2 * Copyright (c) 2007-2014 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 #include <linux/skbuff.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
36 #include <net/ip6_fib.h>
37 #include <net/checksum.h>
38 #include <net/dsfield.h>
40 #include <net/sctp/checksum.h>
44 #include "conntrack.h"
47 static int do_execute_actions(struct datapath
*dp
, struct sk_buff
*skb
,
48 struct sw_flow_key
*key
,
49 const struct nlattr
*attr
, int len
);
51 struct deferred_action
{
53 const struct nlattr
*actions
;
55 /* Store pkt_key clone when creating deferred action. */
56 struct sw_flow_key pkt_key
;
59 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
60 struct ovs_frag_data
{
64 __be16 inner_protocol
;
68 u8 l2_data
[MAX_L2_LEN
];
71 static DEFINE_PER_CPU(struct ovs_frag_data
, ovs_frag_data_storage
);
73 #define DEFERRED_ACTION_FIFO_SIZE 10
77 /* Deferred action fifo queue storage. */
78 struct deferred_action fifo
[DEFERRED_ACTION_FIFO_SIZE
];
81 static struct action_fifo __percpu
*action_fifos
;
82 static DEFINE_PER_CPU(int, exec_actions_level
);
84 static void action_fifo_init(struct action_fifo
*fifo
)
90 static bool action_fifo_is_empty(const struct action_fifo
*fifo
)
92 return (fifo
->head
== fifo
->tail
);
95 static struct deferred_action
*action_fifo_get(struct action_fifo
*fifo
)
97 if (action_fifo_is_empty(fifo
))
100 return &fifo
->fifo
[fifo
->tail
++];
103 static struct deferred_action
*action_fifo_put(struct action_fifo
*fifo
)
105 if (fifo
->head
>= DEFERRED_ACTION_FIFO_SIZE
- 1)
108 return &fifo
->fifo
[fifo
->head
++];
111 /* Return true if fifo is not full */
112 static struct deferred_action
*add_deferred_actions(struct sk_buff
*skb
,
113 const struct sw_flow_key
*key
,
114 const struct nlattr
*attr
)
116 struct action_fifo
*fifo
;
117 struct deferred_action
*da
;
119 fifo
= this_cpu_ptr(action_fifos
);
120 da
= action_fifo_put(fifo
);
130 static void invalidate_flow_key(struct sw_flow_key
*key
)
132 key
->eth
.type
= htons(0);
135 static bool is_flow_key_valid(const struct sw_flow_key
*key
)
137 return !!key
->eth
.type
;
140 static void update_ethertype(struct sk_buff
*skb
, struct ethhdr
*hdr
,
143 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
144 __be16 diff
[] = { ~(hdr
->h_proto
), ethertype
};
146 skb
->csum
= ~csum_partial((char *)diff
, sizeof(diff
),
150 hdr
->h_proto
= ethertype
;
153 static int push_mpls(struct sk_buff
*skb
, struct sw_flow_key
*key
,
154 const struct ovs_action_push_mpls
*mpls
)
156 __be32
*new_mpls_lse
;
158 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
159 if (skb
->encapsulation
)
162 if (skb_cow_head(skb
, MPLS_HLEN
) < 0)
165 skb_push(skb
, MPLS_HLEN
);
166 memmove(skb_mac_header(skb
) - MPLS_HLEN
, skb_mac_header(skb
),
168 skb_reset_mac_header(skb
);
170 new_mpls_lse
= (__be32
*)skb_mpls_header(skb
);
171 *new_mpls_lse
= mpls
->mpls_lse
;
173 skb_postpush_rcsum(skb
, new_mpls_lse
, MPLS_HLEN
);
175 update_ethertype(skb
, eth_hdr(skb
), mpls
->mpls_ethertype
);
176 if (!skb
->inner_protocol
)
177 skb_set_inner_protocol(skb
, skb
->protocol
);
178 skb
->protocol
= mpls
->mpls_ethertype
;
180 invalidate_flow_key(key
);
184 static int pop_mpls(struct sk_buff
*skb
, struct sw_flow_key
*key
,
185 const __be16 ethertype
)
190 err
= skb_ensure_writable(skb
, skb
->mac_len
+ MPLS_HLEN
);
194 skb_postpull_rcsum(skb
, skb_mpls_header(skb
), MPLS_HLEN
);
196 memmove(skb_mac_header(skb
) + MPLS_HLEN
, skb_mac_header(skb
),
199 __skb_pull(skb
, MPLS_HLEN
);
200 skb_reset_mac_header(skb
);
202 /* skb_mpls_header() is used to locate the ethertype
203 * field correctly in the presence of VLAN tags.
205 hdr
= (struct ethhdr
*)(skb_mpls_header(skb
) - ETH_HLEN
);
206 update_ethertype(skb
, hdr
, ethertype
);
207 if (eth_p_mpls(skb
->protocol
))
208 skb
->protocol
= ethertype
;
210 invalidate_flow_key(key
);
214 static int set_mpls(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
215 const __be32
*mpls_lse
, const __be32
*mask
)
221 err
= skb_ensure_writable(skb
, skb
->mac_len
+ MPLS_HLEN
);
225 stack
= (__be32
*)skb_mpls_header(skb
);
226 lse
= OVS_MASKED(*stack
, *mpls_lse
, *mask
);
227 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
228 __be32 diff
[] = { ~(*stack
), lse
};
230 skb
->csum
= ~csum_partial((char *)diff
, sizeof(diff
),
235 flow_key
->mpls
.top_lse
= lse
;
239 static int pop_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
)
243 err
= skb_vlan_pop(skb
);
244 if (skb_vlan_tag_present(skb
))
245 invalidate_flow_key(key
);
251 static int push_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
,
252 const struct ovs_action_push_vlan
*vlan
)
254 if (skb_vlan_tag_present(skb
))
255 invalidate_flow_key(key
);
257 key
->eth
.tci
= vlan
->vlan_tci
;
258 return skb_vlan_push(skb
, vlan
->vlan_tpid
,
259 ntohs(vlan
->vlan_tci
) & ~VLAN_TAG_PRESENT
);
262 /* 'src' is already properly masked. */
263 static void ether_addr_copy_masked(u8
*dst_
, const u8
*src_
, const u8
*mask_
)
265 u16
*dst
= (u16
*)dst_
;
266 const u16
*src
= (const u16
*)src_
;
267 const u16
*mask
= (const u16
*)mask_
;
269 OVS_SET_MASKED(dst
[0], src
[0], mask
[0]);
270 OVS_SET_MASKED(dst
[1], src
[1], mask
[1]);
271 OVS_SET_MASKED(dst
[2], src
[2], mask
[2]);
274 static int set_eth_addr(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
275 const struct ovs_key_ethernet
*key
,
276 const struct ovs_key_ethernet
*mask
)
280 err
= skb_ensure_writable(skb
, ETH_HLEN
);
284 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_ALEN
* 2);
286 ether_addr_copy_masked(eth_hdr(skb
)->h_source
, key
->eth_src
,
288 ether_addr_copy_masked(eth_hdr(skb
)->h_dest
, key
->eth_dst
,
291 skb_postpush_rcsum(skb
, eth_hdr(skb
), ETH_ALEN
* 2);
293 ether_addr_copy(flow_key
->eth
.src
, eth_hdr(skb
)->h_source
);
294 ether_addr_copy(flow_key
->eth
.dst
, eth_hdr(skb
)->h_dest
);
298 static void update_ip_l4_checksum(struct sk_buff
*skb
, struct iphdr
*nh
,
299 __be32 addr
, __be32 new_addr
)
301 int transport_len
= skb
->len
- skb_transport_offset(skb
);
303 if (nh
->frag_off
& htons(IP_OFFSET
))
306 if (nh
->protocol
== IPPROTO_TCP
) {
307 if (likely(transport_len
>= sizeof(struct tcphdr
)))
308 inet_proto_csum_replace4(&tcp_hdr(skb
)->check
, skb
,
309 addr
, new_addr
, true);
310 } else if (nh
->protocol
== IPPROTO_UDP
) {
311 if (likely(transport_len
>= sizeof(struct udphdr
))) {
312 struct udphdr
*uh
= udp_hdr(skb
);
314 if (uh
->check
|| skb
->ip_summed
== CHECKSUM_PARTIAL
) {
315 inet_proto_csum_replace4(&uh
->check
, skb
,
316 addr
, new_addr
, true);
318 uh
->check
= CSUM_MANGLED_0
;
324 static void set_ip_addr(struct sk_buff
*skb
, struct iphdr
*nh
,
325 __be32
*addr
, __be32 new_addr
)
327 update_ip_l4_checksum(skb
, nh
, *addr
, new_addr
);
328 csum_replace4(&nh
->check
, *addr
, new_addr
);
333 static void update_ipv6_checksum(struct sk_buff
*skb
, u8 l4_proto
,
334 __be32 addr
[4], const __be32 new_addr
[4])
336 int transport_len
= skb
->len
- skb_transport_offset(skb
);
338 if (l4_proto
== NEXTHDR_TCP
) {
339 if (likely(transport_len
>= sizeof(struct tcphdr
)))
340 inet_proto_csum_replace16(&tcp_hdr(skb
)->check
, skb
,
341 addr
, new_addr
, true);
342 } else if (l4_proto
== NEXTHDR_UDP
) {
343 if (likely(transport_len
>= sizeof(struct udphdr
))) {
344 struct udphdr
*uh
= udp_hdr(skb
);
346 if (uh
->check
|| skb
->ip_summed
== CHECKSUM_PARTIAL
) {
347 inet_proto_csum_replace16(&uh
->check
, skb
,
348 addr
, new_addr
, true);
350 uh
->check
= CSUM_MANGLED_0
;
353 } else if (l4_proto
== NEXTHDR_ICMP
) {
354 if (likely(transport_len
>= sizeof(struct icmp6hdr
)))
355 inet_proto_csum_replace16(&icmp6_hdr(skb
)->icmp6_cksum
,
356 skb
, addr
, new_addr
, true);
360 static void mask_ipv6_addr(const __be32 old
[4], const __be32 addr
[4],
361 const __be32 mask
[4], __be32 masked
[4])
363 masked
[0] = OVS_MASKED(old
[0], addr
[0], mask
[0]);
364 masked
[1] = OVS_MASKED(old
[1], addr
[1], mask
[1]);
365 masked
[2] = OVS_MASKED(old
[2], addr
[2], mask
[2]);
366 masked
[3] = OVS_MASKED(old
[3], addr
[3], mask
[3]);
369 static void set_ipv6_addr(struct sk_buff
*skb
, u8 l4_proto
,
370 __be32 addr
[4], const __be32 new_addr
[4],
371 bool recalculate_csum
)
373 if (recalculate_csum
)
374 update_ipv6_checksum(skb
, l4_proto
, addr
, new_addr
);
377 memcpy(addr
, new_addr
, sizeof(__be32
[4]));
380 static void set_ipv6_fl(struct ipv6hdr
*nh
, u32 fl
, u32 mask
)
382 /* Bits 21-24 are always unmasked, so this retains their values. */
383 OVS_SET_MASKED(nh
->flow_lbl
[0], (u8
)(fl
>> 16), (u8
)(mask
>> 16));
384 OVS_SET_MASKED(nh
->flow_lbl
[1], (u8
)(fl
>> 8), (u8
)(mask
>> 8));
385 OVS_SET_MASKED(nh
->flow_lbl
[2], (u8
)fl
, (u8
)mask
);
388 static void set_ip_ttl(struct sk_buff
*skb
, struct iphdr
*nh
, u8 new_ttl
,
391 new_ttl
= OVS_MASKED(nh
->ttl
, new_ttl
, mask
);
393 csum_replace2(&nh
->check
, htons(nh
->ttl
<< 8), htons(new_ttl
<< 8));
397 static int set_ipv4(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
398 const struct ovs_key_ipv4
*key
,
399 const struct ovs_key_ipv4
*mask
)
405 err
= skb_ensure_writable(skb
, skb_network_offset(skb
) +
406 sizeof(struct iphdr
));
412 /* Setting an IP addresses is typically only a side effect of
413 * matching on them in the current userspace implementation, so it
414 * makes sense to check if the value actually changed.
416 if (mask
->ipv4_src
) {
417 new_addr
= OVS_MASKED(nh
->saddr
, key
->ipv4_src
, mask
->ipv4_src
);
419 if (unlikely(new_addr
!= nh
->saddr
)) {
420 set_ip_addr(skb
, nh
, &nh
->saddr
, new_addr
);
421 flow_key
->ipv4
.addr
.src
= new_addr
;
424 if (mask
->ipv4_dst
) {
425 new_addr
= OVS_MASKED(nh
->daddr
, key
->ipv4_dst
, mask
->ipv4_dst
);
427 if (unlikely(new_addr
!= nh
->daddr
)) {
428 set_ip_addr(skb
, nh
, &nh
->daddr
, new_addr
);
429 flow_key
->ipv4
.addr
.dst
= new_addr
;
432 if (mask
->ipv4_tos
) {
433 ipv4_change_dsfield(nh
, ~mask
->ipv4_tos
, key
->ipv4_tos
);
434 flow_key
->ip
.tos
= nh
->tos
;
436 if (mask
->ipv4_ttl
) {
437 set_ip_ttl(skb
, nh
, key
->ipv4_ttl
, mask
->ipv4_ttl
);
438 flow_key
->ip
.ttl
= nh
->ttl
;
444 static bool is_ipv6_mask_nonzero(const __be32 addr
[4])
446 return !!(addr
[0] | addr
[1] | addr
[2] | addr
[3]);
449 static int set_ipv6(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
450 const struct ovs_key_ipv6
*key
,
451 const struct ovs_key_ipv6
*mask
)
456 err
= skb_ensure_writable(skb
, skb_network_offset(skb
) +
457 sizeof(struct ipv6hdr
));
463 /* Setting an IP addresses is typically only a side effect of
464 * matching on them in the current userspace implementation, so it
465 * makes sense to check if the value actually changed.
467 if (is_ipv6_mask_nonzero(mask
->ipv6_src
)) {
468 __be32
*saddr
= (__be32
*)&nh
->saddr
;
471 mask_ipv6_addr(saddr
, key
->ipv6_src
, mask
->ipv6_src
, masked
);
473 if (unlikely(memcmp(saddr
, masked
, sizeof(masked
)))) {
474 set_ipv6_addr(skb
, flow_key
->ip
.proto
, saddr
, masked
,
476 memcpy(&flow_key
->ipv6
.addr
.src
, masked
,
477 sizeof(flow_key
->ipv6
.addr
.src
));
480 if (is_ipv6_mask_nonzero(mask
->ipv6_dst
)) {
481 unsigned int offset
= 0;
482 int flags
= IP6_FH_F_SKIP_RH
;
483 bool recalc_csum
= true;
484 __be32
*daddr
= (__be32
*)&nh
->daddr
;
487 mask_ipv6_addr(daddr
, key
->ipv6_dst
, mask
->ipv6_dst
, masked
);
489 if (unlikely(memcmp(daddr
, masked
, sizeof(masked
)))) {
490 if (ipv6_ext_hdr(nh
->nexthdr
))
491 recalc_csum
= (ipv6_find_hdr(skb
, &offset
,
496 set_ipv6_addr(skb
, flow_key
->ip
.proto
, daddr
, masked
,
498 memcpy(&flow_key
->ipv6
.addr
.dst
, masked
,
499 sizeof(flow_key
->ipv6
.addr
.dst
));
502 if (mask
->ipv6_tclass
) {
503 ipv6_change_dsfield(nh
, ~mask
->ipv6_tclass
, key
->ipv6_tclass
);
504 flow_key
->ip
.tos
= ipv6_get_dsfield(nh
);
506 if (mask
->ipv6_label
) {
507 set_ipv6_fl(nh
, ntohl(key
->ipv6_label
),
508 ntohl(mask
->ipv6_label
));
509 flow_key
->ipv6
.label
=
510 *(__be32
*)nh
& htonl(IPV6_FLOWINFO_FLOWLABEL
);
512 if (mask
->ipv6_hlimit
) {
513 OVS_SET_MASKED(nh
->hop_limit
, key
->ipv6_hlimit
,
515 flow_key
->ip
.ttl
= nh
->hop_limit
;
520 /* Must follow skb_ensure_writable() since that can move the skb data. */
521 static void set_tp_port(struct sk_buff
*skb
, __be16
*port
,
522 __be16 new_port
, __sum16
*check
)
524 inet_proto_csum_replace2(check
, skb
, *port
, new_port
, false);
528 static int set_udp(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
529 const struct ovs_key_udp
*key
,
530 const struct ovs_key_udp
*mask
)
536 err
= skb_ensure_writable(skb
, skb_transport_offset(skb
) +
537 sizeof(struct udphdr
));
542 /* Either of the masks is non-zero, so do not bother checking them. */
543 src
= OVS_MASKED(uh
->source
, key
->udp_src
, mask
->udp_src
);
544 dst
= OVS_MASKED(uh
->dest
, key
->udp_dst
, mask
->udp_dst
);
546 if (uh
->check
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
547 if (likely(src
!= uh
->source
)) {
548 set_tp_port(skb
, &uh
->source
, src
, &uh
->check
);
549 flow_key
->tp
.src
= src
;
551 if (likely(dst
!= uh
->dest
)) {
552 set_tp_port(skb
, &uh
->dest
, dst
, &uh
->check
);
553 flow_key
->tp
.dst
= dst
;
556 if (unlikely(!uh
->check
))
557 uh
->check
= CSUM_MANGLED_0
;
561 flow_key
->tp
.src
= src
;
562 flow_key
->tp
.dst
= dst
;
570 static int set_tcp(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
571 const struct ovs_key_tcp
*key
,
572 const struct ovs_key_tcp
*mask
)
578 err
= skb_ensure_writable(skb
, skb_transport_offset(skb
) +
579 sizeof(struct tcphdr
));
584 src
= OVS_MASKED(th
->source
, key
->tcp_src
, mask
->tcp_src
);
585 if (likely(src
!= th
->source
)) {
586 set_tp_port(skb
, &th
->source
, src
, &th
->check
);
587 flow_key
->tp
.src
= src
;
589 dst
= OVS_MASKED(th
->dest
, key
->tcp_dst
, mask
->tcp_dst
);
590 if (likely(dst
!= th
->dest
)) {
591 set_tp_port(skb
, &th
->dest
, dst
, &th
->check
);
592 flow_key
->tp
.dst
= dst
;
599 static int set_sctp(struct sk_buff
*skb
, struct sw_flow_key
*flow_key
,
600 const struct ovs_key_sctp
*key
,
601 const struct ovs_key_sctp
*mask
)
603 unsigned int sctphoff
= skb_transport_offset(skb
);
605 __le32 old_correct_csum
, new_csum
, old_csum
;
608 err
= skb_ensure_writable(skb
, sctphoff
+ sizeof(struct sctphdr
));
613 old_csum
= sh
->checksum
;
614 old_correct_csum
= sctp_compute_cksum(skb
, sctphoff
);
616 sh
->source
= OVS_MASKED(sh
->source
, key
->sctp_src
, mask
->sctp_src
);
617 sh
->dest
= OVS_MASKED(sh
->dest
, key
->sctp_dst
, mask
->sctp_dst
);
619 new_csum
= sctp_compute_cksum(skb
, sctphoff
);
621 /* Carry any checksum errors through. */
622 sh
->checksum
= old_csum
^ old_correct_csum
^ new_csum
;
625 flow_key
->tp
.src
= sh
->source
;
626 flow_key
->tp
.dst
= sh
->dest
;
631 static int ovs_vport_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
633 struct ovs_frag_data
*data
= this_cpu_ptr(&ovs_frag_data_storage
);
634 struct vport
*vport
= data
->vport
;
636 if (skb_cow_head(skb
, data
->l2_len
) < 0) {
641 __skb_dst_copy(skb
, data
->dst
);
642 *OVS_CB(skb
) = data
->cb
;
643 skb
->inner_protocol
= data
->inner_protocol
;
644 skb
->vlan_tci
= data
->vlan_tci
;
645 skb
->vlan_proto
= data
->vlan_proto
;
647 /* Reconstruct the MAC header. */
648 skb_push(skb
, data
->l2_len
);
649 memcpy(skb
->data
, &data
->l2_data
, data
->l2_len
);
650 skb_postpush_rcsum(skb
, skb
->data
, data
->l2_len
);
651 skb_reset_mac_header(skb
);
653 ovs_vport_send(vport
, skb
);
658 ovs_dst_get_mtu(const struct dst_entry
*dst
)
660 return dst
->dev
->mtu
;
663 static struct dst_ops ovs_dst_ops
= {
665 .mtu
= ovs_dst_get_mtu
,
668 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
669 * ovs_vport_output(), which is called once per fragmented packet.
671 static void prepare_frag(struct vport
*vport
, struct sk_buff
*skb
)
673 unsigned int hlen
= skb_network_offset(skb
);
674 struct ovs_frag_data
*data
;
676 data
= this_cpu_ptr(&ovs_frag_data_storage
);
677 data
->dst
= skb
->_skb_refdst
;
679 data
->cb
= *OVS_CB(skb
);
680 data
->inner_protocol
= skb
->inner_protocol
;
681 data
->vlan_tci
= skb
->vlan_tci
;
682 data
->vlan_proto
= skb
->vlan_proto
;
684 memcpy(&data
->l2_data
, skb
->data
, hlen
);
686 memset(IPCB(skb
), 0, sizeof(struct inet_skb_parm
));
690 static void ovs_fragment(struct net
*net
, struct vport
*vport
,
691 struct sk_buff
*skb
, u16 mru
, __be16 ethertype
)
693 if (skb_network_offset(skb
) > MAX_L2_LEN
) {
694 OVS_NLERR(1, "L2 header too long to fragment");
698 if (ethertype
== htons(ETH_P_IP
)) {
699 struct dst_entry ovs_dst
;
700 unsigned long orig_dst
;
702 prepare_frag(vport
, skb
);
703 dst_init(&ovs_dst
, &ovs_dst_ops
, NULL
, 1,
704 DST_OBSOLETE_NONE
, DST_NOCOUNT
);
705 ovs_dst
.dev
= vport
->dev
;
707 orig_dst
= skb
->_skb_refdst
;
708 skb_dst_set_noref(skb
, &ovs_dst
);
709 IPCB(skb
)->frag_max_size
= mru
;
711 ip_do_fragment(net
, skb
->sk
, skb
, ovs_vport_output
);
712 refdst_drop(orig_dst
);
713 } else if (ethertype
== htons(ETH_P_IPV6
)) {
714 const struct nf_ipv6_ops
*v6ops
= nf_get_ipv6_ops();
715 unsigned long orig_dst
;
716 struct rt6_info ovs_rt
;
722 prepare_frag(vport
, skb
);
723 memset(&ovs_rt
, 0, sizeof(ovs_rt
));
724 dst_init(&ovs_rt
.dst
, &ovs_dst_ops
, NULL
, 1,
725 DST_OBSOLETE_NONE
, DST_NOCOUNT
);
726 ovs_rt
.dst
.dev
= vport
->dev
;
728 orig_dst
= skb
->_skb_refdst
;
729 skb_dst_set_noref(skb
, &ovs_rt
.dst
);
730 IP6CB(skb
)->frag_max_size
= mru
;
732 v6ops
->fragment(net
, skb
->sk
, skb
, ovs_vport_output
);
733 refdst_drop(orig_dst
);
735 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
736 ovs_vport_name(vport
), ntohs(ethertype
), mru
,
746 static void do_output(struct datapath
*dp
, struct sk_buff
*skb
, int out_port
,
747 struct sw_flow_key
*key
)
749 struct vport
*vport
= ovs_vport_rcu(dp
, out_port
);
752 u16 mru
= OVS_CB(skb
)->mru
;
753 u32 cutlen
= OVS_CB(skb
)->cutlen
;
755 if (unlikely(cutlen
> 0)) {
756 if (skb
->len
- cutlen
> ETH_HLEN
)
757 pskb_trim(skb
, skb
->len
- cutlen
);
759 pskb_trim(skb
, ETH_HLEN
);
762 if (likely(!mru
|| (skb
->len
<= mru
+ ETH_HLEN
))) {
763 ovs_vport_send(vport
, skb
);
764 } else if (mru
<= vport
->dev
->mtu
) {
765 struct net
*net
= read_pnet(&dp
->net
);
766 __be16 ethertype
= key
->eth
.type
;
768 if (!is_flow_key_valid(key
)) {
769 if (eth_p_mpls(skb
->protocol
))
770 ethertype
= skb
->inner_protocol
;
772 ethertype
= vlan_get_protocol(skb
);
775 ovs_fragment(net
, vport
, skb
, mru
, ethertype
);
784 static int output_userspace(struct datapath
*dp
, struct sk_buff
*skb
,
785 struct sw_flow_key
*key
, const struct nlattr
*attr
,
786 const struct nlattr
*actions
, int actions_len
,
789 struct dp_upcall_info upcall
;
790 const struct nlattr
*a
;
793 memset(&upcall
, 0, sizeof(upcall
));
794 upcall
.cmd
= OVS_PACKET_CMD_ACTION
;
795 upcall
.mru
= OVS_CB(skb
)->mru
;
797 for (a
= nla_data(attr
), rem
= nla_len(attr
); rem
> 0;
798 a
= nla_next(a
, &rem
)) {
799 switch (nla_type(a
)) {
800 case OVS_USERSPACE_ATTR_USERDATA
:
804 case OVS_USERSPACE_ATTR_PID
:
805 upcall
.portid
= nla_get_u32(a
);
808 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT
: {
809 /* Get out tunnel info. */
812 vport
= ovs_vport_rcu(dp
, nla_get_u32(a
));
816 err
= dev_fill_metadata_dst(vport
->dev
, skb
);
818 upcall
.egress_tun_info
= skb_tunnel_info(skb
);
824 case OVS_USERSPACE_ATTR_ACTIONS
: {
825 /* Include actions. */
826 upcall
.actions
= actions
;
827 upcall
.actions_len
= actions_len
;
831 } /* End of switch. */
834 return ovs_dp_upcall(dp
, skb
, key
, &upcall
, cutlen
);
837 static int sample(struct datapath
*dp
, struct sk_buff
*skb
,
838 struct sw_flow_key
*key
, const struct nlattr
*attr
,
839 const struct nlattr
*actions
, int actions_len
)
841 const struct nlattr
*acts_list
= NULL
;
842 const struct nlattr
*a
;
846 for (a
= nla_data(attr
), rem
= nla_len(attr
); rem
> 0;
847 a
= nla_next(a
, &rem
)) {
850 switch (nla_type(a
)) {
851 case OVS_SAMPLE_ATTR_PROBABILITY
:
852 probability
= nla_get_u32(a
);
853 if (!probability
|| prandom_u32() > probability
)
857 case OVS_SAMPLE_ATTR_ACTIONS
:
863 rem
= nla_len(acts_list
);
864 a
= nla_data(acts_list
);
866 /* Actions list is empty, do nothing */
870 /* The only known usage of sample action is having a single user-space
871 * action, or having a truncate action followed by a single user-space
872 * action. Treat this usage as a special case.
873 * The output_userspace() should clone the skb to be sent to the
874 * user space. This skb will be consumed by its caller.
876 if (unlikely(nla_type(a
) == OVS_ACTION_ATTR_TRUNC
)) {
877 struct ovs_action_trunc
*trunc
= nla_data(a
);
879 if (skb
->len
> trunc
->max_len
)
880 cutlen
= skb
->len
- trunc
->max_len
;
882 a
= nla_next(a
, &rem
);
885 if (likely(nla_type(a
) == OVS_ACTION_ATTR_USERSPACE
&&
886 nla_is_last(a
, rem
)))
887 return output_userspace(dp
, skb
, key
, a
, actions
,
888 actions_len
, cutlen
);
890 skb
= skb_clone(skb
, GFP_ATOMIC
);
892 /* Skip the sample action when out of memory. */
895 if (!add_deferred_actions(skb
, key
, a
)) {
897 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
905 static void execute_hash(struct sk_buff
*skb
, struct sw_flow_key
*key
,
906 const struct nlattr
*attr
)
908 struct ovs_action_hash
*hash_act
= nla_data(attr
);
911 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
912 hash
= skb_get_hash(skb
);
913 hash
= jhash_1word(hash
, hash_act
->hash_basis
);
917 key
->ovs_flow_hash
= hash
;
920 static int execute_set_action(struct sk_buff
*skb
,
921 struct sw_flow_key
*flow_key
,
922 const struct nlattr
*a
)
924 /* Only tunnel set execution is supported without a mask. */
925 if (nla_type(a
) == OVS_KEY_ATTR_TUNNEL_INFO
) {
926 struct ovs_tunnel_info
*tun
= nla_data(a
);
929 dst_hold((struct dst_entry
*)tun
->tun_dst
);
930 skb_dst_set(skb
, (struct dst_entry
*)tun
->tun_dst
);
937 /* Mask is at the midpoint of the data. */
938 #define get_mask(a, type) ((const type)nla_data(a) + 1)
940 static int execute_masked_set_action(struct sk_buff
*skb
,
941 struct sw_flow_key
*flow_key
,
942 const struct nlattr
*a
)
946 switch (nla_type(a
)) {
947 case OVS_KEY_ATTR_PRIORITY
:
948 OVS_SET_MASKED(skb
->priority
, nla_get_u32(a
),
949 *get_mask(a
, u32
*));
950 flow_key
->phy
.priority
= skb
->priority
;
953 case OVS_KEY_ATTR_SKB_MARK
:
954 OVS_SET_MASKED(skb
->mark
, nla_get_u32(a
), *get_mask(a
, u32
*));
955 flow_key
->phy
.skb_mark
= skb
->mark
;
958 case OVS_KEY_ATTR_TUNNEL_INFO
:
959 /* Masked data not supported for tunnel. */
963 case OVS_KEY_ATTR_ETHERNET
:
964 err
= set_eth_addr(skb
, flow_key
, nla_data(a
),
965 get_mask(a
, struct ovs_key_ethernet
*));
968 case OVS_KEY_ATTR_IPV4
:
969 err
= set_ipv4(skb
, flow_key
, nla_data(a
),
970 get_mask(a
, struct ovs_key_ipv4
*));
973 case OVS_KEY_ATTR_IPV6
:
974 err
= set_ipv6(skb
, flow_key
, nla_data(a
),
975 get_mask(a
, struct ovs_key_ipv6
*));
978 case OVS_KEY_ATTR_TCP
:
979 err
= set_tcp(skb
, flow_key
, nla_data(a
),
980 get_mask(a
, struct ovs_key_tcp
*));
983 case OVS_KEY_ATTR_UDP
:
984 err
= set_udp(skb
, flow_key
, nla_data(a
),
985 get_mask(a
, struct ovs_key_udp
*));
988 case OVS_KEY_ATTR_SCTP
:
989 err
= set_sctp(skb
, flow_key
, nla_data(a
),
990 get_mask(a
, struct ovs_key_sctp
*));
993 case OVS_KEY_ATTR_MPLS
:
994 err
= set_mpls(skb
, flow_key
, nla_data(a
), get_mask(a
,
998 case OVS_KEY_ATTR_CT_STATE
:
999 case OVS_KEY_ATTR_CT_ZONE
:
1000 case OVS_KEY_ATTR_CT_MARK
:
1001 case OVS_KEY_ATTR_CT_LABELS
:
1009 static int execute_recirc(struct datapath
*dp
, struct sk_buff
*skb
,
1010 struct sw_flow_key
*key
,
1011 const struct nlattr
*a
, int rem
)
1013 struct deferred_action
*da
;
1015 if (!is_flow_key_valid(key
)) {
1018 err
= ovs_flow_key_update(skb
, key
);
1022 BUG_ON(!is_flow_key_valid(key
));
1024 if (!nla_is_last(a
, rem
)) {
1025 /* Recirc action is the not the last action
1026 * of the action list, need to clone the skb.
1028 skb
= skb_clone(skb
, GFP_ATOMIC
);
1030 /* Skip the recirc action when out of memory, but
1031 * continue on with the rest of the action list.
1037 da
= add_deferred_actions(skb
, key
, NULL
);
1039 da
->pkt_key
.recirc_id
= nla_get_u32(a
);
1043 if (net_ratelimit())
1044 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1051 /* Execute a list of actions against 'skb'. */
1052 static int do_execute_actions(struct datapath
*dp
, struct sk_buff
*skb
,
1053 struct sw_flow_key
*key
,
1054 const struct nlattr
*attr
, int len
)
1056 /* Every output action needs a separate clone of 'skb', but the common
1057 * case is just a single output action, so that doing a clone and
1058 * then freeing the original skbuff is wasteful. So the following code
1059 * is slightly obscure just to avoid that.
1062 const struct nlattr
*a
;
1065 for (a
= attr
, rem
= len
; rem
> 0;
1066 a
= nla_next(a
, &rem
)) {
1069 if (unlikely(prev_port
!= -1)) {
1070 struct sk_buff
*out_skb
= skb_clone(skb
, GFP_ATOMIC
);
1073 do_output(dp
, out_skb
, prev_port
, key
);
1075 OVS_CB(skb
)->cutlen
= 0;
1079 switch (nla_type(a
)) {
1080 case OVS_ACTION_ATTR_OUTPUT
:
1081 prev_port
= nla_get_u32(a
);
1084 case OVS_ACTION_ATTR_TRUNC
: {
1085 struct ovs_action_trunc
*trunc
= nla_data(a
);
1087 if (skb
->len
> trunc
->max_len
)
1088 OVS_CB(skb
)->cutlen
= skb
->len
- trunc
->max_len
;
1092 case OVS_ACTION_ATTR_USERSPACE
:
1093 output_userspace(dp
, skb
, key
, a
, attr
,
1094 len
, OVS_CB(skb
)->cutlen
);
1095 OVS_CB(skb
)->cutlen
= 0;
1098 case OVS_ACTION_ATTR_HASH
:
1099 execute_hash(skb
, key
, a
);
1102 case OVS_ACTION_ATTR_PUSH_MPLS
:
1103 err
= push_mpls(skb
, key
, nla_data(a
));
1106 case OVS_ACTION_ATTR_POP_MPLS
:
1107 err
= pop_mpls(skb
, key
, nla_get_be16(a
));
1110 case OVS_ACTION_ATTR_PUSH_VLAN
:
1111 err
= push_vlan(skb
, key
, nla_data(a
));
1114 case OVS_ACTION_ATTR_POP_VLAN
:
1115 err
= pop_vlan(skb
, key
);
1118 case OVS_ACTION_ATTR_RECIRC
:
1119 err
= execute_recirc(dp
, skb
, key
, a
, rem
);
1120 if (nla_is_last(a
, rem
)) {
1121 /* If this is the last action, the skb has
1122 * been consumed or freed.
1123 * Return immediately.
1129 case OVS_ACTION_ATTR_SET
:
1130 err
= execute_set_action(skb
, key
, nla_data(a
));
1133 case OVS_ACTION_ATTR_SET_MASKED
:
1134 case OVS_ACTION_ATTR_SET_TO_MASKED
:
1135 err
= execute_masked_set_action(skb
, key
, nla_data(a
));
1138 case OVS_ACTION_ATTR_SAMPLE
:
1139 err
= sample(dp
, skb
, key
, a
, attr
, len
);
1142 case OVS_ACTION_ATTR_CT
:
1143 if (!is_flow_key_valid(key
)) {
1144 err
= ovs_flow_key_update(skb
, key
);
1149 err
= ovs_ct_execute(ovs_dp_get_net(dp
), skb
, key
,
1152 /* Hide stolen IP fragments from user space. */
1154 return err
== -EINPROGRESS
? 0 : err
;
1158 if (unlikely(err
)) {
1164 if (prev_port
!= -1)
1165 do_output(dp
, skb
, prev_port
, key
);
1172 static void process_deferred_actions(struct datapath
*dp
)
1174 struct action_fifo
*fifo
= this_cpu_ptr(action_fifos
);
1176 /* Do not touch the FIFO in case there is no deferred actions. */
1177 if (action_fifo_is_empty(fifo
))
1180 /* Finishing executing all deferred actions. */
1182 struct deferred_action
*da
= action_fifo_get(fifo
);
1183 struct sk_buff
*skb
= da
->skb
;
1184 struct sw_flow_key
*key
= &da
->pkt_key
;
1185 const struct nlattr
*actions
= da
->actions
;
1188 do_execute_actions(dp
, skb
, key
, actions
,
1191 ovs_dp_process_packet(skb
, key
);
1192 } while (!action_fifo_is_empty(fifo
));
1194 /* Reset FIFO for the next packet. */
1195 action_fifo_init(fifo
);
1198 /* Execute a list of actions against 'skb'. */
1199 int ovs_execute_actions(struct datapath
*dp
, struct sk_buff
*skb
,
1200 const struct sw_flow_actions
*acts
,
1201 struct sw_flow_key
*key
)
1203 static const int ovs_recursion_limit
= 5;
1206 level
= __this_cpu_inc_return(exec_actions_level
);
1207 if (unlikely(level
> ovs_recursion_limit
)) {
1208 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1215 err
= do_execute_actions(dp
, skb
, key
,
1216 acts
->actions
, acts
->actions_len
);
1219 process_deferred_actions(dp
);
1222 __this_cpu_dec(exec_actions_level
);
1226 int action_fifos_init(void)
1228 action_fifos
= alloc_percpu(struct action_fifo
);
1235 void action_fifos_exit(void)
1237 free_percpu(action_fifos
);