2 * videobuf2-core.h - V4L2 driver helper framework
4 * Copyright (C) 2010 Samsung Electronics
6 * Author: Pawel Osciak <pawel@osciak.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation.
12 #ifndef _MEDIA_VIDEOBUF2_CORE_H
13 #define _MEDIA_VIDEOBUF2_CORE_H
15 #include <linux/mm_types.h>
16 #include <linux/mutex.h>
17 #include <linux/poll.h>
18 #include <linux/videodev2.h>
19 #include <linux/dma-buf.h>
22 struct vb2_fileio_data
;
25 * struct vb2_mem_ops - memory handling/memory allocator operations
26 * @alloc: allocate video memory and, optionally, allocator private data,
27 * return NULL on failure or a pointer to allocator private,
28 * per-buffer data on success; the returned private structure
29 * will then be passed as buf_priv argument to other ops in this
30 * structure. Additional gfp_flags to use when allocating the
31 * are also passed to this operation. These flags are from the
32 * gfp_flags field of vb2_queue.
33 * @put: inform the allocator that the buffer will no longer be used;
34 * usually will result in the allocator freeing the buffer (if
35 * no other users of this buffer are present); the buf_priv
36 * argument is the allocator private per-buffer structure
37 * previously returned from the alloc callback
38 * @get_userptr: acquire userspace memory for a hardware operation; used for
39 * USERPTR memory types; vaddr is the address passed to the
40 * videobuf layer when queuing a video buffer of USERPTR type;
41 * should return an allocator private per-buffer structure
42 * associated with the buffer on success, NULL on failure;
43 * the returned private structure will then be passed as buf_priv
44 * argument to other ops in this structure
45 * @put_userptr: inform the allocator that a USERPTR buffer will no longer
47 * @attach_dmabuf: attach a shared struct dma_buf for a hardware operation;
48 * used for DMABUF memory types; alloc_ctx is the alloc context
49 * dbuf is the shared dma_buf; returns NULL on failure;
50 * allocator private per-buffer structure on success;
51 * this needs to be used for further accesses to the buffer
52 * @detach_dmabuf: inform the exporter of the buffer that the current DMABUF
53 * buffer is no longer used; the buf_priv argument is the
54 * allocator private per-buffer structure previously returned
55 * from the attach_dmabuf callback
56 * @map_dmabuf: request for access to the dmabuf from allocator; the allocator
57 * of dmabuf is informed that this driver is going to use the
59 * @unmap_dmabuf: releases access control to the dmabuf - allocator is notified
60 * that this driver is done using the dmabuf for now
61 * @prepare: called every time the buffer is passed from userspace to the
62 * driver, useful for cache synchronisation, optional
63 * @finish: called every time the buffer is passed back from the driver
64 * to the userspace, also optional
65 * @vaddr: return a kernel virtual address to a given memory buffer
66 * associated with the passed private structure or NULL if no
68 * @cookie: return allocator specific cookie for a given memory buffer
69 * associated with the passed private structure or NULL if not
71 * @num_users: return the current number of users of a memory buffer;
72 * return 1 if the videobuf layer (or actually the driver using
73 * it) is the only user
74 * @mmap: setup a userspace mapping for a given memory buffer under
75 * the provided virtual memory region
77 * Required ops for USERPTR types: get_userptr, put_userptr.
78 * Required ops for MMAP types: alloc, put, num_users, mmap.
79 * Required ops for read/write access types: alloc, put, num_users, vaddr
80 * Required ops for DMABUF types: attach_dmabuf, detach_dmabuf, map_dmabuf,
84 void *(*alloc
)(void *alloc_ctx
, unsigned long size
, gfp_t gfp_flags
);
85 void (*put
)(void *buf_priv
);
86 struct dma_buf
*(*get_dmabuf
)(void *buf_priv
, unsigned long flags
);
88 void *(*get_userptr
)(void *alloc_ctx
, unsigned long vaddr
,
89 unsigned long size
, int write
);
90 void (*put_userptr
)(void *buf_priv
);
92 void (*prepare
)(void *buf_priv
);
93 void (*finish
)(void *buf_priv
);
95 void *(*attach_dmabuf
)(void *alloc_ctx
, struct dma_buf
*dbuf
,
96 unsigned long size
, int write
);
97 void (*detach_dmabuf
)(void *buf_priv
);
98 int (*map_dmabuf
)(void *buf_priv
);
99 void (*unmap_dmabuf
)(void *buf_priv
);
101 void *(*vaddr
)(void *buf_priv
);
102 void *(*cookie
)(void *buf_priv
);
104 unsigned int (*num_users
)(void *buf_priv
);
106 int (*mmap
)(void *buf_priv
, struct vm_area_struct
*vma
);
111 struct dma_buf
*dbuf
;
112 unsigned int dbuf_mapped
;
116 * enum vb2_io_modes - queue access methods
117 * @VB2_MMAP: driver supports MMAP with streaming API
118 * @VB2_USERPTR: driver supports USERPTR with streaming API
119 * @VB2_READ: driver supports read() style access
120 * @VB2_WRITE: driver supports write() style access
121 * @VB2_DMABUF: driver supports DMABUF with streaming API
125 VB2_USERPTR
= (1 << 1),
127 VB2_WRITE
= (1 << 3),
128 VB2_DMABUF
= (1 << 4),
132 * enum vb2_fileio_flags - flags for selecting a mode of the file io emulator,
133 * by default the 'streaming' style is used by the file io emulator
134 * @VB2_FILEIO_READ_ONCE: report EOF after reading the first buffer
135 * @VB2_FILEIO_WRITE_IMMEDIATELY: queue buffer after each write() call
137 enum vb2_fileio_flags
{
138 VB2_FILEIO_READ_ONCE
= (1 << 0),
139 VB2_FILEIO_WRITE_IMMEDIATELY
= (1 << 1),
143 * enum vb2_buffer_state - current video buffer state
144 * @VB2_BUF_STATE_DEQUEUED: buffer under userspace control
145 * @VB2_BUF_STATE_PREPARING: buffer is being prepared in videobuf
146 * @VB2_BUF_STATE_PREPARED: buffer prepared in videobuf and by the driver
147 * @VB2_BUF_STATE_QUEUED: buffer queued in videobuf, but not in driver
148 * @VB2_BUF_STATE_ACTIVE: buffer queued in driver and possibly used
149 * in a hardware operation
150 * @VB2_BUF_STATE_DONE: buffer returned from driver to videobuf, but
151 * not yet dequeued to userspace
152 * @VB2_BUF_STATE_ERROR: same as above, but the operation on the buffer
153 * has ended with an error, which will be reported
154 * to the userspace when it is dequeued
156 enum vb2_buffer_state
{
157 VB2_BUF_STATE_DEQUEUED
,
158 VB2_BUF_STATE_PREPARING
,
159 VB2_BUF_STATE_PREPARED
,
160 VB2_BUF_STATE_QUEUED
,
161 VB2_BUF_STATE_ACTIVE
,
169 * struct vb2_buffer - represents a video buffer
170 * @v4l2_buf: struct v4l2_buffer associated with this buffer; can
171 * be read by the driver and relevant entries can be
172 * changed by the driver in case of CAPTURE types
173 * (such as timestamp)
174 * @v4l2_planes: struct v4l2_planes associated with this buffer; can
175 * be read by the driver and relevant entries can be
176 * changed by the driver in case of CAPTURE types
177 * (such as bytesused); NOTE that even for single-planar
178 * types, the v4l2_planes[0] struct should be used
179 * instead of v4l2_buf for filling bytesused - drivers
180 * should use the vb2_set_plane_payload() function for that
181 * @vb2_queue: the queue to which this driver belongs
182 * @num_planes: number of planes in the buffer
183 * on an internal driver queue
184 * @state: current buffer state; do not change
185 * @queued_entry: entry on the queued buffers list, which holds all
186 * buffers queued from userspace
187 * @done_entry: entry on the list that stores all buffers ready to
188 * be dequeued to userspace
189 * @planes: private per-plane information; do not change
192 struct v4l2_buffer v4l2_buf
;
193 struct v4l2_plane v4l2_planes
[VIDEO_MAX_PLANES
];
195 struct vb2_queue
*vb2_queue
;
197 unsigned int num_planes
;
199 /* Private: internal use only */
200 enum vb2_buffer_state state
;
202 struct list_head queued_entry
;
203 struct list_head done_entry
;
205 struct vb2_plane planes
[VIDEO_MAX_PLANES
];
209 * struct vb2_ops - driver-specific callbacks
211 * @queue_setup: called from VIDIOC_REQBUFS and VIDIOC_CREATE_BUFS
212 * handlers before memory allocation, or, if
213 * *num_planes != 0, after the allocation to verify a
214 * smaller number of buffers. Driver should return
215 * the required number of buffers in *num_buffers, the
216 * required number of planes per buffer in *num_planes; the
217 * size of each plane should be set in the sizes[] array
218 * and optional per-plane allocator specific context in the
219 * alloc_ctxs[] array. When called from VIDIOC_REQBUFS,
220 * fmt == NULL, the driver has to use the currently
221 * configured format and *num_buffers is the total number
222 * of buffers, that are being allocated. When called from
223 * VIDIOC_CREATE_BUFS, fmt != NULL and it describes the
224 * target frame format (if the format isn't valid the
225 * callback must return -EINVAL). In this case *num_buffers
226 * are being allocated additionally to q->num_buffers.
227 * @wait_prepare: release any locks taken while calling vb2 functions;
228 * it is called before an ioctl needs to wait for a new
229 * buffer to arrive; required to avoid a deadlock in
230 * blocking access type
231 * @wait_finish: reacquire all locks released in the previous callback;
232 * required to continue operation after sleeping while
233 * waiting for a new buffer to arrive
234 * @buf_init: called once after allocating a buffer (in MMAP case)
235 * or after acquiring a new USERPTR buffer; drivers may
236 * perform additional buffer-related initialization;
237 * initialization failure (return != 0) will prevent
238 * queue setup from completing successfully; optional
239 * @buf_prepare: called every time the buffer is queued from userspace
240 * and from the VIDIOC_PREPARE_BUF ioctl; drivers may
241 * perform any initialization required before each hardware
242 * operation in this callback; drivers that support
243 * VIDIOC_CREATE_BUFS must also validate the buffer size;
244 * if an error is returned, the buffer will not be queued
245 * in driver; optional
246 * @buf_finish: called before every dequeue of the buffer back to
247 * userspace; drivers may perform any operations required
248 * before userspace accesses the buffer; optional
249 * @buf_cleanup: called once before the buffer is freed; drivers may
250 * perform any additional cleanup; optional
251 * @start_streaming: called once to enter 'streaming' state; the driver may
252 * receive buffers with @buf_queue callback before
253 * @start_streaming is called; the driver gets the number
254 * of already queued buffers in count parameter; driver
255 * can return an error if hardware fails, in that case all
256 * buffers that have been already given by the @buf_queue
257 * callback are invalidated.
258 * If there were not enough queued buffers to start
259 * streaming, then this callback returns -ENOBUFS, and the
260 * vb2 core will retry calling @start_streaming when a new
262 * @stop_streaming: called when 'streaming' state must be disabled; driver
263 * should stop any DMA transactions or wait until they
264 * finish and give back all buffers it got from buf_queue()
265 * callback; may use vb2_wait_for_all_buffers() function
266 * @buf_queue: passes buffer vb to the driver; driver may start
267 * hardware operation on this buffer; driver should give
268 * the buffer back by calling vb2_buffer_done() function;
269 * it is allways called after calling STREAMON ioctl;
270 * might be called before start_streaming callback if user
271 * pre-queued buffers before calling STREAMON
274 int (*queue_setup
)(struct vb2_queue
*q
, const struct v4l2_format
*fmt
,
275 unsigned int *num_buffers
, unsigned int *num_planes
,
276 unsigned int sizes
[], void *alloc_ctxs
[]);
278 void (*wait_prepare
)(struct vb2_queue
*q
);
279 void (*wait_finish
)(struct vb2_queue
*q
);
281 int (*buf_init
)(struct vb2_buffer
*vb
);
282 int (*buf_prepare
)(struct vb2_buffer
*vb
);
283 int (*buf_finish
)(struct vb2_buffer
*vb
);
284 void (*buf_cleanup
)(struct vb2_buffer
*vb
);
286 int (*start_streaming
)(struct vb2_queue
*q
, unsigned int count
);
287 int (*stop_streaming
)(struct vb2_queue
*q
);
289 void (*buf_queue
)(struct vb2_buffer
*vb
);
295 * struct vb2_queue - a videobuf queue
297 * @type: queue type (see V4L2_BUF_TYPE_* in linux/videodev2.h
298 * @io_modes: supported io methods (see vb2_io_modes enum)
299 * @io_flags: additional io flags (see vb2_fileio_flags enum)
300 * @lock: pointer to a mutex that protects the vb2_queue struct. The
301 * driver can set this to a mutex to let the v4l2 core serialize
302 * the queuing ioctls. If the driver wants to handle locking
303 * itself, then this should be set to NULL. This lock is not used
304 * by the videobuf2 core API.
305 * @owner: The filehandle that 'owns' the buffers, i.e. the filehandle
306 * that called reqbufs, create_buffers or started fileio.
307 * This field is not used by the videobuf2 core API, but it allows
308 * drivers to easily associate an owner filehandle with the queue.
309 * @ops: driver-specific callbacks
310 * @mem_ops: memory allocator specific callbacks
311 * @drv_priv: driver private data
312 * @buf_struct_size: size of the driver-specific buffer structure;
313 * "0" indicates the driver doesn't want to use a custom buffer
314 * structure type, so sizeof(struct vb2_buffer) will is used
315 * @gfp_flags: additional gfp flags used when allocating the buffers.
316 * Typically this is 0, but it may be e.g. GFP_DMA or __GFP_DMA32
317 * to force the buffer allocation to a specific memory zone.
319 * @memory: current memory type used
320 * @bufs: videobuf buffer structures
321 * @num_buffers: number of allocated/used buffers
322 * @queued_list: list of buffers currently queued from userspace
323 * @queued_count: number of buffers owned by the driver
324 * @done_list: list of buffers ready to be dequeued to userspace
325 * @done_lock: lock to protect done_list list
326 * @done_wq: waitqueue for processes waiting for buffers ready to be dequeued
327 * @alloc_ctx: memory type/allocator-specific contexts for each plane
328 * @streaming: current streaming state
329 * @retry_start_streaming: start_streaming() was called, but there were not enough
330 * buffers queued. If set, then retry calling start_streaming when
331 * queuing a new buffer.
332 * @fileio: file io emulator internal data, used only if emulator is active
335 enum v4l2_buf_type type
;
336 unsigned int io_modes
;
337 unsigned int io_flags
;
339 struct v4l2_fh
*owner
;
341 const struct vb2_ops
*ops
;
342 const struct vb2_mem_ops
*mem_ops
;
344 unsigned int buf_struct_size
;
348 /* private: internal use only */
349 enum v4l2_memory memory
;
350 struct vb2_buffer
*bufs
[VIDEO_MAX_FRAME
];
351 unsigned int num_buffers
;
353 struct list_head queued_list
;
355 atomic_t queued_count
;
356 struct list_head done_list
;
357 spinlock_t done_lock
;
358 wait_queue_head_t done_wq
;
360 void *alloc_ctx
[VIDEO_MAX_PLANES
];
361 unsigned int plane_sizes
[VIDEO_MAX_PLANES
];
363 unsigned int streaming
:1;
364 unsigned int retry_start_streaming
:1;
366 struct vb2_fileio_data
*fileio
;
369 void *vb2_plane_vaddr(struct vb2_buffer
*vb
, unsigned int plane_no
);
370 void *vb2_plane_cookie(struct vb2_buffer
*vb
, unsigned int plane_no
);
372 void vb2_buffer_done(struct vb2_buffer
*vb
, enum vb2_buffer_state state
);
373 int vb2_wait_for_all_buffers(struct vb2_queue
*q
);
375 int vb2_querybuf(struct vb2_queue
*q
, struct v4l2_buffer
*b
);
376 int vb2_reqbufs(struct vb2_queue
*q
, struct v4l2_requestbuffers
*req
);
378 int vb2_create_bufs(struct vb2_queue
*q
, struct v4l2_create_buffers
*create
);
379 int vb2_prepare_buf(struct vb2_queue
*q
, struct v4l2_buffer
*b
);
381 int __must_check
vb2_queue_init(struct vb2_queue
*q
);
383 void vb2_queue_release(struct vb2_queue
*q
);
385 int vb2_qbuf(struct vb2_queue
*q
, struct v4l2_buffer
*b
);
386 int vb2_expbuf(struct vb2_queue
*q
, struct v4l2_exportbuffer
*eb
);
387 int vb2_dqbuf(struct vb2_queue
*q
, struct v4l2_buffer
*b
, bool nonblocking
);
389 int vb2_streamon(struct vb2_queue
*q
, enum v4l2_buf_type type
);
390 int vb2_streamoff(struct vb2_queue
*q
, enum v4l2_buf_type type
);
392 int vb2_mmap(struct vb2_queue
*q
, struct vm_area_struct
*vma
);
394 unsigned long vb2_get_unmapped_area(struct vb2_queue
*q
,
398 unsigned long flags
);
400 unsigned int vb2_poll(struct vb2_queue
*q
, struct file
*file
, poll_table
*wait
);
401 size_t vb2_read(struct vb2_queue
*q
, char __user
*data
, size_t count
,
402 loff_t
*ppos
, int nonblock
);
403 size_t vb2_write(struct vb2_queue
*q
, const char __user
*data
, size_t count
,
404 loff_t
*ppos
, int nonblock
);
407 * vb2_is_streaming() - return streaming status of the queue
410 static inline bool vb2_is_streaming(struct vb2_queue
*q
)
416 * vb2_is_busy() - return busy status of the queue
419 * This function checks if queue has any buffers allocated.
421 static inline bool vb2_is_busy(struct vb2_queue
*q
)
423 return (q
->num_buffers
> 0);
427 * vb2_get_drv_priv() - return driver private data associated with the queue
430 static inline void *vb2_get_drv_priv(struct vb2_queue
*q
)
436 * vb2_set_plane_payload() - set bytesused for the plane plane_no
437 * @vb: buffer for which plane payload should be set
438 * @plane_no: plane number for which payload should be set
439 * @size: payload in bytes
441 static inline void vb2_set_plane_payload(struct vb2_buffer
*vb
,
442 unsigned int plane_no
, unsigned long size
)
444 if (plane_no
< vb
->num_planes
)
445 vb
->v4l2_planes
[plane_no
].bytesused
= size
;
449 * vb2_get_plane_payload() - get bytesused for the plane plane_no
450 * @vb: buffer for which plane payload should be set
451 * @plane_no: plane number for which payload should be set
452 * @size: payload in bytes
454 static inline unsigned long vb2_get_plane_payload(struct vb2_buffer
*vb
,
455 unsigned int plane_no
)
457 if (plane_no
< vb
->num_planes
)
458 return vb
->v4l2_planes
[plane_no
].bytesused
;
463 * vb2_plane_size() - return plane size in bytes
464 * @vb: buffer for which plane size should be returned
465 * @plane_no: plane number for which size should be returned
467 static inline unsigned long
468 vb2_plane_size(struct vb2_buffer
*vb
, unsigned int plane_no
)
470 if (plane_no
< vb
->num_planes
)
471 return vb
->v4l2_planes
[plane_no
].length
;
476 * The following functions are not part of the vb2 core API, but are simple
477 * helper functions that you can use in your struct v4l2_file_operations,
478 * struct v4l2_ioctl_ops and struct vb2_ops. They will serialize if vb2_queue->lock
479 * or video_device->lock is set, and they will set and test vb2_queue->owner
480 * to check if the calling filehandle is permitted to do the queuing operation.
483 /* struct v4l2_ioctl_ops helpers */
485 int vb2_ioctl_reqbufs(struct file
*file
, void *priv
,
486 struct v4l2_requestbuffers
*p
);
487 int vb2_ioctl_create_bufs(struct file
*file
, void *priv
,
488 struct v4l2_create_buffers
*p
);
489 int vb2_ioctl_prepare_buf(struct file
*file
, void *priv
,
490 struct v4l2_buffer
*p
);
491 int vb2_ioctl_querybuf(struct file
*file
, void *priv
, struct v4l2_buffer
*p
);
492 int vb2_ioctl_qbuf(struct file
*file
, void *priv
, struct v4l2_buffer
*p
);
493 int vb2_ioctl_dqbuf(struct file
*file
, void *priv
, struct v4l2_buffer
*p
);
494 int vb2_ioctl_streamon(struct file
*file
, void *priv
, enum v4l2_buf_type i
);
495 int vb2_ioctl_streamoff(struct file
*file
, void *priv
, enum v4l2_buf_type i
);
496 int vb2_ioctl_expbuf(struct file
*file
, void *priv
,
497 struct v4l2_exportbuffer
*p
);
499 /* struct v4l2_file_operations helpers */
501 int vb2_fop_mmap(struct file
*file
, struct vm_area_struct
*vma
);
502 int vb2_fop_release(struct file
*file
);
503 int _vb2_fop_release(struct file
*file
, struct mutex
*lock
);
504 ssize_t
vb2_fop_write(struct file
*file
, const char __user
*buf
,
505 size_t count
, loff_t
*ppos
);
506 ssize_t
vb2_fop_read(struct file
*file
, char __user
*buf
,
507 size_t count
, loff_t
*ppos
);
508 unsigned int vb2_fop_poll(struct file
*file
, poll_table
*wait
);
510 unsigned long vb2_fop_get_unmapped_area(struct file
*file
, unsigned long addr
,
511 unsigned long len
, unsigned long pgoff
, unsigned long flags
);
514 /* struct vb2_ops helpers, only use if vq->lock is non-NULL. */
516 void vb2_ops_wait_prepare(struct vb2_queue
*vq
);
517 void vb2_ops_wait_finish(struct vb2_queue
*vq
);
519 #endif /* _MEDIA_VIDEOBUF2_CORE_H */