scripts/gdb: lx-dmesg: cast log_buf to void* for addr fetch
[linux/fpc-iii.git] / kernel / time / tick-sched.c
blobb6bebe28a3e08290a0bff06974801fe0c123d1d9
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/context_tracking.h>
27 #include <asm/irq_regs.h>
29 #include "tick-internal.h"
31 #include <trace/events/timer.h>
34 * Per-CPU nohz control structure
36 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38 struct tick_sched *tick_get_tick_sched(int cpu)
40 return &per_cpu(tick_cpu_sched, cpu);
43 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
47 static ktime_t last_jiffies_update;
50 * Must be called with interrupts disabled !
52 static void tick_do_update_jiffies64(ktime_t now)
54 unsigned long ticks = 0;
55 ktime_t delta;
58 * Do a quick check without holding jiffies_lock:
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
62 return;
64 /* Reevaluate with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
78 ticks = ktime_divns(delta, incr);
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
83 do_timer(++ticks);
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
96 * Initialize and return retrieve the jiffies update.
98 static ktime_t tick_init_jiffy_update(void)
100 ktime_t period;
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update.tv64 == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
112 static void tick_sched_do_timer(ktime_t now)
114 int cpu = smp_processor_id();
116 #ifdef CONFIG_NO_HZ_COMMON
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the CPU in charge went
120 * into a long sleep. If two CPUs happen to assign themselves to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127 #endif
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
134 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
136 #ifdef CONFIG_NO_HZ_COMMON
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog_sched();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
150 #endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
154 #endif
156 #ifdef CONFIG_NO_HZ_FULL
157 cpumask_var_t tick_nohz_full_mask;
158 cpumask_var_t housekeeping_mask;
159 bool tick_nohz_full_running;
160 static atomic_t tick_dep_mask;
162 static bool check_tick_dependency(atomic_t *dep)
164 int val = atomic_read(dep);
166 if (val & TICK_DEP_MASK_POSIX_TIMER) {
167 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
168 return true;
171 if (val & TICK_DEP_MASK_PERF_EVENTS) {
172 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
173 return true;
176 if (val & TICK_DEP_MASK_SCHED) {
177 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
178 return true;
181 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
182 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
183 return true;
186 return false;
189 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
191 WARN_ON_ONCE(!irqs_disabled());
193 if (unlikely(!cpu_online(cpu)))
194 return false;
196 if (check_tick_dependency(&tick_dep_mask))
197 return false;
199 if (check_tick_dependency(&ts->tick_dep_mask))
200 return false;
202 if (check_tick_dependency(&current->tick_dep_mask))
203 return false;
205 if (check_tick_dependency(&current->signal->tick_dep_mask))
206 return false;
208 return true;
211 static void nohz_full_kick_func(struct irq_work *work)
213 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
216 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
217 .func = nohz_full_kick_func,
221 * Kick this CPU if it's full dynticks in order to force it to
222 * re-evaluate its dependency on the tick and restart it if necessary.
223 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
224 * is NMI safe.
226 static void tick_nohz_full_kick(void)
228 if (!tick_nohz_full_cpu(smp_processor_id()))
229 return;
231 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
235 * Kick the CPU if it's full dynticks in order to force it to
236 * re-evaluate its dependency on the tick and restart it if necessary.
238 void tick_nohz_full_kick_cpu(int cpu)
240 if (!tick_nohz_full_cpu(cpu))
241 return;
243 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
247 * Kick all full dynticks CPUs in order to force these to re-evaluate
248 * their dependency on the tick and restart it if necessary.
250 static void tick_nohz_full_kick_all(void)
252 int cpu;
254 if (!tick_nohz_full_running)
255 return;
257 preempt_disable();
258 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
259 tick_nohz_full_kick_cpu(cpu);
260 preempt_enable();
263 static void tick_nohz_dep_set_all(atomic_t *dep,
264 enum tick_dep_bits bit)
266 int prev;
268 prev = atomic_fetch_or(BIT(bit), dep);
269 if (!prev)
270 tick_nohz_full_kick_all();
274 * Set a global tick dependency. Used by perf events that rely on freq and
275 * by unstable clock.
277 void tick_nohz_dep_set(enum tick_dep_bits bit)
279 tick_nohz_dep_set_all(&tick_dep_mask, bit);
282 void tick_nohz_dep_clear(enum tick_dep_bits bit)
284 atomic_andnot(BIT(bit), &tick_dep_mask);
288 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
289 * manage events throttling.
291 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
293 int prev;
294 struct tick_sched *ts;
296 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
298 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
299 if (!prev) {
300 preempt_disable();
301 /* Perf needs local kick that is NMI safe */
302 if (cpu == smp_processor_id()) {
303 tick_nohz_full_kick();
304 } else {
305 /* Remote irq work not NMI-safe */
306 if (!WARN_ON_ONCE(in_nmi()))
307 tick_nohz_full_kick_cpu(cpu);
309 preempt_enable();
313 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
315 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
317 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
321 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
322 * per task timers.
324 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
327 * We could optimize this with just kicking the target running the task
328 * if that noise matters for nohz full users.
330 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
333 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
335 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
339 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
340 * per process timers.
342 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
344 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
347 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
349 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
353 * Re-evaluate the need for the tick as we switch the current task.
354 * It might need the tick due to per task/process properties:
355 * perf events, posix CPU timers, ...
357 void __tick_nohz_task_switch(void)
359 unsigned long flags;
360 struct tick_sched *ts;
362 local_irq_save(flags);
364 if (!tick_nohz_full_cpu(smp_processor_id()))
365 goto out;
367 ts = this_cpu_ptr(&tick_cpu_sched);
369 if (ts->tick_stopped) {
370 if (atomic_read(&current->tick_dep_mask) ||
371 atomic_read(&current->signal->tick_dep_mask))
372 tick_nohz_full_kick();
374 out:
375 local_irq_restore(flags);
378 /* Parse the boot-time nohz CPU list from the kernel parameters. */
379 static int __init tick_nohz_full_setup(char *str)
381 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
382 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
383 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
384 free_bootmem_cpumask_var(tick_nohz_full_mask);
385 return 1;
387 tick_nohz_full_running = true;
389 return 1;
391 __setup("nohz_full=", tick_nohz_full_setup);
393 static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
394 unsigned long action,
395 void *hcpu)
397 unsigned int cpu = (unsigned long)hcpu;
399 switch (action & ~CPU_TASKS_FROZEN) {
400 case CPU_DOWN_PREPARE:
402 * The boot CPU handles housekeeping duty (unbound timers,
403 * workqueues, timekeeping, ...) on behalf of full dynticks
404 * CPUs. It must remain online when nohz full is enabled.
406 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
407 return NOTIFY_BAD;
408 break;
410 return NOTIFY_OK;
413 static int tick_nohz_init_all(void)
415 int err = -1;
417 #ifdef CONFIG_NO_HZ_FULL_ALL
418 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
419 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
420 return err;
422 err = 0;
423 cpumask_setall(tick_nohz_full_mask);
424 tick_nohz_full_running = true;
425 #endif
426 return err;
429 void __init tick_nohz_init(void)
431 int cpu;
433 if (!tick_nohz_full_running) {
434 if (tick_nohz_init_all() < 0)
435 return;
438 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
439 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
440 cpumask_clear(tick_nohz_full_mask);
441 tick_nohz_full_running = false;
442 return;
446 * Full dynticks uses irq work to drive the tick rescheduling on safe
447 * locking contexts. But then we need irq work to raise its own
448 * interrupts to avoid circular dependency on the tick
450 if (!arch_irq_work_has_interrupt()) {
451 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
452 cpumask_clear(tick_nohz_full_mask);
453 cpumask_copy(housekeeping_mask, cpu_possible_mask);
454 tick_nohz_full_running = false;
455 return;
458 cpu = smp_processor_id();
460 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
461 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
462 cpu);
463 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
466 cpumask_andnot(housekeeping_mask,
467 cpu_possible_mask, tick_nohz_full_mask);
469 for_each_cpu(cpu, tick_nohz_full_mask)
470 context_tracking_cpu_set(cpu);
472 cpu_notifier(tick_nohz_cpu_down_callback, 0);
473 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
474 cpumask_pr_args(tick_nohz_full_mask));
477 * We need at least one CPU to handle housekeeping work such
478 * as timekeeping, unbound timers, workqueues, ...
480 WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
482 #endif
485 * NOHZ - aka dynamic tick functionality
487 #ifdef CONFIG_NO_HZ_COMMON
489 * NO HZ enabled ?
491 bool tick_nohz_enabled __read_mostly = true;
492 unsigned long tick_nohz_active __read_mostly;
494 * Enable / Disable tickless mode
496 static int __init setup_tick_nohz(char *str)
498 return (kstrtobool(str, &tick_nohz_enabled) == 0);
501 __setup("nohz=", setup_tick_nohz);
503 int tick_nohz_tick_stopped(void)
505 return __this_cpu_read(tick_cpu_sched.tick_stopped);
509 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
511 * Called from interrupt entry when the CPU was idle
513 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
514 * must be updated. Otherwise an interrupt handler could use a stale jiffy
515 * value. We do this unconditionally on any CPU, as we don't know whether the
516 * CPU, which has the update task assigned is in a long sleep.
518 static void tick_nohz_update_jiffies(ktime_t now)
520 unsigned long flags;
522 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
524 local_irq_save(flags);
525 tick_do_update_jiffies64(now);
526 local_irq_restore(flags);
528 touch_softlockup_watchdog_sched();
532 * Updates the per-CPU time idle statistics counters
534 static void
535 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
537 ktime_t delta;
539 if (ts->idle_active) {
540 delta = ktime_sub(now, ts->idle_entrytime);
541 if (nr_iowait_cpu(cpu) > 0)
542 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
543 else
544 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
545 ts->idle_entrytime = now;
548 if (last_update_time)
549 *last_update_time = ktime_to_us(now);
553 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
555 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
556 ts->idle_active = 0;
558 sched_clock_idle_wakeup_event(0);
561 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
563 ktime_t now = ktime_get();
565 ts->idle_entrytime = now;
566 ts->idle_active = 1;
567 sched_clock_idle_sleep_event();
568 return now;
572 * get_cpu_idle_time_us - get the total idle time of a CPU
573 * @cpu: CPU number to query
574 * @last_update_time: variable to store update time in. Do not update
575 * counters if NULL.
577 * Return the cumulative idle time (since boot) for a given
578 * CPU, in microseconds.
580 * This time is measured via accounting rather than sampling,
581 * and is as accurate as ktime_get() is.
583 * This function returns -1 if NOHZ is not enabled.
585 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
587 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
588 ktime_t now, idle;
590 if (!tick_nohz_active)
591 return -1;
593 now = ktime_get();
594 if (last_update_time) {
595 update_ts_time_stats(cpu, ts, now, last_update_time);
596 idle = ts->idle_sleeptime;
597 } else {
598 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
599 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
601 idle = ktime_add(ts->idle_sleeptime, delta);
602 } else {
603 idle = ts->idle_sleeptime;
607 return ktime_to_us(idle);
610 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
613 * get_cpu_iowait_time_us - get the total iowait time of a CPU
614 * @cpu: CPU number to query
615 * @last_update_time: variable to store update time in. Do not update
616 * counters if NULL.
618 * Return the cumulative iowait time (since boot) for a given
619 * CPU, in microseconds.
621 * This time is measured via accounting rather than sampling,
622 * and is as accurate as ktime_get() is.
624 * This function returns -1 if NOHZ is not enabled.
626 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
628 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
629 ktime_t now, iowait;
631 if (!tick_nohz_active)
632 return -1;
634 now = ktime_get();
635 if (last_update_time) {
636 update_ts_time_stats(cpu, ts, now, last_update_time);
637 iowait = ts->iowait_sleeptime;
638 } else {
639 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
640 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
642 iowait = ktime_add(ts->iowait_sleeptime, delta);
643 } else {
644 iowait = ts->iowait_sleeptime;
648 return ktime_to_us(iowait);
650 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
652 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
654 hrtimer_cancel(&ts->sched_timer);
655 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
657 /* Forward the time to expire in the future */
658 hrtimer_forward(&ts->sched_timer, now, tick_period);
660 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
661 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
662 else
663 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
666 static inline bool local_timer_softirq_pending(void)
668 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
671 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
672 ktime_t now, int cpu)
674 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
675 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
676 unsigned long seq, basejiff;
677 ktime_t tick;
679 /* Read jiffies and the time when jiffies were updated last */
680 do {
681 seq = read_seqbegin(&jiffies_lock);
682 basemono = last_jiffies_update.tv64;
683 basejiff = jiffies;
684 } while (read_seqretry(&jiffies_lock, seq));
685 ts->last_jiffies = basejiff;
688 * Keep the periodic tick, when RCU, architecture or irq_work
689 * requests it.
690 * Aside of that check whether the local timer softirq is
691 * pending. If so its a bad idea to call get_next_timer_interrupt()
692 * because there is an already expired timer, so it will request
693 * immeditate expiry, which rearms the hardware timer with a
694 * minimal delta which brings us back to this place
695 * immediately. Lather, rinse and repeat...
697 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
698 irq_work_needs_cpu() || local_timer_softirq_pending()) {
699 next_tick = basemono + TICK_NSEC;
700 } else {
702 * Get the next pending timer. If high resolution
703 * timers are enabled this only takes the timer wheel
704 * timers into account. If high resolution timers are
705 * disabled this also looks at the next expiring
706 * hrtimer.
708 next_tmr = get_next_timer_interrupt(basejiff, basemono);
709 ts->next_timer = next_tmr;
710 /* Take the next rcu event into account */
711 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
715 * If the tick is due in the next period, keep it ticking or
716 * force prod the timer.
718 delta = next_tick - basemono;
719 if (delta <= (u64)TICK_NSEC) {
720 tick.tv64 = 0;
723 * Tell the timer code that the base is not idle, i.e. undo
724 * the effect of get_next_timer_interrupt():
726 timer_clear_idle();
728 * We've not stopped the tick yet, and there's a timer in the
729 * next period, so no point in stopping it either, bail.
731 if (!ts->tick_stopped)
732 goto out;
735 * If, OTOH, we did stop it, but there's a pending (expired)
736 * timer reprogram the timer hardware to fire now.
738 * We will not restart the tick proper, just prod the timer
739 * hardware into firing an interrupt to process the pending
740 * timers. Just like tick_irq_exit() will not restart the tick
741 * for 'normal' interrupts.
743 * Only once we exit the idle loop will we re-enable the tick,
744 * see tick_nohz_idle_exit().
746 if (delta == 0) {
747 tick_nohz_restart(ts, now);
748 goto out;
753 * If this CPU is the one which updates jiffies, then give up
754 * the assignment and let it be taken by the CPU which runs
755 * the tick timer next, which might be this CPU as well. If we
756 * don't drop this here the jiffies might be stale and
757 * do_timer() never invoked. Keep track of the fact that it
758 * was the one which had the do_timer() duty last. If this CPU
759 * is the one which had the do_timer() duty last, we limit the
760 * sleep time to the timekeeping max_deferment value.
761 * Otherwise we can sleep as long as we want.
763 delta = timekeeping_max_deferment();
764 if (cpu == tick_do_timer_cpu) {
765 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
766 ts->do_timer_last = 1;
767 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
768 delta = KTIME_MAX;
769 ts->do_timer_last = 0;
770 } else if (!ts->do_timer_last) {
771 delta = KTIME_MAX;
774 #ifdef CONFIG_NO_HZ_FULL
775 /* Limit the tick delta to the maximum scheduler deferment */
776 if (!ts->inidle)
777 delta = min(delta, scheduler_tick_max_deferment());
778 #endif
780 /* Calculate the next expiry time */
781 if (delta < (KTIME_MAX - basemono))
782 expires = basemono + delta;
783 else
784 expires = KTIME_MAX;
786 expires = min_t(u64, expires, next_tick);
787 tick.tv64 = expires;
789 /* Skip reprogram of event if its not changed */
790 if (ts->tick_stopped && (expires == dev->next_event.tv64))
791 goto out;
794 * nohz_stop_sched_tick can be called several times before
795 * the nohz_restart_sched_tick is called. This happens when
796 * interrupts arrive which do not cause a reschedule. In the
797 * first call we save the current tick time, so we can restart
798 * the scheduler tick in nohz_restart_sched_tick.
800 if (!ts->tick_stopped) {
801 nohz_balance_enter_idle(cpu);
802 calc_load_enter_idle();
803 cpu_load_update_nohz_start();
805 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
806 ts->tick_stopped = 1;
807 trace_tick_stop(1, TICK_DEP_MASK_NONE);
811 * If the expiration time == KTIME_MAX, then we simply stop
812 * the tick timer.
814 if (unlikely(expires == KTIME_MAX)) {
815 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
816 hrtimer_cancel(&ts->sched_timer);
817 goto out;
820 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
821 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
822 else
823 tick_program_event(tick, 1);
824 out:
825 /* Update the estimated sleep length */
826 ts->sleep_length = ktime_sub(dev->next_event, now);
827 return tick;
830 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
832 /* Update jiffies first */
833 tick_do_update_jiffies64(now);
834 cpu_load_update_nohz_stop();
837 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
838 * the clock forward checks in the enqueue path:
840 timer_clear_idle();
842 calc_load_exit_idle();
843 touch_softlockup_watchdog_sched();
845 * Cancel the scheduled timer and restore the tick
847 ts->tick_stopped = 0;
848 ts->idle_exittime = now;
850 tick_nohz_restart(ts, now);
853 static void tick_nohz_full_update_tick(struct tick_sched *ts)
855 #ifdef CONFIG_NO_HZ_FULL
856 int cpu = smp_processor_id();
858 if (!tick_nohz_full_cpu(cpu))
859 return;
861 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
862 return;
864 if (can_stop_full_tick(cpu, ts))
865 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
866 else if (ts->tick_stopped)
867 tick_nohz_restart_sched_tick(ts, ktime_get());
868 #endif
871 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
874 * If this CPU is offline and it is the one which updates
875 * jiffies, then give up the assignment and let it be taken by
876 * the CPU which runs the tick timer next. If we don't drop
877 * this here the jiffies might be stale and do_timer() never
878 * invoked.
880 if (unlikely(!cpu_online(cpu))) {
881 if (cpu == tick_do_timer_cpu)
882 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
883 return false;
886 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
887 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
888 return false;
891 if (need_resched())
892 return false;
894 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
895 static int ratelimit;
897 if (ratelimit < 10 &&
898 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
899 pr_warn("NOHZ: local_softirq_pending %02x\n",
900 (unsigned int) local_softirq_pending());
901 ratelimit++;
903 return false;
906 if (tick_nohz_full_enabled()) {
908 * Keep the tick alive to guarantee timekeeping progression
909 * if there are full dynticks CPUs around
911 if (tick_do_timer_cpu == cpu)
912 return false;
914 * Boot safety: make sure the timekeeping duty has been
915 * assigned before entering dyntick-idle mode,
917 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
918 return false;
921 return true;
924 static void __tick_nohz_idle_enter(struct tick_sched *ts)
926 ktime_t now, expires;
927 int cpu = smp_processor_id();
929 now = tick_nohz_start_idle(ts);
931 if (can_stop_idle_tick(cpu, ts)) {
932 int was_stopped = ts->tick_stopped;
934 ts->idle_calls++;
936 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
937 if (expires.tv64 > 0LL) {
938 ts->idle_sleeps++;
939 ts->idle_expires = expires;
942 if (!was_stopped && ts->tick_stopped)
943 ts->idle_jiffies = ts->last_jiffies;
948 * tick_nohz_idle_enter - stop the idle tick from the idle task
950 * When the next event is more than a tick into the future, stop the idle tick
951 * Called when we start the idle loop.
953 * The arch is responsible of calling:
955 * - rcu_idle_enter() after its last use of RCU before the CPU is put
956 * to sleep.
957 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
959 void tick_nohz_idle_enter(void)
961 struct tick_sched *ts;
963 WARN_ON_ONCE(irqs_disabled());
966 * Update the idle state in the scheduler domain hierarchy
967 * when tick_nohz_stop_sched_tick() is called from the idle loop.
968 * State will be updated to busy during the first busy tick after
969 * exiting idle.
971 set_cpu_sd_state_idle();
973 local_irq_disable();
975 ts = this_cpu_ptr(&tick_cpu_sched);
976 ts->inidle = 1;
977 __tick_nohz_idle_enter(ts);
979 local_irq_enable();
983 * tick_nohz_irq_exit - update next tick event from interrupt exit
985 * When an interrupt fires while we are idle and it doesn't cause
986 * a reschedule, it may still add, modify or delete a timer, enqueue
987 * an RCU callback, etc...
988 * So we need to re-calculate and reprogram the next tick event.
990 void tick_nohz_irq_exit(void)
992 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
994 if (ts->inidle)
995 __tick_nohz_idle_enter(ts);
996 else
997 tick_nohz_full_update_tick(ts);
1001 * tick_nohz_get_sleep_length - return the length of the current sleep
1003 * Called from power state control code with interrupts disabled
1005 ktime_t tick_nohz_get_sleep_length(void)
1007 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1009 return ts->sleep_length;
1012 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1014 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1015 unsigned long ticks;
1017 if (vtime_accounting_cpu_enabled())
1018 return;
1020 * We stopped the tick in idle. Update process times would miss the
1021 * time we slept as update_process_times does only a 1 tick
1022 * accounting. Enforce that this is accounted to idle !
1024 ticks = jiffies - ts->idle_jiffies;
1026 * We might be one off. Do not randomly account a huge number of ticks!
1028 if (ticks && ticks < LONG_MAX)
1029 account_idle_ticks(ticks);
1030 #endif
1034 * tick_nohz_idle_exit - restart the idle tick from the idle task
1036 * Restart the idle tick when the CPU is woken up from idle
1037 * This also exit the RCU extended quiescent state. The CPU
1038 * can use RCU again after this function is called.
1040 void tick_nohz_idle_exit(void)
1042 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1043 ktime_t now;
1045 local_irq_disable();
1047 WARN_ON_ONCE(!ts->inidle);
1049 ts->inidle = 0;
1051 if (ts->idle_active || ts->tick_stopped)
1052 now = ktime_get();
1054 if (ts->idle_active)
1055 tick_nohz_stop_idle(ts, now);
1057 if (ts->tick_stopped) {
1058 tick_nohz_restart_sched_tick(ts, now);
1059 tick_nohz_account_idle_ticks(ts);
1062 local_irq_enable();
1066 * The nohz low res interrupt handler
1068 static void tick_nohz_handler(struct clock_event_device *dev)
1070 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1071 struct pt_regs *regs = get_irq_regs();
1072 ktime_t now = ktime_get();
1074 dev->next_event.tv64 = KTIME_MAX;
1076 tick_sched_do_timer(now);
1077 tick_sched_handle(ts, regs);
1079 /* No need to reprogram if we are running tickless */
1080 if (unlikely(ts->tick_stopped))
1081 return;
1083 hrtimer_forward(&ts->sched_timer, now, tick_period);
1084 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1087 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1089 if (!tick_nohz_enabled)
1090 return;
1091 ts->nohz_mode = mode;
1092 /* One update is enough */
1093 if (!test_and_set_bit(0, &tick_nohz_active))
1094 timers_update_migration(true);
1098 * tick_nohz_switch_to_nohz - switch to nohz mode
1100 static void tick_nohz_switch_to_nohz(void)
1102 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1103 ktime_t next;
1105 if (!tick_nohz_enabled)
1106 return;
1108 if (tick_switch_to_oneshot(tick_nohz_handler))
1109 return;
1112 * Recycle the hrtimer in ts, so we can share the
1113 * hrtimer_forward with the highres code.
1115 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1116 /* Get the next period */
1117 next = tick_init_jiffy_update();
1119 hrtimer_set_expires(&ts->sched_timer, next);
1120 hrtimer_forward_now(&ts->sched_timer, tick_period);
1121 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1122 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1125 static inline void tick_nohz_irq_enter(void)
1127 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1128 ktime_t now;
1130 if (!ts->idle_active && !ts->tick_stopped)
1131 return;
1132 now = ktime_get();
1133 if (ts->idle_active)
1134 tick_nohz_stop_idle(ts, now);
1135 if (ts->tick_stopped)
1136 tick_nohz_update_jiffies(now);
1139 #else
1141 static inline void tick_nohz_switch_to_nohz(void) { }
1142 static inline void tick_nohz_irq_enter(void) { }
1143 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1145 #endif /* CONFIG_NO_HZ_COMMON */
1148 * Called from irq_enter to notify about the possible interruption of idle()
1150 void tick_irq_enter(void)
1152 tick_check_oneshot_broadcast_this_cpu();
1153 tick_nohz_irq_enter();
1157 * High resolution timer specific code
1159 #ifdef CONFIG_HIGH_RES_TIMERS
1161 * We rearm the timer until we get disabled by the idle code.
1162 * Called with interrupts disabled.
1164 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1166 struct tick_sched *ts =
1167 container_of(timer, struct tick_sched, sched_timer);
1168 struct pt_regs *regs = get_irq_regs();
1169 ktime_t now = ktime_get();
1171 tick_sched_do_timer(now);
1174 * Do not call, when we are not in irq context and have
1175 * no valid regs pointer
1177 if (regs)
1178 tick_sched_handle(ts, regs);
1180 /* No need to reprogram if we are in idle or full dynticks mode */
1181 if (unlikely(ts->tick_stopped))
1182 return HRTIMER_NORESTART;
1184 hrtimer_forward(timer, now, tick_period);
1186 return HRTIMER_RESTART;
1189 static int sched_skew_tick;
1191 static int __init skew_tick(char *str)
1193 get_option(&str, &sched_skew_tick);
1195 return 0;
1197 early_param("skew_tick", skew_tick);
1200 * tick_setup_sched_timer - setup the tick emulation timer
1202 void tick_setup_sched_timer(void)
1204 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1205 ktime_t now = ktime_get();
1208 * Emulate tick processing via per-CPU hrtimers:
1210 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1211 ts->sched_timer.function = tick_sched_timer;
1213 /* Get the next period (per-CPU) */
1214 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1216 /* Offset the tick to avert jiffies_lock contention. */
1217 if (sched_skew_tick) {
1218 u64 offset = ktime_to_ns(tick_period) >> 1;
1219 do_div(offset, num_possible_cpus());
1220 offset *= smp_processor_id();
1221 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1224 hrtimer_forward(&ts->sched_timer, now, tick_period);
1225 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1226 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1228 #endif /* HIGH_RES_TIMERS */
1230 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1231 void tick_cancel_sched_timer(int cpu)
1233 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1235 # ifdef CONFIG_HIGH_RES_TIMERS
1236 if (ts->sched_timer.base)
1237 hrtimer_cancel(&ts->sched_timer);
1238 # endif
1240 memset(ts, 0, sizeof(*ts));
1242 #endif
1245 * Async notification about clocksource changes
1247 void tick_clock_notify(void)
1249 int cpu;
1251 for_each_possible_cpu(cpu)
1252 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1256 * Async notification about clock event changes
1258 void tick_oneshot_notify(void)
1260 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1262 set_bit(0, &ts->check_clocks);
1266 * Check, if a change happened, which makes oneshot possible.
1268 * Called cyclic from the hrtimer softirq (driven by the timer
1269 * softirq) allow_nohz signals, that we can switch into low-res nohz
1270 * mode, because high resolution timers are disabled (either compile
1271 * or runtime). Called with interrupts disabled.
1273 int tick_check_oneshot_change(int allow_nohz)
1275 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1277 if (!test_and_clear_bit(0, &ts->check_clocks))
1278 return 0;
1280 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1281 return 0;
1283 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1284 return 0;
1286 if (!allow_nohz)
1287 return 1;
1289 tick_nohz_switch_to_nohz();
1290 return 0;