_key
.offset
+ datal
,
3694 if (ret
!= -EOPNOTSUPP
)
3695 btrfs_abort_transaction(trans
,
3697 btrfs_end_transaction(trans
, root
);
3701 ret
= btrfs_insert_empty_item(trans
, root
, path
,
3704 btrfs_abort_transaction(trans
, ret
);
3705 btrfs_end_transaction(trans
, root
);
3709 leaf
= path
->nodes
[0];
3710 slot
= path
->slots
[0];
3711 write_extent_buffer(leaf
, buf
,
3712 btrfs_item_ptr_offset(leaf
, slot
),
3715 extent
= btrfs_item_ptr(leaf
, slot
,
3716 struct btrfs_file_extent_item
);
3718 /* disko == 0 means it's a hole */
3722 btrfs_set_file_extent_offset(leaf
, extent
,
3724 btrfs_set_file_extent_num_bytes(leaf
, extent
,
3728 inode_add_bytes(inode
, datal
);
3729 ret
= btrfs_inc_extent_ref(trans
, root
,
3731 root
->root_key
.objectid
,
3733 new_key
.offset
- datao
);
3735 btrfs_abort_transaction(trans
,
3737 btrfs_end_transaction(trans
,
3743 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3747 if (off
> key
.offset
) {
3748 skip
= off
- key
.offset
;
3749 new_key
.offset
+= skip
;
3752 if (key
.offset
+ datal
> off
+ len
)
3753 trim
= key
.offset
+ datal
- (off
+ len
);
3755 if (comp
&& (skip
|| trim
)) {
3757 btrfs_end_transaction(trans
, root
);
3760 size
-= skip
+ trim
;
3761 datal
-= skip
+ trim
;
3763 ret
= clone_copy_inline_extent(src
, inode
,
3770 if (ret
!= -EOPNOTSUPP
)
3771 btrfs_abort_transaction(trans
,
3773 btrfs_end_transaction(trans
, root
);
3776 leaf
= path
->nodes
[0];
3777 slot
= path
->slots
[0];
3780 /* If we have an implicit hole (NO_HOLES feature). */
3781 if (drop_start
< new_key
.offset
)
3782 clone_update_extent_map(inode
, trans
,
3784 new_key
.offset
- drop_start
);
3786 clone_update_extent_map(inode
, trans
, path
, 0, 0);
3788 btrfs_mark_buffer_dirty(leaf
);
3789 btrfs_release_path(path
);
3791 last_dest_end
= ALIGN(new_key
.offset
+ datal
,
3793 ret
= clone_finish_inode_update(trans
, inode
,
3799 if (new_key
.offset
+ datal
>= destoff
+ len
)
3802 btrfs_release_path(path
);
3803 key
.offset
= next_key_min_offset
;
3807 if (last_dest_end
< destoff
+ len
) {
3809 * We have an implicit hole (NO_HOLES feature is enabled) that
3810 * fully or partially overlaps our cloning range at its end.
3812 btrfs_release_path(path
);
3815 * 1 - remove extent(s)
3818 trans
= btrfs_start_transaction(root
, 2);
3819 if (IS_ERR(trans
)) {
3820 ret
= PTR_ERR(trans
);
3823 ret
= btrfs_drop_extents(trans
, root
, inode
,
3824 last_dest_end
, destoff
+ len
, 1);
3826 if (ret
!= -EOPNOTSUPP
)
3827 btrfs_abort_transaction(trans
, ret
);
3828 btrfs_end_transaction(trans
, root
);
3831 clone_update_extent_map(inode
, trans
, NULL
, last_dest_end
,
3832 destoff
+ len
- last_dest_end
);
3833 ret
= clone_finish_inode_update(trans
, inode
, destoff
+ len
,
3834 destoff
, olen
, no_time_update
);
3838 btrfs_free_path(path
);
3843 static noinline
int btrfs_clone_files(struct file
*file
, struct file
*file_src
,
3844 u64 off
, u64 olen
, u64 destoff
)
3846 struct inode
*inode
= file_inode(file
);
3847 struct inode
*src
= file_inode(file_src
);
3848 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3851 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
3852 int same_inode
= src
== inode
;
3856 * - split compressed inline extents. annoying: we need to
3857 * decompress into destination's address_space (the file offset
3858 * may change, so source mapping won't do), then recompress (or
3859 * otherwise reinsert) a subrange.
3861 * - split destination inode's inline extents. The inline extents can
3862 * be either compressed or non-compressed.
3865 if (btrfs_root_readonly(root
))
3868 if (file_src
->f_path
.mnt
!= file
->f_path
.mnt
||
3869 src
->i_sb
!= inode
->i_sb
)
3872 /* don't make the dst file partly checksummed */
3873 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3874 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
3877 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
3881 btrfs_double_inode_lock(src
, inode
);
3886 /* determine range to clone */
3888 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
3891 olen
= len
= src
->i_size
- off
;
3892 /* if we extend to eof, continue to block boundary */
3893 if (off
+ len
== src
->i_size
)
3894 len
= ALIGN(src
->i_size
, bs
) - off
;
3901 /* verify the end result is block aligned */
3902 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
3903 !IS_ALIGNED(destoff
, bs
))
3906 /* verify if ranges are overlapped within the same file */
3908 if (destoff
+ len
> off
&& destoff
< off
+ len
)
3912 if (destoff
> inode
->i_size
) {
3913 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
3919 * Lock the target range too. Right after we replace the file extent
3920 * items in the fs tree (which now point to the cloned data), we might
3921 * have a worker replace them with extent items relative to a write
3922 * operation that was issued before this clone operation (i.e. confront
3923 * with inode.c:btrfs_finish_ordered_io).
3926 u64 lock_start
= min_t(u64
, off
, destoff
);
3927 u64 lock_len
= max_t(u64
, off
, destoff
) + len
- lock_start
;
3929 ret
= lock_extent_range(src
, lock_start
, lock_len
, true);
3931 ret
= btrfs_double_extent_lock(src
, off
, inode
, destoff
, len
,
3936 /* ranges in the io trees already unlocked */
3940 ret
= btrfs_clone(src
, inode
, off
, olen
, len
, destoff
, 0);
3943 u64 lock_start
= min_t(u64
, off
, destoff
);
3944 u64 lock_end
= max_t(u64
, off
, destoff
) + len
- 1;
3946 unlock_extent(&BTRFS_I(src
)->io_tree
, lock_start
, lock_end
);
3948 btrfs_double_extent_unlock(src
, off
, inode
, destoff
, len
);
3951 * Truncate page cache pages so that future reads will see the cloned
3952 * data immediately and not the previous data.
3954 truncate_inode_pages_range(&inode
->i_data
,
3955 round_down(destoff
, PAGE_SIZE
),
3956 round_up(destoff
+ len
, PAGE_SIZE
) - 1);
3959 btrfs_double_inode_unlock(src
, inode
);
3965 ssize_t
btrfs_copy_file_range(struct file
*file_in
, loff_t pos_in
,
3966 struct file
*file_out
, loff_t pos_out
,
3967 size_t len
, unsigned int flags
)
3971 ret
= btrfs_clone_files(file_out
, file_in
, pos_in
, len
, pos_out
);
3977 int btrfs_clone_file_range(struct file
*src_file
, loff_t off
,
3978 struct file
*dst_file
, loff_t destoff
, u64 len
)
3980 return btrfs_clone_files(dst_file
, src_file
, off
, len
, destoff
);
3984 * there are many ways the trans_start and trans_end ioctls can lead
3985 * to deadlocks. They should only be used by applications that
3986 * basically own the machine, and have a very in depth understanding
3987 * of all the possible deadlocks and enospc problems.
3989 static long btrfs_ioctl_trans_start(struct file
*file
)
3991 struct inode
*inode
= file_inode(file
);
3992 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3993 struct btrfs_trans_handle
*trans
;
3997 if (!capable(CAP_SYS_ADMIN
))
4001 if (file
->private_data
)
4005 if (btrfs_root_readonly(root
))
4008 ret
= mnt_want_write_file(file
);
4012 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
4015 trans
= btrfs_start_ioctl_transaction(root
);
4019 file
->private_data
= trans
;
4023 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
4024 mnt_drop_write_file(file
);
4029 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
4031 struct inode
*inode
= file_inode(file
);
4032 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4033 struct btrfs_root
*new_root
;
4034 struct btrfs_dir_item
*di
;
4035 struct btrfs_trans_handle
*trans
;
4036 struct btrfs_path
*path
;
4037 struct btrfs_key location
;
4038 struct btrfs_disk_key disk_key
;
4043 if (!capable(CAP_SYS_ADMIN
))
4046 ret
= mnt_want_write_file(file
);
4050 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
4056 objectid
= BTRFS_FS_TREE_OBJECTID
;
4058 location
.objectid
= objectid
;
4059 location
.type
= BTRFS_ROOT_ITEM_KEY
;
4060 location
.offset
= (u64
)-1;
4062 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
4063 if (IS_ERR(new_root
)) {
4064 ret
= PTR_ERR(new_root
);
4068 path
= btrfs_alloc_path();
4073 path
->leave_spinning
= 1;
4075 trans
= btrfs_start_transaction(root
, 1);
4076 if (IS_ERR(trans
)) {
4077 btrfs_free_path(path
);
4078 ret
= PTR_ERR(trans
);
4082 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
4083 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
4084 dir_id
, "default", 7, 1);
4085 if (IS_ERR_OR_NULL(di
)) {
4086 btrfs_free_path(path
);
4087 btrfs_end_transaction(trans
, root
);
4088 btrfs_err(new_root
->fs_info
, "Umm, you don't have the default dir"
4089 "item, this isn't going to work");
4094 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
4095 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
4096 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4097 btrfs_free_path(path
);
4099 btrfs_set_fs_incompat(root
->fs_info
, DEFAULT_SUBVOL
);
4100 btrfs_end_transaction(trans
, root
);
4102 mnt_drop_write_file(file
);
4106 void btrfs_get_block_group_info(struct list_head
*groups_list
,
4107 struct btrfs_ioctl_space_info
*space
)
4109 struct btrfs_block_group_cache
*block_group
;
4111 space
->total_bytes
= 0;
4112 space
->used_bytes
= 0;
4114 list_for_each_entry(block_group
, groups_list
, list
) {
4115 space
->flags
= block_group
->flags
;
4116 space
->total_bytes
+= block_group
->key
.offset
;
4117 space
->used_bytes
+=
4118 btrfs_block_group_used(&block_group
->item
);
4122 static long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
4124 struct btrfs_ioctl_space_args space_args
;
4125 struct btrfs_ioctl_space_info space
;
4126 struct btrfs_ioctl_space_info
*dest
;
4127 struct btrfs_ioctl_space_info
*dest_orig
;
4128 struct btrfs_ioctl_space_info __user
*user_dest
;
4129 struct btrfs_space_info
*info
;
4130 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
4131 BTRFS_BLOCK_GROUP_SYSTEM
,
4132 BTRFS_BLOCK_GROUP_METADATA
,
4133 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
4140 if (copy_from_user(&space_args
,
4141 (struct btrfs_ioctl_space_args __user
*)arg
,
4142 sizeof(space_args
)))
4145 for (i
= 0; i
< num_types
; i
++) {
4146 struct btrfs_space_info
*tmp
;
4150 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
4152 if (tmp
->flags
== types
[i
]) {
4162 down_read(&info
->groups_sem
);
4163 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4164 if (!list_empty(&info
->block_groups
[c
]))
4167 up_read(&info
->groups_sem
);
4171 * Global block reserve, exported as a space_info
4175 /* space_slots == 0 means they are asking for a count */
4176 if (space_args
.space_slots
== 0) {
4177 space_args
.total_spaces
= slot_count
;
4181 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
4183 alloc_size
= sizeof(*dest
) * slot_count
;
4185 /* we generally have at most 6 or so space infos, one for each raid
4186 * level. So, a whole page should be more than enough for everyone
4188 if (alloc_size
> PAGE_SIZE
)
4191 space_args
.total_spaces
= 0;
4192 dest
= kmalloc(alloc_size
, GFP_KERNEL
);
4197 /* now we have a buffer to copy into */
4198 for (i
= 0; i
< num_types
; i
++) {
4199 struct btrfs_space_info
*tmp
;
4206 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
4208 if (tmp
->flags
== types
[i
]) {
4217 down_read(&info
->groups_sem
);
4218 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4219 if (!list_empty(&info
->block_groups
[c
])) {
4220 btrfs_get_block_group_info(
4221 &info
->block_groups
[c
], &space
);
4222 memcpy(dest
, &space
, sizeof(space
));
4224 space_args
.total_spaces
++;
4230 up_read(&info
->groups_sem
);
4234 * Add global block reserve
4237 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->global_block_rsv
;
4239 spin_lock(&block_rsv
->lock
);
4240 space
.total_bytes
= block_rsv
->size
;
4241 space
.used_bytes
= block_rsv
->size
- block_rsv
->reserved
;
4242 spin_unlock(&block_rsv
->lock
);
4243 space
.flags
= BTRFS_SPACE_INFO_GLOBAL_RSV
;
4244 memcpy(dest
, &space
, sizeof(space
));
4245 space_args
.total_spaces
++;
4248 user_dest
= (struct btrfs_ioctl_space_info __user
*)
4249 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
4251 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
4256 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
4263 * there are many ways the trans_start and trans_end ioctls can lead
4264 * to deadlocks. They should only be used by applications that
4265 * basically own the machine, and have a very in depth understanding
4266 * of all the possible deadlocks and enospc problems.
4268 long btrfs_ioctl_trans_end(struct file
*file
)
4270 struct inode
*inode
= file_inode(file
);
4271 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4272 struct btrfs_trans_handle
*trans
;
4274 trans
= file
->private_data
;
4277 file
->private_data
= NULL
;
4279 btrfs_end_transaction(trans
, root
);
4281 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
4283 mnt_drop_write_file(file
);
4287 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
4290 struct btrfs_trans_handle
*trans
;
4294 trans
= btrfs_attach_transaction_barrier(root
);
4295 if (IS_ERR(trans
)) {
4296 if (PTR_ERR(trans
) != -ENOENT
)
4297 return PTR_ERR(trans
);
4299 /* No running transaction, don't bother */
4300 transid
= root
->fs_info
->last_trans_committed
;
4303 transid
= trans
->transid
;
4304 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
4306 btrfs_end_transaction(trans
, root
);
4311 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
4316 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_root
*root
,
4322 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
4325 transid
= 0; /* current trans */
4327 return btrfs_wait_for_commit(root
, transid
);
4330 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
4332 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4333 struct btrfs_ioctl_scrub_args
*sa
;
4336 if (!capable(CAP_SYS_ADMIN
))
4339 sa
= memdup_user(arg
, sizeof(*sa
));
4343 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
4344 ret
= mnt_want_write_file(file
);
4349 ret
= btrfs_scrub_dev(root
->fs_info
, sa
->devid
, sa
->start
, sa
->end
,
4350 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
4353 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4356 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
4357 mnt_drop_write_file(file
);
4363 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
4365 if (!capable(CAP_SYS_ADMIN
))
4368 return btrfs_scrub_cancel(root
->fs_info
);
4371 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
4374 struct btrfs_ioctl_scrub_args
*sa
;
4377 if (!capable(CAP_SYS_ADMIN
))
4380 sa
= memdup_user(arg
, sizeof(*sa
));
4384 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
4386 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4393 static long btrfs_ioctl_get_dev_stats(struct btrfs_root
*root
,
4396 struct btrfs_ioctl_get_dev_stats
*sa
;
4399 sa
= memdup_user(arg
, sizeof(*sa
));
4403 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
4408 ret
= btrfs_get_dev_stats(root
, sa
);
4410 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4417 static long btrfs_ioctl_dev_replace(struct btrfs_root
*root
, void __user
*arg
)
4419 struct btrfs_ioctl_dev_replace_args
*p
;
4422 if (!capable(CAP_SYS_ADMIN
))
4425 p
= memdup_user(arg
, sizeof(*p
));
4430 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
4431 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
) {
4436 &root
->fs_info
->mutually_exclusive_operation_running
,
4438 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4440 ret
= btrfs_dev_replace_by_ioctl(root
, p
);
4442 &root
->fs_info
->mutually_exclusive_operation_running
,
4446 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
4447 btrfs_dev_replace_status(root
->fs_info
, p
);
4450 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
4451 ret
= btrfs_dev_replace_cancel(root
->fs_info
, p
);
4458 if (copy_to_user(arg
, p
, sizeof(*p
)))
4465 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
4471 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
4472 struct inode_fs_paths
*ipath
= NULL
;
4473 struct btrfs_path
*path
;
4475 if (!capable(CAP_DAC_READ_SEARCH
))
4478 path
= btrfs_alloc_path();
4484 ipa
= memdup_user(arg
, sizeof(*ipa
));
4491 size
= min_t(u32
, ipa
->size
, 4096);
4492 ipath
= init_ipath(size
, root
, path
);
4493 if (IS_ERR(ipath
)) {
4494 ret
= PTR_ERR(ipath
);
4499 ret
= paths_from_inode(ipa
->inum
, ipath
);
4503 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
4504 rel_ptr
= ipath
->fspath
->val
[i
] -
4505 (u64
)(unsigned long)ipath
->fspath
->val
;
4506 ipath
->fspath
->val
[i
] = rel_ptr
;
4509 ret
= copy_to_user((void *)(unsigned long)ipa
->fspath
,
4510 (void *)(unsigned long)ipath
->fspath
, size
);
4517 btrfs_free_path(path
);
4524 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4526 struct btrfs_data_container
*inodes
= ctx
;
4527 const size_t c
= 3 * sizeof(u64
);
4529 if (inodes
->bytes_left
>= c
) {
4530 inodes
->bytes_left
-= c
;
4531 inodes
->val
[inodes
->elem_cnt
] = inum
;
4532 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
4533 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
4534 inodes
->elem_cnt
+= 3;
4536 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
4537 inodes
->bytes_left
= 0;
4538 inodes
->elem_missed
+= 3;
4544 static long btrfs_ioctl_logical_to_ino(struct btrfs_root
*root
,
4549 struct btrfs_ioctl_logical_ino_args
*loi
;
4550 struct btrfs_data_container
*inodes
= NULL
;
4551 struct btrfs_path
*path
= NULL
;
4553 if (!capable(CAP_SYS_ADMIN
))
4556 loi
= memdup_user(arg
, sizeof(*loi
));
4563 path
= btrfs_alloc_path();
4569 size
= min_t(u32
, loi
->size
, SZ_64K
);
4570 inodes
= init_data_container(size
);
4571 if (IS_ERR(inodes
)) {
4572 ret
= PTR_ERR(inodes
);
4577 ret
= iterate_inodes_from_logical(loi
->logical
, root
->fs_info
, path
,
4578 build_ino_list
, inodes
);
4584 ret
= copy_to_user((void *)(unsigned long)loi
->inodes
,
4585 (void *)(unsigned long)inodes
, size
);
4590 btrfs_free_path(path
);
4597 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
4598 struct btrfs_ioctl_balance_args
*bargs
)
4600 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4602 bargs
->flags
= bctl
->flags
;
4604 if (atomic_read(&fs_info
->balance_running
))
4605 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
4606 if (atomic_read(&fs_info
->balance_pause_req
))
4607 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
4608 if (atomic_read(&fs_info
->balance_cancel_req
))
4609 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
4611 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
4612 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
4613 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
4616 spin_lock(&fs_info
->balance_lock
);
4617 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4618 spin_unlock(&fs_info
->balance_lock
);
4620 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4624 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
4626 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4627 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4628 struct btrfs_ioctl_balance_args
*bargs
;
4629 struct btrfs_balance_control
*bctl
;
4630 bool need_unlock
; /* for mut. excl. ops lock */
4633 if (!capable(CAP_SYS_ADMIN
))
4636 ret
= mnt_want_write_file(file
);
4641 if (!atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
4642 mutex_lock(&fs_info
->volume_mutex
);
4643 mutex_lock(&fs_info
->balance_mutex
);
4649 * mut. excl. ops lock is locked. Three possibilities:
4650 * (1) some other op is running
4651 * (2) balance is running
4652 * (3) balance is paused -- special case (think resume)
4654 mutex_lock(&fs_info
->balance_mutex
);
4655 if (fs_info
->balance_ctl
) {
4656 /* this is either (2) or (3) */
4657 if (!atomic_read(&fs_info
->balance_running
)) {
4658 mutex_unlock(&fs_info
->balance_mutex
);
4659 if (!mutex_trylock(&fs_info
->volume_mutex
))
4661 mutex_lock(&fs_info
->balance_mutex
);
4663 if (fs_info
->balance_ctl
&&
4664 !atomic_read(&fs_info
->balance_running
)) {
4666 need_unlock
= false;
4670 mutex_unlock(&fs_info
->balance_mutex
);
4671 mutex_unlock(&fs_info
->volume_mutex
);
4675 mutex_unlock(&fs_info
->balance_mutex
);
4681 mutex_unlock(&fs_info
->balance_mutex
);
4682 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4687 BUG_ON(!atomic_read(&fs_info
->mutually_exclusive_operation_running
));
4690 bargs
= memdup_user(arg
, sizeof(*bargs
));
4691 if (IS_ERR(bargs
)) {
4692 ret
= PTR_ERR(bargs
);
4696 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
4697 if (!fs_info
->balance_ctl
) {
4702 bctl
= fs_info
->balance_ctl
;
4703 spin_lock(&fs_info
->balance_lock
);
4704 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4705 spin_unlock(&fs_info
->balance_lock
);
4713 if (fs_info
->balance_ctl
) {
4718 bctl
= kzalloc(sizeof(*bctl
), GFP_KERNEL
);
4724 bctl
->fs_info
= fs_info
;
4726 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
4727 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
4728 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
4730 bctl
->flags
= bargs
->flags
;
4732 /* balance everything - no filters */
4733 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
4736 if (bctl
->flags
& ~(BTRFS_BALANCE_ARGS_MASK
| BTRFS_BALANCE_TYPE_MASK
)) {
4743 * Ownership of bctl and mutually_exclusive_operation_running
4744 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4745 * or, if restriper was paused all the way until unmount, in
4746 * free_fs_info. mutually_exclusive_operation_running is
4747 * cleared in __cancel_balance.
4749 need_unlock
= false;
4751 ret
= btrfs_balance(bctl
, bargs
);
4755 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4764 mutex_unlock(&fs_info
->balance_mutex
);
4765 mutex_unlock(&fs_info
->volume_mutex
);
4767 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
4769 mnt_drop_write_file(file
);
4773 static long btrfs_ioctl_balance_ctl(struct btrfs_root
*root
, int cmd
)
4775 if (!capable(CAP_SYS_ADMIN
))
4779 case BTRFS_BALANCE_CTL_PAUSE
:
4780 return btrfs_pause_balance(root
->fs_info
);
4781 case BTRFS_BALANCE_CTL_CANCEL
:
4782 return btrfs_cancel_balance(root
->fs_info
);
4788 static long btrfs_ioctl_balance_progress(struct btrfs_root
*root
,
4791 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4792 struct btrfs_ioctl_balance_args
*bargs
;
4795 if (!capable(CAP_SYS_ADMIN
))
4798 mutex_lock(&fs_info
->balance_mutex
);
4799 if (!fs_info
->balance_ctl
) {
4804 bargs
= kzalloc(sizeof(*bargs
), GFP_KERNEL
);
4810 update_ioctl_balance_args(fs_info
, 1, bargs
);
4812 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4817 mutex_unlock(&fs_info
->balance_mutex
);
4821 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
4823 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4824 struct btrfs_ioctl_quota_ctl_args
*sa
;
4825 struct btrfs_trans_handle
*trans
= NULL
;
4829 if (!capable(CAP_SYS_ADMIN
))
4832 ret
= mnt_want_write_file(file
);
4836 sa
= memdup_user(arg
, sizeof(*sa
));
4842 down_write(&root
->fs_info
->subvol_sem
);
4843 trans
= btrfs_start_transaction(root
->fs_info
->tree_root
, 2);
4844 if (IS_ERR(trans
)) {
4845 ret
= PTR_ERR(trans
);
4850 case BTRFS_QUOTA_CTL_ENABLE
:
4851 ret
= btrfs_quota_enable(trans
, root
->fs_info
);
4853 case BTRFS_QUOTA_CTL_DISABLE
:
4854 ret
= btrfs_quota_disable(trans
, root
->fs_info
);
4861 err
= btrfs_commit_transaction(trans
, root
->fs_info
->tree_root
);
4866 up_write(&root
->fs_info
->subvol_sem
);
4868 mnt_drop_write_file(file
);
4872 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
4874 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4875 struct btrfs_ioctl_qgroup_assign_args
*sa
;
4876 struct btrfs_trans_handle
*trans
;
4880 if (!capable(CAP_SYS_ADMIN
))
4883 ret
= mnt_want_write_file(file
);
4887 sa
= memdup_user(arg
, sizeof(*sa
));
4893 trans
= btrfs_join_transaction(root
);
4894 if (IS_ERR(trans
)) {
4895 ret
= PTR_ERR(trans
);
4899 /* FIXME: check if the IDs really exist */
4901 ret
= btrfs_add_qgroup_relation(trans
, root
->fs_info
,
4904 ret
= btrfs_del_qgroup_relation(trans
, root
->fs_info
,
4908 /* update qgroup status and info */
4909 err
= btrfs_run_qgroups(trans
, root
->fs_info
);
4911 btrfs_handle_fs_error(root
->fs_info
, err
,
4912 "failed to update qgroup status and info");
4913 err
= btrfs_end_transaction(trans
, root
);
4920 mnt_drop_write_file(file
);
4924 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
4926 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4927 struct btrfs_ioctl_qgroup_create_args
*sa
;
4928 struct btrfs_trans_handle
*trans
;
4932 if (!capable(CAP_SYS_ADMIN
))
4935 ret
= mnt_want_write_file(file
);
4939 sa
= memdup_user(arg
, sizeof(*sa
));
4945 if (!sa
->qgroupid
) {
4950 trans
= btrfs_join_transaction(root
);
4951 if (IS_ERR(trans
)) {
4952 ret
= PTR_ERR(trans
);
4956 /* FIXME: check if the IDs really exist */
4958 ret
= btrfs_create_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
4960 ret
= btrfs_remove_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
4963 err
= btrfs_end_transaction(trans
, root
);
4970 mnt_drop_write_file(file
);
4974 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
4976 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4977 struct btrfs_ioctl_qgroup_limit_args
*sa
;
4978 struct btrfs_trans_handle
*trans
;
4983 if (!capable(CAP_SYS_ADMIN
))
4986 ret
= mnt_want_write_file(file
);
4990 sa
= memdup_user(arg
, sizeof(*sa
));
4996 trans
= btrfs_join_transaction(root
);
4997 if (IS_ERR(trans
)) {
4998 ret
= PTR_ERR(trans
);
5002 qgroupid
= sa
->qgroupid
;
5004 /* take the current subvol as qgroup */
5005 qgroupid
= root
->root_key
.objectid
;
5008 /* FIXME: check if the IDs really exist */
5009 ret
= btrfs_limit_qgroup(trans
, root
->fs_info
, qgroupid
, &sa
->lim
);
5011 err
= btrfs_end_transaction(trans
, root
);
5018 mnt_drop_write_file(file
);
5022 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
5024 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5025 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5028 if (!capable(CAP_SYS_ADMIN
))
5031 ret
= mnt_want_write_file(file
);
5035 qsa
= memdup_user(arg
, sizeof(*qsa
));
5046 ret
= btrfs_qgroup_rescan(root
->fs_info
);
5051 mnt_drop_write_file(file
);
5055 static long btrfs_ioctl_quota_rescan_status(struct file
*file
, void __user
*arg
)
5057 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5058 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5061 if (!capable(CAP_SYS_ADMIN
))
5064 qsa
= kzalloc(sizeof(*qsa
), GFP_KERNEL
);
5068 if (root
->fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
5070 qsa
->progress
= root
->fs_info
->qgroup_rescan_progress
.objectid
;
5073 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
5080 static long btrfs_ioctl_quota_rescan_wait(struct file
*file
, void __user
*arg
)
5082 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5084 if (!capable(CAP_SYS_ADMIN
))
5087 return btrfs_qgroup_wait_for_completion(root
->fs_info
);
5090 static long _btrfs_ioctl_set_received_subvol(struct file
*file
,
5091 struct btrfs_ioctl_received_subvol_args
*sa
)
5093 struct inode
*inode
= file_inode(file
);
5094 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5095 struct btrfs_root_item
*root_item
= &root
->root_item
;
5096 struct btrfs_trans_handle
*trans
;
5097 struct timespec ct
= current_fs_time(inode
->i_sb
);
5099 int received_uuid_changed
;
5101 if (!inode_owner_or_capable(inode
))
5104 ret
= mnt_want_write_file(file
);
5108 down_write(&root
->fs_info
->subvol_sem
);
5110 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
5115 if (btrfs_root_readonly(root
)) {
5122 * 2 - uuid items (received uuid + subvol uuid)
5124 trans
= btrfs_start_transaction(root
, 3);
5125 if (IS_ERR(trans
)) {
5126 ret
= PTR_ERR(trans
);
5131 sa
->rtransid
= trans
->transid
;
5132 sa
->rtime
.sec
= ct
.tv_sec
;
5133 sa
->rtime
.nsec
= ct
.tv_nsec
;
5135 received_uuid_changed
= memcmp(root_item
->received_uuid
, sa
->uuid
,
5137 if (received_uuid_changed
&&
5138 !btrfs_is_empty_uuid(root_item
->received_uuid
))
5139 btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
5140 root_item
->received_uuid
,
5141 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5142 root
->root_key
.objectid
);
5143 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
5144 btrfs_set_root_stransid(root_item
, sa
->stransid
);
5145 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
5146 btrfs_set_stack_timespec_sec(&root_item
->stime
, sa
->stime
.sec
);
5147 btrfs_set_stack_timespec_nsec(&root_item
->stime
, sa
->stime
.nsec
);
5148 btrfs_set_stack_timespec_sec(&root_item
->rtime
, sa
->rtime
.sec
);
5149 btrfs_set_stack_timespec_nsec(&root_item
->rtime
, sa
->rtime
.nsec
);
5151 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
5152 &root
->root_key
, &root
->root_item
);
5154 btrfs_end_transaction(trans
, root
);
5157 if (received_uuid_changed
&& !btrfs_is_empty_uuid(sa
->uuid
)) {
5158 ret
= btrfs_uuid_tree_add(trans
, root
->fs_info
->uuid_root
,
5160 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5161 root
->root_key
.objectid
);
5162 if (ret
< 0 && ret
!= -EEXIST
) {
5163 btrfs_abort_transaction(trans
, ret
);
5167 ret
= btrfs_commit_transaction(trans
, root
);
5169 btrfs_abort_transaction(trans
, ret
);
5174 up_write(&root
->fs_info
->subvol_sem
);
5175 mnt_drop_write_file(file
);
5180 static long btrfs_ioctl_set_received_subvol_32(struct file
*file
,
5183 struct btrfs_ioctl_received_subvol_args_32
*args32
= NULL
;
5184 struct btrfs_ioctl_received_subvol_args
*args64
= NULL
;
5187 args32
= memdup_user(arg
, sizeof(*args32
));
5188 if (IS_ERR(args32
)) {
5189 ret
= PTR_ERR(args32
);
5194 args64
= kmalloc(sizeof(*args64
), GFP_KERNEL
);
5200 memcpy(args64
->uuid
, args32
->uuid
, BTRFS_UUID_SIZE
);
5201 args64
->stransid
= args32
->stransid
;
5202 args64
->rtransid
= args32
->rtransid
;
5203 args64
->stime
.sec
= args32
->stime
.sec
;
5204 args64
->stime
.nsec
= args32
->stime
.nsec
;
5205 args64
->rtime
.sec
= args32
->rtime
.sec
;
5206 args64
->rtime
.nsec
= args32
->rtime
.nsec
;
5207 args64
->flags
= args32
->flags
;
5209 ret
= _btrfs_ioctl_set_received_subvol(file
, args64
);
5213 memcpy(args32
->uuid
, args64
->uuid
, BTRFS_UUID_SIZE
);
5214 args32
->stransid
= args64
->stransid
;
5215 args32
->rtransid
= args64
->rtransid
;
5216 args32
->stime
.sec
= args64
->stime
.sec
;
5217 args32
->stime
.nsec
= args64
->stime
.nsec
;
5218 args32
->rtime
.sec
= args64
->rtime
.sec
;
5219 args32
->rtime
.nsec
= args64
->rtime
.nsec
;
5220 args32
->flags
= args64
->flags
;
5222 ret
= copy_to_user(arg
, args32
, sizeof(*args32
));
5233 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
5236 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
5239 sa
= memdup_user(arg
, sizeof(*sa
));
5246 ret
= _btrfs_ioctl_set_received_subvol(file
, sa
);
5251 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
5260 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
5262 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5265 char label
[BTRFS_LABEL_SIZE
];
5267 spin_lock(&root
->fs_info
->super_lock
);
5268 memcpy(label
, root
->fs_info
->super_copy
->label
, BTRFS_LABEL_SIZE
);
5269 spin_unlock(&root
->fs_info
->super_lock
);
5271 len
= strnlen(label
, BTRFS_LABEL_SIZE
);
5273 if (len
== BTRFS_LABEL_SIZE
) {
5274 btrfs_warn(root
->fs_info
,
5275 "label is too long, return the first %zu bytes", --len
);
5278 ret
= copy_to_user(arg
, label
, len
);
5280 return ret
? -EFAULT
: 0;
5283 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
5285 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5286 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5287 struct btrfs_trans_handle
*trans
;
5288 char label
[BTRFS_LABEL_SIZE
];
5291 if (!capable(CAP_SYS_ADMIN
))
5294 if (copy_from_user(label
, arg
, sizeof(label
)))
5297 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
5298 btrfs_err(root
->fs_info
, "unable to set label with more than %d bytes",
5299 BTRFS_LABEL_SIZE
- 1);
5303 ret
= mnt_want_write_file(file
);
5307 trans
= btrfs_start_transaction(root
, 0);
5308 if (IS_ERR(trans
)) {
5309 ret
= PTR_ERR(trans
);
5313 spin_lock(&root
->fs_info
->super_lock
);
5314 strcpy(super_block
->label
, label
);
5315 spin_unlock(&root
->fs_info
->super_lock
);
5316 ret
= btrfs_commit_transaction(trans
, root
);
5319 mnt_drop_write_file(file
);
5323 #define INIT_FEATURE_FLAGS(suffix) \
5324 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5325 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5326 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5328 int btrfs_ioctl_get_supported_features(void __user
*arg
)
5330 static const struct btrfs_ioctl_feature_flags features
[3] = {
5331 INIT_FEATURE_FLAGS(SUPP
),
5332 INIT_FEATURE_FLAGS(SAFE_SET
),
5333 INIT_FEATURE_FLAGS(SAFE_CLEAR
)
5336 if (copy_to_user(arg
, &features
, sizeof(features
)))
5342 static int btrfs_ioctl_get_features(struct file
*file
, void __user
*arg
)
5344 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5345 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5346 struct btrfs_ioctl_feature_flags features
;
5348 features
.compat_flags
= btrfs_super_compat_flags(super_block
);
5349 features
.compat_ro_flags
= btrfs_super_compat_ro_flags(super_block
);
5350 features
.incompat_flags
= btrfs_super_incompat_flags(super_block
);
5352 if (copy_to_user(arg
, &features
, sizeof(features
)))
5358 static int check_feature_bits(struct btrfs_root
*root
,
5359 enum btrfs_feature_set set
,
5360 u64 change_mask
, u64 flags
, u64 supported_flags
,
5361 u64 safe_set
, u64 safe_clear
)
5363 const char *type
= btrfs_feature_set_names
[set
];
5365 u64 disallowed
, unsupported
;
5366 u64 set_mask
= flags
& change_mask
;
5367 u64 clear_mask
= ~flags
& change_mask
;
5369 unsupported
= set_mask
& ~supported_flags
;
5371 names
= btrfs_printable_features(set
, unsupported
);
5373 btrfs_warn(root
->fs_info
,
5374 "this kernel does not support the %s feature bit%s",
5375 names
, strchr(names
, ',') ? "s" : "");
5378 btrfs_warn(root
->fs_info
,
5379 "this kernel does not support %s bits 0x%llx",
5384 disallowed
= set_mask
& ~safe_set
;
5386 names
= btrfs_printable_features(set
, disallowed
);
5388 btrfs_warn(root
->fs_info
,
5389 "can't set the %s feature bit%s while mounted",
5390 names
, strchr(names
, ',') ? "s" : "");
5393 btrfs_warn(root
->fs_info
,
5394 "can't set %s bits 0x%llx while mounted",
5399 disallowed
= clear_mask
& ~safe_clear
;
5401 names
= btrfs_printable_features(set
, disallowed
);
5403 btrfs_warn(root
->fs_info
,
5404 "can't clear the %s feature bit%s while mounted",
5405 names
, strchr(names
, ',') ? "s" : "");
5408 btrfs_warn(root
->fs_info
,
5409 "can't clear %s bits 0x%llx while mounted",
5417 #define check_feature(root, change_mask, flags, mask_base) \
5418 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5419 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5420 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5421 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5423 static int btrfs_ioctl_set_features(struct file
*file
, void __user
*arg
)
5425 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5426 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5427 struct btrfs_ioctl_feature_flags flags
[2];
5428 struct btrfs_trans_handle
*trans
;
5432 if (!capable(CAP_SYS_ADMIN
))
5435 if (copy_from_user(flags
, arg
, sizeof(flags
)))
5439 if (!flags
[0].compat_flags
&& !flags
[0].compat_ro_flags
&&
5440 !flags
[0].incompat_flags
)
5443 ret
= check_feature(root
, flags
[0].compat_flags
,
5444 flags
[1].compat_flags
, COMPAT
);
5448 ret
= check_feature(root
, flags
[0].compat_ro_flags
,
5449 flags
[1].compat_ro_flags
, COMPAT_RO
);
5453 ret
= check_feature(root
, flags
[0].incompat_flags
,
5454 flags
[1].incompat_flags
, INCOMPAT
);
5458 ret
= mnt_want_write_file(file
);
5462 trans
= btrfs_start_transaction(root
, 0);
5463 if (IS_ERR(trans
)) {
5464 ret
= PTR_ERR(trans
);
5465 goto out_drop_write
;
5468 spin_lock(&root
->fs_info
->super_lock
);
5469 newflags
= btrfs_super_compat_flags(super_block
);
5470 newflags
|= flags
[0].compat_flags
& flags
[1].compat_flags
;
5471 newflags
&= ~(flags
[0].compat_flags
& ~flags
[1].compat_flags
);
5472 btrfs_set_super_compat_flags(super_block
, newflags
);
5474 newflags
= btrfs_super_compat_ro_flags(super_block
);
5475 newflags
|= flags
[0].compat_ro_flags
& flags
[1].compat_ro_flags
;
5476 newflags
&= ~(flags
[0].compat_ro_flags
& ~flags
[1].compat_ro_flags
);
5477 btrfs_set_super_compat_ro_flags(super_block
, newflags
);
5479 newflags
= btrfs_super_incompat_flags(super_block
);
5480 newflags
|= flags
[0].incompat_flags
& flags
[1].incompat_flags
;
5481 newflags
&= ~(flags
[0].incompat_flags
& ~flags
[1].incompat_flags
);
5482 btrfs_set_super_incompat_flags(super_block
, newflags
);
5483 spin_unlock(&root
->fs_info
->super_lock
);
5485 ret
= btrfs_commit_transaction(trans
, root
);
5487 mnt_drop_write_file(file
);
5492 long btrfs_ioctl(struct file
*file
, unsigned int
5493 cmd
, unsigned long arg
)
5495 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5496 void __user
*argp
= (void __user
*)arg
;
5499 case FS_IOC_GETFLAGS
:
5500 return btrfs_ioctl_getflags(file
, argp
);
5501 case FS_IOC_SETFLAGS
:
5502 return btrfs_ioctl_setflags(file
, argp
);
5503 case FS_IOC_GETVERSION
:
5504 return btrfs_ioctl_getversion(file
, argp
);
5506 return btrfs_ioctl_fitrim(file
, argp
);
5507 case BTRFS_IOC_SNAP_CREATE
:
5508 return btrfs_ioctl_snap_create(file
, argp
, 0);
5509 case BTRFS_IOC_SNAP_CREATE_V2
:
5510 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
5511 case BTRFS_IOC_SUBVOL_CREATE
:
5512 return btrfs_ioctl_snap_create(file
, argp
, 1);
5513 case BTRFS_IOC_SUBVOL_CREATE_V2
:
5514 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
5515 case BTRFS_IOC_SNAP_DESTROY
:
5516 return btrfs_ioctl_snap_destroy(file
, argp
);
5517 case BTRFS_IOC_SUBVOL_GETFLAGS
:
5518 return btrfs_ioctl_subvol_getflags(file
, argp
);
5519 case BTRFS_IOC_SUBVOL_SETFLAGS
:
5520 return btrfs_ioctl_subvol_setflags(file
, argp
);
5521 case BTRFS_IOC_DEFAULT_SUBVOL
:
5522 return btrfs_ioctl_default_subvol(file
, argp
);
5523 case BTRFS_IOC_DEFRAG
:
5524 return btrfs_ioctl_defrag(file
, NULL
);
5525 case BTRFS_IOC_DEFRAG_RANGE
:
5526 return btrfs_ioctl_defrag(file
, argp
);
5527 case BTRFS_IOC_RESIZE
:
5528 return btrfs_ioctl_resize(file
, argp
);
5529 case BTRFS_IOC_ADD_DEV
:
5530 return btrfs_ioctl_add_dev(root
, argp
);
5531 case BTRFS_IOC_RM_DEV
:
5532 return btrfs_ioctl_rm_dev(file
, argp
);
5533 case BTRFS_IOC_RM_DEV_V2
:
5534 return btrfs_ioctl_rm_dev_v2(file
, argp
);
5535 case BTRFS_IOC_FS_INFO
:
5536 return btrfs_ioctl_fs_info(root
, argp
);
5537 case BTRFS_IOC_DEV_INFO
:
5538 return btrfs_ioctl_dev_info(root
, argp
);
5539 case BTRFS_IOC_BALANCE
:
5540 return btrfs_ioctl_balance(file
, NULL
);
5541 case BTRFS_IOC_TRANS_START
:
5542 return btrfs_ioctl_trans_start(file
);
5543 case BTRFS_IOC_TRANS_END
:
5544 return btrfs_ioctl_trans_end(file
);
5545 case BTRFS_IOC_TREE_SEARCH
:
5546 return btrfs_ioctl_tree_search(file
, argp
);
5547 case BTRFS_IOC_TREE_SEARCH_V2
:
5548 return btrfs_ioctl_tree_search_v2(file
, argp
);
5549 case BTRFS_IOC_INO_LOOKUP
:
5550 return btrfs_ioctl_ino_lookup(file
, argp
);
5551 case BTRFS_IOC_INO_PATHS
:
5552 return btrfs_ioctl_ino_to_path(root
, argp
);
5553 case BTRFS_IOC_LOGICAL_INO
:
5554 return btrfs_ioctl_logical_to_ino(root
, argp
);
5555 case BTRFS_IOC_SPACE_INFO
:
5556 return btrfs_ioctl_space_info(root
, argp
);
5557 case BTRFS_IOC_SYNC
: {
5560 ret
= btrfs_start_delalloc_roots(root
->fs_info
, 0, -1);
5563 ret
= btrfs_sync_fs(file_inode(file
)->i_sb
, 1);
5565 * The transaction thread may want to do more work,
5566 * namely it pokes the cleaner kthread that will start
5567 * processing uncleaned subvols.
5569 wake_up_process(root
->fs_info
->transaction_kthread
);
5572 case BTRFS_IOC_START_SYNC
:
5573 return btrfs_ioctl_start_sync(root
, argp
);
5574 case BTRFS_IOC_WAIT_SYNC
:
5575 return btrfs_ioctl_wait_sync(root
, argp
);
5576 case BTRFS_IOC_SCRUB
:
5577 return btrfs_ioctl_scrub(file
, argp
);
5578 case BTRFS_IOC_SCRUB_CANCEL
:
5579 return btrfs_ioctl_scrub_cancel(root
, argp
);
5580 case BTRFS_IOC_SCRUB_PROGRESS
:
5581 return btrfs_ioctl_scrub_progress(root
, argp
);
5582 case BTRFS_IOC_BALANCE_V2
:
5583 return btrfs_ioctl_balance(file
, argp
);
5584 case BTRFS_IOC_BALANCE_CTL
:
5585 return btrfs_ioctl_balance_ctl(root
, arg
);
5586 case BTRFS_IOC_BALANCE_PROGRESS
:
5587 return btrfs_ioctl_balance_progress(root
, argp
);
5588 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
5589 return btrfs_ioctl_set_received_subvol(file
, argp
);
5591 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32
:
5592 return btrfs_ioctl_set_received_subvol_32(file
, argp
);
5594 case BTRFS_IOC_SEND
:
5595 return btrfs_ioctl_send(file
, argp
);
5596 case BTRFS_IOC_GET_DEV_STATS
:
5597 return btrfs_ioctl_get_dev_stats(root
, argp
);
5598 case BTRFS_IOC_QUOTA_CTL
:
5599 return btrfs_ioctl_quota_ctl(file
, argp
);
5600 case BTRFS_IOC_QGROUP_ASSIGN
:
5601 return btrfs_ioctl_qgroup_assign(file
, argp
);
5602 case BTRFS_IOC_QGROUP_CREATE
:
5603 return btrfs_ioctl_qgroup_create(file
, argp
);
5604 case BTRFS_IOC_QGROUP_LIMIT
:
5605 return btrfs_ioctl_qgroup_limit(file
, argp
);
5606 case BTRFS_IOC_QUOTA_RESCAN
:
5607 return btrfs_ioctl_quota_rescan(file
, argp
);
5608 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
5609 return btrfs_ioctl_quota_rescan_status(file
, argp
);
5610 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
5611 return btrfs_ioctl_quota_rescan_wait(file
, argp
);
5612 case BTRFS_IOC_DEV_REPLACE
:
5613 return btrfs_ioctl_dev_replace(root
, argp
);
5614 case BTRFS_IOC_GET_FSLABEL
:
5615 return btrfs_ioctl_get_fslabel(file
, argp
);
5616 case BTRFS_IOC_SET_FSLABEL
:
5617 return btrfs_ioctl_set_fslabel(file
, argp
);
5618 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
5619 return btrfs_ioctl_get_supported_features(argp
);
5620 case BTRFS_IOC_GET_FEATURES
:
5621 return btrfs_ioctl_get_features(file
, argp
);
5622 case BTRFS_IOC_SET_FEATURES
:
5623 return btrfs_ioctl_set_features(file
, argp
);
5629 #ifdef CONFIG_COMPAT
5630 long btrfs_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5633 case FS_IOC32_GETFLAGS
:
5634 cmd
= FS_IOC_GETFLAGS
;
5636 case FS_IOC32_SETFLAGS
:
5637 cmd
= FS_IOC_SETFLAGS
;
5639 case FS_IOC32_GETVERSION
:
5640 cmd
= FS_IOC_GETVERSION
;
5643 return -ENOIOCTLCMD
;
5646 return btrfs_ioctl(file
, cmd
, (unsigned long) compat_ptr(arg
));