1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/pagemap.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
12 #include <linux/sched.h>
13 #include <linux/rwsem.h>
14 #include <linux/hugetlb.h>
16 #include <asm/pgtable.h>
17 #include <asm/tlbflush.h>
21 static struct page
*no_page_table(struct vm_area_struct
*vma
,
25 * When core dumping an enormous anonymous area that nobody
26 * has touched so far, we don't want to allocate unnecessary pages or
27 * page tables. Return error instead of NULL to skip handle_mm_fault,
28 * then get_dump_page() will return NULL to leave a hole in the dump.
29 * But we can only make this optimization where a hole would surely
30 * be zero-filled if handle_mm_fault() actually did handle it.
32 if ((flags
& FOLL_DUMP
) && (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
33 return ERR_PTR(-EFAULT
);
37 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
38 pte_t
*pte
, unsigned int flags
)
40 /* No page to get reference */
44 if (flags
& FOLL_TOUCH
) {
47 if (flags
& FOLL_WRITE
)
48 entry
= pte_mkdirty(entry
);
49 entry
= pte_mkyoung(entry
);
51 if (!pte_same(*pte
, entry
)) {
52 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
53 update_mmu_cache(vma
, address
, pte
);
57 /* Proper page table entry exists, but no corresponding struct page */
61 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
62 unsigned long address
, pmd_t
*pmd
, unsigned int flags
)
64 struct mm_struct
*mm
= vma
->vm_mm
;
70 if (unlikely(pmd_bad(*pmd
)))
71 return no_page_table(vma
, flags
);
73 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
75 if (!pte_present(pte
)) {
78 * KSM's break_ksm() relies upon recognizing a ksm page
79 * even while it is being migrated, so for that case we
80 * need migration_entry_wait().
82 if (likely(!(flags
& FOLL_MIGRATION
)))
86 entry
= pte_to_swp_entry(pte
);
87 if (!is_migration_entry(entry
))
89 pte_unmap_unlock(ptep
, ptl
);
90 migration_entry_wait(mm
, pmd
, address
);
93 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
95 if ((flags
& FOLL_WRITE
) && !pte_write(pte
)) {
96 pte_unmap_unlock(ptep
, ptl
);
100 page
= vm_normal_page(vma
, address
, pte
);
101 if (unlikely(!page
)) {
102 if (flags
& FOLL_DUMP
) {
103 /* Avoid special (like zero) pages in core dumps */
104 page
= ERR_PTR(-EFAULT
);
108 if (is_zero_pfn(pte_pfn(pte
))) {
109 page
= pte_page(pte
);
113 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
119 if (flags
& FOLL_GET
)
121 if (flags
& FOLL_TOUCH
) {
122 if ((flags
& FOLL_WRITE
) &&
123 !pte_dirty(pte
) && !PageDirty(page
))
124 set_page_dirty(page
);
126 * pte_mkyoung() would be more correct here, but atomic care
127 * is needed to avoid losing the dirty bit: it is easier to use
128 * mark_page_accessed().
130 mark_page_accessed(page
);
132 if ((flags
& FOLL_POPULATE
) && (vma
->vm_flags
& VM_LOCKED
)) {
134 * The preliminary mapping check is mainly to avoid the
135 * pointless overhead of lock_page on the ZERO_PAGE
136 * which might bounce very badly if there is contention.
138 * If the page is already locked, we don't need to
139 * handle it now - vmscan will handle it later if and
140 * when it attempts to reclaim the page.
142 if (page
->mapping
&& trylock_page(page
)) {
143 lru_add_drain(); /* push cached pages to LRU */
145 * Because we lock page here, and migration is
146 * blocked by the pte's page reference, and we
147 * know the page is still mapped, we don't even
148 * need to check for file-cache page truncation.
150 mlock_vma_page(page
);
155 pte_unmap_unlock(ptep
, ptl
);
158 pte_unmap_unlock(ptep
, ptl
);
161 return no_page_table(vma
, flags
);
165 * follow_page_mask - look up a page descriptor from a user-virtual address
166 * @vma: vm_area_struct mapping @address
167 * @address: virtual address to look up
168 * @flags: flags modifying lookup behaviour
169 * @page_mask: on output, *page_mask is set according to the size of the page
171 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
173 * Returns the mapped (struct page *), %NULL if no mapping exists, or
174 * an error pointer if there is a mapping to something not represented
175 * by a page descriptor (see also vm_normal_page()).
177 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
178 unsigned long address
, unsigned int flags
,
179 unsigned int *page_mask
)
186 struct mm_struct
*mm
= vma
->vm_mm
;
190 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
192 BUG_ON(flags
& FOLL_GET
);
196 pgd
= pgd_offset(mm
, address
);
197 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
198 return no_page_table(vma
, flags
);
200 pud
= pud_offset(pgd
, address
);
202 return no_page_table(vma
, flags
);
203 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
204 page
= follow_huge_pud(mm
, address
, pud
, flags
);
207 return no_page_table(vma
, flags
);
209 if (unlikely(pud_bad(*pud
)))
210 return no_page_table(vma
, flags
);
212 pmd
= pmd_offset(pud
, address
);
214 return no_page_table(vma
, flags
);
215 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
216 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
219 return no_page_table(vma
, flags
);
221 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
222 return no_page_table(vma
, flags
);
223 if (pmd_trans_huge(*pmd
)) {
224 if (flags
& FOLL_SPLIT
) {
225 split_huge_page_pmd(vma
, address
, pmd
);
226 return follow_page_pte(vma
, address
, pmd
, flags
);
228 ptl
= pmd_lock(mm
, pmd
);
229 if (likely(pmd_trans_huge(*pmd
))) {
230 if (unlikely(pmd_trans_splitting(*pmd
))) {
232 wait_split_huge_page(vma
->anon_vma
, pmd
);
234 page
= follow_trans_huge_pmd(vma
, address
,
237 *page_mask
= HPAGE_PMD_NR
- 1;
243 return follow_page_pte(vma
, address
, pmd
, flags
);
246 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
247 unsigned int gup_flags
, struct vm_area_struct
**vma
,
256 /* user gate pages are read-only */
257 if (gup_flags
& FOLL_WRITE
)
259 if (address
> TASK_SIZE
)
260 pgd
= pgd_offset_k(address
);
262 pgd
= pgd_offset_gate(mm
, address
);
263 BUG_ON(pgd_none(*pgd
));
264 pud
= pud_offset(pgd
, address
);
265 BUG_ON(pud_none(*pud
));
266 pmd
= pmd_offset(pud
, address
);
269 VM_BUG_ON(pmd_trans_huge(*pmd
));
270 pte
= pte_offset_map(pmd
, address
);
273 *vma
= get_gate_vma(mm
);
276 *page
= vm_normal_page(*vma
, address
, *pte
);
278 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
280 *page
= pte_page(*pte
);
291 * mmap_sem must be held on entry. If @nonblocking != NULL and
292 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
293 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
295 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
296 unsigned long address
, unsigned int *flags
, int *nonblocking
)
298 struct mm_struct
*mm
= vma
->vm_mm
;
299 unsigned int fault_flags
= 0;
302 /* For mm_populate(), just skip the stack guard page. */
303 if ((*flags
& FOLL_POPULATE
) &&
304 (stack_guard_page_start(vma
, address
) ||
305 stack_guard_page_end(vma
, address
+ PAGE_SIZE
)))
307 if (*flags
& FOLL_WRITE
)
308 fault_flags
|= FAULT_FLAG_WRITE
;
310 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
311 if (*flags
& FOLL_NOWAIT
)
312 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
313 if (*flags
& FOLL_TRIED
) {
314 VM_WARN_ON_ONCE(fault_flags
& FAULT_FLAG_ALLOW_RETRY
);
315 fault_flags
|= FAULT_FLAG_TRIED
;
318 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
319 if (ret
& VM_FAULT_ERROR
) {
320 if (ret
& VM_FAULT_OOM
)
322 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
323 return *flags
& FOLL_HWPOISON
? -EHWPOISON
: -EFAULT
;
324 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
330 if (ret
& VM_FAULT_MAJOR
)
336 if (ret
& VM_FAULT_RETRY
) {
343 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
344 * necessary, even if maybe_mkwrite decided not to set pte_write. We
345 * can thus safely do subsequent page lookups as if they were reads.
346 * But only do so when looping for pte_write is futile: in some cases
347 * userspace may also be wanting to write to the gotten user page,
348 * which a read fault here might prevent (a readonly page might get
349 * reCOWed by userspace write).
351 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
352 *flags
&= ~FOLL_WRITE
;
356 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
358 vm_flags_t vm_flags
= vma
->vm_flags
;
360 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
363 if (gup_flags
& FOLL_WRITE
) {
364 if (!(vm_flags
& VM_WRITE
)) {
365 if (!(gup_flags
& FOLL_FORCE
))
368 * We used to let the write,force case do COW in a
369 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
370 * set a breakpoint in a read-only mapping of an
371 * executable, without corrupting the file (yet only
372 * when that file had been opened for writing!).
373 * Anon pages in shared mappings are surprising: now
376 if (!is_cow_mapping(vm_flags
)) {
377 WARN_ON_ONCE(vm_flags
& VM_MAYWRITE
);
381 } else if (!(vm_flags
& VM_READ
)) {
382 if (!(gup_flags
& FOLL_FORCE
))
385 * Is there actually any vma we can reach here which does not
386 * have VM_MAYREAD set?
388 if (!(vm_flags
& VM_MAYREAD
))
395 * __get_user_pages() - pin user pages in memory
396 * @tsk: task_struct of target task
397 * @mm: mm_struct of target mm
398 * @start: starting user address
399 * @nr_pages: number of pages from start to pin
400 * @gup_flags: flags modifying pin behaviour
401 * @pages: array that receives pointers to the pages pinned.
402 * Should be at least nr_pages long. Or NULL, if caller
403 * only intends to ensure the pages are faulted in.
404 * @vmas: array of pointers to vmas corresponding to each page.
405 * Or NULL if the caller does not require them.
406 * @nonblocking: whether waiting for disk IO or mmap_sem contention
408 * Returns number of pages pinned. This may be fewer than the number
409 * requested. If nr_pages is 0 or negative, returns 0. If no pages
410 * were pinned, returns -errno. Each page returned must be released
411 * with a put_page() call when it is finished with. vmas will only
412 * remain valid while mmap_sem is held.
414 * Must be called with mmap_sem held. It may be released. See below.
416 * __get_user_pages walks a process's page tables and takes a reference to
417 * each struct page that each user address corresponds to at a given
418 * instant. That is, it takes the page that would be accessed if a user
419 * thread accesses the given user virtual address at that instant.
421 * This does not guarantee that the page exists in the user mappings when
422 * __get_user_pages returns, and there may even be a completely different
423 * page there in some cases (eg. if mmapped pagecache has been invalidated
424 * and subsequently re faulted). However it does guarantee that the page
425 * won't be freed completely. And mostly callers simply care that the page
426 * contains data that was valid *at some point in time*. Typically, an IO
427 * or similar operation cannot guarantee anything stronger anyway because
428 * locks can't be held over the syscall boundary.
430 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
431 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
432 * appropriate) must be called after the page is finished with, and
433 * before put_page is called.
435 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
436 * or mmap_sem contention, and if waiting is needed to pin all pages,
437 * *@nonblocking will be set to 0. Further, if @gup_flags does not
438 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
441 * A caller using such a combination of @nonblocking and @gup_flags
442 * must therefore hold the mmap_sem for reading only, and recognize
443 * when it's been released. Otherwise, it must be held for either
444 * reading or writing and will not be released.
446 * In most cases, get_user_pages or get_user_pages_fast should be used
447 * instead of __get_user_pages. __get_user_pages should be used only if
448 * you need some special @gup_flags.
450 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
451 unsigned long start
, unsigned long nr_pages
,
452 unsigned int gup_flags
, struct page
**pages
,
453 struct vm_area_struct
**vmas
, int *nonblocking
)
456 unsigned int page_mask
;
457 struct vm_area_struct
*vma
= NULL
;
462 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
465 * If FOLL_FORCE is set then do not force a full fault as the hinting
466 * fault information is unrelated to the reference behaviour of a task
467 * using the address space
469 if (!(gup_flags
& FOLL_FORCE
))
470 gup_flags
|= FOLL_NUMA
;
474 unsigned int foll_flags
= gup_flags
;
475 unsigned int page_increm
;
477 /* first iteration or cross vma bound */
478 if (!vma
|| start
>= vma
->vm_end
) {
479 vma
= find_extend_vma(mm
, start
);
480 if (!vma
&& in_gate_area(mm
, start
)) {
482 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
484 pages
? &pages
[i
] : NULL
);
491 if (!vma
|| check_vma_flags(vma
, gup_flags
))
492 return i
? : -EFAULT
;
493 if (is_vm_hugetlb_page(vma
)) {
494 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
495 &start
, &nr_pages
, i
,
502 * If we have a pending SIGKILL, don't keep faulting pages and
503 * potentially allocating memory.
505 if (unlikely(fatal_signal_pending(current
)))
506 return i
? i
: -ERESTARTSYS
;
508 page
= follow_page_mask(vma
, start
, foll_flags
, &page_mask
);
511 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
526 } else if (PTR_ERR(page
) == -EEXIST
) {
528 * Proper page table entry exists, but no corresponding
532 } else if (IS_ERR(page
)) {
533 return i
? i
: PTR_ERR(page
);
537 flush_anon_page(vma
, page
, start
);
538 flush_dcache_page(page
);
546 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
547 if (page_increm
> nr_pages
)
548 page_increm
= nr_pages
;
550 start
+= page_increm
* PAGE_SIZE
;
551 nr_pages
-= page_increm
;
555 EXPORT_SYMBOL(__get_user_pages
);
558 * fixup_user_fault() - manually resolve a user page fault
559 * @tsk: the task_struct to use for page fault accounting, or
560 * NULL if faults are not to be recorded.
561 * @mm: mm_struct of target mm
562 * @address: user address
563 * @fault_flags:flags to pass down to handle_mm_fault()
565 * This is meant to be called in the specific scenario where for locking reasons
566 * we try to access user memory in atomic context (within a pagefault_disable()
567 * section), this returns -EFAULT, and we want to resolve the user fault before
570 * Typically this is meant to be used by the futex code.
572 * The main difference with get_user_pages() is that this function will
573 * unconditionally call handle_mm_fault() which will in turn perform all the
574 * necessary SW fixup of the dirty and young bits in the PTE, while
575 * handle_mm_fault() only guarantees to update these in the struct page.
577 * This is important for some architectures where those bits also gate the
578 * access permission to the page because they are maintained in software. On
579 * such architectures, gup() will not be enough to make a subsequent access
582 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
584 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
585 unsigned long address
, unsigned int fault_flags
)
587 struct vm_area_struct
*vma
;
591 vma
= find_extend_vma(mm
, address
);
592 if (!vma
|| address
< vma
->vm_start
)
595 vm_flags
= (fault_flags
& FAULT_FLAG_WRITE
) ? VM_WRITE
: VM_READ
;
596 if (!(vm_flags
& vma
->vm_flags
))
599 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
600 if (ret
& VM_FAULT_ERROR
) {
601 if (ret
& VM_FAULT_OOM
)
603 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
605 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
610 if (ret
& VM_FAULT_MAJOR
)
618 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
619 struct mm_struct
*mm
,
621 unsigned long nr_pages
,
622 int write
, int force
,
624 struct vm_area_struct
**vmas
,
625 int *locked
, bool notify_drop
,
628 long ret
, pages_done
;
632 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
634 /* check caller initialized locked */
635 BUG_ON(*locked
!= 1);
646 lock_dropped
= false;
648 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
651 /* VM_FAULT_RETRY couldn't trigger, bypass */
654 /* VM_FAULT_RETRY cannot return errors */
657 BUG_ON(ret
>= nr_pages
);
661 /* If it's a prefault don't insist harder */
671 /* VM_FAULT_RETRY didn't trigger */
676 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
678 start
+= ret
<< PAGE_SHIFT
;
681 * Repeat on the address that fired VM_FAULT_RETRY
682 * without FAULT_FLAG_ALLOW_RETRY but with
687 down_read(&mm
->mmap_sem
);
688 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
703 if (notify_drop
&& lock_dropped
&& *locked
) {
705 * We must let the caller know we temporarily dropped the lock
706 * and so the critical section protected by it was lost.
708 up_read(&mm
->mmap_sem
);
715 * We can leverage the VM_FAULT_RETRY functionality in the page fault
716 * paths better by using either get_user_pages_locked() or
717 * get_user_pages_unlocked().
719 * get_user_pages_locked() is suitable to replace the form:
721 * down_read(&mm->mmap_sem);
723 * get_user_pages(tsk, mm, ..., pages, NULL);
724 * up_read(&mm->mmap_sem);
729 * down_read(&mm->mmap_sem);
731 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
733 * up_read(&mm->mmap_sem);
735 long get_user_pages_locked(struct task_struct
*tsk
, struct mm_struct
*mm
,
736 unsigned long start
, unsigned long nr_pages
,
737 int write
, int force
, struct page
**pages
,
740 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
741 pages
, NULL
, locked
, true, FOLL_TOUCH
);
743 EXPORT_SYMBOL(get_user_pages_locked
);
746 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
747 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
749 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
750 * caller if required (just like with __get_user_pages). "FOLL_GET",
751 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
752 * according to the parameters "pages", "write", "force"
755 __always_inline
long __get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
756 unsigned long start
, unsigned long nr_pages
,
757 int write
, int force
, struct page
**pages
,
758 unsigned int gup_flags
)
762 down_read(&mm
->mmap_sem
);
763 ret
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
764 pages
, NULL
, &locked
, false, gup_flags
);
766 up_read(&mm
->mmap_sem
);
769 EXPORT_SYMBOL(__get_user_pages_unlocked
);
772 * get_user_pages_unlocked() is suitable to replace the form:
774 * down_read(&mm->mmap_sem);
775 * get_user_pages(tsk, mm, ..., pages, NULL);
776 * up_read(&mm->mmap_sem);
780 * get_user_pages_unlocked(tsk, mm, ..., pages);
782 * It is functionally equivalent to get_user_pages_fast so
783 * get_user_pages_fast should be used instead, if the two parameters
784 * "tsk" and "mm" are respectively equal to current and current->mm,
785 * or if "force" shall be set to 1 (get_user_pages_fast misses the
786 * "force" parameter).
788 long get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
789 unsigned long start
, unsigned long nr_pages
,
790 int write
, int force
, struct page
**pages
)
792 return __get_user_pages_unlocked(tsk
, mm
, start
, nr_pages
, write
,
793 force
, pages
, FOLL_TOUCH
);
795 EXPORT_SYMBOL(get_user_pages_unlocked
);
798 * get_user_pages() - pin user pages in memory
799 * @tsk: the task_struct to use for page fault accounting, or
800 * NULL if faults are not to be recorded.
801 * @mm: mm_struct of target mm
802 * @start: starting user address
803 * @nr_pages: number of pages from start to pin
804 * @write: whether pages will be written to by the caller
805 * @force: whether to force access even when user mapping is currently
806 * protected (but never forces write access to shared mapping).
807 * @pages: array that receives pointers to the pages pinned.
808 * Should be at least nr_pages long. Or NULL, if caller
809 * only intends to ensure the pages are faulted in.
810 * @vmas: array of pointers to vmas corresponding to each page.
811 * Or NULL if the caller does not require them.
813 * Returns number of pages pinned. This may be fewer than the number
814 * requested. If nr_pages is 0 or negative, returns 0. If no pages
815 * were pinned, returns -errno. Each page returned must be released
816 * with a put_page() call when it is finished with. vmas will only
817 * remain valid while mmap_sem is held.
819 * Must be called with mmap_sem held for read or write.
821 * get_user_pages walks a process's page tables and takes a reference to
822 * each struct page that each user address corresponds to at a given
823 * instant. That is, it takes the page that would be accessed if a user
824 * thread accesses the given user virtual address at that instant.
826 * This does not guarantee that the page exists in the user mappings when
827 * get_user_pages returns, and there may even be a completely different
828 * page there in some cases (eg. if mmapped pagecache has been invalidated
829 * and subsequently re faulted). However it does guarantee that the page
830 * won't be freed completely. And mostly callers simply care that the page
831 * contains data that was valid *at some point in time*. Typically, an IO
832 * or similar operation cannot guarantee anything stronger anyway because
833 * locks can't be held over the syscall boundary.
835 * If write=0, the page must not be written to. If the page is written to,
836 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
837 * after the page is finished with, and before put_page is called.
839 * get_user_pages is typically used for fewer-copy IO operations, to get a
840 * handle on the memory by some means other than accesses via the user virtual
841 * addresses. The pages may be submitted for DMA to devices or accessed via
842 * their kernel linear mapping (via the kmap APIs). Care should be taken to
843 * use the correct cache flushing APIs.
845 * See also get_user_pages_fast, for performance critical applications.
847 * get_user_pages should be phased out in favor of
848 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
849 * should use get_user_pages because it cannot pass
850 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
852 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
853 unsigned long start
, unsigned long nr_pages
, int write
,
854 int force
, struct page
**pages
, struct vm_area_struct
**vmas
)
856 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
857 pages
, vmas
, NULL
, false, FOLL_TOUCH
);
859 EXPORT_SYMBOL(get_user_pages
);
862 * populate_vma_page_range() - populate a range of pages in the vma.
864 * @start: start address
868 * This takes care of mlocking the pages too if VM_LOCKED is set.
870 * return 0 on success, negative error code on error.
872 * vma->vm_mm->mmap_sem must be held.
874 * If @nonblocking is NULL, it may be held for read or write and will
877 * If @nonblocking is non-NULL, it must held for read only and may be
878 * released. If it's released, *@nonblocking will be set to 0.
880 long populate_vma_page_range(struct vm_area_struct
*vma
,
881 unsigned long start
, unsigned long end
, int *nonblocking
)
883 struct mm_struct
*mm
= vma
->vm_mm
;
884 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
887 VM_BUG_ON(start
& ~PAGE_MASK
);
888 VM_BUG_ON(end
& ~PAGE_MASK
);
889 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
890 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
891 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
893 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
;
895 * We want to touch writable mappings with a write fault in order
896 * to break COW, except for shared mappings because these don't COW
897 * and we would not want to dirty them for nothing.
899 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
900 gup_flags
|= FOLL_WRITE
;
903 * We want mlock to succeed for regions that have any permissions
904 * other than PROT_NONE.
906 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
907 gup_flags
|= FOLL_FORCE
;
910 * We made sure addr is within a VMA, so the following will
911 * not result in a stack expansion that recurses back here.
913 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
914 NULL
, NULL
, nonblocking
);
918 * __mm_populate - populate and/or mlock pages within a range of address space.
920 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
921 * flags. VMAs must be already marked with the desired vm_flags, and
922 * mmap_sem must not be held.
924 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
926 struct mm_struct
*mm
= current
->mm
;
927 unsigned long end
, nstart
, nend
;
928 struct vm_area_struct
*vma
= NULL
;
932 VM_BUG_ON(start
& ~PAGE_MASK
);
933 VM_BUG_ON(len
!= PAGE_ALIGN(len
));
936 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
938 * We want to fault in pages for [nstart; end) address range.
939 * Find first corresponding VMA.
943 down_read(&mm
->mmap_sem
);
944 vma
= find_vma(mm
, nstart
);
945 } else if (nstart
>= vma
->vm_end
)
947 if (!vma
|| vma
->vm_start
>= end
)
950 * Set [nstart; nend) to intersection of desired address
951 * range with the first VMA. Also, skip undesirable VMA types.
953 nend
= min(end
, vma
->vm_end
);
954 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
956 if (nstart
< vma
->vm_start
)
957 nstart
= vma
->vm_start
;
959 * Now fault in a range of pages. populate_vma_page_range()
960 * double checks the vma flags, so that it won't mlock pages
961 * if the vma was already munlocked.
963 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
967 continue; /* continue at next VMA */
971 nend
= nstart
+ ret
* PAGE_SIZE
;
975 up_read(&mm
->mmap_sem
);
976 return ret
; /* 0 or negative error code */
980 * get_dump_page() - pin user page in memory while writing it to core dump
981 * @addr: user address
983 * Returns struct page pointer of user page pinned for dump,
984 * to be freed afterwards by page_cache_release() or put_page().
986 * Returns NULL on any kind of failure - a hole must then be inserted into
987 * the corefile, to preserve alignment with its headers; and also returns
988 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
989 * allowing a hole to be left in the corefile to save diskspace.
991 * Called without mmap_sem, but after all other threads have been killed.
993 #ifdef CONFIG_ELF_CORE
994 struct page
*get_dump_page(unsigned long addr
)
996 struct vm_area_struct
*vma
;
999 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1000 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1003 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1006 #endif /* CONFIG_ELF_CORE */
1009 * Generic RCU Fast GUP
1011 * get_user_pages_fast attempts to pin user pages by walking the page
1012 * tables directly and avoids taking locks. Thus the walker needs to be
1013 * protected from page table pages being freed from under it, and should
1014 * block any THP splits.
1016 * One way to achieve this is to have the walker disable interrupts, and
1017 * rely on IPIs from the TLB flushing code blocking before the page table
1018 * pages are freed. This is unsuitable for architectures that do not need
1019 * to broadcast an IPI when invalidating TLBs.
1021 * Another way to achieve this is to batch up page table containing pages
1022 * belonging to more than one mm_user, then rcu_sched a callback to free those
1023 * pages. Disabling interrupts will allow the fast_gup walker to both block
1024 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1025 * (which is a relatively rare event). The code below adopts this strategy.
1027 * Before activating this code, please be aware that the following assumptions
1028 * are currently made:
1030 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1031 * pages containing page tables.
1033 * *) THP splits will broadcast an IPI, this can be achieved by overriding
1034 * pmdp_splitting_flush.
1036 * *) ptes can be read atomically by the architecture.
1038 * *) access_ok is sufficient to validate userspace address ranges.
1040 * The last two assumptions can be relaxed by the addition of helper functions.
1042 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1044 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1046 #ifdef __HAVE_ARCH_PTE_SPECIAL
1047 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1048 int write
, struct page
**pages
, int *nr
)
1053 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
1056 * In the line below we are assuming that the pte can be read
1057 * atomically. If this is not the case for your architecture,
1058 * please wrap this in a helper function!
1060 * for an example see gup_get_pte in arch/x86/mm/gup.c
1062 pte_t pte
= READ_ONCE(*ptep
);
1066 * Similar to the PMD case below, NUMA hinting must take slow
1067 * path using the pte_protnone check.
1069 if (!pte_present(pte
) || pte_special(pte
) ||
1070 pte_protnone(pte
) || (write
&& !pte_write(pte
)))
1073 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1074 page
= pte_page(pte
);
1076 if (!page_cache_get_speculative(page
))
1079 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1087 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
1098 * If we can't determine whether or not a pte is special, then fail immediately
1099 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1102 * For a futex to be placed on a THP tail page, get_futex_key requires a
1103 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1104 * useful to have gup_huge_pmd even if we can't operate on ptes.
1106 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1107 int write
, struct page
**pages
, int *nr
)
1111 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1113 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1114 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1116 struct page
*head
, *page
, *tail
;
1119 if (write
&& !pmd_write(orig
))
1123 head
= pmd_page(orig
);
1124 page
= head
+ ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1127 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1132 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1134 if (!page_cache_add_speculative(head
, refs
)) {
1139 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1147 * Any tail pages need their mapcount reference taken before we
1148 * return. (This allows the THP code to bump their ref count when
1149 * they are split into base pages).
1153 get_huge_page_tail(tail
);
1160 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1161 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1163 struct page
*head
, *page
, *tail
;
1166 if (write
&& !pud_write(orig
))
1170 head
= pud_page(orig
);
1171 page
= head
+ ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1174 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1179 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1181 if (!page_cache_add_speculative(head
, refs
)) {
1186 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1195 get_huge_page_tail(tail
);
1202 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
1203 unsigned long end
, int write
,
1204 struct page
**pages
, int *nr
)
1207 struct page
*head
, *page
, *tail
;
1209 if (write
&& !pgd_write(orig
))
1213 head
= pgd_page(orig
);
1214 page
= head
+ ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
1217 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1222 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1224 if (!page_cache_add_speculative(head
, refs
)) {
1229 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
1238 get_huge_page_tail(tail
);
1245 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
1246 int write
, struct page
**pages
, int *nr
)
1251 pmdp
= pmd_offset(&pud
, addr
);
1253 pmd_t pmd
= READ_ONCE(*pmdp
);
1255 next
= pmd_addr_end(addr
, end
);
1256 if (pmd_none(pmd
) || pmd_trans_splitting(pmd
))
1259 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
))) {
1261 * NUMA hinting faults need to be handled in the GUP
1262 * slowpath for accounting purposes and so that they
1263 * can be serialised against THP migration.
1265 if (pmd_protnone(pmd
))
1268 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, write
,
1272 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
1274 * architecture have different format for hugetlbfs
1275 * pmd format and THP pmd format
1277 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
1278 PMD_SHIFT
, next
, write
, pages
, nr
))
1280 } else if (!gup_pte_range(pmd
, addr
, next
, write
, pages
, nr
))
1282 } while (pmdp
++, addr
= next
, addr
!= end
);
1287 static int gup_pud_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
1288 int write
, struct page
**pages
, int *nr
)
1293 pudp
= pud_offset(&pgd
, addr
);
1295 pud_t pud
= READ_ONCE(*pudp
);
1297 next
= pud_addr_end(addr
, end
);
1300 if (unlikely(pud_huge(pud
))) {
1301 if (!gup_huge_pud(pud
, pudp
, addr
, next
, write
,
1304 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
1305 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
1306 PUD_SHIFT
, next
, write
, pages
, nr
))
1308 } else if (!gup_pmd_range(pud
, addr
, next
, write
, pages
, nr
))
1310 } while (pudp
++, addr
= next
, addr
!= end
);
1316 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1317 * the regular GUP. It will only return non-negative values.
1319 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1320 struct page
**pages
)
1322 struct mm_struct
*mm
= current
->mm
;
1323 unsigned long addr
, len
, end
;
1324 unsigned long next
, flags
;
1330 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1333 if (unlikely(!access_ok(write
? VERIFY_WRITE
: VERIFY_READ
,
1338 * Disable interrupts. We use the nested form as we can already have
1339 * interrupts disabled by get_futex_key.
1341 * With interrupts disabled, we block page table pages from being
1342 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1345 * We do not adopt an rcu_read_lock(.) here as we also want to
1346 * block IPIs that come from THPs splitting.
1349 local_irq_save(flags
);
1350 pgdp
= pgd_offset(mm
, addr
);
1352 pgd_t pgd
= READ_ONCE(*pgdp
);
1354 next
= pgd_addr_end(addr
, end
);
1357 if (unlikely(pgd_huge(pgd
))) {
1358 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, write
,
1361 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
1362 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
1363 PGDIR_SHIFT
, next
, write
, pages
, &nr
))
1365 } else if (!gup_pud_range(pgd
, addr
, next
, write
, pages
, &nr
))
1367 } while (pgdp
++, addr
= next
, addr
!= end
);
1368 local_irq_restore(flags
);
1374 * get_user_pages_fast() - pin user pages in memory
1375 * @start: starting user address
1376 * @nr_pages: number of pages from start to pin
1377 * @write: whether pages will be written to
1378 * @pages: array that receives pointers to the pages pinned.
1379 * Should be at least nr_pages long.
1381 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1382 * If not successful, it will fall back to taking the lock and
1383 * calling get_user_pages().
1385 * Returns number of pages pinned. This may be fewer than the number
1386 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1387 * were pinned, returns -errno.
1389 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1390 struct page
**pages
)
1392 struct mm_struct
*mm
= current
->mm
;
1396 nr
= __get_user_pages_fast(start
, nr_pages
, write
, pages
);
1399 if (nr
< nr_pages
) {
1400 /* Try to get the remaining pages with get_user_pages */
1401 start
+= nr
<< PAGE_SHIFT
;
1404 ret
= get_user_pages_unlocked(current
, mm
, start
,
1405 nr_pages
- nr
, write
, 0, pages
);
1407 /* Have to be a bit careful with return values */
1419 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */