2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
41 * Allocate and initialise an xfs_inode.
51 * if this didn't occur in transactions, we could use
52 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
53 * code up to do this anyway.
55 ip
= kmem_zone_alloc(xfs_inode_zone
, KM_SLEEP
);
58 if (inode_init_always(mp
->m_super
, VFS_I(ip
))) {
59 kmem_zone_free(xfs_inode_zone
, ip
);
63 /* VFS doesn't initialise i_mode! */
64 VFS_I(ip
)->i_mode
= 0;
66 XFS_STATS_INC(mp
, vn_active
);
67 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
68 ASSERT(!spin_is_locked(&ip
->i_flags_lock
));
69 ASSERT(!xfs_isiflocked(ip
));
70 ASSERT(ip
->i_ino
== 0);
72 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
74 /* initialise the xfs inode */
77 memset(&ip
->i_imap
, 0, sizeof(struct xfs_imap
));
79 memset(&ip
->i_df
, 0, sizeof(xfs_ifork_t
));
81 ip
->i_delayed_blks
= 0;
82 memset(&ip
->i_d
, 0, sizeof(ip
->i_d
));
88 xfs_inode_free_callback(
89 struct rcu_head
*head
)
91 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
92 struct xfs_inode
*ip
= XFS_I(inode
);
94 switch (VFS_I(ip
)->i_mode
& S_IFMT
) {
98 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
103 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
106 ASSERT(!(ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
));
107 xfs_inode_item_destroy(ip
);
111 kmem_zone_free(xfs_inode_zone
, ip
);
116 struct xfs_inode
*ip
)
118 /* asserts to verify all state is correct here */
119 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
120 ASSERT(!xfs_isiflocked(ip
));
121 XFS_STATS_DEC(ip
->i_mount
, vn_active
);
123 call_rcu(&VFS_I(ip
)->i_rcu
, xfs_inode_free_callback
);
128 struct xfs_inode
*ip
)
131 * Because we use RCU freeing we need to ensure the inode always
132 * appears to be reclaimed with an invalid inode number when in the
133 * free state. The ip->i_flags_lock provides the barrier against lookup
136 spin_lock(&ip
->i_flags_lock
);
137 ip
->i_flags
= XFS_IRECLAIM
;
139 spin_unlock(&ip
->i_flags_lock
);
141 __xfs_inode_free(ip
);
145 * Queue a new inode reclaim pass if there are reclaimable inodes and there
146 * isn't a reclaim pass already in progress. By default it runs every 5s based
147 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
148 * tunable, but that can be done if this method proves to be ineffective or too
152 xfs_reclaim_work_queue(
153 struct xfs_mount
*mp
)
157 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_RECLAIM_TAG
)) {
158 queue_delayed_work(mp
->m_reclaim_workqueue
, &mp
->m_reclaim_work
,
159 msecs_to_jiffies(xfs_syncd_centisecs
/ 6 * 10));
165 * This is a fast pass over the inode cache to try to get reclaim moving on as
166 * many inodes as possible in a short period of time. It kicks itself every few
167 * seconds, as well as being kicked by the inode cache shrinker when memory
168 * goes low. It scans as quickly as possible avoiding locked inodes or those
169 * already being flushed, and once done schedules a future pass.
173 struct work_struct
*work
)
175 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
176 struct xfs_mount
, m_reclaim_work
);
178 xfs_reclaim_inodes(mp
, SYNC_TRYLOCK
);
179 xfs_reclaim_work_queue(mp
);
183 xfs_perag_set_reclaim_tag(
184 struct xfs_perag
*pag
)
186 struct xfs_mount
*mp
= pag
->pag_mount
;
188 ASSERT(spin_is_locked(&pag
->pag_ici_lock
));
189 if (pag
->pag_ici_reclaimable
++)
192 /* propagate the reclaim tag up into the perag radix tree */
193 spin_lock(&mp
->m_perag_lock
);
194 radix_tree_tag_set(&mp
->m_perag_tree
, pag
->pag_agno
,
195 XFS_ICI_RECLAIM_TAG
);
196 spin_unlock(&mp
->m_perag_lock
);
198 /* schedule periodic background inode reclaim */
199 xfs_reclaim_work_queue(mp
);
201 trace_xfs_perag_set_reclaim(mp
, pag
->pag_agno
, -1, _RET_IP_
);
205 xfs_perag_clear_reclaim_tag(
206 struct xfs_perag
*pag
)
208 struct xfs_mount
*mp
= pag
->pag_mount
;
210 ASSERT(spin_is_locked(&pag
->pag_ici_lock
));
211 if (--pag
->pag_ici_reclaimable
)
214 /* clear the reclaim tag from the perag radix tree */
215 spin_lock(&mp
->m_perag_lock
);
216 radix_tree_tag_clear(&mp
->m_perag_tree
, pag
->pag_agno
,
217 XFS_ICI_RECLAIM_TAG
);
218 spin_unlock(&mp
->m_perag_lock
);
219 trace_xfs_perag_clear_reclaim(mp
, pag
->pag_agno
, -1, _RET_IP_
);
224 * We set the inode flag atomically with the radix tree tag.
225 * Once we get tag lookups on the radix tree, this inode flag
229 xfs_inode_set_reclaim_tag(
230 struct xfs_inode
*ip
)
232 struct xfs_mount
*mp
= ip
->i_mount
;
233 struct xfs_perag
*pag
;
235 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
236 spin_lock(&pag
->pag_ici_lock
);
237 spin_lock(&ip
->i_flags_lock
);
239 radix_tree_tag_set(&pag
->pag_ici_root
, XFS_INO_TO_AGINO(mp
, ip
->i_ino
),
240 XFS_ICI_RECLAIM_TAG
);
241 xfs_perag_set_reclaim_tag(pag
);
242 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
244 spin_unlock(&ip
->i_flags_lock
);
245 spin_unlock(&pag
->pag_ici_lock
);
250 xfs_inode_clear_reclaim_tag(
251 struct xfs_perag
*pag
,
254 radix_tree_tag_clear(&pag
->pag_ici_root
,
255 XFS_INO_TO_AGINO(pag
->pag_mount
, ino
),
256 XFS_ICI_RECLAIM_TAG
);
257 xfs_perag_clear_reclaim_tag(pag
);
261 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
262 * part of the structure. This is made more complex by the fact we store
263 * information about the on-disk values in the VFS inode and so we can't just
264 * overwrite the values unconditionally. Hence we save the parameters we
265 * need to retain across reinitialisation, and rewrite them into the VFS inode
266 * after reinitialisation even if it fails.
270 struct xfs_mount
*mp
,
274 uint32_t nlink
= inode
->i_nlink
;
275 uint32_t generation
= inode
->i_generation
;
276 uint64_t version
= inode
->i_version
;
277 umode_t mode
= inode
->i_mode
;
279 error
= inode_init_always(mp
->m_super
, inode
);
281 set_nlink(inode
, nlink
);
282 inode
->i_generation
= generation
;
283 inode
->i_version
= version
;
284 inode
->i_mode
= mode
;
289 * Check the validity of the inode we just found it the cache
293 struct xfs_perag
*pag
,
294 struct xfs_inode
*ip
,
297 int lock_flags
) __releases(RCU
)
299 struct inode
*inode
= VFS_I(ip
);
300 struct xfs_mount
*mp
= ip
->i_mount
;
304 * check for re-use of an inode within an RCU grace period due to the
305 * radix tree nodes not being updated yet. We monitor for this by
306 * setting the inode number to zero before freeing the inode structure.
307 * If the inode has been reallocated and set up, then the inode number
308 * will not match, so check for that, too.
310 spin_lock(&ip
->i_flags_lock
);
311 if (ip
->i_ino
!= ino
) {
312 trace_xfs_iget_skip(ip
);
313 XFS_STATS_INC(mp
, xs_ig_frecycle
);
320 * If we are racing with another cache hit that is currently
321 * instantiating this inode or currently recycling it out of
322 * reclaimabe state, wait for the initialisation to complete
325 * XXX(hch): eventually we should do something equivalent to
326 * wait_on_inode to wait for these flags to be cleared
327 * instead of polling for it.
329 if (ip
->i_flags
& (XFS_INEW
|XFS_IRECLAIM
)) {
330 trace_xfs_iget_skip(ip
);
331 XFS_STATS_INC(mp
, xs_ig_frecycle
);
337 * If lookup is racing with unlink return an error immediately.
339 if (VFS_I(ip
)->i_mode
== 0 && !(flags
& XFS_IGET_CREATE
)) {
345 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
346 * Need to carefully get it back into useable state.
348 if (ip
->i_flags
& XFS_IRECLAIMABLE
) {
349 trace_xfs_iget_reclaim(ip
);
352 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
353 * from stomping over us while we recycle the inode. We can't
354 * clear the radix tree reclaimable tag yet as it requires
355 * pag_ici_lock to be held exclusive.
357 ip
->i_flags
|= XFS_IRECLAIM
;
359 spin_unlock(&ip
->i_flags_lock
);
362 error
= xfs_reinit_inode(mp
, inode
);
365 * Re-initializing the inode failed, and we are in deep
366 * trouble. Try to re-add it to the reclaim list.
369 spin_lock(&ip
->i_flags_lock
);
371 ip
->i_flags
&= ~(XFS_INEW
| XFS_IRECLAIM
);
372 ASSERT(ip
->i_flags
& XFS_IRECLAIMABLE
);
373 trace_xfs_iget_reclaim_fail(ip
);
377 spin_lock(&pag
->pag_ici_lock
);
378 spin_lock(&ip
->i_flags_lock
);
381 * Clear the per-lifetime state in the inode as we are now
382 * effectively a new inode and need to return to the initial
383 * state before reuse occurs.
385 ip
->i_flags
&= ~XFS_IRECLAIM_RESET_FLAGS
;
386 ip
->i_flags
|= XFS_INEW
;
387 xfs_inode_clear_reclaim_tag(pag
, ip
->i_ino
);
388 inode
->i_state
= I_NEW
;
390 ASSERT(!rwsem_is_locked(&ip
->i_iolock
.mr_lock
));
391 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
393 spin_unlock(&ip
->i_flags_lock
);
394 spin_unlock(&pag
->pag_ici_lock
);
396 /* If the VFS inode is being torn down, pause and try again. */
398 trace_xfs_iget_skip(ip
);
403 /* We've got a live one. */
404 spin_unlock(&ip
->i_flags_lock
);
406 trace_xfs_iget_hit(ip
);
410 xfs_ilock(ip
, lock_flags
);
412 xfs_iflags_clear(ip
, XFS_ISTALE
| XFS_IDONTCACHE
);
413 XFS_STATS_INC(mp
, xs_ig_found
);
418 spin_unlock(&ip
->i_flags_lock
);
426 struct xfs_mount
*mp
,
427 struct xfs_perag
*pag
,
430 struct xfs_inode
**ipp
,
434 struct xfs_inode
*ip
;
436 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
439 ip
= xfs_inode_alloc(mp
, ino
);
443 error
= xfs_iread(mp
, tp
, ip
, flags
);
447 trace_xfs_iget_miss(ip
);
449 if ((VFS_I(ip
)->i_mode
== 0) && !(flags
& XFS_IGET_CREATE
)) {
455 * Preload the radix tree so we can insert safely under the
456 * write spinlock. Note that we cannot sleep inside the preload
457 * region. Since we can be called from transaction context, don't
458 * recurse into the file system.
460 if (radix_tree_preload(GFP_NOFS
)) {
466 * Because the inode hasn't been added to the radix-tree yet it can't
467 * be found by another thread, so we can do the non-sleeping lock here.
470 if (!xfs_ilock_nowait(ip
, lock_flags
))
475 * These values must be set before inserting the inode into the radix
476 * tree as the moment it is inserted a concurrent lookup (allowed by the
477 * RCU locking mechanism) can find it and that lookup must see that this
478 * is an inode currently under construction (i.e. that XFS_INEW is set).
479 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
480 * memory barrier that ensures this detection works correctly at lookup
484 if (flags
& XFS_IGET_DONTCACHE
)
485 iflags
|= XFS_IDONTCACHE
;
489 xfs_iflags_set(ip
, iflags
);
491 /* insert the new inode */
492 spin_lock(&pag
->pag_ici_lock
);
493 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
494 if (unlikely(error
)) {
495 WARN_ON(error
!= -EEXIST
);
496 XFS_STATS_INC(mp
, xs_ig_dup
);
498 goto out_preload_end
;
500 spin_unlock(&pag
->pag_ici_lock
);
501 radix_tree_preload_end();
507 spin_unlock(&pag
->pag_ici_lock
);
508 radix_tree_preload_end();
510 xfs_iunlock(ip
, lock_flags
);
512 __destroy_inode(VFS_I(ip
));
518 * Look up an inode by number in the given file system.
519 * The inode is looked up in the cache held in each AG.
520 * If the inode is found in the cache, initialise the vfs inode
523 * If it is not in core, read it in from the file system's device,
524 * add it to the cache and initialise the vfs inode.
526 * The inode is locked according to the value of the lock_flags parameter.
527 * This flag parameter indicates how and if the inode's IO lock and inode lock
530 * mp -- the mount point structure for the current file system. It points
531 * to the inode hash table.
532 * tp -- a pointer to the current transaction if there is one. This is
533 * simply passed through to the xfs_iread() call.
534 * ino -- the number of the inode desired. This is the unique identifier
535 * within the file system for the inode being requested.
536 * lock_flags -- flags indicating how to lock the inode. See the comment
537 * for xfs_ilock() for a list of valid values.
554 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
555 * doesn't get freed while it's being referenced during a
556 * radix tree traversal here. It assumes this function
557 * aqcuires only the ILOCK (and therefore it has no need to
558 * involve the IOLOCK in this synchronization).
560 ASSERT((lock_flags
& (XFS_IOLOCK_EXCL
| XFS_IOLOCK_SHARED
)) == 0);
562 /* reject inode numbers outside existing AGs */
563 if (!ino
|| XFS_INO_TO_AGNO(mp
, ino
) >= mp
->m_sb
.sb_agcount
)
566 XFS_STATS_INC(mp
, xs_ig_attempts
);
568 /* get the perag structure and ensure that it's inode capable */
569 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ino
));
570 agino
= XFS_INO_TO_AGINO(mp
, ino
);
575 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
578 error
= xfs_iget_cache_hit(pag
, ip
, ino
, flags
, lock_flags
);
580 goto out_error_or_again
;
583 XFS_STATS_INC(mp
, xs_ig_missed
);
585 error
= xfs_iget_cache_miss(mp
, pag
, tp
, ino
, &ip
,
588 goto out_error_or_again
;
595 * If we have a real type for an on-disk inode, we can setup the inode
596 * now. If it's a new inode being created, xfs_ialloc will handle it.
598 if (xfs_iflags_test(ip
, XFS_INEW
) && VFS_I(ip
)->i_mode
!= 0)
599 xfs_setup_existing_inode(ip
);
603 if (error
== -EAGAIN
) {
612 * The inode lookup is done in batches to keep the amount of lock traffic and
613 * radix tree lookups to a minimum. The batch size is a trade off between
614 * lookup reduction and stack usage. This is in the reclaim path, so we can't
617 #define XFS_LOOKUP_BATCH 32
620 xfs_inode_ag_walk_grab(
621 struct xfs_inode
*ip
)
623 struct inode
*inode
= VFS_I(ip
);
625 ASSERT(rcu_read_lock_held());
628 * check for stale RCU freed inode
630 * If the inode has been reallocated, it doesn't matter if it's not in
631 * the AG we are walking - we are walking for writeback, so if it
632 * passes all the "valid inode" checks and is dirty, then we'll write
633 * it back anyway. If it has been reallocated and still being
634 * initialised, the XFS_INEW check below will catch it.
636 spin_lock(&ip
->i_flags_lock
);
638 goto out_unlock_noent
;
640 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
641 if (__xfs_iflags_test(ip
, XFS_INEW
| XFS_IRECLAIMABLE
| XFS_IRECLAIM
))
642 goto out_unlock_noent
;
643 spin_unlock(&ip
->i_flags_lock
);
645 /* nothing to sync during shutdown */
646 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
647 return -EFSCORRUPTED
;
649 /* If we can't grab the inode, it must on it's way to reclaim. */
657 spin_unlock(&ip
->i_flags_lock
);
663 struct xfs_mount
*mp
,
664 struct xfs_perag
*pag
,
665 int (*execute
)(struct xfs_inode
*ip
, int flags
,
671 uint32_t first_index
;
683 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
690 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
691 (void **)batch
, first_index
,
694 nr_found
= radix_tree_gang_lookup_tag(
696 (void **) batch
, first_index
,
697 XFS_LOOKUP_BATCH
, tag
);
705 * Grab the inodes before we drop the lock. if we found
706 * nothing, nr == 0 and the loop will be skipped.
708 for (i
= 0; i
< nr_found
; i
++) {
709 struct xfs_inode
*ip
= batch
[i
];
711 if (done
|| xfs_inode_ag_walk_grab(ip
))
715 * Update the index for the next lookup. Catch
716 * overflows into the next AG range which can occur if
717 * we have inodes in the last block of the AG and we
718 * are currently pointing to the last inode.
720 * Because we may see inodes that are from the wrong AG
721 * due to RCU freeing and reallocation, only update the
722 * index if it lies in this AG. It was a race that lead
723 * us to see this inode, so another lookup from the
724 * same index will not find it again.
726 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) != pag
->pag_agno
)
728 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
729 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
733 /* unlock now we've grabbed the inodes. */
736 for (i
= 0; i
< nr_found
; i
++) {
739 error
= execute(batch
[i
], flags
, args
);
741 if (error
== -EAGAIN
) {
745 if (error
&& last_error
!= -EFSCORRUPTED
)
749 /* bail out if the filesystem is corrupted. */
750 if (error
== -EFSCORRUPTED
)
755 } while (nr_found
&& !done
);
765 * Background scanning to trim post-EOF preallocated space. This is queued
766 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
770 struct xfs_mount
*mp
)
773 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_EOFBLOCKS_TAG
))
774 queue_delayed_work(mp
->m_eofblocks_workqueue
,
775 &mp
->m_eofblocks_work
,
776 msecs_to_jiffies(xfs_eofb_secs
* 1000));
781 xfs_eofblocks_worker(
782 struct work_struct
*work
)
784 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
785 struct xfs_mount
, m_eofblocks_work
);
786 xfs_icache_free_eofblocks(mp
, NULL
);
787 xfs_queue_eofblocks(mp
);
791 xfs_inode_ag_iterator(
792 struct xfs_mount
*mp
,
793 int (*execute
)(struct xfs_inode
*ip
, int flags
,
798 struct xfs_perag
*pag
;
804 while ((pag
= xfs_perag_get(mp
, ag
))) {
805 ag
= pag
->pag_agno
+ 1;
806 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, -1);
810 if (error
== -EFSCORRUPTED
)
818 xfs_inode_ag_iterator_tag(
819 struct xfs_mount
*mp
,
820 int (*execute
)(struct xfs_inode
*ip
, int flags
,
826 struct xfs_perag
*pag
;
832 while ((pag
= xfs_perag_get_tag(mp
, ag
, tag
))) {
833 ag
= pag
->pag_agno
+ 1;
834 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, tag
);
838 if (error
== -EFSCORRUPTED
)
846 * Grab the inode for reclaim exclusively.
847 * Return 0 if we grabbed it, non-zero otherwise.
850 xfs_reclaim_inode_grab(
851 struct xfs_inode
*ip
,
854 ASSERT(rcu_read_lock_held());
856 /* quick check for stale RCU freed inode */
861 * If we are asked for non-blocking operation, do unlocked checks to
862 * see if the inode already is being flushed or in reclaim to avoid
865 if ((flags
& SYNC_TRYLOCK
) &&
866 __xfs_iflags_test(ip
, XFS_IFLOCK
| XFS_IRECLAIM
))
870 * The radix tree lock here protects a thread in xfs_iget from racing
871 * with us starting reclaim on the inode. Once we have the
872 * XFS_IRECLAIM flag set it will not touch us.
874 * Due to RCU lookup, we may find inodes that have been freed and only
875 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
876 * aren't candidates for reclaim at all, so we must check the
877 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
879 spin_lock(&ip
->i_flags_lock
);
880 if (!__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
) ||
881 __xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
882 /* not a reclaim candidate. */
883 spin_unlock(&ip
->i_flags_lock
);
886 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
887 spin_unlock(&ip
->i_flags_lock
);
892 * Inodes in different states need to be treated differently. The following
893 * table lists the inode states and the reclaim actions necessary:
895 * inode state iflush ret required action
896 * --------------- ---------- ---------------
898 * shutdown EIO unpin and reclaim
899 * clean, unpinned 0 reclaim
900 * stale, unpinned 0 reclaim
901 * clean, pinned(*) 0 requeue
902 * stale, pinned EAGAIN requeue
903 * dirty, async - requeue
904 * dirty, sync 0 reclaim
906 * (*) dgc: I don't think the clean, pinned state is possible but it gets
907 * handled anyway given the order of checks implemented.
909 * Also, because we get the flush lock first, we know that any inode that has
910 * been flushed delwri has had the flush completed by the time we check that
911 * the inode is clean.
913 * Note that because the inode is flushed delayed write by AIL pushing, the
914 * flush lock may already be held here and waiting on it can result in very
915 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
916 * the caller should push the AIL first before trying to reclaim inodes to
917 * minimise the amount of time spent waiting. For background relaim, we only
918 * bother to reclaim clean inodes anyway.
920 * Hence the order of actions after gaining the locks should be:
922 * shutdown => unpin and reclaim
923 * pinned, async => requeue
924 * pinned, sync => unpin
927 * dirty, async => requeue
928 * dirty, sync => flush, wait and reclaim
932 struct xfs_inode
*ip
,
933 struct xfs_perag
*pag
,
936 struct xfs_buf
*bp
= NULL
;
937 xfs_ino_t ino
= ip
->i_ino
; /* for radix_tree_delete */
942 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
943 if (!xfs_iflock_nowait(ip
)) {
944 if (!(sync_mode
& SYNC_WAIT
))
949 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
951 xfs_iflush_abort(ip
, false);
954 if (xfs_ipincount(ip
)) {
955 if (!(sync_mode
& SYNC_WAIT
))
959 if (xfs_iflags_test(ip
, XFS_ISTALE
))
961 if (xfs_inode_clean(ip
))
965 * Never flush out dirty data during non-blocking reclaim, as it would
966 * just contend with AIL pushing trying to do the same job.
968 if (!(sync_mode
& SYNC_WAIT
))
972 * Now we have an inode that needs flushing.
974 * Note that xfs_iflush will never block on the inode buffer lock, as
975 * xfs_ifree_cluster() can lock the inode buffer before it locks the
976 * ip->i_lock, and we are doing the exact opposite here. As a result,
977 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
978 * result in an ABBA deadlock with xfs_ifree_cluster().
980 * As xfs_ifree_cluser() must gather all inodes that are active in the
981 * cache to mark them stale, if we hit this case we don't actually want
982 * to do IO here - we want the inode marked stale so we can simply
983 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
984 * inode, back off and try again. Hopefully the next pass through will
985 * see the stale flag set on the inode.
987 error
= xfs_iflush(ip
, &bp
);
988 if (error
== -EAGAIN
) {
989 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
990 /* backoff longer than in xfs_ifree_cluster */
996 error
= xfs_bwrite(bp
);
1003 * Because we use RCU freeing we need to ensure the inode always appears
1004 * to be reclaimed with an invalid inode number when in the free state.
1005 * We do this as early as possible under the ILOCK and flush lock so
1006 * that xfs_iflush_cluster() can be guaranteed to detect races with us
1007 * here. By doing this, we guarantee that once xfs_iflush_cluster has
1008 * locked both the XFS_ILOCK and the flush lock that it will see either
1009 * a valid, flushable inode that will serialise correctly against the
1010 * locks below, or it will see a clean (and invalid) inode that it can
1013 spin_lock(&ip
->i_flags_lock
);
1014 ip
->i_flags
= XFS_IRECLAIM
;
1016 spin_unlock(&ip
->i_flags_lock
);
1019 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1021 XFS_STATS_INC(ip
->i_mount
, xs_ig_reclaims
);
1023 * Remove the inode from the per-AG radix tree.
1025 * Because radix_tree_delete won't complain even if the item was never
1026 * added to the tree assert that it's been there before to catch
1027 * problems with the inode life time early on.
1029 spin_lock(&pag
->pag_ici_lock
);
1030 if (!radix_tree_delete(&pag
->pag_ici_root
,
1031 XFS_INO_TO_AGINO(ip
->i_mount
, ino
)))
1033 xfs_perag_clear_reclaim_tag(pag
);
1034 spin_unlock(&pag
->pag_ici_lock
);
1037 * Here we do an (almost) spurious inode lock in order to coordinate
1038 * with inode cache radix tree lookups. This is because the lookup
1039 * can reference the inodes in the cache without taking references.
1041 * We make that OK here by ensuring that we wait until the inode is
1042 * unlocked after the lookup before we go ahead and free it.
1044 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1045 xfs_qm_dqdetach(ip
);
1046 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1048 __xfs_inode_free(ip
);
1054 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
1055 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1057 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1058 * a short while. However, this just burns CPU time scanning the tree
1059 * waiting for IO to complete and the reclaim work never goes back to
1060 * the idle state. Instead, return 0 to let the next scheduled
1061 * background reclaim attempt to reclaim the inode again.
1067 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1068 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1069 * then a shut down during filesystem unmount reclaim walk leak all the
1070 * unreclaimed inodes.
1073 xfs_reclaim_inodes_ag(
1074 struct xfs_mount
*mp
,
1078 struct xfs_perag
*pag
;
1082 int trylock
= flags
& SYNC_TRYLOCK
;
1088 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1089 unsigned long first_index
= 0;
1093 ag
= pag
->pag_agno
+ 1;
1096 if (!mutex_trylock(&pag
->pag_ici_reclaim_lock
)) {
1101 first_index
= pag
->pag_ici_reclaim_cursor
;
1103 mutex_lock(&pag
->pag_ici_reclaim_lock
);
1106 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
1110 nr_found
= radix_tree_gang_lookup_tag(
1112 (void **)batch
, first_index
,
1114 XFS_ICI_RECLAIM_TAG
);
1122 * Grab the inodes before we drop the lock. if we found
1123 * nothing, nr == 0 and the loop will be skipped.
1125 for (i
= 0; i
< nr_found
; i
++) {
1126 struct xfs_inode
*ip
= batch
[i
];
1128 if (done
|| xfs_reclaim_inode_grab(ip
, flags
))
1132 * Update the index for the next lookup. Catch
1133 * overflows into the next AG range which can
1134 * occur if we have inodes in the last block of
1135 * the AG and we are currently pointing to the
1138 * Because we may see inodes that are from the
1139 * wrong AG due to RCU freeing and
1140 * reallocation, only update the index if it
1141 * lies in this AG. It was a race that lead us
1142 * to see this inode, so another lookup from
1143 * the same index will not find it again.
1145 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) !=
1148 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
1149 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
1153 /* unlock now we've grabbed the inodes. */
1156 for (i
= 0; i
< nr_found
; i
++) {
1159 error
= xfs_reclaim_inode(batch
[i
], pag
, flags
);
1160 if (error
&& last_error
!= -EFSCORRUPTED
)
1164 *nr_to_scan
-= XFS_LOOKUP_BATCH
;
1168 } while (nr_found
&& !done
&& *nr_to_scan
> 0);
1170 if (trylock
&& !done
)
1171 pag
->pag_ici_reclaim_cursor
= first_index
;
1173 pag
->pag_ici_reclaim_cursor
= 0;
1174 mutex_unlock(&pag
->pag_ici_reclaim_lock
);
1179 * if we skipped any AG, and we still have scan count remaining, do
1180 * another pass this time using blocking reclaim semantics (i.e
1181 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1182 * ensure that when we get more reclaimers than AGs we block rather
1183 * than spin trying to execute reclaim.
1185 if (skipped
&& (flags
& SYNC_WAIT
) && *nr_to_scan
> 0) {
1197 int nr_to_scan
= INT_MAX
;
1199 return xfs_reclaim_inodes_ag(mp
, mode
, &nr_to_scan
);
1203 * Scan a certain number of inodes for reclaim.
1205 * When called we make sure that there is a background (fast) inode reclaim in
1206 * progress, while we will throttle the speed of reclaim via doing synchronous
1207 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1208 * them to be cleaned, which we hope will not be very long due to the
1209 * background walker having already kicked the IO off on those dirty inodes.
1212 xfs_reclaim_inodes_nr(
1213 struct xfs_mount
*mp
,
1216 /* kick background reclaimer and push the AIL */
1217 xfs_reclaim_work_queue(mp
);
1218 xfs_ail_push_all(mp
->m_ail
);
1220 return xfs_reclaim_inodes_ag(mp
, SYNC_TRYLOCK
| SYNC_WAIT
, &nr_to_scan
);
1224 * Return the number of reclaimable inodes in the filesystem for
1225 * the shrinker to determine how much to reclaim.
1228 xfs_reclaim_inodes_count(
1229 struct xfs_mount
*mp
)
1231 struct xfs_perag
*pag
;
1232 xfs_agnumber_t ag
= 0;
1233 int reclaimable
= 0;
1235 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1236 ag
= pag
->pag_agno
+ 1;
1237 reclaimable
+= pag
->pag_ici_reclaimable
;
1245 struct xfs_inode
*ip
,
1246 struct xfs_eofblocks
*eofb
)
1248 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1249 !uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1252 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1253 !gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1256 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1257 xfs_get_projid(ip
) != eofb
->eof_prid
)
1264 * A union-based inode filtering algorithm. Process the inode if any of the
1265 * criteria match. This is for global/internal scans only.
1268 xfs_inode_match_id_union(
1269 struct xfs_inode
*ip
,
1270 struct xfs_eofblocks
*eofb
)
1272 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1273 uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1276 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1277 gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1280 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1281 xfs_get_projid(ip
) == eofb
->eof_prid
)
1288 xfs_inode_free_eofblocks(
1289 struct xfs_inode
*ip
,
1294 struct xfs_eofblocks
*eofb
= args
;
1295 bool need_iolock
= true;
1298 ASSERT(!eofb
|| (eofb
&& eofb
->eof_scan_owner
!= 0));
1300 if (!xfs_can_free_eofblocks(ip
, false)) {
1301 /* inode could be preallocated or append-only */
1302 trace_xfs_inode_free_eofblocks_invalid(ip
);
1303 xfs_inode_clear_eofblocks_tag(ip
);
1308 * If the mapping is dirty the operation can block and wait for some
1309 * time. Unless we are waiting, skip it.
1311 if (!(flags
& SYNC_WAIT
) &&
1312 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
))
1316 if (eofb
->eof_flags
& XFS_EOF_FLAGS_UNION
)
1317 match
= xfs_inode_match_id_union(ip
, eofb
);
1319 match
= xfs_inode_match_id(ip
, eofb
);
1323 /* skip the inode if the file size is too small */
1324 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1325 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1329 * A scan owner implies we already hold the iolock. Skip it in
1330 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1331 * the possibility of EAGAIN being returned.
1333 if (eofb
->eof_scan_owner
== ip
->i_ino
)
1334 need_iolock
= false;
1337 ret
= xfs_free_eofblocks(ip
->i_mount
, ip
, need_iolock
);
1339 /* don't revisit the inode if we're not waiting */
1340 if (ret
== -EAGAIN
&& !(flags
& SYNC_WAIT
))
1347 xfs_icache_free_eofblocks(
1348 struct xfs_mount
*mp
,
1349 struct xfs_eofblocks
*eofb
)
1351 int flags
= SYNC_TRYLOCK
;
1353 if (eofb
&& (eofb
->eof_flags
& XFS_EOF_FLAGS_SYNC
))
1356 return xfs_inode_ag_iterator_tag(mp
, xfs_inode_free_eofblocks
, flags
,
1357 eofb
, XFS_ICI_EOFBLOCKS_TAG
);
1361 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1362 * multiple quotas, we don't know exactly which quota caused an allocation
1363 * failure. We make a best effort by including each quota under low free space
1364 * conditions (less than 1% free space) in the scan.
1367 xfs_inode_free_quota_eofblocks(
1368 struct xfs_inode
*ip
)
1371 struct xfs_eofblocks eofb
= {0};
1372 struct xfs_dquot
*dq
;
1374 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1377 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1378 * can repeatedly trylock on the inode we're currently processing. We
1379 * run a sync scan to increase effectiveness and use the union filter to
1380 * cover all applicable quotas in a single scan.
1382 eofb
.eof_scan_owner
= ip
->i_ino
;
1383 eofb
.eof_flags
= XFS_EOF_FLAGS_UNION
|XFS_EOF_FLAGS_SYNC
;
1385 if (XFS_IS_UQUOTA_ENFORCED(ip
->i_mount
)) {
1386 dq
= xfs_inode_dquot(ip
, XFS_DQ_USER
);
1387 if (dq
&& xfs_dquot_lowsp(dq
)) {
1388 eofb
.eof_uid
= VFS_I(ip
)->i_uid
;
1389 eofb
.eof_flags
|= XFS_EOF_FLAGS_UID
;
1394 if (XFS_IS_GQUOTA_ENFORCED(ip
->i_mount
)) {
1395 dq
= xfs_inode_dquot(ip
, XFS_DQ_GROUP
);
1396 if (dq
&& xfs_dquot_lowsp(dq
)) {
1397 eofb
.eof_gid
= VFS_I(ip
)->i_gid
;
1398 eofb
.eof_flags
|= XFS_EOF_FLAGS_GID
;
1404 xfs_icache_free_eofblocks(ip
->i_mount
, &eofb
);
1410 xfs_inode_set_eofblocks_tag(
1413 struct xfs_mount
*mp
= ip
->i_mount
;
1414 struct xfs_perag
*pag
;
1417 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1418 spin_lock(&pag
->pag_ici_lock
);
1419 trace_xfs_inode_set_eofblocks_tag(ip
);
1421 tagged
= radix_tree_tagged(&pag
->pag_ici_root
,
1422 XFS_ICI_EOFBLOCKS_TAG
);
1423 radix_tree_tag_set(&pag
->pag_ici_root
,
1424 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1425 XFS_ICI_EOFBLOCKS_TAG
);
1427 /* propagate the eofblocks tag up into the perag radix tree */
1428 spin_lock(&ip
->i_mount
->m_perag_lock
);
1429 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
1430 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1431 XFS_ICI_EOFBLOCKS_TAG
);
1432 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1434 /* kick off background trimming */
1435 xfs_queue_eofblocks(ip
->i_mount
);
1437 trace_xfs_perag_set_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1441 spin_unlock(&pag
->pag_ici_lock
);
1446 xfs_inode_clear_eofblocks_tag(
1449 struct xfs_mount
*mp
= ip
->i_mount
;
1450 struct xfs_perag
*pag
;
1452 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1453 spin_lock(&pag
->pag_ici_lock
);
1454 trace_xfs_inode_clear_eofblocks_tag(ip
);
1456 radix_tree_tag_clear(&pag
->pag_ici_root
,
1457 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1458 XFS_ICI_EOFBLOCKS_TAG
);
1459 if (!radix_tree_tagged(&pag
->pag_ici_root
, XFS_ICI_EOFBLOCKS_TAG
)) {
1460 /* clear the eofblocks tag from the perag radix tree */
1461 spin_lock(&ip
->i_mount
->m_perag_lock
);
1462 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
1463 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1464 XFS_ICI_EOFBLOCKS_TAG
);
1465 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1466 trace_xfs_perag_clear_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1470 spin_unlock(&pag
->pag_ici_lock
);