2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
46 #include "xfs_rmap_item.h"
48 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
55 xlog_clear_stale_blocks(
60 xlog_recover_check_summary(
63 #define xlog_recover_check_summary(log)
66 xlog_do_recovery_pass(
67 struct xlog
*, xfs_daddr_t
, xfs_daddr_t
, int, xfs_daddr_t
*);
70 * This structure is used during recovery to record the buf log items which
71 * have been canceled and should not be replayed.
73 struct xfs_buf_cancel
{
77 struct list_head bc_list
;
81 * Sector aligned buffer routines for buffer create/read/write/access
85 * Verify the given count of basic blocks is valid number of blocks
86 * to specify for an operation involving the given XFS log buffer.
87 * Returns nonzero if the count is valid, 0 otherwise.
91 xlog_buf_bbcount_valid(
95 return bbcount
> 0 && bbcount
<= log
->l_logBBsize
;
99 * Allocate a buffer to hold log data. The buffer needs to be able
100 * to map to a range of nbblks basic blocks at any valid (basic
101 * block) offset within the log.
110 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
111 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
113 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
118 * We do log I/O in units of log sectors (a power-of-2
119 * multiple of the basic block size), so we round up the
120 * requested size to accommodate the basic blocks required
121 * for complete log sectors.
123 * In addition, the buffer may be used for a non-sector-
124 * aligned block offset, in which case an I/O of the
125 * requested size could extend beyond the end of the
126 * buffer. If the requested size is only 1 basic block it
127 * will never straddle a sector boundary, so this won't be
128 * an issue. Nor will this be a problem if the log I/O is
129 * done in basic blocks (sector size 1). But otherwise we
130 * extend the buffer by one extra log sector to ensure
131 * there's space to accommodate this possibility.
133 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
134 nbblks
+= log
->l_sectBBsize
;
135 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
137 bp
= xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
, nbblks
, 0);
151 * Return the address of the start of the given block number's data
152 * in a log buffer. The buffer covers a log sector-aligned region.
161 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
163 ASSERT(offset
+ nbblks
<= bp
->b_length
);
164 return bp
->b_addr
+ BBTOB(offset
);
169 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
180 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
181 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
183 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
184 return -EFSCORRUPTED
;
187 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
188 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
191 ASSERT(nbblks
<= bp
->b_length
);
193 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
194 bp
->b_flags
|= XBF_READ
;
195 bp
->b_io_length
= nbblks
;
198 error
= xfs_buf_submit_wait(bp
);
199 if (error
&& !XFS_FORCED_SHUTDOWN(log
->l_mp
))
200 xfs_buf_ioerror_alert(bp
, __func__
);
214 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
218 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
223 * Read at an offset into the buffer. Returns with the buffer in it's original
224 * state regardless of the result of the read.
229 xfs_daddr_t blk_no
, /* block to read from */
230 int nbblks
, /* blocks to read */
234 char *orig_offset
= bp
->b_addr
;
235 int orig_len
= BBTOB(bp
->b_length
);
238 error
= xfs_buf_associate_memory(bp
, offset
, BBTOB(nbblks
));
242 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
244 /* must reset buffer pointer even on error */
245 error2
= xfs_buf_associate_memory(bp
, orig_offset
, orig_len
);
252 * Write out the buffer at the given block for the given number of blocks.
253 * The buffer is kept locked across the write and is returned locked.
254 * This can only be used for synchronous log writes.
265 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
266 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
268 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
269 return -EFSCORRUPTED
;
272 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
273 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
276 ASSERT(nbblks
<= bp
->b_length
);
278 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
281 bp
->b_io_length
= nbblks
;
284 error
= xfs_bwrite(bp
);
286 xfs_buf_ioerror_alert(bp
, __func__
);
293 * dump debug superblock and log record information
296 xlog_header_check_dump(
298 xlog_rec_header_t
*head
)
300 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d",
301 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
302 xfs_debug(mp
, " log : uuid = %pU, fmt = %d",
303 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
306 #define xlog_header_check_dump(mp, head)
310 * check log record header for recovery
313 xlog_header_check_recover(
315 xlog_rec_header_t
*head
)
317 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
320 * IRIX doesn't write the h_fmt field and leaves it zeroed
321 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
322 * a dirty log created in IRIX.
324 if (unlikely(head
->h_fmt
!= cpu_to_be32(XLOG_FMT
))) {
326 "dirty log written in incompatible format - can't recover");
327 xlog_header_check_dump(mp
, head
);
328 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
329 XFS_ERRLEVEL_HIGH
, mp
);
330 return -EFSCORRUPTED
;
331 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
333 "dirty log entry has mismatched uuid - can't recover");
334 xlog_header_check_dump(mp
, head
);
335 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
336 XFS_ERRLEVEL_HIGH
, mp
);
337 return -EFSCORRUPTED
;
343 * read the head block of the log and check the header
346 xlog_header_check_mount(
348 xlog_rec_header_t
*head
)
350 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
352 if (uuid_is_nil(&head
->h_fs_uuid
)) {
354 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
355 * h_fs_uuid is nil, we assume this log was last mounted
356 * by IRIX and continue.
358 xfs_warn(mp
, "nil uuid in log - IRIX style log");
359 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
360 xfs_warn(mp
, "log has mismatched uuid - can't recover");
361 xlog_header_check_dump(mp
, head
);
362 XFS_ERROR_REPORT("xlog_header_check_mount",
363 XFS_ERRLEVEL_HIGH
, mp
);
364 return -EFSCORRUPTED
;
375 * We're not going to bother about retrying
376 * this during recovery. One strike!
378 if (!XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
379 xfs_buf_ioerror_alert(bp
, __func__
);
380 xfs_force_shutdown(bp
->b_target
->bt_mount
,
381 SHUTDOWN_META_IO_ERROR
);
389 * This routine finds (to an approximation) the first block in the physical
390 * log which contains the given cycle. It uses a binary search algorithm.
391 * Note that the algorithm can not be perfect because the disk will not
392 * necessarily be perfect.
395 xlog_find_cycle_start(
398 xfs_daddr_t first_blk
,
399 xfs_daddr_t
*last_blk
,
409 mid_blk
= BLK_AVG(first_blk
, end_blk
);
410 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
411 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
414 mid_cycle
= xlog_get_cycle(offset
);
415 if (mid_cycle
== cycle
)
416 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
418 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
419 mid_blk
= BLK_AVG(first_blk
, end_blk
);
421 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
422 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
430 * Check that a range of blocks does not contain stop_on_cycle_no.
431 * Fill in *new_blk with the block offset where such a block is
432 * found, or with -1 (an invalid block number) if there is no such
433 * block in the range. The scan needs to occur from front to back
434 * and the pointer into the region must be updated since a later
435 * routine will need to perform another test.
438 xlog_find_verify_cycle(
440 xfs_daddr_t start_blk
,
442 uint stop_on_cycle_no
,
443 xfs_daddr_t
*new_blk
)
453 * Greedily allocate a buffer big enough to handle the full
454 * range of basic blocks we'll be examining. If that fails,
455 * try a smaller size. We need to be able to read at least
456 * a log sector, or we're out of luck.
458 bufblks
= 1 << ffs(nbblks
);
459 while (bufblks
> log
->l_logBBsize
)
461 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
463 if (bufblks
< log
->l_sectBBsize
)
467 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
470 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
472 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
476 for (j
= 0; j
< bcount
; j
++) {
477 cycle
= xlog_get_cycle(buf
);
478 if (cycle
== stop_on_cycle_no
) {
495 * Potentially backup over partial log record write.
497 * In the typical case, last_blk is the number of the block directly after
498 * a good log record. Therefore, we subtract one to get the block number
499 * of the last block in the given buffer. extra_bblks contains the number
500 * of blocks we would have read on a previous read. This happens when the
501 * last log record is split over the end of the physical log.
503 * extra_bblks is the number of blocks potentially verified on a previous
504 * call to this routine.
507 xlog_find_verify_log_record(
509 xfs_daddr_t start_blk
,
510 xfs_daddr_t
*last_blk
,
516 xlog_rec_header_t
*head
= NULL
;
519 int num_blks
= *last_blk
- start_blk
;
522 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
524 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
525 if (!(bp
= xlog_get_bp(log
, 1)))
529 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
532 offset
+= ((num_blks
- 1) << BBSHIFT
);
535 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
537 /* valid log record not found */
539 "Log inconsistent (didn't find previous header)");
546 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
551 head
= (xlog_rec_header_t
*)offset
;
553 if (head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
561 * We hit the beginning of the physical log & still no header. Return
562 * to caller. If caller can handle a return of -1, then this routine
563 * will be called again for the end of the physical log.
571 * We have the final block of the good log (the first block
572 * of the log record _before_ the head. So we check the uuid.
574 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
578 * We may have found a log record header before we expected one.
579 * last_blk will be the 1st block # with a given cycle #. We may end
580 * up reading an entire log record. In this case, we don't want to
581 * reset last_blk. Only when last_blk points in the middle of a log
582 * record do we update last_blk.
584 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
585 uint h_size
= be32_to_cpu(head
->h_size
);
587 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
588 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
594 if (*last_blk
- i
+ extra_bblks
!=
595 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
604 * Head is defined to be the point of the log where the next log write
605 * could go. This means that incomplete LR writes at the end are
606 * eliminated when calculating the head. We aren't guaranteed that previous
607 * LR have complete transactions. We only know that a cycle number of
608 * current cycle number -1 won't be present in the log if we start writing
609 * from our current block number.
611 * last_blk contains the block number of the first block with a given
614 * Return: zero if normal, non-zero if error.
619 xfs_daddr_t
*return_head_blk
)
623 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
625 uint first_half_cycle
, last_half_cycle
;
627 int error
, log_bbnum
= log
->l_logBBsize
;
629 /* Is the end of the log device zeroed? */
630 error
= xlog_find_zeroed(log
, &first_blk
);
632 xfs_warn(log
->l_mp
, "empty log check failed");
636 *return_head_blk
= first_blk
;
638 /* Is the whole lot zeroed? */
640 /* Linux XFS shouldn't generate totally zeroed logs -
641 * mkfs etc write a dummy unmount record to a fresh
642 * log so we can store the uuid in there
644 xfs_warn(log
->l_mp
, "totally zeroed log");
650 first_blk
= 0; /* get cycle # of 1st block */
651 bp
= xlog_get_bp(log
, 1);
655 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
659 first_half_cycle
= xlog_get_cycle(offset
);
661 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
662 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
666 last_half_cycle
= xlog_get_cycle(offset
);
667 ASSERT(last_half_cycle
!= 0);
670 * If the 1st half cycle number is equal to the last half cycle number,
671 * then the entire log is stamped with the same cycle number. In this
672 * case, head_blk can't be set to zero (which makes sense). The below
673 * math doesn't work out properly with head_blk equal to zero. Instead,
674 * we set it to log_bbnum which is an invalid block number, but this
675 * value makes the math correct. If head_blk doesn't changed through
676 * all the tests below, *head_blk is set to zero at the very end rather
677 * than log_bbnum. In a sense, log_bbnum and zero are the same block
678 * in a circular file.
680 if (first_half_cycle
== last_half_cycle
) {
682 * In this case we believe that the entire log should have
683 * cycle number last_half_cycle. We need to scan backwards
684 * from the end verifying that there are no holes still
685 * containing last_half_cycle - 1. If we find such a hole,
686 * then the start of that hole will be the new head. The
687 * simple case looks like
688 * x | x ... | x - 1 | x
689 * Another case that fits this picture would be
690 * x | x + 1 | x ... | x
691 * In this case the head really is somewhere at the end of the
692 * log, as one of the latest writes at the beginning was
695 * x | x + 1 | x ... | x - 1 | x
696 * This is really the combination of the above two cases, and
697 * the head has to end up at the start of the x-1 hole at the
700 * In the 256k log case, we will read from the beginning to the
701 * end of the log and search for cycle numbers equal to x-1.
702 * We don't worry about the x+1 blocks that we encounter,
703 * because we know that they cannot be the head since the log
706 head_blk
= log_bbnum
;
707 stop_on_cycle
= last_half_cycle
- 1;
710 * In this case we want to find the first block with cycle
711 * number matching last_half_cycle. We expect the log to be
713 * x + 1 ... | x ... | x
714 * The first block with cycle number x (last_half_cycle) will
715 * be where the new head belongs. First we do a binary search
716 * for the first occurrence of last_half_cycle. The binary
717 * search may not be totally accurate, so then we scan back
718 * from there looking for occurrences of last_half_cycle before
719 * us. If that backwards scan wraps around the beginning of
720 * the log, then we look for occurrences of last_half_cycle - 1
721 * at the end of the log. The cases we're looking for look
723 * v binary search stopped here
724 * x + 1 ... | x | x + 1 | x ... | x
725 * ^ but we want to locate this spot
727 * <---------> less than scan distance
728 * x + 1 ... | x ... | x - 1 | x
729 * ^ we want to locate this spot
731 stop_on_cycle
= last_half_cycle
;
732 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
733 &head_blk
, last_half_cycle
)))
738 * Now validate the answer. Scan back some number of maximum possible
739 * blocks and make sure each one has the expected cycle number. The
740 * maximum is determined by the total possible amount of buffering
741 * in the in-core log. The following number can be made tighter if
742 * we actually look at the block size of the filesystem.
744 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
745 if (head_blk
>= num_scan_bblks
) {
747 * We are guaranteed that the entire check can be performed
750 start_blk
= head_blk
- num_scan_bblks
;
751 if ((error
= xlog_find_verify_cycle(log
,
752 start_blk
, num_scan_bblks
,
753 stop_on_cycle
, &new_blk
)))
757 } else { /* need to read 2 parts of log */
759 * We are going to scan backwards in the log in two parts.
760 * First we scan the physical end of the log. In this part
761 * of the log, we are looking for blocks with cycle number
762 * last_half_cycle - 1.
763 * If we find one, then we know that the log starts there, as
764 * we've found a hole that didn't get written in going around
765 * the end of the physical log. The simple case for this is
766 * x + 1 ... | x ... | x - 1 | x
767 * <---------> less than scan distance
768 * If all of the blocks at the end of the log have cycle number
769 * last_half_cycle, then we check the blocks at the start of
770 * the log looking for occurrences of last_half_cycle. If we
771 * find one, then our current estimate for the location of the
772 * first occurrence of last_half_cycle is wrong and we move
773 * back to the hole we've found. This case looks like
774 * x + 1 ... | x | x + 1 | x ...
775 * ^ binary search stopped here
776 * Another case we need to handle that only occurs in 256k
778 * x + 1 ... | x ... | x+1 | x ...
779 * ^ binary search stops here
780 * In a 256k log, the scan at the end of the log will see the
781 * x + 1 blocks. We need to skip past those since that is
782 * certainly not the head of the log. By searching for
783 * last_half_cycle-1 we accomplish that.
785 ASSERT(head_blk
<= INT_MAX
&&
786 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
787 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
788 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
789 num_scan_bblks
- (int)head_blk
,
790 (stop_on_cycle
- 1), &new_blk
)))
798 * Scan beginning of log now. The last part of the physical
799 * log is good. This scan needs to verify that it doesn't find
800 * the last_half_cycle.
803 ASSERT(head_blk
<= INT_MAX
);
804 if ((error
= xlog_find_verify_cycle(log
,
805 start_blk
, (int)head_blk
,
806 stop_on_cycle
, &new_blk
)))
814 * Now we need to make sure head_blk is not pointing to a block in
815 * the middle of a log record.
817 num_scan_bblks
= XLOG_REC_SHIFT(log
);
818 if (head_blk
>= num_scan_bblks
) {
819 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
821 /* start ptr at last block ptr before head_blk */
822 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
829 ASSERT(head_blk
<= INT_MAX
);
830 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
834 /* We hit the beginning of the log during our search */
835 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
837 ASSERT(start_blk
<= INT_MAX
&&
838 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
839 ASSERT(head_blk
<= INT_MAX
);
840 error
= xlog_find_verify_log_record(log
, start_blk
,
841 &new_blk
, (int)head_blk
);
846 if (new_blk
!= log_bbnum
)
853 if (head_blk
== log_bbnum
)
854 *return_head_blk
= 0;
856 *return_head_blk
= head_blk
;
858 * When returning here, we have a good block number. Bad block
859 * means that during a previous crash, we didn't have a clean break
860 * from cycle number N to cycle number N-1. In this case, we need
861 * to find the first block with cycle number N-1.
869 xfs_warn(log
->l_mp
, "failed to find log head");
874 * Seek backwards in the log for log record headers.
876 * Given a starting log block, walk backwards until we find the provided number
877 * of records or hit the provided tail block. The return value is the number of
878 * records encountered or a negative error code. The log block and buffer
879 * pointer of the last record seen are returned in rblk and rhead respectively.
882 xlog_rseek_logrec_hdr(
884 xfs_daddr_t head_blk
,
885 xfs_daddr_t tail_blk
,
889 struct xlog_rec_header
**rhead
,
901 * Walk backwards from the head block until we hit the tail or the first
904 end_blk
= head_blk
> tail_blk
? tail_blk
: 0;
905 for (i
= (int) head_blk
- 1; i
>= end_blk
; i
--) {
906 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
910 if (*(__be32
*) offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
912 *rhead
= (struct xlog_rec_header
*) offset
;
913 if (++found
== count
)
919 * If we haven't hit the tail block or the log record header count,
920 * start looking again from the end of the physical log. Note that
921 * callers can pass head == tail if the tail is not yet known.
923 if (tail_blk
>= head_blk
&& found
!= count
) {
924 for (i
= log
->l_logBBsize
- 1; i
>= (int) tail_blk
; i
--) {
925 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
929 if (*(__be32
*)offset
==
930 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
933 *rhead
= (struct xlog_rec_header
*) offset
;
934 if (++found
== count
)
947 * Seek forward in the log for log record headers.
949 * Given head and tail blocks, walk forward from the tail block until we find
950 * the provided number of records or hit the head block. The return value is the
951 * number of records encountered or a negative error code. The log block and
952 * buffer pointer of the last record seen are returned in rblk and rhead
956 xlog_seek_logrec_hdr(
958 xfs_daddr_t head_blk
,
959 xfs_daddr_t tail_blk
,
963 struct xlog_rec_header
**rhead
,
975 * Walk forward from the tail block until we hit the head or the last
978 end_blk
= head_blk
> tail_blk
? head_blk
: log
->l_logBBsize
- 1;
979 for (i
= (int) tail_blk
; i
<= end_blk
; i
++) {
980 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
984 if (*(__be32
*) offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
986 *rhead
= (struct xlog_rec_header
*) offset
;
987 if (++found
== count
)
993 * If we haven't hit the head block or the log record header count,
994 * start looking again from the start of the physical log.
996 if (tail_blk
> head_blk
&& found
!= count
) {
997 for (i
= 0; i
< (int) head_blk
; i
++) {
998 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
1002 if (*(__be32
*)offset
==
1003 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
1006 *rhead
= (struct xlog_rec_header
*) offset
;
1007 if (++found
== count
)
1020 * Check the log tail for torn writes. This is required when torn writes are
1021 * detected at the head and the head had to be walked back to a previous record.
1022 * The tail of the previous record must now be verified to ensure the torn
1023 * writes didn't corrupt the previous tail.
1025 * Return an error if CRC verification fails as recovery cannot proceed.
1030 xfs_daddr_t head_blk
,
1031 xfs_daddr_t tail_blk
)
1033 struct xlog_rec_header
*thead
;
1035 xfs_daddr_t first_bad
;
1039 xfs_daddr_t tmp_head
;
1041 bp
= xlog_get_bp(log
, 1);
1046 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1047 * a temporary head block that points after the last possible
1048 * concurrently written record of the tail.
1050 count
= xlog_seek_logrec_hdr(log
, head_blk
, tail_blk
,
1051 XLOG_MAX_ICLOGS
+ 1, bp
, &tmp_head
, &thead
,
1059 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1060 * into the actual log head. tmp_head points to the start of the record
1061 * so update it to the actual head block.
1063 if (count
< XLOG_MAX_ICLOGS
+ 1)
1064 tmp_head
= head_blk
;
1067 * We now have a tail and temporary head block that covers at least
1068 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1069 * records were completely written. Run a CRC verification pass from
1070 * tail to head and return the result.
1072 error
= xlog_do_recovery_pass(log
, tmp_head
, tail_blk
,
1073 XLOG_RECOVER_CRCPASS
, &first_bad
);
1081 * Detect and trim torn writes from the head of the log.
1083 * Storage without sector atomicity guarantees can result in torn writes in the
1084 * log in the event of a crash. Our only means to detect this scenario is via
1085 * CRC verification. While we can't always be certain that CRC verification
1086 * failure is due to a torn write vs. an unrelated corruption, we do know that
1087 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1088 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1089 * the log and treat failures in this range as torn writes as a matter of
1090 * policy. In the event of CRC failure, the head is walked back to the last good
1091 * record in the log and the tail is updated from that record and verified.
1096 xfs_daddr_t
*head_blk
, /* in/out: unverified head */
1097 xfs_daddr_t
*tail_blk
, /* out: tail block */
1099 xfs_daddr_t
*rhead_blk
, /* start blk of last record */
1100 struct xlog_rec_header
**rhead
, /* ptr to last record */
1101 bool *wrapped
) /* last rec. wraps phys. log */
1103 struct xlog_rec_header
*tmp_rhead
;
1104 struct xfs_buf
*tmp_bp
;
1105 xfs_daddr_t first_bad
;
1106 xfs_daddr_t tmp_rhead_blk
;
1112 * Check the head of the log for torn writes. Search backwards from the
1113 * head until we hit the tail or the maximum number of log record I/Os
1114 * that could have been in flight at one time. Use a temporary buffer so
1115 * we don't trash the rhead/bp pointers from the caller.
1117 tmp_bp
= xlog_get_bp(log
, 1);
1120 error
= xlog_rseek_logrec_hdr(log
, *head_blk
, *tail_blk
,
1121 XLOG_MAX_ICLOGS
, tmp_bp
, &tmp_rhead_blk
,
1122 &tmp_rhead
, &tmp_wrapped
);
1123 xlog_put_bp(tmp_bp
);
1128 * Now run a CRC verification pass over the records starting at the
1129 * block found above to the current head. If a CRC failure occurs, the
1130 * log block of the first bad record is saved in first_bad.
1132 error
= xlog_do_recovery_pass(log
, *head_blk
, tmp_rhead_blk
,
1133 XLOG_RECOVER_CRCPASS
, &first_bad
);
1134 if (error
== -EFSBADCRC
) {
1136 * We've hit a potential torn write. Reset the error and warn
1141 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1142 first_bad
, *head_blk
);
1145 * Get the header block and buffer pointer for the last good
1146 * record before the bad record.
1148 * Note that xlog_find_tail() clears the blocks at the new head
1149 * (i.e., the records with invalid CRC) if the cycle number
1150 * matches the the current cycle.
1152 found
= xlog_rseek_logrec_hdr(log
, first_bad
, *tail_blk
, 1, bp
,
1153 rhead_blk
, rhead
, wrapped
);
1156 if (found
== 0) /* XXX: right thing to do here? */
1160 * Reset the head block to the starting block of the first bad
1161 * log record and set the tail block based on the last good
1164 * Bail out if the updated head/tail match as this indicates
1165 * possible corruption outside of the acceptable
1166 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1168 *head_blk
= first_bad
;
1169 *tail_blk
= BLOCK_LSN(be64_to_cpu((*rhead
)->h_tail_lsn
));
1170 if (*head_blk
== *tail_blk
) {
1176 * Now verify the tail based on the updated head. This is
1177 * required because the torn writes trimmed from the head could
1178 * have been written over the tail of a previous record. Return
1179 * any errors since recovery cannot proceed if the tail is
1182 * XXX: This leaves a gap in truly robust protection from torn
1183 * writes in the log. If the head is behind the tail, the tail
1184 * pushes forward to create some space and then a crash occurs
1185 * causing the writes into the previous record's tail region to
1186 * tear, log recovery isn't able to recover.
1188 * How likely is this to occur? If possible, can we do something
1189 * more intelligent here? Is it safe to push the tail forward if
1190 * we can determine that the tail is within the range of the
1191 * torn write (e.g., the kernel can only overwrite the tail if
1192 * it has actually been pushed forward)? Alternatively, could we
1193 * somehow prevent this condition at runtime?
1195 error
= xlog_verify_tail(log
, *head_blk
, *tail_blk
);
1202 * Check whether the head of the log points to an unmount record. In other
1203 * words, determine whether the log is clean. If so, update the in-core state
1207 xlog_check_unmount_rec(
1209 xfs_daddr_t
*head_blk
,
1210 xfs_daddr_t
*tail_blk
,
1211 struct xlog_rec_header
*rhead
,
1212 xfs_daddr_t rhead_blk
,
1216 struct xlog_op_header
*op_head
;
1217 xfs_daddr_t umount_data_blk
;
1218 xfs_daddr_t after_umount_blk
;
1226 * Look for unmount record. If we find it, then we know there was a
1227 * clean unmount. Since 'i' could be the last block in the physical
1228 * log, we convert to a log block before comparing to the head_blk.
1230 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1231 * below. We won't want to clear the unmount record if there is one, so
1232 * we pass the lsn of the unmount record rather than the block after it.
1234 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1235 int h_size
= be32_to_cpu(rhead
->h_size
);
1236 int h_version
= be32_to_cpu(rhead
->h_version
);
1238 if ((h_version
& XLOG_VERSION_2
) &&
1239 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
1240 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
1241 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
1249 after_umount_blk
= rhead_blk
+ hblks
+ BTOBB(be32_to_cpu(rhead
->h_len
));
1250 after_umount_blk
= do_mod(after_umount_blk
, log
->l_logBBsize
);
1251 if (*head_blk
== after_umount_blk
&&
1252 be32_to_cpu(rhead
->h_num_logops
) == 1) {
1253 umount_data_blk
= rhead_blk
+ hblks
;
1254 umount_data_blk
= do_mod(umount_data_blk
, log
->l_logBBsize
);
1255 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
1259 op_head
= (struct xlog_op_header
*)offset
;
1260 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
1262 * Set tail and last sync so that newly written log
1263 * records will point recovery to after the current
1266 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
1267 log
->l_curr_cycle
, after_umount_blk
);
1268 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
1269 log
->l_curr_cycle
, after_umount_blk
);
1270 *tail_blk
= after_umount_blk
;
1282 xfs_daddr_t head_blk
,
1283 struct xlog_rec_header
*rhead
,
1284 xfs_daddr_t rhead_blk
,
1288 * Reset log values according to the state of the log when we
1289 * crashed. In the case where head_blk == 0, we bump curr_cycle
1290 * one because the next write starts a new cycle rather than
1291 * continuing the cycle of the last good log record. At this
1292 * point we have guaranteed that all partial log records have been
1293 * accounted for. Therefore, we know that the last good log record
1294 * written was complete and ended exactly on the end boundary
1295 * of the physical log.
1297 log
->l_prev_block
= rhead_blk
;
1298 log
->l_curr_block
= (int)head_blk
;
1299 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
1301 log
->l_curr_cycle
++;
1302 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
1303 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
1304 xlog_assign_grant_head(&log
->l_reserve_head
.grant
, log
->l_curr_cycle
,
1305 BBTOB(log
->l_curr_block
));
1306 xlog_assign_grant_head(&log
->l_write_head
.grant
, log
->l_curr_cycle
,
1307 BBTOB(log
->l_curr_block
));
1311 * Find the sync block number or the tail of the log.
1313 * This will be the block number of the last record to have its
1314 * associated buffers synced to disk. Every log record header has
1315 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1316 * to get a sync block number. The only concern is to figure out which
1317 * log record header to believe.
1319 * The following algorithm uses the log record header with the largest
1320 * lsn. The entire log record does not need to be valid. We only care
1321 * that the header is valid.
1323 * We could speed up search by using current head_blk buffer, but it is not
1329 xfs_daddr_t
*head_blk
,
1330 xfs_daddr_t
*tail_blk
)
1332 xlog_rec_header_t
*rhead
;
1333 char *offset
= NULL
;
1336 xfs_daddr_t rhead_blk
;
1338 bool wrapped
= false;
1342 * Find previous log record
1344 if ((error
= xlog_find_head(log
, head_blk
)))
1346 ASSERT(*head_blk
< INT_MAX
);
1348 bp
= xlog_get_bp(log
, 1);
1351 if (*head_blk
== 0) { /* special case */
1352 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1356 if (xlog_get_cycle(offset
) == 0) {
1358 /* leave all other log inited values alone */
1364 * Search backwards through the log looking for the log record header
1365 * block. This wraps all the way back around to the head so something is
1366 * seriously wrong if we can't find it.
1368 error
= xlog_rseek_logrec_hdr(log
, *head_blk
, *head_blk
, 1, bp
,
1369 &rhead_blk
, &rhead
, &wrapped
);
1373 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
1376 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
1379 * Set the log state based on the current head record.
1381 xlog_set_state(log
, *head_blk
, rhead
, rhead_blk
, wrapped
);
1382 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1385 * Look for an unmount record at the head of the log. This sets the log
1386 * state to determine whether recovery is necessary.
1388 error
= xlog_check_unmount_rec(log
, head_blk
, tail_blk
, rhead
,
1389 rhead_blk
, bp
, &clean
);
1394 * Verify the log head if the log is not clean (e.g., we have anything
1395 * but an unmount record at the head). This uses CRC verification to
1396 * detect and trim torn writes. If discovered, CRC failures are
1397 * considered torn writes and the log head is trimmed accordingly.
1399 * Note that we can only run CRC verification when the log is dirty
1400 * because there's no guarantee that the log data behind an unmount
1401 * record is compatible with the current architecture.
1404 xfs_daddr_t orig_head
= *head_blk
;
1406 error
= xlog_verify_head(log
, head_blk
, tail_blk
, bp
,
1407 &rhead_blk
, &rhead
, &wrapped
);
1411 /* update in-core state again if the head changed */
1412 if (*head_blk
!= orig_head
) {
1413 xlog_set_state(log
, *head_blk
, rhead
, rhead_blk
,
1415 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1416 error
= xlog_check_unmount_rec(log
, head_blk
, tail_blk
,
1417 rhead
, rhead_blk
, bp
,
1425 * Note that the unmount was clean. If the unmount was not clean, we
1426 * need to know this to rebuild the superblock counters from the perag
1427 * headers if we have a filesystem using non-persistent counters.
1430 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1433 * Make sure that there are no blocks in front of the head
1434 * with the same cycle number as the head. This can happen
1435 * because we allow multiple outstanding log writes concurrently,
1436 * and the later writes might make it out before earlier ones.
1438 * We use the lsn from before modifying it so that we'll never
1439 * overwrite the unmount record after a clean unmount.
1441 * Do this only if we are going to recover the filesystem
1443 * NOTE: This used to say "if (!readonly)"
1444 * However on Linux, we can & do recover a read-only filesystem.
1445 * We only skip recovery if NORECOVERY is specified on mount,
1446 * in which case we would not be here.
1448 * But... if the -device- itself is readonly, just skip this.
1449 * We can't recover this device anyway, so it won't matter.
1451 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1452 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1458 xfs_warn(log
->l_mp
, "failed to locate log tail");
1463 * Is the log zeroed at all?
1465 * The last binary search should be changed to perform an X block read
1466 * once X becomes small enough. You can then search linearly through
1467 * the X blocks. This will cut down on the number of reads we need to do.
1469 * If the log is partially zeroed, this routine will pass back the blkno
1470 * of the first block with cycle number 0. It won't have a complete LR
1474 * 0 => the log is completely written to
1475 * 1 => use *blk_no as the first block of the log
1476 * <0 => error has occurred
1481 xfs_daddr_t
*blk_no
)
1485 uint first_cycle
, last_cycle
;
1486 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1487 xfs_daddr_t num_scan_bblks
;
1488 int error
, log_bbnum
= log
->l_logBBsize
;
1492 /* check totally zeroed log */
1493 bp
= xlog_get_bp(log
, 1);
1496 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1500 first_cycle
= xlog_get_cycle(offset
);
1501 if (first_cycle
== 0) { /* completely zeroed log */
1507 /* check partially zeroed log */
1508 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1512 last_cycle
= xlog_get_cycle(offset
);
1513 if (last_cycle
!= 0) { /* log completely written to */
1516 } else if (first_cycle
!= 1) {
1518 * If the cycle of the last block is zero, the cycle of
1519 * the first block must be 1. If it's not, maybe we're
1520 * not looking at a log... Bail out.
1523 "Log inconsistent or not a log (last==0, first!=1)");
1528 /* we have a partially zeroed log */
1529 last_blk
= log_bbnum
-1;
1530 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1534 * Validate the answer. Because there is no way to guarantee that
1535 * the entire log is made up of log records which are the same size,
1536 * we scan over the defined maximum blocks. At this point, the maximum
1537 * is not chosen to mean anything special. XXXmiken
1539 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1540 ASSERT(num_scan_bblks
<= INT_MAX
);
1542 if (last_blk
< num_scan_bblks
)
1543 num_scan_bblks
= last_blk
;
1544 start_blk
= last_blk
- num_scan_bblks
;
1547 * We search for any instances of cycle number 0 that occur before
1548 * our current estimate of the head. What we're trying to detect is
1549 * 1 ... | 0 | 1 | 0...
1550 * ^ binary search ends here
1552 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1553 (int)num_scan_bblks
, 0, &new_blk
)))
1559 * Potentially backup over partial log record write. We don't need
1560 * to search the end of the log because we know it is zero.
1562 error
= xlog_find_verify_log_record(log
, start_blk
, &last_blk
, 0);
1577 * These are simple subroutines used by xlog_clear_stale_blocks() below
1578 * to initialize a buffer full of empty log record headers and write
1579 * them into the log.
1590 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1592 memset(buf
, 0, BBSIZE
);
1593 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1594 recp
->h_cycle
= cpu_to_be32(cycle
);
1595 recp
->h_version
= cpu_to_be32(
1596 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1597 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1598 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1599 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1600 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1604 xlog_write_log_records(
1615 int sectbb
= log
->l_sectBBsize
;
1616 int end_block
= start_block
+ blocks
;
1622 * Greedily allocate a buffer big enough to handle the full
1623 * range of basic blocks to be written. If that fails, try
1624 * a smaller size. We need to be able to write at least a
1625 * log sector, or we're out of luck.
1627 bufblks
= 1 << ffs(blocks
);
1628 while (bufblks
> log
->l_logBBsize
)
1630 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1632 if (bufblks
< sectbb
)
1636 /* We may need to do a read at the start to fill in part of
1637 * the buffer in the starting sector not covered by the first
1640 balign
= round_down(start_block
, sectbb
);
1641 if (balign
!= start_block
) {
1642 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1646 j
= start_block
- balign
;
1649 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1650 int bcount
, endcount
;
1652 bcount
= min(bufblks
, end_block
- start_block
);
1653 endcount
= bcount
- j
;
1655 /* We may need to do a read at the end to fill in part of
1656 * the buffer in the final sector not covered by the write.
1657 * If this is the same sector as the above read, skip it.
1659 ealign
= round_down(end_block
, sectbb
);
1660 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1661 offset
= bp
->b_addr
+ BBTOB(ealign
- start_block
);
1662 error
= xlog_bread_offset(log
, ealign
, sectbb
,
1669 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1670 for (; j
< endcount
; j
++) {
1671 xlog_add_record(log
, offset
, cycle
, i
+j
,
1672 tail_cycle
, tail_block
);
1675 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1678 start_block
+= endcount
;
1688 * This routine is called to blow away any incomplete log writes out
1689 * in front of the log head. We do this so that we won't become confused
1690 * if we come up, write only a little bit more, and then crash again.
1691 * If we leave the partial log records out there, this situation could
1692 * cause us to think those partial writes are valid blocks since they
1693 * have the current cycle number. We get rid of them by overwriting them
1694 * with empty log records with the old cycle number rather than the
1697 * The tail lsn is passed in rather than taken from
1698 * the log so that we will not write over the unmount record after a
1699 * clean unmount in a 512 block log. Doing so would leave the log without
1700 * any valid log records in it until a new one was written. If we crashed
1701 * during that time we would not be able to recover.
1704 xlog_clear_stale_blocks(
1708 int tail_cycle
, head_cycle
;
1709 int tail_block
, head_block
;
1710 int tail_distance
, max_distance
;
1714 tail_cycle
= CYCLE_LSN(tail_lsn
);
1715 tail_block
= BLOCK_LSN(tail_lsn
);
1716 head_cycle
= log
->l_curr_cycle
;
1717 head_block
= log
->l_curr_block
;
1720 * Figure out the distance between the new head of the log
1721 * and the tail. We want to write over any blocks beyond the
1722 * head that we may have written just before the crash, but
1723 * we don't want to overwrite the tail of the log.
1725 if (head_cycle
== tail_cycle
) {
1727 * The tail is behind the head in the physical log,
1728 * so the distance from the head to the tail is the
1729 * distance from the head to the end of the log plus
1730 * the distance from the beginning of the log to the
1733 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1734 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1735 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1736 return -EFSCORRUPTED
;
1738 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1741 * The head is behind the tail in the physical log,
1742 * so the distance from the head to the tail is just
1743 * the tail block minus the head block.
1745 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1746 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1747 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1748 return -EFSCORRUPTED
;
1750 tail_distance
= tail_block
- head_block
;
1754 * If the head is right up against the tail, we can't clear
1757 if (tail_distance
<= 0) {
1758 ASSERT(tail_distance
== 0);
1762 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1764 * Take the smaller of the maximum amount of outstanding I/O
1765 * we could have and the distance to the tail to clear out.
1766 * We take the smaller so that we don't overwrite the tail and
1767 * we don't waste all day writing from the head to the tail
1770 max_distance
= MIN(max_distance
, tail_distance
);
1772 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1774 * We can stomp all the blocks we need to without
1775 * wrapping around the end of the log. Just do it
1776 * in a single write. Use the cycle number of the
1777 * current cycle minus one so that the log will look like:
1780 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1781 head_block
, max_distance
, tail_cycle
,
1787 * We need to wrap around the end of the physical log in
1788 * order to clear all the blocks. Do it in two separate
1789 * I/Os. The first write should be from the head to the
1790 * end of the physical log, and it should use the current
1791 * cycle number minus one just like above.
1793 distance
= log
->l_logBBsize
- head_block
;
1794 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1795 head_block
, distance
, tail_cycle
,
1802 * Now write the blocks at the start of the physical log.
1803 * This writes the remainder of the blocks we want to clear.
1804 * It uses the current cycle number since we're now on the
1805 * same cycle as the head so that we get:
1806 * n ... n ... | n - 1 ...
1807 * ^^^^^ blocks we're writing
1809 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1810 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1811 tail_cycle
, tail_block
);
1819 /******************************************************************************
1821 * Log recover routines
1823 ******************************************************************************
1827 * Sort the log items in the transaction.
1829 * The ordering constraints are defined by the inode allocation and unlink
1830 * behaviour. The rules are:
1832 * 1. Every item is only logged once in a given transaction. Hence it
1833 * represents the last logged state of the item. Hence ordering is
1834 * dependent on the order in which operations need to be performed so
1835 * required initial conditions are always met.
1837 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1838 * there's nothing to replay from them so we can simply cull them
1839 * from the transaction. However, we can't do that until after we've
1840 * replayed all the other items because they may be dependent on the
1841 * cancelled buffer and replaying the cancelled buffer can remove it
1842 * form the cancelled buffer table. Hence they have tobe done last.
1844 * 3. Inode allocation buffers must be replayed before inode items that
1845 * read the buffer and replay changes into it. For filesystems using the
1846 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1847 * treated the same as inode allocation buffers as they create and
1848 * initialise the buffers directly.
1850 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1851 * This ensures that inodes are completely flushed to the inode buffer
1852 * in a "free" state before we remove the unlinked inode list pointer.
1854 * Hence the ordering needs to be inode allocation buffers first, inode items
1855 * second, inode unlink buffers third and cancelled buffers last.
1857 * But there's a problem with that - we can't tell an inode allocation buffer
1858 * apart from a regular buffer, so we can't separate them. We can, however,
1859 * tell an inode unlink buffer from the others, and so we can separate them out
1860 * from all the other buffers and move them to last.
1862 * Hence, 4 lists, in order from head to tail:
1863 * - buffer_list for all buffers except cancelled/inode unlink buffers
1864 * - item_list for all non-buffer items
1865 * - inode_buffer_list for inode unlink buffers
1866 * - cancel_list for the cancelled buffers
1868 * Note that we add objects to the tail of the lists so that first-to-last
1869 * ordering is preserved within the lists. Adding objects to the head of the
1870 * list means when we traverse from the head we walk them in last-to-first
1871 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1872 * but for all other items there may be specific ordering that we need to
1876 xlog_recover_reorder_trans(
1878 struct xlog_recover
*trans
,
1881 xlog_recover_item_t
*item
, *n
;
1883 LIST_HEAD(sort_list
);
1884 LIST_HEAD(cancel_list
);
1885 LIST_HEAD(buffer_list
);
1886 LIST_HEAD(inode_buffer_list
);
1887 LIST_HEAD(inode_list
);
1889 list_splice_init(&trans
->r_itemq
, &sort_list
);
1890 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1891 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1893 switch (ITEM_TYPE(item
)) {
1894 case XFS_LI_ICREATE
:
1895 list_move_tail(&item
->ri_list
, &buffer_list
);
1898 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
) {
1899 trace_xfs_log_recover_item_reorder_head(log
,
1901 list_move(&item
->ri_list
, &cancel_list
);
1904 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
1905 list_move(&item
->ri_list
, &inode_buffer_list
);
1908 list_move_tail(&item
->ri_list
, &buffer_list
);
1912 case XFS_LI_QUOTAOFF
:
1917 trace_xfs_log_recover_item_reorder_tail(log
,
1919 list_move_tail(&item
->ri_list
, &inode_list
);
1923 "%s: unrecognized type of log operation",
1927 * return the remaining items back to the transaction
1928 * item list so they can be freed in caller.
1930 if (!list_empty(&sort_list
))
1931 list_splice_init(&sort_list
, &trans
->r_itemq
);
1937 ASSERT(list_empty(&sort_list
));
1938 if (!list_empty(&buffer_list
))
1939 list_splice(&buffer_list
, &trans
->r_itemq
);
1940 if (!list_empty(&inode_list
))
1941 list_splice_tail(&inode_list
, &trans
->r_itemq
);
1942 if (!list_empty(&inode_buffer_list
))
1943 list_splice_tail(&inode_buffer_list
, &trans
->r_itemq
);
1944 if (!list_empty(&cancel_list
))
1945 list_splice_tail(&cancel_list
, &trans
->r_itemq
);
1950 * Build up the table of buf cancel records so that we don't replay
1951 * cancelled data in the second pass. For buffer records that are
1952 * not cancel records, there is nothing to do here so we just return.
1954 * If we get a cancel record which is already in the table, this indicates
1955 * that the buffer was cancelled multiple times. In order to ensure
1956 * that during pass 2 we keep the record in the table until we reach its
1957 * last occurrence in the log, we keep a reference count in the cancel
1958 * record in the table to tell us how many times we expect to see this
1959 * record during the second pass.
1962 xlog_recover_buffer_pass1(
1964 struct xlog_recover_item
*item
)
1966 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1967 struct list_head
*bucket
;
1968 struct xfs_buf_cancel
*bcp
;
1971 * If this isn't a cancel buffer item, then just return.
1973 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1974 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
1979 * Insert an xfs_buf_cancel record into the hash table of them.
1980 * If there is already an identical record, bump its reference count.
1982 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
1983 list_for_each_entry(bcp
, bucket
, bc_list
) {
1984 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
1985 bcp
->bc_len
== buf_f
->blf_len
) {
1987 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
1992 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
1993 bcp
->bc_blkno
= buf_f
->blf_blkno
;
1994 bcp
->bc_len
= buf_f
->blf_len
;
1995 bcp
->bc_refcount
= 1;
1996 list_add_tail(&bcp
->bc_list
, bucket
);
1998 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
2003 * Check to see whether the buffer being recovered has a corresponding
2004 * entry in the buffer cancel record table. If it is, return the cancel
2005 * buffer structure to the caller.
2007 STATIC
struct xfs_buf_cancel
*
2008 xlog_peek_buffer_cancelled(
2014 struct list_head
*bucket
;
2015 struct xfs_buf_cancel
*bcp
;
2017 if (!log
->l_buf_cancel_table
) {
2018 /* empty table means no cancelled buffers in the log */
2019 ASSERT(!(flags
& XFS_BLF_CANCEL
));
2023 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
2024 list_for_each_entry(bcp
, bucket
, bc_list
) {
2025 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
2030 * We didn't find a corresponding entry in the table, so return 0 so
2031 * that the buffer is NOT cancelled.
2033 ASSERT(!(flags
& XFS_BLF_CANCEL
));
2038 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2039 * otherwise return 0. If the buffer is actually a buffer cancel item
2040 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2041 * table and remove it from the table if this is the last reference.
2043 * We remove the cancel record from the table when we encounter its last
2044 * occurrence in the log so that if the same buffer is re-used again after its
2045 * last cancellation we actually replay the changes made at that point.
2048 xlog_check_buffer_cancelled(
2054 struct xfs_buf_cancel
*bcp
;
2056 bcp
= xlog_peek_buffer_cancelled(log
, blkno
, len
, flags
);
2061 * We've go a match, so return 1 so that the recovery of this buffer
2062 * is cancelled. If this buffer is actually a buffer cancel log
2063 * item, then decrement the refcount on the one in the table and
2064 * remove it if this is the last reference.
2066 if (flags
& XFS_BLF_CANCEL
) {
2067 if (--bcp
->bc_refcount
== 0) {
2068 list_del(&bcp
->bc_list
);
2076 * Perform recovery for a buffer full of inodes. In these buffers, the only
2077 * data which should be recovered is that which corresponds to the
2078 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2079 * data for the inodes is always logged through the inodes themselves rather
2080 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2082 * The only time when buffers full of inodes are fully recovered is when the
2083 * buffer is full of newly allocated inodes. In this case the buffer will
2084 * not be marked as an inode buffer and so will be sent to
2085 * xlog_recover_do_reg_buffer() below during recovery.
2088 xlog_recover_do_inode_buffer(
2089 struct xfs_mount
*mp
,
2090 xlog_recover_item_t
*item
,
2092 xfs_buf_log_format_t
*buf_f
)
2098 int reg_buf_offset
= 0;
2099 int reg_buf_bytes
= 0;
2100 int next_unlinked_offset
;
2102 xfs_agino_t
*logged_nextp
;
2103 xfs_agino_t
*buffer_nextp
;
2105 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
2108 * Post recovery validation only works properly on CRC enabled
2111 if (xfs_sb_version_hascrc(&mp
->m_sb
))
2112 bp
->b_ops
= &xfs_inode_buf_ops
;
2114 inodes_per_buf
= BBTOB(bp
->b_io_length
) >> mp
->m_sb
.sb_inodelog
;
2115 for (i
= 0; i
< inodes_per_buf
; i
++) {
2116 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
2117 offsetof(xfs_dinode_t
, di_next_unlinked
);
2119 while (next_unlinked_offset
>=
2120 (reg_buf_offset
+ reg_buf_bytes
)) {
2122 * The next di_next_unlinked field is beyond
2123 * the current logged region. Find the next
2124 * logged region that contains or is beyond
2125 * the current di_next_unlinked field.
2128 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2129 buf_f
->blf_map_size
, bit
);
2132 * If there are no more logged regions in the
2133 * buffer, then we're done.
2138 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2139 buf_f
->blf_map_size
, bit
);
2141 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
2142 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
2147 * If the current logged region starts after the current
2148 * di_next_unlinked field, then move on to the next
2149 * di_next_unlinked field.
2151 if (next_unlinked_offset
< reg_buf_offset
)
2154 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
2155 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
2156 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <=
2157 BBTOB(bp
->b_io_length
));
2160 * The current logged region contains a copy of the
2161 * current di_next_unlinked field. Extract its value
2162 * and copy it to the buffer copy.
2164 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
2165 next_unlinked_offset
- reg_buf_offset
;
2166 if (unlikely(*logged_nextp
== 0)) {
2168 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2169 "Trying to replay bad (0) inode di_next_unlinked field.",
2171 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2172 XFS_ERRLEVEL_LOW
, mp
);
2173 return -EFSCORRUPTED
;
2176 buffer_nextp
= xfs_buf_offset(bp
, next_unlinked_offset
);
2177 *buffer_nextp
= *logged_nextp
;
2180 * If necessary, recalculate the CRC in the on-disk inode. We
2181 * have to leave the inode in a consistent state for whoever
2184 xfs_dinode_calc_crc(mp
,
2185 xfs_buf_offset(bp
, i
* mp
->m_sb
.sb_inodesize
));
2193 * V5 filesystems know the age of the buffer on disk being recovered. We can
2194 * have newer objects on disk than we are replaying, and so for these cases we
2195 * don't want to replay the current change as that will make the buffer contents
2196 * temporarily invalid on disk.
2198 * The magic number might not match the buffer type we are going to recover
2199 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2200 * extract the LSN of the existing object in the buffer based on it's current
2201 * magic number. If we don't recognise the magic number in the buffer, then
2202 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2203 * so can recover the buffer.
2205 * Note: we cannot rely solely on magic number matches to determine that the
2206 * buffer has a valid LSN - we also need to verify that it belongs to this
2207 * filesystem, so we need to extract the object's LSN and compare it to that
2208 * which we read from the superblock. If the UUIDs don't match, then we've got a
2209 * stale metadata block from an old filesystem instance that we need to recover
2213 xlog_recover_get_buf_lsn(
2214 struct xfs_mount
*mp
,
2220 void *blk
= bp
->b_addr
;
2224 /* v4 filesystems always recover immediately */
2225 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2226 goto recover_immediately
;
2228 magic32
= be32_to_cpu(*(__be32
*)blk
);
2230 case XFS_ABTB_CRC_MAGIC
:
2231 case XFS_ABTC_CRC_MAGIC
:
2232 case XFS_ABTB_MAGIC
:
2233 case XFS_ABTC_MAGIC
:
2234 case XFS_RMAP_CRC_MAGIC
:
2235 case XFS_IBT_CRC_MAGIC
:
2236 case XFS_IBT_MAGIC
: {
2237 struct xfs_btree_block
*btb
= blk
;
2239 lsn
= be64_to_cpu(btb
->bb_u
.s
.bb_lsn
);
2240 uuid
= &btb
->bb_u
.s
.bb_uuid
;
2243 case XFS_BMAP_CRC_MAGIC
:
2244 case XFS_BMAP_MAGIC
: {
2245 struct xfs_btree_block
*btb
= blk
;
2247 lsn
= be64_to_cpu(btb
->bb_u
.l
.bb_lsn
);
2248 uuid
= &btb
->bb_u
.l
.bb_uuid
;
2252 lsn
= be64_to_cpu(((struct xfs_agf
*)blk
)->agf_lsn
);
2253 uuid
= &((struct xfs_agf
*)blk
)->agf_uuid
;
2255 case XFS_AGFL_MAGIC
:
2256 lsn
= be64_to_cpu(((struct xfs_agfl
*)blk
)->agfl_lsn
);
2257 uuid
= &((struct xfs_agfl
*)blk
)->agfl_uuid
;
2260 lsn
= be64_to_cpu(((struct xfs_agi
*)blk
)->agi_lsn
);
2261 uuid
= &((struct xfs_agi
*)blk
)->agi_uuid
;
2263 case XFS_SYMLINK_MAGIC
:
2264 lsn
= be64_to_cpu(((struct xfs_dsymlink_hdr
*)blk
)->sl_lsn
);
2265 uuid
= &((struct xfs_dsymlink_hdr
*)blk
)->sl_uuid
;
2267 case XFS_DIR3_BLOCK_MAGIC
:
2268 case XFS_DIR3_DATA_MAGIC
:
2269 case XFS_DIR3_FREE_MAGIC
:
2270 lsn
= be64_to_cpu(((struct xfs_dir3_blk_hdr
*)blk
)->lsn
);
2271 uuid
= &((struct xfs_dir3_blk_hdr
*)blk
)->uuid
;
2273 case XFS_ATTR3_RMT_MAGIC
:
2275 * Remote attr blocks are written synchronously, rather than
2276 * being logged. That means they do not contain a valid LSN
2277 * (i.e. transactionally ordered) in them, and hence any time we
2278 * see a buffer to replay over the top of a remote attribute
2279 * block we should simply do so.
2281 goto recover_immediately
;
2284 * superblock uuids are magic. We may or may not have a
2285 * sb_meta_uuid on disk, but it will be set in the in-core
2286 * superblock. We set the uuid pointer for verification
2287 * according to the superblock feature mask to ensure we check
2288 * the relevant UUID in the superblock.
2290 lsn
= be64_to_cpu(((struct xfs_dsb
*)blk
)->sb_lsn
);
2291 if (xfs_sb_version_hasmetauuid(&mp
->m_sb
))
2292 uuid
= &((struct xfs_dsb
*)blk
)->sb_meta_uuid
;
2294 uuid
= &((struct xfs_dsb
*)blk
)->sb_uuid
;
2300 if (lsn
!= (xfs_lsn_t
)-1) {
2301 if (!uuid_equal(&mp
->m_sb
.sb_meta_uuid
, uuid
))
2302 goto recover_immediately
;
2306 magicda
= be16_to_cpu(((struct xfs_da_blkinfo
*)blk
)->magic
);
2308 case XFS_DIR3_LEAF1_MAGIC
:
2309 case XFS_DIR3_LEAFN_MAGIC
:
2310 case XFS_DA3_NODE_MAGIC
:
2311 lsn
= be64_to_cpu(((struct xfs_da3_blkinfo
*)blk
)->lsn
);
2312 uuid
= &((struct xfs_da3_blkinfo
*)blk
)->uuid
;
2318 if (lsn
!= (xfs_lsn_t
)-1) {
2319 if (!uuid_equal(&mp
->m_sb
.sb_uuid
, uuid
))
2320 goto recover_immediately
;
2325 * We do individual object checks on dquot and inode buffers as they
2326 * have their own individual LSN records. Also, we could have a stale
2327 * buffer here, so we have to at least recognise these buffer types.
2329 * A notd complexity here is inode unlinked list processing - it logs
2330 * the inode directly in the buffer, but we don't know which inodes have
2331 * been modified, and there is no global buffer LSN. Hence we need to
2332 * recover all inode buffer types immediately. This problem will be
2333 * fixed by logical logging of the unlinked list modifications.
2335 magic16
= be16_to_cpu(*(__be16
*)blk
);
2337 case XFS_DQUOT_MAGIC
:
2338 case XFS_DINODE_MAGIC
:
2339 goto recover_immediately
;
2344 /* unknown buffer contents, recover immediately */
2346 recover_immediately
:
2347 return (xfs_lsn_t
)-1;
2352 * Validate the recovered buffer is of the correct type and attach the
2353 * appropriate buffer operations to them for writeback. Magic numbers are in a
2355 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2356 * the first 32 bits of the buffer (most blocks),
2357 * inside a struct xfs_da_blkinfo at the start of the buffer.
2360 xlog_recover_validate_buf_type(
2361 struct xfs_mount
*mp
,
2363 xfs_buf_log_format_t
*buf_f
)
2365 struct xfs_da_blkinfo
*info
= bp
->b_addr
;
2371 * We can only do post recovery validation on items on CRC enabled
2372 * fielsystems as we need to know when the buffer was written to be able
2373 * to determine if we should have replayed the item. If we replay old
2374 * metadata over a newer buffer, then it will enter a temporarily
2375 * inconsistent state resulting in verification failures. Hence for now
2376 * just avoid the verification stage for non-crc filesystems
2378 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2381 magic32
= be32_to_cpu(*(__be32
*)bp
->b_addr
);
2382 magic16
= be16_to_cpu(*(__be16
*)bp
->b_addr
);
2383 magicda
= be16_to_cpu(info
->magic
);
2384 switch (xfs_blft_from_flags(buf_f
)) {
2385 case XFS_BLFT_BTREE_BUF
:
2387 case XFS_ABTB_CRC_MAGIC
:
2388 case XFS_ABTC_CRC_MAGIC
:
2389 case XFS_ABTB_MAGIC
:
2390 case XFS_ABTC_MAGIC
:
2391 bp
->b_ops
= &xfs_allocbt_buf_ops
;
2393 case XFS_IBT_CRC_MAGIC
:
2394 case XFS_FIBT_CRC_MAGIC
:
2396 case XFS_FIBT_MAGIC
:
2397 bp
->b_ops
= &xfs_inobt_buf_ops
;
2399 case XFS_BMAP_CRC_MAGIC
:
2400 case XFS_BMAP_MAGIC
:
2401 bp
->b_ops
= &xfs_bmbt_buf_ops
;
2403 case XFS_RMAP_CRC_MAGIC
:
2404 bp
->b_ops
= &xfs_rmapbt_buf_ops
;
2407 xfs_warn(mp
, "Bad btree block magic!");
2412 case XFS_BLFT_AGF_BUF
:
2413 if (magic32
!= XFS_AGF_MAGIC
) {
2414 xfs_warn(mp
, "Bad AGF block magic!");
2418 bp
->b_ops
= &xfs_agf_buf_ops
;
2420 case XFS_BLFT_AGFL_BUF
:
2421 if (magic32
!= XFS_AGFL_MAGIC
) {
2422 xfs_warn(mp
, "Bad AGFL block magic!");
2426 bp
->b_ops
= &xfs_agfl_buf_ops
;
2428 case XFS_BLFT_AGI_BUF
:
2429 if (magic32
!= XFS_AGI_MAGIC
) {
2430 xfs_warn(mp
, "Bad AGI block magic!");
2434 bp
->b_ops
= &xfs_agi_buf_ops
;
2436 case XFS_BLFT_UDQUOT_BUF
:
2437 case XFS_BLFT_PDQUOT_BUF
:
2438 case XFS_BLFT_GDQUOT_BUF
:
2439 #ifdef CONFIG_XFS_QUOTA
2440 if (magic16
!= XFS_DQUOT_MAGIC
) {
2441 xfs_warn(mp
, "Bad DQUOT block magic!");
2445 bp
->b_ops
= &xfs_dquot_buf_ops
;
2448 "Trying to recover dquots without QUOTA support built in!");
2452 case XFS_BLFT_DINO_BUF
:
2453 if (magic16
!= XFS_DINODE_MAGIC
) {
2454 xfs_warn(mp
, "Bad INODE block magic!");
2458 bp
->b_ops
= &xfs_inode_buf_ops
;
2460 case XFS_BLFT_SYMLINK_BUF
:
2461 if (magic32
!= XFS_SYMLINK_MAGIC
) {
2462 xfs_warn(mp
, "Bad symlink block magic!");
2466 bp
->b_ops
= &xfs_symlink_buf_ops
;
2468 case XFS_BLFT_DIR_BLOCK_BUF
:
2469 if (magic32
!= XFS_DIR2_BLOCK_MAGIC
&&
2470 magic32
!= XFS_DIR3_BLOCK_MAGIC
) {
2471 xfs_warn(mp
, "Bad dir block magic!");
2475 bp
->b_ops
= &xfs_dir3_block_buf_ops
;
2477 case XFS_BLFT_DIR_DATA_BUF
:
2478 if (magic32
!= XFS_DIR2_DATA_MAGIC
&&
2479 magic32
!= XFS_DIR3_DATA_MAGIC
) {
2480 xfs_warn(mp
, "Bad dir data magic!");
2484 bp
->b_ops
= &xfs_dir3_data_buf_ops
;
2486 case XFS_BLFT_DIR_FREE_BUF
:
2487 if (magic32
!= XFS_DIR2_FREE_MAGIC
&&
2488 magic32
!= XFS_DIR3_FREE_MAGIC
) {
2489 xfs_warn(mp
, "Bad dir3 free magic!");
2493 bp
->b_ops
= &xfs_dir3_free_buf_ops
;
2495 case XFS_BLFT_DIR_LEAF1_BUF
:
2496 if (magicda
!= XFS_DIR2_LEAF1_MAGIC
&&
2497 magicda
!= XFS_DIR3_LEAF1_MAGIC
) {
2498 xfs_warn(mp
, "Bad dir leaf1 magic!");
2502 bp
->b_ops
= &xfs_dir3_leaf1_buf_ops
;
2504 case XFS_BLFT_DIR_LEAFN_BUF
:
2505 if (magicda
!= XFS_DIR2_LEAFN_MAGIC
&&
2506 magicda
!= XFS_DIR3_LEAFN_MAGIC
) {
2507 xfs_warn(mp
, "Bad dir leafn magic!");
2511 bp
->b_ops
= &xfs_dir3_leafn_buf_ops
;
2513 case XFS_BLFT_DA_NODE_BUF
:
2514 if (magicda
!= XFS_DA_NODE_MAGIC
&&
2515 magicda
!= XFS_DA3_NODE_MAGIC
) {
2516 xfs_warn(mp
, "Bad da node magic!");
2520 bp
->b_ops
= &xfs_da3_node_buf_ops
;
2522 case XFS_BLFT_ATTR_LEAF_BUF
:
2523 if (magicda
!= XFS_ATTR_LEAF_MAGIC
&&
2524 magicda
!= XFS_ATTR3_LEAF_MAGIC
) {
2525 xfs_warn(mp
, "Bad attr leaf magic!");
2529 bp
->b_ops
= &xfs_attr3_leaf_buf_ops
;
2531 case XFS_BLFT_ATTR_RMT_BUF
:
2532 if (magic32
!= XFS_ATTR3_RMT_MAGIC
) {
2533 xfs_warn(mp
, "Bad attr remote magic!");
2537 bp
->b_ops
= &xfs_attr3_rmt_buf_ops
;
2539 case XFS_BLFT_SB_BUF
:
2540 if (magic32
!= XFS_SB_MAGIC
) {
2541 xfs_warn(mp
, "Bad SB block magic!");
2545 bp
->b_ops
= &xfs_sb_buf_ops
;
2547 #ifdef CONFIG_XFS_RT
2548 case XFS_BLFT_RTBITMAP_BUF
:
2549 case XFS_BLFT_RTSUMMARY_BUF
:
2550 /* no magic numbers for verification of RT buffers */
2551 bp
->b_ops
= &xfs_rtbuf_ops
;
2553 #endif /* CONFIG_XFS_RT */
2555 xfs_warn(mp
, "Unknown buffer type %d!",
2556 xfs_blft_from_flags(buf_f
));
2562 * Perform a 'normal' buffer recovery. Each logged region of the
2563 * buffer should be copied over the corresponding region in the
2564 * given buffer. The bitmap in the buf log format structure indicates
2565 * where to place the logged data.
2568 xlog_recover_do_reg_buffer(
2569 struct xfs_mount
*mp
,
2570 xlog_recover_item_t
*item
,
2572 xfs_buf_log_format_t
*buf_f
)
2579 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
2582 i
= 1; /* 0 is the buf format structure */
2584 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2585 buf_f
->blf_map_size
, bit
);
2588 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2589 buf_f
->blf_map_size
, bit
);
2591 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
2592 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
2593 ASSERT(BBTOB(bp
->b_io_length
) >=
2594 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
2597 * The dirty regions logged in the buffer, even though
2598 * contiguous, may span multiple chunks. This is because the
2599 * dirty region may span a physical page boundary in a buffer
2600 * and hence be split into two separate vectors for writing into
2601 * the log. Hence we need to trim nbits back to the length of
2602 * the current region being copied out of the log.
2604 if (item
->ri_buf
[i
].i_len
< (nbits
<< XFS_BLF_SHIFT
))
2605 nbits
= item
->ri_buf
[i
].i_len
>> XFS_BLF_SHIFT
;
2608 * Do a sanity check if this is a dquot buffer. Just checking
2609 * the first dquot in the buffer should do. XXXThis is
2610 * probably a good thing to do for other buf types also.
2613 if (buf_f
->blf_flags
&
2614 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2615 if (item
->ri_buf
[i
].i_addr
== NULL
) {
2617 "XFS: NULL dquot in %s.", __func__
);
2620 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
2622 "XFS: dquot too small (%d) in %s.",
2623 item
->ri_buf
[i
].i_len
, __func__
);
2626 error
= xfs_dqcheck(mp
, item
->ri_buf
[i
].i_addr
,
2627 -1, 0, XFS_QMOPT_DOWARN
,
2628 "dquot_buf_recover");
2633 memcpy(xfs_buf_offset(bp
,
2634 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
2635 item
->ri_buf
[i
].i_addr
, /* source */
2636 nbits
<<XFS_BLF_SHIFT
); /* length */
2642 /* Shouldn't be any more regions */
2643 ASSERT(i
== item
->ri_total
);
2645 xlog_recover_validate_buf_type(mp
, bp
, buf_f
);
2649 * Perform a dquot buffer recovery.
2650 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2651 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2652 * Else, treat it as a regular buffer and do recovery.
2654 * Return false if the buffer was tossed and true if we recovered the buffer to
2655 * indicate to the caller if the buffer needs writing.
2658 xlog_recover_do_dquot_buffer(
2659 struct xfs_mount
*mp
,
2661 struct xlog_recover_item
*item
,
2663 struct xfs_buf_log_format
*buf_f
)
2667 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2670 * Filesystems are required to send in quota flags at mount time.
2676 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2677 type
|= XFS_DQ_USER
;
2678 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2679 type
|= XFS_DQ_PROJ
;
2680 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2681 type
|= XFS_DQ_GROUP
;
2683 * This type of quotas was turned off, so ignore this buffer
2685 if (log
->l_quotaoffs_flag
& type
)
2688 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2693 * This routine replays a modification made to a buffer at runtime.
2694 * There are actually two types of buffer, regular and inode, which
2695 * are handled differently. Inode buffers are handled differently
2696 * in that we only recover a specific set of data from them, namely
2697 * the inode di_next_unlinked fields. This is because all other inode
2698 * data is actually logged via inode records and any data we replay
2699 * here which overlaps that may be stale.
2701 * When meta-data buffers are freed at run time we log a buffer item
2702 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2703 * of the buffer in the log should not be replayed at recovery time.
2704 * This is so that if the blocks covered by the buffer are reused for
2705 * file data before we crash we don't end up replaying old, freed
2706 * meta-data into a user's file.
2708 * To handle the cancellation of buffer log items, we make two passes
2709 * over the log during recovery. During the first we build a table of
2710 * those buffers which have been cancelled, and during the second we
2711 * only replay those buffers which do not have corresponding cancel
2712 * records in the table. See xlog_recover_buffer_pass[1,2] above
2713 * for more details on the implementation of the table of cancel records.
2716 xlog_recover_buffer_pass2(
2718 struct list_head
*buffer_list
,
2719 struct xlog_recover_item
*item
,
2720 xfs_lsn_t current_lsn
)
2722 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2723 xfs_mount_t
*mp
= log
->l_mp
;
2730 * In this pass we only want to recover all the buffers which have
2731 * not been cancelled and are not cancellation buffers themselves.
2733 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2734 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2735 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2739 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2742 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
2743 buf_flags
|= XBF_UNMAPPED
;
2745 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2749 error
= bp
->b_error
;
2751 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#1)");
2756 * Recover the buffer only if we get an LSN from it and it's less than
2757 * the lsn of the transaction we are replaying.
2759 * Note that we have to be extremely careful of readahead here.
2760 * Readahead does not attach verfiers to the buffers so if we don't
2761 * actually do any replay after readahead because of the LSN we found
2762 * in the buffer if more recent than that current transaction then we
2763 * need to attach the verifier directly. Failure to do so can lead to
2764 * future recovery actions (e.g. EFI and unlinked list recovery) can
2765 * operate on the buffers and they won't get the verifier attached. This
2766 * can lead to blocks on disk having the correct content but a stale
2769 * It is safe to assume these clean buffers are currently up to date.
2770 * If the buffer is dirtied by a later transaction being replayed, then
2771 * the verifier will be reset to match whatever recover turns that
2774 lsn
= xlog_recover_get_buf_lsn(mp
, bp
);
2775 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2776 xlog_recover_validate_buf_type(mp
, bp
, buf_f
);
2780 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2781 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2784 } else if (buf_f
->blf_flags
&
2785 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2788 dirty
= xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2792 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2796 * Perform delayed write on the buffer. Asynchronous writes will be
2797 * slower when taking into account all the buffers to be flushed.
2799 * Also make sure that only inode buffers with good sizes stay in
2800 * the buffer cache. The kernel moves inodes in buffers of 1 block
2801 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2802 * buffers in the log can be a different size if the log was generated
2803 * by an older kernel using unclustered inode buffers or a newer kernel
2804 * running with a different inode cluster size. Regardless, if the
2805 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2806 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2807 * the buffer out of the buffer cache so that the buffer won't
2808 * overlap with future reads of those inodes.
2810 if (XFS_DINODE_MAGIC
==
2811 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2812 (BBTOB(bp
->b_io_length
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2813 (__uint32_t
)log
->l_mp
->m_inode_cluster_size
))) {
2815 error
= xfs_bwrite(bp
);
2817 ASSERT(bp
->b_target
->bt_mount
== mp
);
2818 bp
->b_iodone
= xlog_recover_iodone
;
2819 xfs_buf_delwri_queue(bp
, buffer_list
);
2828 * Inode fork owner changes
2830 * If we have been told that we have to reparent the inode fork, it's because an
2831 * extent swap operation on a CRC enabled filesystem has been done and we are
2832 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2835 * The complexity here is that we don't have an inode context to work with, so
2836 * after we've replayed the inode we need to instantiate one. This is where the
2839 * We are in the middle of log recovery, so we can't run transactions. That
2840 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2841 * that will result in the corresponding iput() running the inode through
2842 * xfs_inactive(). If we've just replayed an inode core that changes the link
2843 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2844 * transactions (bad!).
2846 * So, to avoid this, we instantiate an inode directly from the inode core we've
2847 * just recovered. We have the buffer still locked, and all we really need to
2848 * instantiate is the inode core and the forks being modified. We can do this
2849 * manually, then run the inode btree owner change, and then tear down the
2850 * xfs_inode without having to run any transactions at all.
2852 * Also, because we don't have a transaction context available here but need to
2853 * gather all the buffers we modify for writeback so we pass the buffer_list
2854 * instead for the operation to use.
2858 xfs_recover_inode_owner_change(
2859 struct xfs_mount
*mp
,
2860 struct xfs_dinode
*dip
,
2861 struct xfs_inode_log_format
*in_f
,
2862 struct list_head
*buffer_list
)
2864 struct xfs_inode
*ip
;
2867 ASSERT(in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
));
2869 ip
= xfs_inode_alloc(mp
, in_f
->ilf_ino
);
2873 /* instantiate the inode */
2874 xfs_inode_from_disk(ip
, dip
);
2875 ASSERT(ip
->i_d
.di_version
>= 3);
2877 error
= xfs_iformat_fork(ip
, dip
);
2882 if (in_f
->ilf_fields
& XFS_ILOG_DOWNER
) {
2883 ASSERT(in_f
->ilf_fields
& XFS_ILOG_DBROOT
);
2884 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_DATA_FORK
,
2885 ip
->i_ino
, buffer_list
);
2890 if (in_f
->ilf_fields
& XFS_ILOG_AOWNER
) {
2891 ASSERT(in_f
->ilf_fields
& XFS_ILOG_ABROOT
);
2892 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_ATTR_FORK
,
2893 ip
->i_ino
, buffer_list
);
2904 xlog_recover_inode_pass2(
2906 struct list_head
*buffer_list
,
2907 struct xlog_recover_item
*item
,
2908 xfs_lsn_t current_lsn
)
2910 xfs_inode_log_format_t
*in_f
;
2911 xfs_mount_t
*mp
= log
->l_mp
;
2920 struct xfs_log_dinode
*ldip
;
2924 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2925 in_f
= item
->ri_buf
[0].i_addr
;
2927 in_f
= kmem_alloc(sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2929 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2935 * Inode buffers can be freed, look out for it,
2936 * and do not replay the inode.
2938 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2939 in_f
->ilf_len
, 0)) {
2941 trace_xfs_log_recover_inode_cancel(log
, in_f
);
2944 trace_xfs_log_recover_inode_recover(log
, in_f
);
2946 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
, 0,
2947 &xfs_inode_buf_ops
);
2952 error
= bp
->b_error
;
2954 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#2)");
2957 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2958 dip
= xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2961 * Make sure the place we're flushing out to really looks
2964 if (unlikely(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))) {
2966 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2967 __func__
, dip
, bp
, in_f
->ilf_ino
);
2968 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2969 XFS_ERRLEVEL_LOW
, mp
);
2970 error
= -EFSCORRUPTED
;
2973 ldip
= item
->ri_buf
[1].i_addr
;
2974 if (unlikely(ldip
->di_magic
!= XFS_DINODE_MAGIC
)) {
2976 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2977 __func__
, item
, in_f
->ilf_ino
);
2978 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2979 XFS_ERRLEVEL_LOW
, mp
);
2980 error
= -EFSCORRUPTED
;
2985 * If the inode has an LSN in it, recover the inode only if it's less
2986 * than the lsn of the transaction we are replaying. Note: we still
2987 * need to replay an owner change even though the inode is more recent
2988 * than the transaction as there is no guarantee that all the btree
2989 * blocks are more recent than this transaction, too.
2991 if (dip
->di_version
>= 3) {
2992 xfs_lsn_t lsn
= be64_to_cpu(dip
->di_lsn
);
2994 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2995 trace_xfs_log_recover_inode_skip(log
, in_f
);
2997 goto out_owner_change
;
3002 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3003 * are transactional and if ordering is necessary we can determine that
3004 * more accurately by the LSN field in the V3 inode core. Don't trust
3005 * the inode versions we might be changing them here - use the
3006 * superblock flag to determine whether we need to look at di_flushiter
3007 * to skip replay when the on disk inode is newer than the log one
3009 if (!xfs_sb_version_hascrc(&mp
->m_sb
) &&
3010 ldip
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
3012 * Deal with the wrap case, DI_MAX_FLUSH is less
3013 * than smaller numbers
3015 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
3016 ldip
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
3019 trace_xfs_log_recover_inode_skip(log
, in_f
);
3025 /* Take the opportunity to reset the flush iteration count */
3026 ldip
->di_flushiter
= 0;
3028 if (unlikely(S_ISREG(ldip
->di_mode
))) {
3029 if ((ldip
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3030 (ldip
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
3031 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3032 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3034 "%s: Bad regular inode log record, rec ptr 0x%p, "
3035 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3036 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
3037 error
= -EFSCORRUPTED
;
3040 } else if (unlikely(S_ISDIR(ldip
->di_mode
))) {
3041 if ((ldip
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3042 (ldip
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
3043 (ldip
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
3044 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3045 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3047 "%s: Bad dir inode log record, rec ptr 0x%p, "
3048 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3049 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
3050 error
= -EFSCORRUPTED
;
3054 if (unlikely(ldip
->di_nextents
+ ldip
->di_anextents
> ldip
->di_nblocks
)){
3055 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3056 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3058 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3059 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3060 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
3061 ldip
->di_nextents
+ ldip
->di_anextents
,
3063 error
= -EFSCORRUPTED
;
3066 if (unlikely(ldip
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
3067 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3068 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3070 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3071 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__
,
3072 item
, dip
, bp
, in_f
->ilf_ino
, ldip
->di_forkoff
);
3073 error
= -EFSCORRUPTED
;
3076 isize
= xfs_log_dinode_size(ldip
->di_version
);
3077 if (unlikely(item
->ri_buf
[1].i_len
> isize
)) {
3078 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3079 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3081 "%s: Bad inode log record length %d, rec ptr 0x%p",
3082 __func__
, item
->ri_buf
[1].i_len
, item
);
3083 error
= -EFSCORRUPTED
;
3087 /* recover the log dinode inode into the on disk inode */
3088 xfs_log_dinode_to_disk(ldip
, dip
);
3090 /* the rest is in on-disk format */
3091 if (item
->ri_buf
[1].i_len
> isize
) {
3092 memcpy((char *)dip
+ isize
,
3093 item
->ri_buf
[1].i_addr
+ isize
,
3094 item
->ri_buf
[1].i_len
- isize
);
3097 fields
= in_f
->ilf_fields
;
3098 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
3100 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
3103 memcpy(XFS_DFORK_DPTR(dip
),
3104 &in_f
->ilf_u
.ilfu_uuid
,
3109 if (in_f
->ilf_size
== 2)
3110 goto out_owner_change
;
3111 len
= item
->ri_buf
[2].i_len
;
3112 src
= item
->ri_buf
[2].i_addr
;
3113 ASSERT(in_f
->ilf_size
<= 4);
3114 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
3115 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
3116 (len
== in_f
->ilf_dsize
));
3118 switch (fields
& XFS_ILOG_DFORK
) {
3119 case XFS_ILOG_DDATA
:
3121 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
3124 case XFS_ILOG_DBROOT
:
3125 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
3126 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
3127 XFS_DFORK_DSIZE(dip
, mp
));
3132 * There are no data fork flags set.
3134 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
3139 * If we logged any attribute data, recover it. There may or
3140 * may not have been any other non-core data logged in this
3143 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
3144 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
3149 len
= item
->ri_buf
[attr_index
].i_len
;
3150 src
= item
->ri_buf
[attr_index
].i_addr
;
3151 ASSERT(len
== in_f
->ilf_asize
);
3153 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
3154 case XFS_ILOG_ADATA
:
3156 dest
= XFS_DFORK_APTR(dip
);
3157 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
3158 memcpy(dest
, src
, len
);
3161 case XFS_ILOG_ABROOT
:
3162 dest
= XFS_DFORK_APTR(dip
);
3163 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
3164 len
, (xfs_bmdr_block_t
*)dest
,
3165 XFS_DFORK_ASIZE(dip
, mp
));
3169 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
3177 if (in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
))
3178 error
= xfs_recover_inode_owner_change(mp
, dip
, in_f
,
3180 /* re-generate the checksum. */
3181 xfs_dinode_calc_crc(log
->l_mp
, dip
);
3183 ASSERT(bp
->b_target
->bt_mount
== mp
);
3184 bp
->b_iodone
= xlog_recover_iodone
;
3185 xfs_buf_delwri_queue(bp
, buffer_list
);
3196 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3197 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3201 xlog_recover_quotaoff_pass1(
3203 struct xlog_recover_item
*item
)
3205 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
3209 * The logitem format's flag tells us if this was user quotaoff,
3210 * group/project quotaoff or both.
3212 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
3213 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
3214 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
3215 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
3216 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
3217 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
3223 * Recover a dquot record
3226 xlog_recover_dquot_pass2(
3228 struct list_head
*buffer_list
,
3229 struct xlog_recover_item
*item
,
3230 xfs_lsn_t current_lsn
)
3232 xfs_mount_t
*mp
= log
->l_mp
;
3234 struct xfs_disk_dquot
*ddq
, *recddq
;
3236 xfs_dq_logformat_t
*dq_f
;
3241 * Filesystems are required to send in quota flags at mount time.
3243 if (mp
->m_qflags
== 0)
3246 recddq
= item
->ri_buf
[1].i_addr
;
3247 if (recddq
== NULL
) {
3248 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
3251 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
3252 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
3253 item
->ri_buf
[1].i_len
, __func__
);
3258 * This type of quotas was turned off, so ignore this record.
3260 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
3262 if (log
->l_quotaoffs_flag
& type
)
3266 * At this point we know that quota was _not_ turned off.
3267 * Since the mount flags are not indicating to us otherwise, this
3268 * must mean that quota is on, and the dquot needs to be replayed.
3269 * Remember that we may not have fully recovered the superblock yet,
3270 * so we can't do the usual trick of looking at the SB quota bits.
3272 * The other possibility, of course, is that the quota subsystem was
3273 * removed since the last mount - ENOSYS.
3275 dq_f
= item
->ri_buf
[0].i_addr
;
3277 error
= xfs_dqcheck(mp
, recddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
3278 "xlog_recover_dquot_pass2 (log copy)");
3281 ASSERT(dq_f
->qlf_len
== 1);
3284 * At this point we are assuming that the dquots have been allocated
3285 * and hence the buffer has valid dquots stamped in it. It should,
3286 * therefore, pass verifier validation. If the dquot is bad, then the
3287 * we'll return an error here, so we don't need to specifically check
3288 * the dquot in the buffer after the verifier has run.
3290 error
= xfs_trans_read_buf(mp
, NULL
, mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
3291 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), 0, &bp
,
3292 &xfs_dquot_buf_ops
);
3297 ddq
= xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
3300 * If the dquot has an LSN in it, recover the dquot only if it's less
3301 * than the lsn of the transaction we are replaying.
3303 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
3304 struct xfs_dqblk
*dqb
= (struct xfs_dqblk
*)ddq
;
3305 xfs_lsn_t lsn
= be64_to_cpu(dqb
->dd_lsn
);
3307 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
3312 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
3313 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
3314 xfs_update_cksum((char *)ddq
, sizeof(struct xfs_dqblk
),
3318 ASSERT(dq_f
->qlf_size
== 2);
3319 ASSERT(bp
->b_target
->bt_mount
== mp
);
3320 bp
->b_iodone
= xlog_recover_iodone
;
3321 xfs_buf_delwri_queue(bp
, buffer_list
);
3329 * This routine is called to create an in-core extent free intent
3330 * item from the efi format structure which was logged on disk.
3331 * It allocates an in-core efi, copies the extents from the format
3332 * structure into it, and adds the efi to the AIL with the given
3336 xlog_recover_efi_pass2(
3338 struct xlog_recover_item
*item
,
3342 struct xfs_mount
*mp
= log
->l_mp
;
3343 struct xfs_efi_log_item
*efip
;
3344 struct xfs_efi_log_format
*efi_formatp
;
3346 efi_formatp
= item
->ri_buf
[0].i_addr
;
3348 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
3349 error
= xfs_efi_copy_format(&item
->ri_buf
[0], &efip
->efi_format
);
3351 xfs_efi_item_free(efip
);
3354 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
3356 spin_lock(&log
->l_ailp
->xa_lock
);
3358 * The EFI has two references. One for the EFD and one for EFI to ensure
3359 * it makes it into the AIL. Insert the EFI into the AIL directly and
3360 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3363 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
3364 xfs_efi_release(efip
);
3370 * This routine is called when an EFD format structure is found in a committed
3371 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3372 * was still in the log. To do this it searches the AIL for the EFI with an id
3373 * equal to that in the EFD format structure. If we find it we drop the EFD
3374 * reference, which removes the EFI from the AIL and frees it.
3377 xlog_recover_efd_pass2(
3379 struct xlog_recover_item
*item
)
3381 xfs_efd_log_format_t
*efd_formatp
;
3382 xfs_efi_log_item_t
*efip
= NULL
;
3383 xfs_log_item_t
*lip
;
3385 struct xfs_ail_cursor cur
;
3386 struct xfs_ail
*ailp
= log
->l_ailp
;
3388 efd_formatp
= item
->ri_buf
[0].i_addr
;
3389 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
3390 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
3391 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
3392 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
3393 efi_id
= efd_formatp
->efd_efi_id
;
3396 * Search for the EFI with the id in the EFD format structure in the
3399 spin_lock(&ailp
->xa_lock
);
3400 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3401 while (lip
!= NULL
) {
3402 if (lip
->li_type
== XFS_LI_EFI
) {
3403 efip
= (xfs_efi_log_item_t
*)lip
;
3404 if (efip
->efi_format
.efi_id
== efi_id
) {
3406 * Drop the EFD reference to the EFI. This
3407 * removes the EFI from the AIL and frees it.
3409 spin_unlock(&ailp
->xa_lock
);
3410 xfs_efi_release(efip
);
3411 spin_lock(&ailp
->xa_lock
);
3415 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3418 xfs_trans_ail_cursor_done(&cur
);
3419 spin_unlock(&ailp
->xa_lock
);
3425 * This routine is called to create an in-core extent rmap update
3426 * item from the rui format structure which was logged on disk.
3427 * It allocates an in-core rui, copies the extents from the format
3428 * structure into it, and adds the rui to the AIL with the given
3432 xlog_recover_rui_pass2(
3434 struct xlog_recover_item
*item
,
3438 struct xfs_mount
*mp
= log
->l_mp
;
3439 struct xfs_rui_log_item
*ruip
;
3440 struct xfs_rui_log_format
*rui_formatp
;
3442 rui_formatp
= item
->ri_buf
[0].i_addr
;
3444 ruip
= xfs_rui_init(mp
, rui_formatp
->rui_nextents
);
3445 error
= xfs_rui_copy_format(&item
->ri_buf
[0], &ruip
->rui_format
);
3447 xfs_rui_item_free(ruip
);
3450 atomic_set(&ruip
->rui_next_extent
, rui_formatp
->rui_nextents
);
3452 spin_lock(&log
->l_ailp
->xa_lock
);
3454 * The RUI has two references. One for the RUD and one for RUI to ensure
3455 * it makes it into the AIL. Insert the RUI into the AIL directly and
3456 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3459 xfs_trans_ail_update(log
->l_ailp
, &ruip
->rui_item
, lsn
);
3460 xfs_rui_release(ruip
);
3466 * This routine is called when an RUD format structure is found in a committed
3467 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3468 * was still in the log. To do this it searches the AIL for the RUI with an id
3469 * equal to that in the RUD format structure. If we find it we drop the RUD
3470 * reference, which removes the RUI from the AIL and frees it.
3473 xlog_recover_rud_pass2(
3475 struct xlog_recover_item
*item
)
3477 struct xfs_rud_log_format
*rud_formatp
;
3478 struct xfs_rui_log_item
*ruip
= NULL
;
3479 struct xfs_log_item
*lip
;
3481 struct xfs_ail_cursor cur
;
3482 struct xfs_ail
*ailp
= log
->l_ailp
;
3484 rud_formatp
= item
->ri_buf
[0].i_addr
;
3485 ASSERT(item
->ri_buf
[0].i_len
== sizeof(struct xfs_rud_log_format
));
3486 rui_id
= rud_formatp
->rud_rui_id
;
3489 * Search for the RUI with the id in the RUD format structure in the
3492 spin_lock(&ailp
->xa_lock
);
3493 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3494 while (lip
!= NULL
) {
3495 if (lip
->li_type
== XFS_LI_RUI
) {
3496 ruip
= (struct xfs_rui_log_item
*)lip
;
3497 if (ruip
->rui_format
.rui_id
== rui_id
) {
3499 * Drop the RUD reference to the RUI. This
3500 * removes the RUI from the AIL and frees it.
3502 spin_unlock(&ailp
->xa_lock
);
3503 xfs_rui_release(ruip
);
3504 spin_lock(&ailp
->xa_lock
);
3508 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3511 xfs_trans_ail_cursor_done(&cur
);
3512 spin_unlock(&ailp
->xa_lock
);
3518 * This routine is called when an inode create format structure is found in a
3519 * committed transaction in the log. It's purpose is to initialise the inodes
3520 * being allocated on disk. This requires us to get inode cluster buffers that
3521 * match the range to be intialised, stamped with inode templates and written
3522 * by delayed write so that subsequent modifications will hit the cached buffer
3523 * and only need writing out at the end of recovery.
3526 xlog_recover_do_icreate_pass2(
3528 struct list_head
*buffer_list
,
3529 xlog_recover_item_t
*item
)
3531 struct xfs_mount
*mp
= log
->l_mp
;
3532 struct xfs_icreate_log
*icl
;
3533 xfs_agnumber_t agno
;
3534 xfs_agblock_t agbno
;
3537 xfs_agblock_t length
;
3538 int blks_per_cluster
;
3544 icl
= (struct xfs_icreate_log
*)item
->ri_buf
[0].i_addr
;
3545 if (icl
->icl_type
!= XFS_LI_ICREATE
) {
3546 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad type");
3550 if (icl
->icl_size
!= 1) {
3551 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad icl size");
3555 agno
= be32_to_cpu(icl
->icl_ag
);
3556 if (agno
>= mp
->m_sb
.sb_agcount
) {
3557 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agno");
3560 agbno
= be32_to_cpu(icl
->icl_agbno
);
3561 if (!agbno
|| agbno
== NULLAGBLOCK
|| agbno
>= mp
->m_sb
.sb_agblocks
) {
3562 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agbno");
3565 isize
= be32_to_cpu(icl
->icl_isize
);
3566 if (isize
!= mp
->m_sb
.sb_inodesize
) {
3567 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad isize");
3570 count
= be32_to_cpu(icl
->icl_count
);
3572 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad count");
3575 length
= be32_to_cpu(icl
->icl_length
);
3576 if (!length
|| length
>= mp
->m_sb
.sb_agblocks
) {
3577 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad length");
3582 * The inode chunk is either full or sparse and we only support
3583 * m_ialloc_min_blks sized sparse allocations at this time.
3585 if (length
!= mp
->m_ialloc_blks
&&
3586 length
!= mp
->m_ialloc_min_blks
) {
3588 "%s: unsupported chunk length", __FUNCTION__
);
3592 /* verify inode count is consistent with extent length */
3593 if ((count
>> mp
->m_sb
.sb_inopblog
) != length
) {
3595 "%s: inconsistent inode count and chunk length",
3601 * The icreate transaction can cover multiple cluster buffers and these
3602 * buffers could have been freed and reused. Check the individual
3603 * buffers for cancellation so we don't overwrite anything written after
3606 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
3607 bb_per_cluster
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
3608 nbufs
= length
/ blks_per_cluster
;
3609 for (i
= 0, cancel_count
= 0; i
< nbufs
; i
++) {
3612 daddr
= XFS_AGB_TO_DADDR(mp
, agno
,
3613 agbno
+ i
* blks_per_cluster
);
3614 if (xlog_check_buffer_cancelled(log
, daddr
, bb_per_cluster
, 0))
3619 * We currently only use icreate for a single allocation at a time. This
3620 * means we should expect either all or none of the buffers to be
3621 * cancelled. Be conservative and skip replay if at least one buffer is
3622 * cancelled, but warn the user that something is awry if the buffers
3623 * are not consistent.
3625 * XXX: This must be refined to only skip cancelled clusters once we use
3626 * icreate for multiple chunk allocations.
3628 ASSERT(!cancel_count
|| cancel_count
== nbufs
);
3630 if (cancel_count
!= nbufs
)
3632 "WARNING: partial inode chunk cancellation, skipped icreate.");
3633 trace_xfs_log_recover_icreate_cancel(log
, icl
);
3637 trace_xfs_log_recover_icreate_recover(log
, icl
);
3638 return xfs_ialloc_inode_init(mp
, NULL
, buffer_list
, count
, agno
, agbno
,
3639 length
, be32_to_cpu(icl
->icl_gen
));
3643 xlog_recover_buffer_ra_pass2(
3645 struct xlog_recover_item
*item
)
3647 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
3648 struct xfs_mount
*mp
= log
->l_mp
;
3650 if (xlog_peek_buffer_cancelled(log
, buf_f
->blf_blkno
,
3651 buf_f
->blf_len
, buf_f
->blf_flags
)) {
3655 xfs_buf_readahead(mp
->m_ddev_targp
, buf_f
->blf_blkno
,
3656 buf_f
->blf_len
, NULL
);
3660 xlog_recover_inode_ra_pass2(
3662 struct xlog_recover_item
*item
)
3664 struct xfs_inode_log_format ilf_buf
;
3665 struct xfs_inode_log_format
*ilfp
;
3666 struct xfs_mount
*mp
= log
->l_mp
;
3669 if (item
->ri_buf
[0].i_len
== sizeof(struct xfs_inode_log_format
)) {
3670 ilfp
= item
->ri_buf
[0].i_addr
;
3673 memset(ilfp
, 0, sizeof(*ilfp
));
3674 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], ilfp
);
3679 if (xlog_peek_buffer_cancelled(log
, ilfp
->ilf_blkno
, ilfp
->ilf_len
, 0))
3682 xfs_buf_readahead(mp
->m_ddev_targp
, ilfp
->ilf_blkno
,
3683 ilfp
->ilf_len
, &xfs_inode_buf_ra_ops
);
3687 xlog_recover_dquot_ra_pass2(
3689 struct xlog_recover_item
*item
)
3691 struct xfs_mount
*mp
= log
->l_mp
;
3692 struct xfs_disk_dquot
*recddq
;
3693 struct xfs_dq_logformat
*dq_f
;
3698 if (mp
->m_qflags
== 0)
3701 recddq
= item
->ri_buf
[1].i_addr
;
3704 if (item
->ri_buf
[1].i_len
< sizeof(struct xfs_disk_dquot
))
3707 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
3709 if (log
->l_quotaoffs_flag
& type
)
3712 dq_f
= item
->ri_buf
[0].i_addr
;
3714 ASSERT(dq_f
->qlf_len
== 1);
3716 len
= XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
);
3717 if (xlog_peek_buffer_cancelled(log
, dq_f
->qlf_blkno
, len
, 0))
3720 xfs_buf_readahead(mp
->m_ddev_targp
, dq_f
->qlf_blkno
, len
,
3721 &xfs_dquot_buf_ra_ops
);
3725 xlog_recover_ra_pass2(
3727 struct xlog_recover_item
*item
)
3729 switch (ITEM_TYPE(item
)) {
3731 xlog_recover_buffer_ra_pass2(log
, item
);
3734 xlog_recover_inode_ra_pass2(log
, item
);
3737 xlog_recover_dquot_ra_pass2(log
, item
);
3741 case XFS_LI_QUOTAOFF
:
3750 xlog_recover_commit_pass1(
3752 struct xlog_recover
*trans
,
3753 struct xlog_recover_item
*item
)
3755 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
3757 switch (ITEM_TYPE(item
)) {
3759 return xlog_recover_buffer_pass1(log
, item
);
3760 case XFS_LI_QUOTAOFF
:
3761 return xlog_recover_quotaoff_pass1(log
, item
);
3766 case XFS_LI_ICREATE
:
3769 /* nothing to do in pass 1 */
3772 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
3773 __func__
, ITEM_TYPE(item
));
3780 xlog_recover_commit_pass2(
3782 struct xlog_recover
*trans
,
3783 struct list_head
*buffer_list
,
3784 struct xlog_recover_item
*item
)
3786 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
3788 switch (ITEM_TYPE(item
)) {
3790 return xlog_recover_buffer_pass2(log
, buffer_list
, item
,
3793 return xlog_recover_inode_pass2(log
, buffer_list
, item
,
3796 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
3798 return xlog_recover_efd_pass2(log
, item
);
3800 return xlog_recover_rui_pass2(log
, item
, trans
->r_lsn
);
3802 return xlog_recover_rud_pass2(log
, item
);
3804 return xlog_recover_dquot_pass2(log
, buffer_list
, item
,
3806 case XFS_LI_ICREATE
:
3807 return xlog_recover_do_icreate_pass2(log
, buffer_list
, item
);
3808 case XFS_LI_QUOTAOFF
:
3809 /* nothing to do in pass2 */
3812 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
3813 __func__
, ITEM_TYPE(item
));
3820 xlog_recover_items_pass2(
3822 struct xlog_recover
*trans
,
3823 struct list_head
*buffer_list
,
3824 struct list_head
*item_list
)
3826 struct xlog_recover_item
*item
;
3829 list_for_each_entry(item
, item_list
, ri_list
) {
3830 error
= xlog_recover_commit_pass2(log
, trans
,
3840 * Perform the transaction.
3842 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3843 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3846 xlog_recover_commit_trans(
3848 struct xlog_recover
*trans
,
3853 int items_queued
= 0;
3854 struct xlog_recover_item
*item
;
3855 struct xlog_recover_item
*next
;
3856 LIST_HEAD (buffer_list
);
3857 LIST_HEAD (ra_list
);
3858 LIST_HEAD (done_list
);
3860 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3862 hlist_del(&trans
->r_list
);
3864 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
3868 list_for_each_entry_safe(item
, next
, &trans
->r_itemq
, ri_list
) {
3870 case XLOG_RECOVER_PASS1
:
3871 error
= xlog_recover_commit_pass1(log
, trans
, item
);
3873 case XLOG_RECOVER_PASS2
:
3874 xlog_recover_ra_pass2(log
, item
);
3875 list_move_tail(&item
->ri_list
, &ra_list
);
3877 if (items_queued
>= XLOG_RECOVER_COMMIT_QUEUE_MAX
) {
3878 error
= xlog_recover_items_pass2(log
, trans
,
3879 &buffer_list
, &ra_list
);
3880 list_splice_tail_init(&ra_list
, &done_list
);
3894 if (!list_empty(&ra_list
)) {
3896 error
= xlog_recover_items_pass2(log
, trans
,
3897 &buffer_list
, &ra_list
);
3898 list_splice_tail_init(&ra_list
, &done_list
);
3901 if (!list_empty(&done_list
))
3902 list_splice_init(&done_list
, &trans
->r_itemq
);
3904 error2
= xfs_buf_delwri_submit(&buffer_list
);
3905 return error
? error
: error2
;
3909 xlog_recover_add_item(
3910 struct list_head
*head
)
3912 xlog_recover_item_t
*item
;
3914 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
3915 INIT_LIST_HEAD(&item
->ri_list
);
3916 list_add_tail(&item
->ri_list
, head
);
3920 xlog_recover_add_to_cont_trans(
3922 struct xlog_recover
*trans
,
3926 xlog_recover_item_t
*item
;
3927 char *ptr
, *old_ptr
;
3931 * If the transaction is empty, the header was split across this and the
3932 * previous record. Copy the rest of the header.
3934 if (list_empty(&trans
->r_itemq
)) {
3935 ASSERT(len
<= sizeof(struct xfs_trans_header
));
3936 if (len
> sizeof(struct xfs_trans_header
)) {
3937 xfs_warn(log
->l_mp
, "%s: bad header length", __func__
);
3941 xlog_recover_add_item(&trans
->r_itemq
);
3942 ptr
= (char *)&trans
->r_theader
+
3943 sizeof(struct xfs_trans_header
) - len
;
3944 memcpy(ptr
, dp
, len
);
3948 /* take the tail entry */
3949 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
3951 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
3952 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
3954 ptr
= kmem_realloc(old_ptr
, len
+ old_len
, KM_SLEEP
);
3955 memcpy(&ptr
[old_len
], dp
, len
);
3956 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
3957 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
3958 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
3963 * The next region to add is the start of a new region. It could be
3964 * a whole region or it could be the first part of a new region. Because
3965 * of this, the assumption here is that the type and size fields of all
3966 * format structures fit into the first 32 bits of the structure.
3968 * This works because all regions must be 32 bit aligned. Therefore, we
3969 * either have both fields or we have neither field. In the case we have
3970 * neither field, the data part of the region is zero length. We only have
3971 * a log_op_header and can throw away the header since a new one will appear
3972 * later. If we have at least 4 bytes, then we can determine how many regions
3973 * will appear in the current log item.
3976 xlog_recover_add_to_trans(
3978 struct xlog_recover
*trans
,
3982 xfs_inode_log_format_t
*in_f
; /* any will do */
3983 xlog_recover_item_t
*item
;
3988 if (list_empty(&trans
->r_itemq
)) {
3989 /* we need to catch log corruptions here */
3990 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
3991 xfs_warn(log
->l_mp
, "%s: bad header magic number",
3997 if (len
> sizeof(struct xfs_trans_header
)) {
3998 xfs_warn(log
->l_mp
, "%s: bad header length", __func__
);
4004 * The transaction header can be arbitrarily split across op
4005 * records. If we don't have the whole thing here, copy what we
4006 * do have and handle the rest in the next record.
4008 if (len
== sizeof(struct xfs_trans_header
))
4009 xlog_recover_add_item(&trans
->r_itemq
);
4010 memcpy(&trans
->r_theader
, dp
, len
);
4014 ptr
= kmem_alloc(len
, KM_SLEEP
);
4015 memcpy(ptr
, dp
, len
);
4016 in_f
= (xfs_inode_log_format_t
*)ptr
;
4018 /* take the tail entry */
4019 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
4020 if (item
->ri_total
!= 0 &&
4021 item
->ri_total
== item
->ri_cnt
) {
4022 /* tail item is in use, get a new one */
4023 xlog_recover_add_item(&trans
->r_itemq
);
4024 item
= list_entry(trans
->r_itemq
.prev
,
4025 xlog_recover_item_t
, ri_list
);
4028 if (item
->ri_total
== 0) { /* first region to be added */
4029 if (in_f
->ilf_size
== 0 ||
4030 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
4032 "bad number of regions (%d) in inode log format",
4039 item
->ri_total
= in_f
->ilf_size
;
4041 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
4044 ASSERT(item
->ri_total
> item
->ri_cnt
);
4045 /* Description region is ri_buf[0] */
4046 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
4047 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
4049 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
4054 * Free up any resources allocated by the transaction
4056 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4059 xlog_recover_free_trans(
4060 struct xlog_recover
*trans
)
4062 xlog_recover_item_t
*item
, *n
;
4065 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
4066 /* Free the regions in the item. */
4067 list_del(&item
->ri_list
);
4068 for (i
= 0; i
< item
->ri_cnt
; i
++)
4069 kmem_free(item
->ri_buf
[i
].i_addr
);
4070 /* Free the item itself */
4071 kmem_free(item
->ri_buf
);
4074 /* Free the transaction recover structure */
4079 * On error or completion, trans is freed.
4082 xlog_recovery_process_trans(
4084 struct xlog_recover
*trans
,
4091 bool freeit
= false;
4093 /* mask off ophdr transaction container flags */
4094 flags
&= ~XLOG_END_TRANS
;
4095 if (flags
& XLOG_WAS_CONT_TRANS
)
4096 flags
&= ~XLOG_CONTINUE_TRANS
;
4099 * Callees must not free the trans structure. We'll decide if we need to
4100 * free it or not based on the operation being done and it's result.
4103 /* expected flag values */
4105 case XLOG_CONTINUE_TRANS
:
4106 error
= xlog_recover_add_to_trans(log
, trans
, dp
, len
);
4108 case XLOG_WAS_CONT_TRANS
:
4109 error
= xlog_recover_add_to_cont_trans(log
, trans
, dp
, len
);
4111 case XLOG_COMMIT_TRANS
:
4112 error
= xlog_recover_commit_trans(log
, trans
, pass
);
4113 /* success or fail, we are now done with this transaction. */
4117 /* unexpected flag values */
4118 case XLOG_UNMOUNT_TRANS
:
4119 /* just skip trans */
4120 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
4123 case XLOG_START_TRANS
:
4125 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x", __func__
, flags
);
4130 if (error
|| freeit
)
4131 xlog_recover_free_trans(trans
);
4136 * Lookup the transaction recovery structure associated with the ID in the
4137 * current ophdr. If the transaction doesn't exist and the start flag is set in
4138 * the ophdr, then allocate a new transaction for future ID matches to find.
4139 * Either way, return what we found during the lookup - an existing transaction
4142 STATIC
struct xlog_recover
*
4143 xlog_recover_ophdr_to_trans(
4144 struct hlist_head rhash
[],
4145 struct xlog_rec_header
*rhead
,
4146 struct xlog_op_header
*ohead
)
4148 struct xlog_recover
*trans
;
4150 struct hlist_head
*rhp
;
4152 tid
= be32_to_cpu(ohead
->oh_tid
);
4153 rhp
= &rhash
[XLOG_RHASH(tid
)];
4154 hlist_for_each_entry(trans
, rhp
, r_list
) {
4155 if (trans
->r_log_tid
== tid
)
4160 * skip over non-start transaction headers - we could be
4161 * processing slack space before the next transaction starts
4163 if (!(ohead
->oh_flags
& XLOG_START_TRANS
))
4166 ASSERT(be32_to_cpu(ohead
->oh_len
) == 0);
4169 * This is a new transaction so allocate a new recovery container to
4170 * hold the recovery ops that will follow.
4172 trans
= kmem_zalloc(sizeof(struct xlog_recover
), KM_SLEEP
);
4173 trans
->r_log_tid
= tid
;
4174 trans
->r_lsn
= be64_to_cpu(rhead
->h_lsn
);
4175 INIT_LIST_HEAD(&trans
->r_itemq
);
4176 INIT_HLIST_NODE(&trans
->r_list
);
4177 hlist_add_head(&trans
->r_list
, rhp
);
4180 * Nothing more to do for this ophdr. Items to be added to this new
4181 * transaction will be in subsequent ophdr containers.
4187 xlog_recover_process_ophdr(
4189 struct hlist_head rhash
[],
4190 struct xlog_rec_header
*rhead
,
4191 struct xlog_op_header
*ohead
,
4196 struct xlog_recover
*trans
;
4199 /* Do we understand who wrote this op? */
4200 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
4201 ohead
->oh_clientid
!= XFS_LOG
) {
4202 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
4203 __func__
, ohead
->oh_clientid
);
4209 * Check the ophdr contains all the data it is supposed to contain.
4211 len
= be32_to_cpu(ohead
->oh_len
);
4212 if (dp
+ len
> end
) {
4213 xfs_warn(log
->l_mp
, "%s: bad length 0x%x", __func__
, len
);
4218 trans
= xlog_recover_ophdr_to_trans(rhash
, rhead
, ohead
);
4220 /* nothing to do, so skip over this ophdr */
4224 return xlog_recovery_process_trans(log
, trans
, dp
, len
,
4225 ohead
->oh_flags
, pass
);
4229 * There are two valid states of the r_state field. 0 indicates that the
4230 * transaction structure is in a normal state. We have either seen the
4231 * start of the transaction or the last operation we added was not a partial
4232 * operation. If the last operation we added to the transaction was a
4233 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4235 * NOTE: skip LRs with 0 data length.
4238 xlog_recover_process_data(
4240 struct hlist_head rhash
[],
4241 struct xlog_rec_header
*rhead
,
4245 struct xlog_op_header
*ohead
;
4250 end
= dp
+ be32_to_cpu(rhead
->h_len
);
4251 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
4253 /* check the log format matches our own - else we can't recover */
4254 if (xlog_header_check_recover(log
->l_mp
, rhead
))
4257 while ((dp
< end
) && num_logops
) {
4259 ohead
= (struct xlog_op_header
*)dp
;
4260 dp
+= sizeof(*ohead
);
4263 /* errors will abort recovery */
4264 error
= xlog_recover_process_ophdr(log
, rhash
, rhead
, ohead
,
4269 dp
+= be32_to_cpu(ohead
->oh_len
);
4275 /* Recover the EFI if necessary. */
4277 xlog_recover_process_efi(
4278 struct xfs_mount
*mp
,
4279 struct xfs_ail
*ailp
,
4280 struct xfs_log_item
*lip
)
4282 struct xfs_efi_log_item
*efip
;
4286 * Skip EFIs that we've already processed.
4288 efip
= container_of(lip
, struct xfs_efi_log_item
, efi_item
);
4289 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
))
4292 spin_unlock(&ailp
->xa_lock
);
4293 error
= xfs_efi_recover(mp
, efip
);
4294 spin_lock(&ailp
->xa_lock
);
4299 /* Release the EFI since we're cancelling everything. */
4301 xlog_recover_cancel_efi(
4302 struct xfs_mount
*mp
,
4303 struct xfs_ail
*ailp
,
4304 struct xfs_log_item
*lip
)
4306 struct xfs_efi_log_item
*efip
;
4308 efip
= container_of(lip
, struct xfs_efi_log_item
, efi_item
);
4310 spin_unlock(&ailp
->xa_lock
);
4311 xfs_efi_release(efip
);
4312 spin_lock(&ailp
->xa_lock
);
4315 /* Recover the RUI if necessary. */
4317 xlog_recover_process_rui(
4318 struct xfs_mount
*mp
,
4319 struct xfs_ail
*ailp
,
4320 struct xfs_log_item
*lip
)
4322 struct xfs_rui_log_item
*ruip
;
4326 * Skip RUIs that we've already processed.
4328 ruip
= container_of(lip
, struct xfs_rui_log_item
, rui_item
);
4329 if (test_bit(XFS_RUI_RECOVERED
, &ruip
->rui_flags
))
4332 spin_unlock(&ailp
->xa_lock
);
4333 error
= xfs_rui_recover(mp
, ruip
);
4334 spin_lock(&ailp
->xa_lock
);
4339 /* Release the RUI since we're cancelling everything. */
4341 xlog_recover_cancel_rui(
4342 struct xfs_mount
*mp
,
4343 struct xfs_ail
*ailp
,
4344 struct xfs_log_item
*lip
)
4346 struct xfs_rui_log_item
*ruip
;
4348 ruip
= container_of(lip
, struct xfs_rui_log_item
, rui_item
);
4350 spin_unlock(&ailp
->xa_lock
);
4351 xfs_rui_release(ruip
);
4352 spin_lock(&ailp
->xa_lock
);
4355 /* Is this log item a deferred action intent? */
4356 static inline bool xlog_item_is_intent(struct xfs_log_item
*lip
)
4358 switch (lip
->li_type
) {
4368 * When this is called, all of the log intent items which did not have
4369 * corresponding log done items should be in the AIL. What we do now
4370 * is update the data structures associated with each one.
4372 * Since we process the log intent items in normal transactions, they
4373 * will be removed at some point after the commit. This prevents us
4374 * from just walking down the list processing each one. We'll use a
4375 * flag in the intent item to skip those that we've already processed
4376 * and use the AIL iteration mechanism's generation count to try to
4377 * speed this up at least a bit.
4379 * When we start, we know that the intents are the only things in the
4380 * AIL. As we process them, however, other items are added to the
4384 xlog_recover_process_intents(
4387 struct xfs_log_item
*lip
;
4389 struct xfs_ail_cursor cur
;
4390 struct xfs_ail
*ailp
;
4394 spin_lock(&ailp
->xa_lock
);
4395 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
4396 last_lsn
= xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
);
4397 while (lip
!= NULL
) {
4399 * We're done when we see something other than an intent.
4400 * There should be no intents left in the AIL now.
4402 if (!xlog_item_is_intent(lip
)) {
4404 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
4405 ASSERT(!xlog_item_is_intent(lip
));
4411 * We should never see a redo item with a LSN higher than
4412 * the last transaction we found in the log at the start
4415 ASSERT(XFS_LSN_CMP(last_lsn
, lip
->li_lsn
) >= 0);
4417 switch (lip
->li_type
) {
4419 error
= xlog_recover_process_efi(log
->l_mp
, ailp
, lip
);
4422 error
= xlog_recover_process_rui(log
->l_mp
, ailp
, lip
);
4427 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
4430 xfs_trans_ail_cursor_done(&cur
);
4431 spin_unlock(&ailp
->xa_lock
);
4436 * A cancel occurs when the mount has failed and we're bailing out.
4437 * Release all pending log intent items so they don't pin the AIL.
4440 xlog_recover_cancel_intents(
4443 struct xfs_log_item
*lip
;
4445 struct xfs_ail_cursor cur
;
4446 struct xfs_ail
*ailp
;
4449 spin_lock(&ailp
->xa_lock
);
4450 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
4451 while (lip
!= NULL
) {
4453 * We're done when we see something other than an intent.
4454 * There should be no intents left in the AIL now.
4456 if (!xlog_item_is_intent(lip
)) {
4458 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
4459 ASSERT(!xlog_item_is_intent(lip
));
4464 switch (lip
->li_type
) {
4466 xlog_recover_cancel_efi(log
->l_mp
, ailp
, lip
);
4469 xlog_recover_cancel_rui(log
->l_mp
, ailp
, lip
);
4473 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
4476 xfs_trans_ail_cursor_done(&cur
);
4477 spin_unlock(&ailp
->xa_lock
);
4482 * This routine performs a transaction to null out a bad inode pointer
4483 * in an agi unlinked inode hash bucket.
4486 xlog_recover_clear_agi_bucket(
4488 xfs_agnumber_t agno
,
4497 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_clearagi
, 0, 0, 0, &tp
);
4501 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
4505 agi
= XFS_BUF_TO_AGI(agibp
);
4506 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
4507 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
4508 (sizeof(xfs_agino_t
) * bucket
);
4509 xfs_trans_log_buf(tp
, agibp
, offset
,
4510 (offset
+ sizeof(xfs_agino_t
) - 1));
4512 error
= xfs_trans_commit(tp
);
4518 xfs_trans_cancel(tp
);
4520 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
4525 xlog_recover_process_one_iunlink(
4526 struct xfs_mount
*mp
,
4527 xfs_agnumber_t agno
,
4531 struct xfs_buf
*ibp
;
4532 struct xfs_dinode
*dip
;
4533 struct xfs_inode
*ip
;
4537 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
4538 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
4543 * Get the on disk inode to find the next inode in the bucket.
4545 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &ibp
, 0, 0);
4549 ASSERT(VFS_I(ip
)->i_nlink
== 0);
4550 ASSERT(VFS_I(ip
)->i_mode
!= 0);
4552 /* setup for the next pass */
4553 agino
= be32_to_cpu(dip
->di_next_unlinked
);
4557 * Prevent any DMAPI event from being sent when the reference on
4558 * the inode is dropped.
4560 ip
->i_d
.di_dmevmask
= 0;
4569 * We can't read in the inode this bucket points to, or this inode
4570 * is messed up. Just ditch this bucket of inodes. We will lose
4571 * some inodes and space, but at least we won't hang.
4573 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4574 * clear the inode pointer in the bucket.
4576 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
4581 * xlog_iunlink_recover
4583 * This is called during recovery to process any inodes which
4584 * we unlinked but not freed when the system crashed. These
4585 * inodes will be on the lists in the AGI blocks. What we do
4586 * here is scan all the AGIs and fully truncate and free any
4587 * inodes found on the lists. Each inode is removed from the
4588 * lists when it has been fully truncated and is freed. The
4589 * freeing of the inode and its removal from the list must be
4593 xlog_recover_process_iunlinks(
4597 xfs_agnumber_t agno
;
4608 * Prevent any DMAPI event from being sent while in this function.
4610 mp_dmevmask
= mp
->m_dmevmask
;
4613 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
4615 * Find the agi for this ag.
4617 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
4620 * AGI is b0rked. Don't process it.
4622 * We should probably mark the filesystem as corrupt
4623 * after we've recovered all the ag's we can....
4628 * Unlock the buffer so that it can be acquired in the normal
4629 * course of the transaction to truncate and free each inode.
4630 * Because we are not racing with anyone else here for the AGI
4631 * buffer, we don't even need to hold it locked to read the
4632 * initial unlinked bucket entries out of the buffer. We keep
4633 * buffer reference though, so that it stays pinned in memory
4634 * while we need the buffer.
4636 agi
= XFS_BUF_TO_AGI(agibp
);
4637 xfs_buf_unlock(agibp
);
4639 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
4640 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
4641 while (agino
!= NULLAGINO
) {
4642 agino
= xlog_recover_process_one_iunlink(mp
,
4643 agno
, agino
, bucket
);
4646 xfs_buf_rele(agibp
);
4649 mp
->m_dmevmask
= mp_dmevmask
;
4654 struct xlog_rec_header
*rhead
,
4660 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
4661 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
4662 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
4666 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
4667 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
4668 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
4669 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
4670 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
4671 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
4680 * CRC check, unpack and process a log record.
4683 xlog_recover_process(
4685 struct hlist_head rhash
[],
4686 struct xlog_rec_header
*rhead
,
4693 crc
= xlog_cksum(log
, rhead
, dp
, be32_to_cpu(rhead
->h_len
));
4696 * Nothing else to do if this is a CRC verification pass. Just return
4697 * if this a record with a non-zero crc. Unfortunately, mkfs always
4698 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4699 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4700 * know precisely what failed.
4702 if (pass
== XLOG_RECOVER_CRCPASS
) {
4703 if (rhead
->h_crc
&& crc
!= rhead
->h_crc
)
4709 * We're in the normal recovery path. Issue a warning if and only if the
4710 * CRC in the header is non-zero. This is an advisory warning and the
4711 * zero CRC check prevents warnings from being emitted when upgrading
4712 * the kernel from one that does not add CRCs by default.
4714 if (crc
!= rhead
->h_crc
) {
4715 if (rhead
->h_crc
|| xfs_sb_version_hascrc(&log
->l_mp
->m_sb
)) {
4716 xfs_alert(log
->l_mp
,
4717 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4718 le32_to_cpu(rhead
->h_crc
),
4720 xfs_hex_dump(dp
, 32);
4724 * If the filesystem is CRC enabled, this mismatch becomes a
4725 * fatal log corruption failure.
4727 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
))
4728 return -EFSCORRUPTED
;
4731 error
= xlog_unpack_data(rhead
, dp
, log
);
4735 return xlog_recover_process_data(log
, rhash
, rhead
, dp
, pass
);
4739 xlog_valid_rec_header(
4741 struct xlog_rec_header
*rhead
,
4746 if (unlikely(rhead
->h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))) {
4747 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4748 XFS_ERRLEVEL_LOW
, log
->l_mp
);
4749 return -EFSCORRUPTED
;
4752 (!rhead
->h_version
||
4753 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
4754 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
4755 __func__
, be32_to_cpu(rhead
->h_version
));
4759 /* LR body must have data or it wouldn't have been written */
4760 hlen
= be32_to_cpu(rhead
->h_len
);
4761 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
4762 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4763 XFS_ERRLEVEL_LOW
, log
->l_mp
);
4764 return -EFSCORRUPTED
;
4766 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
4767 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4768 XFS_ERRLEVEL_LOW
, log
->l_mp
);
4769 return -EFSCORRUPTED
;
4775 * Read the log from tail to head and process the log records found.
4776 * Handle the two cases where the tail and head are in the same cycle
4777 * and where the active portion of the log wraps around the end of
4778 * the physical log separately. The pass parameter is passed through
4779 * to the routines called to process the data and is not looked at
4783 xlog_do_recovery_pass(
4785 xfs_daddr_t head_blk
,
4786 xfs_daddr_t tail_blk
,
4788 xfs_daddr_t
*first_bad
) /* out: first bad log rec */
4790 xlog_rec_header_t
*rhead
;
4792 xfs_daddr_t rhead_blk
;
4794 xfs_buf_t
*hbp
, *dbp
;
4795 int error
= 0, h_size
, h_len
;
4796 int bblks
, split_bblks
;
4797 int hblks
, split_hblks
, wrapped_hblks
;
4798 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
4800 ASSERT(head_blk
!= tail_blk
);
4804 * Read the header of the tail block and get the iclog buffer size from
4805 * h_size. Use this to tell how many sectors make up the log header.
4807 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
4809 * When using variable length iclogs, read first sector of
4810 * iclog header and extract the header size from it. Get a
4811 * new hbp that is the correct size.
4813 hbp
= xlog_get_bp(log
, 1);
4817 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
4821 rhead
= (xlog_rec_header_t
*)offset
;
4822 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
4827 * xfsprogs has a bug where record length is based on lsunit but
4828 * h_size (iclog size) is hardcoded to 32k. Now that we
4829 * unconditionally CRC verify the unmount record, this means the
4830 * log buffer can be too small for the record and cause an
4833 * Detect this condition here. Use lsunit for the buffer size as
4834 * long as this looks like the mkfs case. Otherwise, return an
4835 * error to avoid a buffer overrun.
4837 h_size
= be32_to_cpu(rhead
->h_size
);
4838 h_len
= be32_to_cpu(rhead
->h_len
);
4839 if (h_len
> h_size
) {
4840 if (h_len
<= log
->l_mp
->m_logbsize
&&
4841 be32_to_cpu(rhead
->h_num_logops
) == 1) {
4843 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
4844 h_size
, log
->l_mp
->m_logbsize
);
4845 h_size
= log
->l_mp
->m_logbsize
;
4847 return -EFSCORRUPTED
;
4850 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
4851 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
4852 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
4853 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
4856 hbp
= xlog_get_bp(log
, hblks
);
4861 ASSERT(log
->l_sectBBsize
== 1);
4863 hbp
= xlog_get_bp(log
, 1);
4864 h_size
= XLOG_BIG_RECORD_BSIZE
;
4869 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
4875 memset(rhash
, 0, sizeof(rhash
));
4876 blk_no
= rhead_blk
= tail_blk
;
4877 if (tail_blk
> head_blk
) {
4879 * Perform recovery around the end of the physical log.
4880 * When the head is not on the same cycle number as the tail,
4881 * we can't do a sequential recovery.
4883 while (blk_no
< log
->l_logBBsize
) {
4885 * Check for header wrapping around physical end-of-log
4887 offset
= hbp
->b_addr
;
4890 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
4891 /* Read header in one read */
4892 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
4897 /* This LR is split across physical log end */
4898 if (blk_no
!= log
->l_logBBsize
) {
4899 /* some data before physical log end */
4900 ASSERT(blk_no
<= INT_MAX
);
4901 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
4902 ASSERT(split_hblks
> 0);
4903 error
= xlog_bread(log
, blk_no
,
4911 * Note: this black magic still works with
4912 * large sector sizes (non-512) only because:
4913 * - we increased the buffer size originally
4914 * by 1 sector giving us enough extra space
4915 * for the second read;
4916 * - the log start is guaranteed to be sector
4918 * - we read the log end (LR header start)
4919 * _first_, then the log start (LR header end)
4920 * - order is important.
4922 wrapped_hblks
= hblks
- split_hblks
;
4923 error
= xlog_bread_offset(log
, 0,
4925 offset
+ BBTOB(split_hblks
));
4929 rhead
= (xlog_rec_header_t
*)offset
;
4930 error
= xlog_valid_rec_header(log
, rhead
,
4931 split_hblks
? blk_no
: 0);
4935 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
4938 /* Read in data for log record */
4939 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
4940 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
4945 /* This log record is split across the
4946 * physical end of log */
4947 offset
= dbp
->b_addr
;
4949 if (blk_no
!= log
->l_logBBsize
) {
4950 /* some data is before the physical
4952 ASSERT(!wrapped_hblks
);
4953 ASSERT(blk_no
<= INT_MAX
);
4955 log
->l_logBBsize
- (int)blk_no
;
4956 ASSERT(split_bblks
> 0);
4957 error
= xlog_bread(log
, blk_no
,
4965 * Note: this black magic still works with
4966 * large sector sizes (non-512) only because:
4967 * - we increased the buffer size originally
4968 * by 1 sector giving us enough extra space
4969 * for the second read;
4970 * - the log start is guaranteed to be sector
4972 * - we read the log end (LR header start)
4973 * _first_, then the log start (LR header end)
4974 * - order is important.
4976 error
= xlog_bread_offset(log
, 0,
4977 bblks
- split_bblks
, dbp
,
4978 offset
+ BBTOB(split_bblks
));
4983 error
= xlog_recover_process(log
, rhash
, rhead
, offset
,
4992 ASSERT(blk_no
>= log
->l_logBBsize
);
4993 blk_no
-= log
->l_logBBsize
;
4997 /* read first part of physical log */
4998 while (blk_no
< head_blk
) {
4999 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
5003 rhead
= (xlog_rec_header_t
*)offset
;
5004 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
5008 /* blocks in data section */
5009 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
5010 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
5015 error
= xlog_recover_process(log
, rhash
, rhead
, offset
, pass
);
5019 blk_no
+= bblks
+ hblks
;
5028 if (error
&& first_bad
)
5029 *first_bad
= rhead_blk
;
5035 * Do the recovery of the log. We actually do this in two phases.
5036 * The two passes are necessary in order to implement the function
5037 * of cancelling a record written into the log. The first pass
5038 * determines those things which have been cancelled, and the
5039 * second pass replays log items normally except for those which
5040 * have been cancelled. The handling of the replay and cancellations
5041 * takes place in the log item type specific routines.
5043 * The table of items which have cancel records in the log is allocated
5044 * and freed at this level, since only here do we know when all of
5045 * the log recovery has been completed.
5048 xlog_do_log_recovery(
5050 xfs_daddr_t head_blk
,
5051 xfs_daddr_t tail_blk
)
5055 ASSERT(head_blk
!= tail_blk
);
5058 * First do a pass to find all of the cancelled buf log items.
5059 * Store them in the buf_cancel_table for use in the second pass.
5061 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
5062 sizeof(struct list_head
),
5064 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
5065 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
5067 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
5068 XLOG_RECOVER_PASS1
, NULL
);
5070 kmem_free(log
->l_buf_cancel_table
);
5071 log
->l_buf_cancel_table
= NULL
;
5075 * Then do a second pass to actually recover the items in the log.
5076 * When it is complete free the table of buf cancel items.
5078 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
5079 XLOG_RECOVER_PASS2
, NULL
);
5084 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
5085 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
5089 kmem_free(log
->l_buf_cancel_table
);
5090 log
->l_buf_cancel_table
= NULL
;
5096 * Do the actual recovery
5101 xfs_daddr_t head_blk
,
5102 xfs_daddr_t tail_blk
)
5104 struct xfs_mount
*mp
= log
->l_mp
;
5110 * First replay the images in the log.
5112 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
5117 * If IO errors happened during recovery, bail out.
5119 if (XFS_FORCED_SHUTDOWN(mp
)) {
5124 * We now update the tail_lsn since much of the recovery has completed
5125 * and there may be space available to use. If there were no extent
5126 * or iunlinks, we can free up the entire log and set the tail_lsn to
5127 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5128 * lsn of the last known good LR on disk. If there are extent frees
5129 * or iunlinks they will have some entries in the AIL; so we look at
5130 * the AIL to determine how to set the tail_lsn.
5132 xlog_assign_tail_lsn(mp
);
5135 * Now that we've finished replaying all buffer and inode
5136 * updates, re-read in the superblock and reverify it.
5138 bp
= xfs_getsb(mp
, 0);
5139 bp
->b_flags
&= ~(XBF_DONE
| XBF_ASYNC
);
5140 ASSERT(!(bp
->b_flags
& XBF_WRITE
));
5141 bp
->b_flags
|= XBF_READ
;
5142 bp
->b_ops
= &xfs_sb_buf_ops
;
5144 error
= xfs_buf_submit_wait(bp
);
5146 if (!XFS_FORCED_SHUTDOWN(mp
)) {
5147 xfs_buf_ioerror_alert(bp
, __func__
);
5154 /* Convert superblock from on-disk format */
5156 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
5159 /* re-initialise in-core superblock and geometry structures */
5160 xfs_reinit_percpu_counters(mp
);
5161 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
5163 xfs_warn(mp
, "Failed post-recovery per-ag init: %d", error
);
5166 mp
->m_alloc_set_aside
= xfs_alloc_set_aside(mp
);
5168 xlog_recover_check_summary(log
);
5170 /* Normal transactions can now occur */
5171 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
5176 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5178 * Return error or zero.
5184 xfs_daddr_t head_blk
, tail_blk
;
5187 /* find the tail of the log */
5188 error
= xlog_find_tail(log
, &head_blk
, &tail_blk
);
5193 * The superblock was read before the log was available and thus the LSN
5194 * could not be verified. Check the superblock LSN against the current
5195 * LSN now that it's known.
5197 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
) &&
5198 !xfs_log_check_lsn(log
->l_mp
, log
->l_mp
->m_sb
.sb_lsn
))
5201 if (tail_blk
!= head_blk
) {
5202 /* There used to be a comment here:
5204 * disallow recovery on read-only mounts. note -- mount
5205 * checks for ENOSPC and turns it into an intelligent
5207 * ...but this is no longer true. Now, unless you specify
5208 * NORECOVERY (in which case this function would never be
5209 * called), we just go ahead and recover. We do this all
5210 * under the vfs layer, so we can get away with it unless
5211 * the device itself is read-only, in which case we fail.
5213 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
5218 * Version 5 superblock log feature mask validation. We know the
5219 * log is dirty so check if there are any unknown log features
5220 * in what we need to recover. If there are unknown features
5221 * (e.g. unsupported transactions, then simply reject the
5222 * attempt at recovery before touching anything.
5224 if (XFS_SB_VERSION_NUM(&log
->l_mp
->m_sb
) == XFS_SB_VERSION_5
&&
5225 xfs_sb_has_incompat_log_feature(&log
->l_mp
->m_sb
,
5226 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
)) {
5228 "Superblock has unknown incompatible log features (0x%x) enabled.",
5229 (log
->l_mp
->m_sb
.sb_features_log_incompat
&
5230 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
));
5232 "The log can not be fully and/or safely recovered by this kernel.");
5234 "Please recover the log on a kernel that supports the unknown features.");
5239 * Delay log recovery if the debug hook is set. This is debug
5240 * instrumention to coordinate simulation of I/O failures with
5243 if (xfs_globals
.log_recovery_delay
) {
5244 xfs_notice(log
->l_mp
,
5245 "Delaying log recovery for %d seconds.",
5246 xfs_globals
.log_recovery_delay
);
5247 msleep(xfs_globals
.log_recovery_delay
* 1000);
5250 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
5251 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
5254 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
5255 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
5261 * In the first part of recovery we replay inodes and buffers and build
5262 * up the list of extent free items which need to be processed. Here
5263 * we process the extent free items and clean up the on disk unlinked
5264 * inode lists. This is separated from the first part of recovery so
5265 * that the root and real-time bitmap inodes can be read in from disk in
5266 * between the two stages. This is necessary so that we can free space
5267 * in the real-time portion of the file system.
5270 xlog_recover_finish(
5274 * Now we're ready to do the transactions needed for the
5275 * rest of recovery. Start with completing all the extent
5276 * free intent records and then process the unlinked inode
5277 * lists. At this point, we essentially run in normal mode
5278 * except that we're still performing recovery actions
5279 * rather than accepting new requests.
5281 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
5283 error
= xlog_recover_process_intents(log
);
5285 xfs_alert(log
->l_mp
, "Failed to recover intents");
5290 * Sync the log to get all the intents out of the AIL.
5291 * This isn't absolutely necessary, but it helps in
5292 * case the unlink transactions would have problems
5293 * pushing the intents out of the way.
5295 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
5297 xlog_recover_process_iunlinks(log
);
5299 xlog_recover_check_summary(log
);
5301 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
5302 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
5304 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
5306 xfs_info(log
->l_mp
, "Ending clean mount");
5312 xlog_recover_cancel(
5317 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
)
5318 error
= xlog_recover_cancel_intents(log
);
5325 * Read all of the agf and agi counters and check that they
5326 * are consistent with the superblock counters.
5329 xlog_recover_check_summary(
5336 xfs_agnumber_t agno
;
5337 __uint64_t freeblks
;
5347 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
5348 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
5350 xfs_alert(mp
, "%s agf read failed agno %d error %d",
5351 __func__
, agno
, error
);
5353 agfp
= XFS_BUF_TO_AGF(agfbp
);
5354 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
5355 be32_to_cpu(agfp
->agf_flcount
);
5356 xfs_buf_relse(agfbp
);
5359 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
5361 xfs_alert(mp
, "%s agi read failed agno %d error %d",
5362 __func__
, agno
, error
);
5364 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
5366 itotal
+= be32_to_cpu(agi
->agi_count
);
5367 ifree
+= be32_to_cpu(agi
->agi_freecount
);
5368 xfs_buf_relse(agibp
);