net: skb_fclone_busy() needs to detect orphaned skb
[linux/fpc-iii.git] / net / ipv4 / tcp_output.c
bloba3d453b94747c22dd0fad07dfe606fdd11c414b1
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
39 #include <net/tcp.h>
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 int push_one, gfp_t gfp);
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
77 struct inet_connection_sock *icsk = inet_csk(sk);
78 struct tcp_sock *tp = tcp_sk(sk);
79 unsigned int prior_packets = tp->packets_out;
81 tcp_advance_send_head(sk, skb);
82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
84 tp->packets_out += tcp_skb_pcount(skb);
85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 tcp_rearm_rto(sk);
90 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
91 tcp_skb_pcount(skb));
94 /* SND.NXT, if window was not shrunk.
95 * If window has been shrunk, what should we make? It is not clear at all.
96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98 * invalid. OK, let's make this for now:
100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
102 const struct tcp_sock *tp = tcp_sk(sk);
104 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
105 return tp->snd_nxt;
106 else
107 return tcp_wnd_end(tp);
110 /* Calculate mss to advertise in SYN segment.
111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
113 * 1. It is independent of path mtu.
114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116 * attached devices, because some buggy hosts are confused by
117 * large MSS.
118 * 4. We do not make 3, we advertise MSS, calculated from first
119 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
120 * This may be overridden via information stored in routing table.
121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122 * probably even Jumbo".
124 static __u16 tcp_advertise_mss(struct sock *sk)
126 struct tcp_sock *tp = tcp_sk(sk);
127 const struct dst_entry *dst = __sk_dst_get(sk);
128 int mss = tp->advmss;
130 if (dst) {
131 unsigned int metric = dst_metric_advmss(dst);
133 if (metric < mss) {
134 mss = metric;
135 tp->advmss = mss;
139 return (__u16)mss;
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143 * This is the first part of cwnd validation mechanism. */
144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
146 struct tcp_sock *tp = tcp_sk(sk);
147 s32 delta = tcp_time_stamp - tp->lsndtime;
148 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
149 u32 cwnd = tp->snd_cwnd;
151 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
153 tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 restart_cwnd = min(restart_cwnd, cwnd);
156 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 cwnd >>= 1;
158 tp->snd_cwnd = max(cwnd, restart_cwnd);
159 tp->snd_cwnd_stamp = tcp_time_stamp;
160 tp->snd_cwnd_used = 0;
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 struct sock *sk)
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 const u32 now = tcp_time_stamp;
169 const struct dst_entry *dst = __sk_dst_get(sk);
171 if (sysctl_tcp_slow_start_after_idle &&
172 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
173 tcp_cwnd_restart(sk, __sk_dst_get(sk));
175 tp->lsndtime = now;
177 /* If it is a reply for ato after last received
178 * packet, enter pingpong mode.
180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
181 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
182 icsk->icsk_ack.pingpong = 1;
185 /* Account for an ACK we sent. */
186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
188 tcp_dec_quickack_mode(sk, pkts);
189 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
193 u32 tcp_default_init_rwnd(u32 mss)
195 /* Initial receive window should be twice of TCP_INIT_CWND to
196 * enable proper sending of new unsent data during fast recovery
197 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 * limit when mss is larger than 1460.
200 u32 init_rwnd = TCP_INIT_CWND * 2;
202 if (mss > 1460)
203 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
204 return init_rwnd;
207 /* Determine a window scaling and initial window to offer.
208 * Based on the assumption that the given amount of space
209 * will be offered. Store the results in the tp structure.
210 * NOTE: for smooth operation initial space offering should
211 * be a multiple of mss if possible. We assume here that mss >= 1.
212 * This MUST be enforced by all callers.
214 void tcp_select_initial_window(int __space, __u32 mss,
215 __u32 *rcv_wnd, __u32 *window_clamp,
216 int wscale_ok, __u8 *rcv_wscale,
217 __u32 init_rcv_wnd)
219 unsigned int space = (__space < 0 ? 0 : __space);
221 /* If no clamp set the clamp to the max possible scaled window */
222 if (*window_clamp == 0)
223 (*window_clamp) = (65535 << 14);
224 space = min(*window_clamp, space);
226 /* Quantize space offering to a multiple of mss if possible. */
227 if (space > mss)
228 space = (space / mss) * mss;
230 /* NOTE: offering an initial window larger than 32767
231 * will break some buggy TCP stacks. If the admin tells us
232 * it is likely we could be speaking with such a buggy stack
233 * we will truncate our initial window offering to 32K-1
234 * unless the remote has sent us a window scaling option,
235 * which we interpret as a sign the remote TCP is not
236 * misinterpreting the window field as a signed quantity.
238 if (sysctl_tcp_workaround_signed_windows)
239 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
240 else
241 (*rcv_wnd) = space;
243 (*rcv_wscale) = 0;
244 if (wscale_ok) {
245 /* Set window scaling on max possible window
246 * See RFC1323 for an explanation of the limit to 14
248 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
249 space = min_t(u32, space, *window_clamp);
250 while (space > 65535 && (*rcv_wscale) < 14) {
251 space >>= 1;
252 (*rcv_wscale)++;
256 if (mss > (1 << *rcv_wscale)) {
257 if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 init_rcv_wnd = tcp_default_init_rwnd(mss);
259 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
262 /* Set the clamp no higher than max representable value */
263 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
265 EXPORT_SYMBOL(tcp_select_initial_window);
267 /* Chose a new window to advertise, update state in tcp_sock for the
268 * socket, and return result with RFC1323 scaling applied. The return
269 * value can be stuffed directly into th->window for an outgoing
270 * frame.
272 static u16 tcp_select_window(struct sock *sk)
274 struct tcp_sock *tp = tcp_sk(sk);
275 u32 old_win = tp->rcv_wnd;
276 u32 cur_win = tcp_receive_window(tp);
277 u32 new_win = __tcp_select_window(sk);
279 /* Never shrink the offered window */
280 if (new_win < cur_win) {
281 /* Danger Will Robinson!
282 * Don't update rcv_wup/rcv_wnd here or else
283 * we will not be able to advertise a zero
284 * window in time. --DaveM
286 * Relax Will Robinson.
288 if (new_win == 0)
289 NET_INC_STATS(sock_net(sk),
290 LINUX_MIB_TCPWANTZEROWINDOWADV);
291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
293 tp->rcv_wnd = new_win;
294 tp->rcv_wup = tp->rcv_nxt;
296 /* Make sure we do not exceed the maximum possible
297 * scaled window.
299 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 new_win = min(new_win, MAX_TCP_WINDOW);
301 else
302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
304 /* RFC1323 scaling applied */
305 new_win >>= tp->rx_opt.rcv_wscale;
307 /* If we advertise zero window, disable fast path. */
308 if (new_win == 0) {
309 tp->pred_flags = 0;
310 if (old_win)
311 NET_INC_STATS(sock_net(sk),
312 LINUX_MIB_TCPTOZEROWINDOWADV);
313 } else if (old_win == 0) {
314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
317 return new_win;
320 /* Packet ECN state for a SYN-ACK */
321 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
323 const struct tcp_sock *tp = tcp_sk(sk);
325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
326 if (!(tp->ecn_flags & TCP_ECN_OK))
327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
328 else if (tcp_ca_needs_ecn(sk))
329 INET_ECN_xmit(sk);
332 /* Packet ECN state for a SYN. */
333 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
335 struct tcp_sock *tp = tcp_sk(sk);
337 tp->ecn_flags = 0;
338 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
339 tcp_ca_needs_ecn(sk)) {
340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 tp->ecn_flags = TCP_ECN_OK;
342 if (tcp_ca_needs_ecn(sk))
343 INET_ECN_xmit(sk);
347 static void
348 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
349 struct sock *sk)
351 if (inet_rsk(req)->ecn_ok) {
352 th->ece = 1;
353 if (tcp_ca_needs_ecn(sk))
354 INET_ECN_xmit(sk);
358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
359 * be sent.
361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
362 int tcp_header_len)
364 struct tcp_sock *tp = tcp_sk(sk);
366 if (tp->ecn_flags & TCP_ECN_OK) {
367 /* Not-retransmitted data segment: set ECT and inject CWR. */
368 if (skb->len != tcp_header_len &&
369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
370 INET_ECN_xmit(sk);
371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
373 tcp_hdr(skb)->cwr = 1;
374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
376 } else if (!tcp_ca_needs_ecn(sk)) {
377 /* ACK or retransmitted segment: clear ECT|CE */
378 INET_ECN_dontxmit(sk);
380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
381 tcp_hdr(skb)->ece = 1;
385 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
386 * auto increment end seqno.
388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
390 struct skb_shared_info *shinfo = skb_shinfo(skb);
392 skb->ip_summed = CHECKSUM_PARTIAL;
393 skb->csum = 0;
395 TCP_SKB_CB(skb)->tcp_flags = flags;
396 TCP_SKB_CB(skb)->sacked = 0;
398 tcp_skb_pcount_set(skb, 1);
399 shinfo->gso_size = 0;
400 shinfo->gso_type = 0;
402 TCP_SKB_CB(skb)->seq = seq;
403 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
404 seq++;
405 TCP_SKB_CB(skb)->end_seq = seq;
408 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
410 return tp->snd_una != tp->snd_up;
413 #define OPTION_SACK_ADVERTISE (1 << 0)
414 #define OPTION_TS (1 << 1)
415 #define OPTION_MD5 (1 << 2)
416 #define OPTION_WSCALE (1 << 3)
417 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
419 struct tcp_out_options {
420 u16 options; /* bit field of OPTION_* */
421 u16 mss; /* 0 to disable */
422 u8 ws; /* window scale, 0 to disable */
423 u8 num_sack_blocks; /* number of SACK blocks to include */
424 u8 hash_size; /* bytes in hash_location */
425 __u8 *hash_location; /* temporary pointer, overloaded */
426 __u32 tsval, tsecr; /* need to include OPTION_TS */
427 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
430 /* Write previously computed TCP options to the packet.
432 * Beware: Something in the Internet is very sensitive to the ordering of
433 * TCP options, we learned this through the hard way, so be careful here.
434 * Luckily we can at least blame others for their non-compliance but from
435 * inter-operability perspective it seems that we're somewhat stuck with
436 * the ordering which we have been using if we want to keep working with
437 * those broken things (not that it currently hurts anybody as there isn't
438 * particular reason why the ordering would need to be changed).
440 * At least SACK_PERM as the first option is known to lead to a disaster
441 * (but it may well be that other scenarios fail similarly).
443 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
444 struct tcp_out_options *opts)
446 u16 options = opts->options; /* mungable copy */
448 if (unlikely(OPTION_MD5 & options)) {
449 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
450 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
451 /* overload cookie hash location */
452 opts->hash_location = (__u8 *)ptr;
453 ptr += 4;
456 if (unlikely(opts->mss)) {
457 *ptr++ = htonl((TCPOPT_MSS << 24) |
458 (TCPOLEN_MSS << 16) |
459 opts->mss);
462 if (likely(OPTION_TS & options)) {
463 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
464 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
465 (TCPOLEN_SACK_PERM << 16) |
466 (TCPOPT_TIMESTAMP << 8) |
467 TCPOLEN_TIMESTAMP);
468 options &= ~OPTION_SACK_ADVERTISE;
469 } else {
470 *ptr++ = htonl((TCPOPT_NOP << 24) |
471 (TCPOPT_NOP << 16) |
472 (TCPOPT_TIMESTAMP << 8) |
473 TCPOLEN_TIMESTAMP);
475 *ptr++ = htonl(opts->tsval);
476 *ptr++ = htonl(opts->tsecr);
479 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
480 *ptr++ = htonl((TCPOPT_NOP << 24) |
481 (TCPOPT_NOP << 16) |
482 (TCPOPT_SACK_PERM << 8) |
483 TCPOLEN_SACK_PERM);
486 if (unlikely(OPTION_WSCALE & options)) {
487 *ptr++ = htonl((TCPOPT_NOP << 24) |
488 (TCPOPT_WINDOW << 16) |
489 (TCPOLEN_WINDOW << 8) |
490 opts->ws);
493 if (unlikely(opts->num_sack_blocks)) {
494 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
495 tp->duplicate_sack : tp->selective_acks;
496 int this_sack;
498 *ptr++ = htonl((TCPOPT_NOP << 24) |
499 (TCPOPT_NOP << 16) |
500 (TCPOPT_SACK << 8) |
501 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
502 TCPOLEN_SACK_PERBLOCK)));
504 for (this_sack = 0; this_sack < opts->num_sack_blocks;
505 ++this_sack) {
506 *ptr++ = htonl(sp[this_sack].start_seq);
507 *ptr++ = htonl(sp[this_sack].end_seq);
510 tp->rx_opt.dsack = 0;
513 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
514 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 *ptr++ = htonl((TCPOPT_EXP << 24) |
517 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
518 TCPOPT_FASTOPEN_MAGIC);
520 memcpy(ptr, foc->val, foc->len);
521 if ((foc->len & 3) == 2) {
522 u8 *align = ((u8 *)ptr) + foc->len;
523 align[0] = align[1] = TCPOPT_NOP;
525 ptr += (foc->len + 3) >> 2;
529 /* Compute TCP options for SYN packets. This is not the final
530 * network wire format yet.
532 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
533 struct tcp_out_options *opts,
534 struct tcp_md5sig_key **md5)
536 struct tcp_sock *tp = tcp_sk(sk);
537 unsigned int remaining = MAX_TCP_OPTION_SPACE;
538 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
540 #ifdef CONFIG_TCP_MD5SIG
541 *md5 = tp->af_specific->md5_lookup(sk, sk);
542 if (*md5) {
543 opts->options |= OPTION_MD5;
544 remaining -= TCPOLEN_MD5SIG_ALIGNED;
546 #else
547 *md5 = NULL;
548 #endif
550 /* We always get an MSS option. The option bytes which will be seen in
551 * normal data packets should timestamps be used, must be in the MSS
552 * advertised. But we subtract them from tp->mss_cache so that
553 * calculations in tcp_sendmsg are simpler etc. So account for this
554 * fact here if necessary. If we don't do this correctly, as a
555 * receiver we won't recognize data packets as being full sized when we
556 * should, and thus we won't abide by the delayed ACK rules correctly.
557 * SACKs don't matter, we never delay an ACK when we have any of those
558 * going out. */
559 opts->mss = tcp_advertise_mss(sk);
560 remaining -= TCPOLEN_MSS_ALIGNED;
562 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
563 opts->options |= OPTION_TS;
564 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
565 opts->tsecr = tp->rx_opt.ts_recent;
566 remaining -= TCPOLEN_TSTAMP_ALIGNED;
568 if (likely(sysctl_tcp_window_scaling)) {
569 opts->ws = tp->rx_opt.rcv_wscale;
570 opts->options |= OPTION_WSCALE;
571 remaining -= TCPOLEN_WSCALE_ALIGNED;
573 if (likely(sysctl_tcp_sack)) {
574 opts->options |= OPTION_SACK_ADVERTISE;
575 if (unlikely(!(OPTION_TS & opts->options)))
576 remaining -= TCPOLEN_SACKPERM_ALIGNED;
579 if (fastopen && fastopen->cookie.len >= 0) {
580 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
581 need = (need + 3) & ~3U; /* Align to 32 bits */
582 if (remaining >= need) {
583 opts->options |= OPTION_FAST_OPEN_COOKIE;
584 opts->fastopen_cookie = &fastopen->cookie;
585 remaining -= need;
586 tp->syn_fastopen = 1;
590 return MAX_TCP_OPTION_SPACE - remaining;
593 /* Set up TCP options for SYN-ACKs. */
594 static unsigned int tcp_synack_options(struct sock *sk,
595 struct request_sock *req,
596 unsigned int mss, struct sk_buff *skb,
597 struct tcp_out_options *opts,
598 struct tcp_md5sig_key **md5,
599 struct tcp_fastopen_cookie *foc)
601 struct inet_request_sock *ireq = inet_rsk(req);
602 unsigned int remaining = MAX_TCP_OPTION_SPACE;
604 #ifdef CONFIG_TCP_MD5SIG
605 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
606 if (*md5) {
607 opts->options |= OPTION_MD5;
608 remaining -= TCPOLEN_MD5SIG_ALIGNED;
610 /* We can't fit any SACK blocks in a packet with MD5 + TS
611 * options. There was discussion about disabling SACK
612 * rather than TS in order to fit in better with old,
613 * buggy kernels, but that was deemed to be unnecessary.
615 ireq->tstamp_ok &= !ireq->sack_ok;
617 #else
618 *md5 = NULL;
619 #endif
621 /* We always send an MSS option. */
622 opts->mss = mss;
623 remaining -= TCPOLEN_MSS_ALIGNED;
625 if (likely(ireq->wscale_ok)) {
626 opts->ws = ireq->rcv_wscale;
627 opts->options |= OPTION_WSCALE;
628 remaining -= TCPOLEN_WSCALE_ALIGNED;
630 if (likely(ireq->tstamp_ok)) {
631 opts->options |= OPTION_TS;
632 opts->tsval = tcp_skb_timestamp(skb);
633 opts->tsecr = req->ts_recent;
634 remaining -= TCPOLEN_TSTAMP_ALIGNED;
636 if (likely(ireq->sack_ok)) {
637 opts->options |= OPTION_SACK_ADVERTISE;
638 if (unlikely(!ireq->tstamp_ok))
639 remaining -= TCPOLEN_SACKPERM_ALIGNED;
641 if (foc != NULL && foc->len >= 0) {
642 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
643 need = (need + 3) & ~3U; /* Align to 32 bits */
644 if (remaining >= need) {
645 opts->options |= OPTION_FAST_OPEN_COOKIE;
646 opts->fastopen_cookie = foc;
647 remaining -= need;
651 return MAX_TCP_OPTION_SPACE - remaining;
654 /* Compute TCP options for ESTABLISHED sockets. This is not the
655 * final wire format yet.
657 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
658 struct tcp_out_options *opts,
659 struct tcp_md5sig_key **md5)
661 struct tcp_sock *tp = tcp_sk(sk);
662 unsigned int size = 0;
663 unsigned int eff_sacks;
665 opts->options = 0;
667 #ifdef CONFIG_TCP_MD5SIG
668 *md5 = tp->af_specific->md5_lookup(sk, sk);
669 if (unlikely(*md5)) {
670 opts->options |= OPTION_MD5;
671 size += TCPOLEN_MD5SIG_ALIGNED;
673 #else
674 *md5 = NULL;
675 #endif
677 if (likely(tp->rx_opt.tstamp_ok)) {
678 opts->options |= OPTION_TS;
679 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
680 opts->tsecr = tp->rx_opt.ts_recent;
681 size += TCPOLEN_TSTAMP_ALIGNED;
684 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
685 if (unlikely(eff_sacks)) {
686 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
687 opts->num_sack_blocks =
688 min_t(unsigned int, eff_sacks,
689 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
690 TCPOLEN_SACK_PERBLOCK);
691 size += TCPOLEN_SACK_BASE_ALIGNED +
692 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
695 return size;
699 /* TCP SMALL QUEUES (TSQ)
701 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
702 * to reduce RTT and bufferbloat.
703 * We do this using a special skb destructor (tcp_wfree).
705 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
706 * needs to be reallocated in a driver.
707 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
709 * Since transmit from skb destructor is forbidden, we use a tasklet
710 * to process all sockets that eventually need to send more skbs.
711 * We use one tasklet per cpu, with its own queue of sockets.
713 struct tsq_tasklet {
714 struct tasklet_struct tasklet;
715 struct list_head head; /* queue of tcp sockets */
717 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
719 static void tcp_tsq_handler(struct sock *sk)
721 if ((1 << sk->sk_state) &
722 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
723 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
724 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
725 0, GFP_ATOMIC);
728 * One tasklet per cpu tries to send more skbs.
729 * We run in tasklet context but need to disable irqs when
730 * transferring tsq->head because tcp_wfree() might
731 * interrupt us (non NAPI drivers)
733 static void tcp_tasklet_func(unsigned long data)
735 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
736 LIST_HEAD(list);
737 unsigned long flags;
738 struct list_head *q, *n;
739 struct tcp_sock *tp;
740 struct sock *sk;
742 local_irq_save(flags);
743 list_splice_init(&tsq->head, &list);
744 local_irq_restore(flags);
746 list_for_each_safe(q, n, &list) {
747 tp = list_entry(q, struct tcp_sock, tsq_node);
748 list_del(&tp->tsq_node);
750 sk = (struct sock *)tp;
751 bh_lock_sock(sk);
753 if (!sock_owned_by_user(sk)) {
754 tcp_tsq_handler(sk);
755 } else {
756 /* defer the work to tcp_release_cb() */
757 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
759 bh_unlock_sock(sk);
761 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
762 sk_free(sk);
766 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
767 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
768 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
769 (1UL << TCP_MTU_REDUCED_DEFERRED))
771 * tcp_release_cb - tcp release_sock() callback
772 * @sk: socket
774 * called from release_sock() to perform protocol dependent
775 * actions before socket release.
777 void tcp_release_cb(struct sock *sk)
779 struct tcp_sock *tp = tcp_sk(sk);
780 unsigned long flags, nflags;
782 /* perform an atomic operation only if at least one flag is set */
783 do {
784 flags = tp->tsq_flags;
785 if (!(flags & TCP_DEFERRED_ALL))
786 return;
787 nflags = flags & ~TCP_DEFERRED_ALL;
788 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
790 if (flags & (1UL << TCP_TSQ_DEFERRED))
791 tcp_tsq_handler(sk);
793 /* Here begins the tricky part :
794 * We are called from release_sock() with :
795 * 1) BH disabled
796 * 2) sk_lock.slock spinlock held
797 * 3) socket owned by us (sk->sk_lock.owned == 1)
799 * But following code is meant to be called from BH handlers,
800 * so we should keep BH disabled, but early release socket ownership
802 sock_release_ownership(sk);
804 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
805 tcp_write_timer_handler(sk);
806 __sock_put(sk);
808 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
809 tcp_delack_timer_handler(sk);
810 __sock_put(sk);
812 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
813 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
814 __sock_put(sk);
817 EXPORT_SYMBOL(tcp_release_cb);
819 void __init tcp_tasklet_init(void)
821 int i;
823 for_each_possible_cpu(i) {
824 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
826 INIT_LIST_HEAD(&tsq->head);
827 tasklet_init(&tsq->tasklet,
828 tcp_tasklet_func,
829 (unsigned long)tsq);
834 * Write buffer destructor automatically called from kfree_skb.
835 * We can't xmit new skbs from this context, as we might already
836 * hold qdisc lock.
838 void tcp_wfree(struct sk_buff *skb)
840 struct sock *sk = skb->sk;
841 struct tcp_sock *tp = tcp_sk(sk);
842 int wmem;
844 /* Keep one reference on sk_wmem_alloc.
845 * Will be released by sk_free() from here or tcp_tasklet_func()
847 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
849 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
850 * Wait until our queues (qdisc + devices) are drained.
851 * This gives :
852 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
853 * - chance for incoming ACK (processed by another cpu maybe)
854 * to migrate this flow (skb->ooo_okay will be eventually set)
856 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
857 goto out;
859 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
860 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
861 unsigned long flags;
862 struct tsq_tasklet *tsq;
864 /* queue this socket to tasklet queue */
865 local_irq_save(flags);
866 tsq = this_cpu_ptr(&tsq_tasklet);
867 list_add(&tp->tsq_node, &tsq->head);
868 tasklet_schedule(&tsq->tasklet);
869 local_irq_restore(flags);
870 return;
872 out:
873 sk_free(sk);
876 /* This routine actually transmits TCP packets queued in by
877 * tcp_do_sendmsg(). This is used by both the initial
878 * transmission and possible later retransmissions.
879 * All SKB's seen here are completely headerless. It is our
880 * job to build the TCP header, and pass the packet down to
881 * IP so it can do the same plus pass the packet off to the
882 * device.
884 * We are working here with either a clone of the original
885 * SKB, or a fresh unique copy made by the retransmit engine.
887 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
888 gfp_t gfp_mask)
890 const struct inet_connection_sock *icsk = inet_csk(sk);
891 struct inet_sock *inet;
892 struct tcp_sock *tp;
893 struct tcp_skb_cb *tcb;
894 struct tcp_out_options opts;
895 unsigned int tcp_options_size, tcp_header_size;
896 struct tcp_md5sig_key *md5;
897 struct tcphdr *th;
898 int err;
900 BUG_ON(!skb || !tcp_skb_pcount(skb));
902 if (clone_it) {
903 skb_mstamp_get(&skb->skb_mstamp);
905 if (unlikely(skb_cloned(skb)))
906 skb = pskb_copy(skb, gfp_mask);
907 else
908 skb = skb_clone(skb, gfp_mask);
909 if (unlikely(!skb))
910 return -ENOBUFS;
913 inet = inet_sk(sk);
914 tp = tcp_sk(sk);
915 tcb = TCP_SKB_CB(skb);
916 memset(&opts, 0, sizeof(opts));
918 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
919 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
920 else
921 tcp_options_size = tcp_established_options(sk, skb, &opts,
922 &md5);
923 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
925 if (tcp_packets_in_flight(tp) == 0)
926 tcp_ca_event(sk, CA_EVENT_TX_START);
928 /* if no packet is in qdisc/device queue, then allow XPS to select
929 * another queue. We can be called from tcp_tsq_handler()
930 * which holds one reference to sk_wmem_alloc.
932 * TODO: Ideally, in-flight pure ACK packets should not matter here.
933 * One way to get this would be to set skb->truesize = 2 on them.
935 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
937 skb_push(skb, tcp_header_size);
938 skb_reset_transport_header(skb);
940 skb_orphan(skb);
941 skb->sk = sk;
942 skb->destructor = tcp_wfree;
943 skb_set_hash_from_sk(skb, sk);
944 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
946 /* Build TCP header and checksum it. */
947 th = tcp_hdr(skb);
948 th->source = inet->inet_sport;
949 th->dest = inet->inet_dport;
950 th->seq = htonl(tcb->seq);
951 th->ack_seq = htonl(tp->rcv_nxt);
952 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
953 tcb->tcp_flags);
955 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
956 /* RFC1323: The window in SYN & SYN/ACK segments
957 * is never scaled.
959 th->window = htons(min(tp->rcv_wnd, 65535U));
960 } else {
961 th->window = htons(tcp_select_window(sk));
963 th->check = 0;
964 th->urg_ptr = 0;
966 /* The urg_mode check is necessary during a below snd_una win probe */
967 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
968 if (before(tp->snd_up, tcb->seq + 0x10000)) {
969 th->urg_ptr = htons(tp->snd_up - tcb->seq);
970 th->urg = 1;
971 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
972 th->urg_ptr = htons(0xFFFF);
973 th->urg = 1;
977 tcp_options_write((__be32 *)(th + 1), tp, &opts);
978 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
979 tcp_ecn_send(sk, skb, tcp_header_size);
981 #ifdef CONFIG_TCP_MD5SIG
982 /* Calculate the MD5 hash, as we have all we need now */
983 if (md5) {
984 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
985 tp->af_specific->calc_md5_hash(opts.hash_location,
986 md5, sk, NULL, skb);
988 #endif
990 icsk->icsk_af_ops->send_check(sk, skb);
992 if (likely(tcb->tcp_flags & TCPHDR_ACK))
993 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
995 if (skb->len != tcp_header_size)
996 tcp_event_data_sent(tp, sk);
998 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
999 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1000 tcp_skb_pcount(skb));
1002 /* OK, its time to fill skb_shinfo(skb)->gso_segs */
1003 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1005 /* Our usage of tstamp should remain private */
1006 skb->tstamp.tv64 = 0;
1008 /* Cleanup our debris for IP stacks */
1009 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1010 sizeof(struct inet6_skb_parm)));
1012 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1014 if (likely(err <= 0))
1015 return err;
1017 tcp_enter_cwr(sk);
1019 return net_xmit_eval(err);
1022 /* This routine just queues the buffer for sending.
1024 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1025 * otherwise socket can stall.
1027 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1029 struct tcp_sock *tp = tcp_sk(sk);
1031 /* Advance write_seq and place onto the write_queue. */
1032 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1033 __skb_header_release(skb);
1034 tcp_add_write_queue_tail(sk, skb);
1035 sk->sk_wmem_queued += skb->truesize;
1036 sk_mem_charge(sk, skb->truesize);
1039 /* Initialize TSO segments for a packet. */
1040 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1041 unsigned int mss_now)
1043 struct skb_shared_info *shinfo = skb_shinfo(skb);
1045 /* Make sure we own this skb before messing gso_size/gso_segs */
1046 WARN_ON_ONCE(skb_cloned(skb));
1048 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1049 /* Avoid the costly divide in the normal
1050 * non-TSO case.
1052 tcp_skb_pcount_set(skb, 1);
1053 shinfo->gso_size = 0;
1054 shinfo->gso_type = 0;
1055 } else {
1056 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1057 shinfo->gso_size = mss_now;
1058 shinfo->gso_type = sk->sk_gso_type;
1062 /* When a modification to fackets out becomes necessary, we need to check
1063 * skb is counted to fackets_out or not.
1065 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1066 int decr)
1068 struct tcp_sock *tp = tcp_sk(sk);
1070 if (!tp->sacked_out || tcp_is_reno(tp))
1071 return;
1073 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1074 tp->fackets_out -= decr;
1077 /* Pcount in the middle of the write queue got changed, we need to do various
1078 * tweaks to fix counters
1080 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1082 struct tcp_sock *tp = tcp_sk(sk);
1084 tp->packets_out -= decr;
1086 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1087 tp->sacked_out -= decr;
1088 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1089 tp->retrans_out -= decr;
1090 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1091 tp->lost_out -= decr;
1093 /* Reno case is special. Sigh... */
1094 if (tcp_is_reno(tp) && decr > 0)
1095 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1097 tcp_adjust_fackets_out(sk, skb, decr);
1099 if (tp->lost_skb_hint &&
1100 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1101 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1102 tp->lost_cnt_hint -= decr;
1104 tcp_verify_left_out(tp);
1107 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1109 struct skb_shared_info *shinfo = skb_shinfo(skb);
1111 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1112 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1113 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1114 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1116 shinfo->tx_flags &= ~tsflags;
1117 shinfo2->tx_flags |= tsflags;
1118 swap(shinfo->tskey, shinfo2->tskey);
1122 /* Function to create two new TCP segments. Shrinks the given segment
1123 * to the specified size and appends a new segment with the rest of the
1124 * packet to the list. This won't be called frequently, I hope.
1125 * Remember, these are still headerless SKBs at this point.
1127 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1128 unsigned int mss_now, gfp_t gfp)
1130 struct tcp_sock *tp = tcp_sk(sk);
1131 struct sk_buff *buff;
1132 int nsize, old_factor;
1133 int nlen;
1134 u8 flags;
1136 if (WARN_ON(len > skb->len))
1137 return -EINVAL;
1139 nsize = skb_headlen(skb) - len;
1140 if (nsize < 0)
1141 nsize = 0;
1143 if (skb_unclone(skb, gfp))
1144 return -ENOMEM;
1146 /* Get a new skb... force flag on. */
1147 buff = sk_stream_alloc_skb(sk, nsize, gfp);
1148 if (buff == NULL)
1149 return -ENOMEM; /* We'll just try again later. */
1151 sk->sk_wmem_queued += buff->truesize;
1152 sk_mem_charge(sk, buff->truesize);
1153 nlen = skb->len - len - nsize;
1154 buff->truesize += nlen;
1155 skb->truesize -= nlen;
1157 /* Correct the sequence numbers. */
1158 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1159 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1160 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1162 /* PSH and FIN should only be set in the second packet. */
1163 flags = TCP_SKB_CB(skb)->tcp_flags;
1164 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1165 TCP_SKB_CB(buff)->tcp_flags = flags;
1166 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1168 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1169 /* Copy and checksum data tail into the new buffer. */
1170 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1171 skb_put(buff, nsize),
1172 nsize, 0);
1174 skb_trim(skb, len);
1176 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1177 } else {
1178 skb->ip_summed = CHECKSUM_PARTIAL;
1179 skb_split(skb, buff, len);
1182 buff->ip_summed = skb->ip_summed;
1184 buff->tstamp = skb->tstamp;
1185 tcp_fragment_tstamp(skb, buff);
1187 old_factor = tcp_skb_pcount(skb);
1189 /* Fix up tso_factor for both original and new SKB. */
1190 tcp_set_skb_tso_segs(sk, skb, mss_now);
1191 tcp_set_skb_tso_segs(sk, buff, mss_now);
1193 /* If this packet has been sent out already, we must
1194 * adjust the various packet counters.
1196 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1197 int diff = old_factor - tcp_skb_pcount(skb) -
1198 tcp_skb_pcount(buff);
1200 if (diff)
1201 tcp_adjust_pcount(sk, skb, diff);
1204 /* Link BUFF into the send queue. */
1205 __skb_header_release(buff);
1206 tcp_insert_write_queue_after(skb, buff, sk);
1208 return 0;
1211 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1212 * eventually). The difference is that pulled data not copied, but
1213 * immediately discarded.
1215 static void __pskb_trim_head(struct sk_buff *skb, int len)
1217 struct skb_shared_info *shinfo;
1218 int i, k, eat;
1220 eat = min_t(int, len, skb_headlen(skb));
1221 if (eat) {
1222 __skb_pull(skb, eat);
1223 len -= eat;
1224 if (!len)
1225 return;
1227 eat = len;
1228 k = 0;
1229 shinfo = skb_shinfo(skb);
1230 for (i = 0; i < shinfo->nr_frags; i++) {
1231 int size = skb_frag_size(&shinfo->frags[i]);
1233 if (size <= eat) {
1234 skb_frag_unref(skb, i);
1235 eat -= size;
1236 } else {
1237 shinfo->frags[k] = shinfo->frags[i];
1238 if (eat) {
1239 shinfo->frags[k].page_offset += eat;
1240 skb_frag_size_sub(&shinfo->frags[k], eat);
1241 eat = 0;
1243 k++;
1246 shinfo->nr_frags = k;
1248 skb_reset_tail_pointer(skb);
1249 skb->data_len -= len;
1250 skb->len = skb->data_len;
1253 /* Remove acked data from a packet in the transmit queue. */
1254 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1256 if (skb_unclone(skb, GFP_ATOMIC))
1257 return -ENOMEM;
1259 __pskb_trim_head(skb, len);
1261 TCP_SKB_CB(skb)->seq += len;
1262 skb->ip_summed = CHECKSUM_PARTIAL;
1264 skb->truesize -= len;
1265 sk->sk_wmem_queued -= len;
1266 sk_mem_uncharge(sk, len);
1267 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1269 /* Any change of skb->len requires recalculation of tso factor. */
1270 if (tcp_skb_pcount(skb) > 1)
1271 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1273 return 0;
1276 /* Calculate MSS not accounting any TCP options. */
1277 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1279 const struct tcp_sock *tp = tcp_sk(sk);
1280 const struct inet_connection_sock *icsk = inet_csk(sk);
1281 int mss_now;
1283 /* Calculate base mss without TCP options:
1284 It is MMS_S - sizeof(tcphdr) of rfc1122
1286 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1288 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1289 if (icsk->icsk_af_ops->net_frag_header_len) {
1290 const struct dst_entry *dst = __sk_dst_get(sk);
1292 if (dst && dst_allfrag(dst))
1293 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1296 /* Clamp it (mss_clamp does not include tcp options) */
1297 if (mss_now > tp->rx_opt.mss_clamp)
1298 mss_now = tp->rx_opt.mss_clamp;
1300 /* Now subtract optional transport overhead */
1301 mss_now -= icsk->icsk_ext_hdr_len;
1303 /* Then reserve room for full set of TCP options and 8 bytes of data */
1304 if (mss_now < 48)
1305 mss_now = 48;
1306 return mss_now;
1309 /* Calculate MSS. Not accounting for SACKs here. */
1310 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1312 /* Subtract TCP options size, not including SACKs */
1313 return __tcp_mtu_to_mss(sk, pmtu) -
1314 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1317 /* Inverse of above */
1318 int tcp_mss_to_mtu(struct sock *sk, int mss)
1320 const struct tcp_sock *tp = tcp_sk(sk);
1321 const struct inet_connection_sock *icsk = inet_csk(sk);
1322 int mtu;
1324 mtu = mss +
1325 tp->tcp_header_len +
1326 icsk->icsk_ext_hdr_len +
1327 icsk->icsk_af_ops->net_header_len;
1329 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1330 if (icsk->icsk_af_ops->net_frag_header_len) {
1331 const struct dst_entry *dst = __sk_dst_get(sk);
1333 if (dst && dst_allfrag(dst))
1334 mtu += icsk->icsk_af_ops->net_frag_header_len;
1336 return mtu;
1339 /* MTU probing init per socket */
1340 void tcp_mtup_init(struct sock *sk)
1342 struct tcp_sock *tp = tcp_sk(sk);
1343 struct inet_connection_sock *icsk = inet_csk(sk);
1345 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1346 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1347 icsk->icsk_af_ops->net_header_len;
1348 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1349 icsk->icsk_mtup.probe_size = 0;
1351 EXPORT_SYMBOL(tcp_mtup_init);
1353 /* This function synchronize snd mss to current pmtu/exthdr set.
1355 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1356 for TCP options, but includes only bare TCP header.
1358 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1359 It is minimum of user_mss and mss received with SYN.
1360 It also does not include TCP options.
1362 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1364 tp->mss_cache is current effective sending mss, including
1365 all tcp options except for SACKs. It is evaluated,
1366 taking into account current pmtu, but never exceeds
1367 tp->rx_opt.mss_clamp.
1369 NOTE1. rfc1122 clearly states that advertised MSS
1370 DOES NOT include either tcp or ip options.
1372 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1373 are READ ONLY outside this function. --ANK (980731)
1375 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1377 struct tcp_sock *tp = tcp_sk(sk);
1378 struct inet_connection_sock *icsk = inet_csk(sk);
1379 int mss_now;
1381 if (icsk->icsk_mtup.search_high > pmtu)
1382 icsk->icsk_mtup.search_high = pmtu;
1384 mss_now = tcp_mtu_to_mss(sk, pmtu);
1385 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1387 /* And store cached results */
1388 icsk->icsk_pmtu_cookie = pmtu;
1389 if (icsk->icsk_mtup.enabled)
1390 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1391 tp->mss_cache = mss_now;
1393 return mss_now;
1395 EXPORT_SYMBOL(tcp_sync_mss);
1397 /* Compute the current effective MSS, taking SACKs and IP options,
1398 * and even PMTU discovery events into account.
1400 unsigned int tcp_current_mss(struct sock *sk)
1402 const struct tcp_sock *tp = tcp_sk(sk);
1403 const struct dst_entry *dst = __sk_dst_get(sk);
1404 u32 mss_now;
1405 unsigned int header_len;
1406 struct tcp_out_options opts;
1407 struct tcp_md5sig_key *md5;
1409 mss_now = tp->mss_cache;
1411 if (dst) {
1412 u32 mtu = dst_mtu(dst);
1413 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1414 mss_now = tcp_sync_mss(sk, mtu);
1417 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1418 sizeof(struct tcphdr);
1419 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1420 * some common options. If this is an odd packet (because we have SACK
1421 * blocks etc) then our calculated header_len will be different, and
1422 * we have to adjust mss_now correspondingly */
1423 if (header_len != tp->tcp_header_len) {
1424 int delta = (int) header_len - tp->tcp_header_len;
1425 mss_now -= delta;
1428 return mss_now;
1431 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1432 * As additional protections, we do not touch cwnd in retransmission phases,
1433 * and if application hit its sndbuf limit recently.
1435 static void tcp_cwnd_application_limited(struct sock *sk)
1437 struct tcp_sock *tp = tcp_sk(sk);
1439 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1440 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1441 /* Limited by application or receiver window. */
1442 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1443 u32 win_used = max(tp->snd_cwnd_used, init_win);
1444 if (win_used < tp->snd_cwnd) {
1445 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1446 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1448 tp->snd_cwnd_used = 0;
1450 tp->snd_cwnd_stamp = tcp_time_stamp;
1453 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1455 struct tcp_sock *tp = tcp_sk(sk);
1457 /* Track the maximum number of outstanding packets in each
1458 * window, and remember whether we were cwnd-limited then.
1460 if (!before(tp->snd_una, tp->max_packets_seq) ||
1461 tp->packets_out > tp->max_packets_out) {
1462 tp->max_packets_out = tp->packets_out;
1463 tp->max_packets_seq = tp->snd_nxt;
1464 tp->is_cwnd_limited = is_cwnd_limited;
1467 if (tcp_is_cwnd_limited(sk)) {
1468 /* Network is feed fully. */
1469 tp->snd_cwnd_used = 0;
1470 tp->snd_cwnd_stamp = tcp_time_stamp;
1471 } else {
1472 /* Network starves. */
1473 if (tp->packets_out > tp->snd_cwnd_used)
1474 tp->snd_cwnd_used = tp->packets_out;
1476 if (sysctl_tcp_slow_start_after_idle &&
1477 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1478 tcp_cwnd_application_limited(sk);
1482 /* Minshall's variant of the Nagle send check. */
1483 static bool tcp_minshall_check(const struct tcp_sock *tp)
1485 return after(tp->snd_sml, tp->snd_una) &&
1486 !after(tp->snd_sml, tp->snd_nxt);
1489 /* Update snd_sml if this skb is under mss
1490 * Note that a TSO packet might end with a sub-mss segment
1491 * The test is really :
1492 * if ((skb->len % mss) != 0)
1493 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1494 * But we can avoid doing the divide again given we already have
1495 * skb_pcount = skb->len / mss_now
1497 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1498 const struct sk_buff *skb)
1500 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1501 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1504 /* Return false, if packet can be sent now without violation Nagle's rules:
1505 * 1. It is full sized. (provided by caller in %partial bool)
1506 * 2. Or it contains FIN. (already checked by caller)
1507 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1508 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1509 * With Minshall's modification: all sent small packets are ACKed.
1511 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1512 int nonagle)
1514 return partial &&
1515 ((nonagle & TCP_NAGLE_CORK) ||
1516 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1518 /* Returns the portion of skb which can be sent right away */
1519 static unsigned int tcp_mss_split_point(const struct sock *sk,
1520 const struct sk_buff *skb,
1521 unsigned int mss_now,
1522 unsigned int max_segs,
1523 int nonagle)
1525 const struct tcp_sock *tp = tcp_sk(sk);
1526 u32 partial, needed, window, max_len;
1528 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1529 max_len = mss_now * max_segs;
1531 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1532 return max_len;
1534 needed = min(skb->len, window);
1536 if (max_len <= needed)
1537 return max_len;
1539 partial = needed % mss_now;
1540 /* If last segment is not a full MSS, check if Nagle rules allow us
1541 * to include this last segment in this skb.
1542 * Otherwise, we'll split the skb at last MSS boundary
1544 if (tcp_nagle_check(partial != 0, tp, nonagle))
1545 return needed - partial;
1547 return needed;
1550 /* Can at least one segment of SKB be sent right now, according to the
1551 * congestion window rules? If so, return how many segments are allowed.
1553 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1554 const struct sk_buff *skb)
1556 u32 in_flight, cwnd;
1558 /* Don't be strict about the congestion window for the final FIN. */
1559 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1560 tcp_skb_pcount(skb) == 1)
1561 return 1;
1563 in_flight = tcp_packets_in_flight(tp);
1564 cwnd = tp->snd_cwnd;
1565 if (in_flight < cwnd)
1566 return (cwnd - in_flight);
1568 return 0;
1571 /* Initialize TSO state of a skb.
1572 * This must be invoked the first time we consider transmitting
1573 * SKB onto the wire.
1575 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1576 unsigned int mss_now)
1578 int tso_segs = tcp_skb_pcount(skb);
1580 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1581 tcp_set_skb_tso_segs(sk, skb, mss_now);
1582 tso_segs = tcp_skb_pcount(skb);
1584 return tso_segs;
1588 /* Return true if the Nagle test allows this packet to be
1589 * sent now.
1591 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1592 unsigned int cur_mss, int nonagle)
1594 /* Nagle rule does not apply to frames, which sit in the middle of the
1595 * write_queue (they have no chances to get new data).
1597 * This is implemented in the callers, where they modify the 'nonagle'
1598 * argument based upon the location of SKB in the send queue.
1600 if (nonagle & TCP_NAGLE_PUSH)
1601 return true;
1603 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1604 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1605 return true;
1607 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1608 return true;
1610 return false;
1613 /* Does at least the first segment of SKB fit into the send window? */
1614 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1615 const struct sk_buff *skb,
1616 unsigned int cur_mss)
1618 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1620 if (skb->len > cur_mss)
1621 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1623 return !after(end_seq, tcp_wnd_end(tp));
1626 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1627 * should be put on the wire right now. If so, it returns the number of
1628 * packets allowed by the congestion window.
1630 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1631 unsigned int cur_mss, int nonagle)
1633 const struct tcp_sock *tp = tcp_sk(sk);
1634 unsigned int cwnd_quota;
1636 tcp_init_tso_segs(sk, skb, cur_mss);
1638 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1639 return 0;
1641 cwnd_quota = tcp_cwnd_test(tp, skb);
1642 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1643 cwnd_quota = 0;
1645 return cwnd_quota;
1648 /* Test if sending is allowed right now. */
1649 bool tcp_may_send_now(struct sock *sk)
1651 const struct tcp_sock *tp = tcp_sk(sk);
1652 struct sk_buff *skb = tcp_send_head(sk);
1654 return skb &&
1655 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1656 (tcp_skb_is_last(sk, skb) ?
1657 tp->nonagle : TCP_NAGLE_PUSH));
1660 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1661 * which is put after SKB on the list. It is very much like
1662 * tcp_fragment() except that it may make several kinds of assumptions
1663 * in order to speed up the splitting operation. In particular, we
1664 * know that all the data is in scatter-gather pages, and that the
1665 * packet has never been sent out before (and thus is not cloned).
1667 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1668 unsigned int mss_now, gfp_t gfp)
1670 struct sk_buff *buff;
1671 int nlen = skb->len - len;
1672 u8 flags;
1674 /* All of a TSO frame must be composed of paged data. */
1675 if (skb->len != skb->data_len)
1676 return tcp_fragment(sk, skb, len, mss_now, gfp);
1678 buff = sk_stream_alloc_skb(sk, 0, gfp);
1679 if (unlikely(buff == NULL))
1680 return -ENOMEM;
1682 sk->sk_wmem_queued += buff->truesize;
1683 sk_mem_charge(sk, buff->truesize);
1684 buff->truesize += nlen;
1685 skb->truesize -= nlen;
1687 /* Correct the sequence numbers. */
1688 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1689 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1690 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1692 /* PSH and FIN should only be set in the second packet. */
1693 flags = TCP_SKB_CB(skb)->tcp_flags;
1694 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1695 TCP_SKB_CB(buff)->tcp_flags = flags;
1697 /* This packet was never sent out yet, so no SACK bits. */
1698 TCP_SKB_CB(buff)->sacked = 0;
1700 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1701 skb_split(skb, buff, len);
1702 tcp_fragment_tstamp(skb, buff);
1704 /* Fix up tso_factor for both original and new SKB. */
1705 tcp_set_skb_tso_segs(sk, skb, mss_now);
1706 tcp_set_skb_tso_segs(sk, buff, mss_now);
1708 /* Link BUFF into the send queue. */
1709 __skb_header_release(buff);
1710 tcp_insert_write_queue_after(skb, buff, sk);
1712 return 0;
1715 /* Try to defer sending, if possible, in order to minimize the amount
1716 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1718 * This algorithm is from John Heffner.
1720 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1721 bool *is_cwnd_limited)
1723 struct tcp_sock *tp = tcp_sk(sk);
1724 const struct inet_connection_sock *icsk = inet_csk(sk);
1725 u32 send_win, cong_win, limit, in_flight;
1726 int win_divisor;
1728 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1729 goto send_now;
1731 if (icsk->icsk_ca_state != TCP_CA_Open)
1732 goto send_now;
1734 /* Defer for less than two clock ticks. */
1735 if (tp->tso_deferred &&
1736 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1737 goto send_now;
1739 in_flight = tcp_packets_in_flight(tp);
1741 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1743 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1745 /* From in_flight test above, we know that cwnd > in_flight. */
1746 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1748 limit = min(send_win, cong_win);
1750 /* If a full-sized TSO skb can be sent, do it. */
1751 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1752 tp->xmit_size_goal_segs * tp->mss_cache))
1753 goto send_now;
1755 /* Middle in queue won't get any more data, full sendable already? */
1756 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1757 goto send_now;
1759 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1760 if (win_divisor) {
1761 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1763 /* If at least some fraction of a window is available,
1764 * just use it.
1766 chunk /= win_divisor;
1767 if (limit >= chunk)
1768 goto send_now;
1769 } else {
1770 /* Different approach, try not to defer past a single
1771 * ACK. Receiver should ACK every other full sized
1772 * frame, so if we have space for more than 3 frames
1773 * then send now.
1775 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1776 goto send_now;
1779 /* Ok, it looks like it is advisable to defer.
1780 * Do not rearm the timer if already set to not break TCP ACK clocking.
1782 if (!tp->tso_deferred)
1783 tp->tso_deferred = 1 | (jiffies << 1);
1785 if (cong_win < send_win && cong_win < skb->len)
1786 *is_cwnd_limited = true;
1788 return true;
1790 send_now:
1791 tp->tso_deferred = 0;
1792 return false;
1795 /* Create a new MTU probe if we are ready.
1796 * MTU probe is regularly attempting to increase the path MTU by
1797 * deliberately sending larger packets. This discovers routing
1798 * changes resulting in larger path MTUs.
1800 * Returns 0 if we should wait to probe (no cwnd available),
1801 * 1 if a probe was sent,
1802 * -1 otherwise
1804 static int tcp_mtu_probe(struct sock *sk)
1806 struct tcp_sock *tp = tcp_sk(sk);
1807 struct inet_connection_sock *icsk = inet_csk(sk);
1808 struct sk_buff *skb, *nskb, *next;
1809 int len;
1810 int probe_size;
1811 int size_needed;
1812 int copy;
1813 int mss_now;
1815 /* Not currently probing/verifying,
1816 * not in recovery,
1817 * have enough cwnd, and
1818 * not SACKing (the variable headers throw things off) */
1819 if (!icsk->icsk_mtup.enabled ||
1820 icsk->icsk_mtup.probe_size ||
1821 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1822 tp->snd_cwnd < 11 ||
1823 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1824 return -1;
1826 /* Very simple search strategy: just double the MSS. */
1827 mss_now = tcp_current_mss(sk);
1828 probe_size = 2 * tp->mss_cache;
1829 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1830 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1831 /* TODO: set timer for probe_converge_event */
1832 return -1;
1835 /* Have enough data in the send queue to probe? */
1836 if (tp->write_seq - tp->snd_nxt < size_needed)
1837 return -1;
1839 if (tp->snd_wnd < size_needed)
1840 return -1;
1841 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1842 return 0;
1844 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1845 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1846 if (!tcp_packets_in_flight(tp))
1847 return -1;
1848 else
1849 return 0;
1852 /* We're allowed to probe. Build it now. */
1853 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1854 return -1;
1855 sk->sk_wmem_queued += nskb->truesize;
1856 sk_mem_charge(sk, nskb->truesize);
1858 skb = tcp_send_head(sk);
1860 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1861 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1862 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1863 TCP_SKB_CB(nskb)->sacked = 0;
1864 nskb->csum = 0;
1865 nskb->ip_summed = skb->ip_summed;
1867 tcp_insert_write_queue_before(nskb, skb, sk);
1869 len = 0;
1870 tcp_for_write_queue_from_safe(skb, next, sk) {
1871 copy = min_t(int, skb->len, probe_size - len);
1872 if (nskb->ip_summed)
1873 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1874 else
1875 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1876 skb_put(nskb, copy),
1877 copy, nskb->csum);
1879 if (skb->len <= copy) {
1880 /* We've eaten all the data from this skb.
1881 * Throw it away. */
1882 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1883 tcp_unlink_write_queue(skb, sk);
1884 sk_wmem_free_skb(sk, skb);
1885 } else {
1886 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1887 ~(TCPHDR_FIN|TCPHDR_PSH);
1888 if (!skb_shinfo(skb)->nr_frags) {
1889 skb_pull(skb, copy);
1890 if (skb->ip_summed != CHECKSUM_PARTIAL)
1891 skb->csum = csum_partial(skb->data,
1892 skb->len, 0);
1893 } else {
1894 __pskb_trim_head(skb, copy);
1895 tcp_set_skb_tso_segs(sk, skb, mss_now);
1897 TCP_SKB_CB(skb)->seq += copy;
1900 len += copy;
1902 if (len >= probe_size)
1903 break;
1905 tcp_init_tso_segs(sk, nskb, nskb->len);
1907 /* We're ready to send. If this fails, the probe will
1908 * be resegmented into mss-sized pieces by tcp_write_xmit().
1910 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1911 /* Decrement cwnd here because we are sending
1912 * effectively two packets. */
1913 tp->snd_cwnd--;
1914 tcp_event_new_data_sent(sk, nskb);
1916 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1917 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1918 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1920 return 1;
1923 return -1;
1926 /* This routine writes packets to the network. It advances the
1927 * send_head. This happens as incoming acks open up the remote
1928 * window for us.
1930 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1931 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1932 * account rare use of URG, this is not a big flaw.
1934 * Send at most one packet when push_one > 0. Temporarily ignore
1935 * cwnd limit to force at most one packet out when push_one == 2.
1937 * Returns true, if no segments are in flight and we have queued segments,
1938 * but cannot send anything now because of SWS or another problem.
1940 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1941 int push_one, gfp_t gfp)
1943 struct tcp_sock *tp = tcp_sk(sk);
1944 struct sk_buff *skb;
1945 unsigned int tso_segs, sent_pkts;
1946 int cwnd_quota;
1947 int result;
1948 bool is_cwnd_limited = false;
1950 sent_pkts = 0;
1952 if (!push_one) {
1953 /* Do MTU probing. */
1954 result = tcp_mtu_probe(sk);
1955 if (!result) {
1956 return false;
1957 } else if (result > 0) {
1958 sent_pkts = 1;
1962 while ((skb = tcp_send_head(sk))) {
1963 unsigned int limit;
1965 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1966 BUG_ON(!tso_segs);
1968 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
1969 /* "skb_mstamp" is used as a start point for the retransmit timer */
1970 skb_mstamp_get(&skb->skb_mstamp);
1971 goto repair; /* Skip network transmission */
1974 cwnd_quota = tcp_cwnd_test(tp, skb);
1975 if (!cwnd_quota) {
1976 is_cwnd_limited = true;
1977 if (push_one == 2)
1978 /* Force out a loss probe pkt. */
1979 cwnd_quota = 1;
1980 else
1981 break;
1984 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1985 break;
1987 if (tso_segs == 1) {
1988 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1989 (tcp_skb_is_last(sk, skb) ?
1990 nonagle : TCP_NAGLE_PUSH))))
1991 break;
1992 } else {
1993 if (!push_one &&
1994 tcp_tso_should_defer(sk, skb, &is_cwnd_limited))
1995 break;
1998 /* TCP Small Queues :
1999 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2000 * This allows for :
2001 * - better RTT estimation and ACK scheduling
2002 * - faster recovery
2003 * - high rates
2004 * Alas, some drivers / subsystems require a fair amount
2005 * of queued bytes to ensure line rate.
2006 * One example is wifi aggregation (802.11 AMPDU)
2008 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
2009 sk->sk_pacing_rate >> 10);
2011 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2012 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2013 /* It is possible TX completion already happened
2014 * before we set TSQ_THROTTLED, so we must
2015 * test again the condition.
2017 smp_mb__after_atomic();
2018 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2019 break;
2022 limit = mss_now;
2023 if (tso_segs > 1 && !tcp_urg_mode(tp))
2024 limit = tcp_mss_split_point(sk, skb, mss_now,
2025 min_t(unsigned int,
2026 cwnd_quota,
2027 sk->sk_gso_max_segs),
2028 nonagle);
2030 if (skb->len > limit &&
2031 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2032 break;
2034 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2035 break;
2037 repair:
2038 /* Advance the send_head. This one is sent out.
2039 * This call will increment packets_out.
2041 tcp_event_new_data_sent(sk, skb);
2043 tcp_minshall_update(tp, mss_now, skb);
2044 sent_pkts += tcp_skb_pcount(skb);
2046 if (push_one)
2047 break;
2050 if (likely(sent_pkts)) {
2051 if (tcp_in_cwnd_reduction(sk))
2052 tp->prr_out += sent_pkts;
2054 /* Send one loss probe per tail loss episode. */
2055 if (push_one != 2)
2056 tcp_schedule_loss_probe(sk);
2057 tcp_cwnd_validate(sk, is_cwnd_limited);
2058 return false;
2060 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2063 bool tcp_schedule_loss_probe(struct sock *sk)
2065 struct inet_connection_sock *icsk = inet_csk(sk);
2066 struct tcp_sock *tp = tcp_sk(sk);
2067 u32 timeout, tlp_time_stamp, rto_time_stamp;
2068 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2070 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2071 return false;
2072 /* No consecutive loss probes. */
2073 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2074 tcp_rearm_rto(sk);
2075 return false;
2077 /* Don't do any loss probe on a Fast Open connection before 3WHS
2078 * finishes.
2080 if (sk->sk_state == TCP_SYN_RECV)
2081 return false;
2083 /* TLP is only scheduled when next timer event is RTO. */
2084 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2085 return false;
2087 /* Schedule a loss probe in 2*RTT for SACK capable connections
2088 * in Open state, that are either limited by cwnd or application.
2090 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2091 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2092 return false;
2094 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2095 tcp_send_head(sk))
2096 return false;
2098 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2099 * for delayed ack when there's one outstanding packet.
2101 timeout = rtt << 1;
2102 if (tp->packets_out == 1)
2103 timeout = max_t(u32, timeout,
2104 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2105 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2107 /* If RTO is shorter, just schedule TLP in its place. */
2108 tlp_time_stamp = tcp_time_stamp + timeout;
2109 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2110 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2111 s32 delta = rto_time_stamp - tcp_time_stamp;
2112 if (delta > 0)
2113 timeout = delta;
2116 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2117 TCP_RTO_MAX);
2118 return true;
2121 /* Thanks to skb fast clones, we can detect if a prior transmit of
2122 * a packet is still in a qdisc or driver queue.
2123 * In this case, there is very little point doing a retransmit !
2124 * Note: This is called from BH context only.
2126 static bool skb_still_in_host_queue(const struct sock *sk,
2127 const struct sk_buff *skb)
2129 if (unlikely(skb_fclone_busy(sk, skb))) {
2130 NET_INC_STATS_BH(sock_net(sk),
2131 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2132 return true;
2134 return false;
2137 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2138 * retransmit the last segment.
2140 void tcp_send_loss_probe(struct sock *sk)
2142 struct tcp_sock *tp = tcp_sk(sk);
2143 struct sk_buff *skb;
2144 int pcount;
2145 int mss = tcp_current_mss(sk);
2146 int err = -1;
2148 if (tcp_send_head(sk) != NULL) {
2149 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2150 goto rearm_timer;
2153 /* At most one outstanding TLP retransmission. */
2154 if (tp->tlp_high_seq)
2155 goto rearm_timer;
2157 /* Retransmit last segment. */
2158 skb = tcp_write_queue_tail(sk);
2159 if (WARN_ON(!skb))
2160 goto rearm_timer;
2162 if (skb_still_in_host_queue(sk, skb))
2163 goto rearm_timer;
2165 pcount = tcp_skb_pcount(skb);
2166 if (WARN_ON(!pcount))
2167 goto rearm_timer;
2169 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2170 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2171 GFP_ATOMIC)))
2172 goto rearm_timer;
2173 skb = tcp_write_queue_tail(sk);
2176 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2177 goto rearm_timer;
2179 err = __tcp_retransmit_skb(sk, skb);
2181 /* Record snd_nxt for loss detection. */
2182 if (likely(!err))
2183 tp->tlp_high_seq = tp->snd_nxt;
2185 rearm_timer:
2186 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2187 inet_csk(sk)->icsk_rto,
2188 TCP_RTO_MAX);
2190 if (likely(!err))
2191 NET_INC_STATS_BH(sock_net(sk),
2192 LINUX_MIB_TCPLOSSPROBES);
2195 /* Push out any pending frames which were held back due to
2196 * TCP_CORK or attempt at coalescing tiny packets.
2197 * The socket must be locked by the caller.
2199 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2200 int nonagle)
2202 /* If we are closed, the bytes will have to remain here.
2203 * In time closedown will finish, we empty the write queue and
2204 * all will be happy.
2206 if (unlikely(sk->sk_state == TCP_CLOSE))
2207 return;
2209 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2210 sk_gfp_atomic(sk, GFP_ATOMIC)))
2211 tcp_check_probe_timer(sk);
2214 /* Send _single_ skb sitting at the send head. This function requires
2215 * true push pending frames to setup probe timer etc.
2217 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2219 struct sk_buff *skb = tcp_send_head(sk);
2221 BUG_ON(!skb || skb->len < mss_now);
2223 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2226 /* This function returns the amount that we can raise the
2227 * usable window based on the following constraints
2229 * 1. The window can never be shrunk once it is offered (RFC 793)
2230 * 2. We limit memory per socket
2232 * RFC 1122:
2233 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2234 * RECV.NEXT + RCV.WIN fixed until:
2235 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2237 * i.e. don't raise the right edge of the window until you can raise
2238 * it at least MSS bytes.
2240 * Unfortunately, the recommended algorithm breaks header prediction,
2241 * since header prediction assumes th->window stays fixed.
2243 * Strictly speaking, keeping th->window fixed violates the receiver
2244 * side SWS prevention criteria. The problem is that under this rule
2245 * a stream of single byte packets will cause the right side of the
2246 * window to always advance by a single byte.
2248 * Of course, if the sender implements sender side SWS prevention
2249 * then this will not be a problem.
2251 * BSD seems to make the following compromise:
2253 * If the free space is less than the 1/4 of the maximum
2254 * space available and the free space is less than 1/2 mss,
2255 * then set the window to 0.
2256 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2257 * Otherwise, just prevent the window from shrinking
2258 * and from being larger than the largest representable value.
2260 * This prevents incremental opening of the window in the regime
2261 * where TCP is limited by the speed of the reader side taking
2262 * data out of the TCP receive queue. It does nothing about
2263 * those cases where the window is constrained on the sender side
2264 * because the pipeline is full.
2266 * BSD also seems to "accidentally" limit itself to windows that are a
2267 * multiple of MSS, at least until the free space gets quite small.
2268 * This would appear to be a side effect of the mbuf implementation.
2269 * Combining these two algorithms results in the observed behavior
2270 * of having a fixed window size at almost all times.
2272 * Below we obtain similar behavior by forcing the offered window to
2273 * a multiple of the mss when it is feasible to do so.
2275 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2276 * Regular options like TIMESTAMP are taken into account.
2278 u32 __tcp_select_window(struct sock *sk)
2280 struct inet_connection_sock *icsk = inet_csk(sk);
2281 struct tcp_sock *tp = tcp_sk(sk);
2282 /* MSS for the peer's data. Previous versions used mss_clamp
2283 * here. I don't know if the value based on our guesses
2284 * of peer's MSS is better for the performance. It's more correct
2285 * but may be worse for the performance because of rcv_mss
2286 * fluctuations. --SAW 1998/11/1
2288 int mss = icsk->icsk_ack.rcv_mss;
2289 int free_space = tcp_space(sk);
2290 int allowed_space = tcp_full_space(sk);
2291 int full_space = min_t(int, tp->window_clamp, allowed_space);
2292 int window;
2294 if (mss > full_space)
2295 mss = full_space;
2297 if (free_space < (full_space >> 1)) {
2298 icsk->icsk_ack.quick = 0;
2300 if (sk_under_memory_pressure(sk))
2301 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2302 4U * tp->advmss);
2304 /* free_space might become our new window, make sure we don't
2305 * increase it due to wscale.
2307 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2309 /* if free space is less than mss estimate, or is below 1/16th
2310 * of the maximum allowed, try to move to zero-window, else
2311 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2312 * new incoming data is dropped due to memory limits.
2313 * With large window, mss test triggers way too late in order
2314 * to announce zero window in time before rmem limit kicks in.
2316 if (free_space < (allowed_space >> 4) || free_space < mss)
2317 return 0;
2320 if (free_space > tp->rcv_ssthresh)
2321 free_space = tp->rcv_ssthresh;
2323 /* Don't do rounding if we are using window scaling, since the
2324 * scaled window will not line up with the MSS boundary anyway.
2326 window = tp->rcv_wnd;
2327 if (tp->rx_opt.rcv_wscale) {
2328 window = free_space;
2330 /* Advertise enough space so that it won't get scaled away.
2331 * Import case: prevent zero window announcement if
2332 * 1<<rcv_wscale > mss.
2334 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2335 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2336 << tp->rx_opt.rcv_wscale);
2337 } else {
2338 /* Get the largest window that is a nice multiple of mss.
2339 * Window clamp already applied above.
2340 * If our current window offering is within 1 mss of the
2341 * free space we just keep it. This prevents the divide
2342 * and multiply from happening most of the time.
2343 * We also don't do any window rounding when the free space
2344 * is too small.
2346 if (window <= free_space - mss || window > free_space)
2347 window = (free_space / mss) * mss;
2348 else if (mss == full_space &&
2349 free_space > window + (full_space >> 1))
2350 window = free_space;
2353 return window;
2356 /* Collapses two adjacent SKB's during retransmission. */
2357 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2359 struct tcp_sock *tp = tcp_sk(sk);
2360 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2361 int skb_size, next_skb_size;
2363 skb_size = skb->len;
2364 next_skb_size = next_skb->len;
2366 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2368 tcp_highest_sack_combine(sk, next_skb, skb);
2370 tcp_unlink_write_queue(next_skb, sk);
2372 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2373 next_skb_size);
2375 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2376 skb->ip_summed = CHECKSUM_PARTIAL;
2378 if (skb->ip_summed != CHECKSUM_PARTIAL)
2379 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2381 /* Update sequence range on original skb. */
2382 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2384 /* Merge over control information. This moves PSH/FIN etc. over */
2385 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2387 /* All done, get rid of second SKB and account for it so
2388 * packet counting does not break.
2390 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2392 /* changed transmit queue under us so clear hints */
2393 tcp_clear_retrans_hints_partial(tp);
2394 if (next_skb == tp->retransmit_skb_hint)
2395 tp->retransmit_skb_hint = skb;
2397 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2399 sk_wmem_free_skb(sk, next_skb);
2402 /* Check if coalescing SKBs is legal. */
2403 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2405 if (tcp_skb_pcount(skb) > 1)
2406 return false;
2407 /* TODO: SACK collapsing could be used to remove this condition */
2408 if (skb_shinfo(skb)->nr_frags != 0)
2409 return false;
2410 if (skb_cloned(skb))
2411 return false;
2412 if (skb == tcp_send_head(sk))
2413 return false;
2414 /* Some heurestics for collapsing over SACK'd could be invented */
2415 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2416 return false;
2418 return true;
2421 /* Collapse packets in the retransmit queue to make to create
2422 * less packets on the wire. This is only done on retransmission.
2424 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2425 int space)
2427 struct tcp_sock *tp = tcp_sk(sk);
2428 struct sk_buff *skb = to, *tmp;
2429 bool first = true;
2431 if (!sysctl_tcp_retrans_collapse)
2432 return;
2433 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2434 return;
2436 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2437 if (!tcp_can_collapse(sk, skb))
2438 break;
2440 space -= skb->len;
2442 if (first) {
2443 first = false;
2444 continue;
2447 if (space < 0)
2448 break;
2449 /* Punt if not enough space exists in the first SKB for
2450 * the data in the second
2452 if (skb->len > skb_availroom(to))
2453 break;
2455 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2456 break;
2458 tcp_collapse_retrans(sk, to);
2462 /* This retransmits one SKB. Policy decisions and retransmit queue
2463 * state updates are done by the caller. Returns non-zero if an
2464 * error occurred which prevented the send.
2466 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2468 struct tcp_sock *tp = tcp_sk(sk);
2469 struct inet_connection_sock *icsk = inet_csk(sk);
2470 unsigned int cur_mss;
2471 int err;
2473 /* Inconslusive MTU probe */
2474 if (icsk->icsk_mtup.probe_size) {
2475 icsk->icsk_mtup.probe_size = 0;
2478 /* Do not sent more than we queued. 1/4 is reserved for possible
2479 * copying overhead: fragmentation, tunneling, mangling etc.
2481 if (atomic_read(&sk->sk_wmem_alloc) >
2482 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2483 return -EAGAIN;
2485 if (skb_still_in_host_queue(sk, skb))
2486 return -EBUSY;
2488 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2489 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2490 BUG();
2491 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2492 return -ENOMEM;
2495 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2496 return -EHOSTUNREACH; /* Routing failure or similar. */
2498 cur_mss = tcp_current_mss(sk);
2500 /* If receiver has shrunk his window, and skb is out of
2501 * new window, do not retransmit it. The exception is the
2502 * case, when window is shrunk to zero. In this case
2503 * our retransmit serves as a zero window probe.
2505 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2506 TCP_SKB_CB(skb)->seq != tp->snd_una)
2507 return -EAGAIN;
2509 if (skb->len > cur_mss) {
2510 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2511 return -ENOMEM; /* We'll try again later. */
2512 } else {
2513 int oldpcount = tcp_skb_pcount(skb);
2515 if (unlikely(oldpcount > 1)) {
2516 if (skb_unclone(skb, GFP_ATOMIC))
2517 return -ENOMEM;
2518 tcp_init_tso_segs(sk, skb, cur_mss);
2519 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2523 tcp_retrans_try_collapse(sk, skb, cur_mss);
2525 /* Make a copy, if the first transmission SKB clone we made
2526 * is still in somebody's hands, else make a clone.
2529 /* make sure skb->data is aligned on arches that require it
2530 * and check if ack-trimming & collapsing extended the headroom
2531 * beyond what csum_start can cover.
2533 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2534 skb_headroom(skb) >= 0xFFFF)) {
2535 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2536 GFP_ATOMIC);
2537 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2538 -ENOBUFS;
2539 } else {
2540 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2543 if (likely(!err)) {
2544 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2545 /* Update global TCP statistics. */
2546 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2547 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2548 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2549 tp->total_retrans++;
2551 return err;
2554 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2556 struct tcp_sock *tp = tcp_sk(sk);
2557 int err = __tcp_retransmit_skb(sk, skb);
2559 if (err == 0) {
2560 #if FASTRETRANS_DEBUG > 0
2561 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2562 net_dbg_ratelimited("retrans_out leaked\n");
2564 #endif
2565 if (!tp->retrans_out)
2566 tp->lost_retrans_low = tp->snd_nxt;
2567 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2568 tp->retrans_out += tcp_skb_pcount(skb);
2570 /* Save stamp of the first retransmit. */
2571 if (!tp->retrans_stamp)
2572 tp->retrans_stamp = tcp_skb_timestamp(skb);
2574 /* snd_nxt is stored to detect loss of retransmitted segment,
2575 * see tcp_input.c tcp_sacktag_write_queue().
2577 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2578 } else if (err != -EBUSY) {
2579 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2582 if (tp->undo_retrans < 0)
2583 tp->undo_retrans = 0;
2584 tp->undo_retrans += tcp_skb_pcount(skb);
2585 return err;
2588 /* Check if we forward retransmits are possible in the current
2589 * window/congestion state.
2591 static bool tcp_can_forward_retransmit(struct sock *sk)
2593 const struct inet_connection_sock *icsk = inet_csk(sk);
2594 const struct tcp_sock *tp = tcp_sk(sk);
2596 /* Forward retransmissions are possible only during Recovery. */
2597 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2598 return false;
2600 /* No forward retransmissions in Reno are possible. */
2601 if (tcp_is_reno(tp))
2602 return false;
2604 /* Yeah, we have to make difficult choice between forward transmission
2605 * and retransmission... Both ways have their merits...
2607 * For now we do not retransmit anything, while we have some new
2608 * segments to send. In the other cases, follow rule 3 for
2609 * NextSeg() specified in RFC3517.
2612 if (tcp_may_send_now(sk))
2613 return false;
2615 return true;
2618 /* This gets called after a retransmit timeout, and the initially
2619 * retransmitted data is acknowledged. It tries to continue
2620 * resending the rest of the retransmit queue, until either
2621 * we've sent it all or the congestion window limit is reached.
2622 * If doing SACK, the first ACK which comes back for a timeout
2623 * based retransmit packet might feed us FACK information again.
2624 * If so, we use it to avoid unnecessarily retransmissions.
2626 void tcp_xmit_retransmit_queue(struct sock *sk)
2628 const struct inet_connection_sock *icsk = inet_csk(sk);
2629 struct tcp_sock *tp = tcp_sk(sk);
2630 struct sk_buff *skb;
2631 struct sk_buff *hole = NULL;
2632 u32 last_lost;
2633 int mib_idx;
2634 int fwd_rexmitting = 0;
2636 if (!tp->packets_out)
2637 return;
2639 if (!tp->lost_out)
2640 tp->retransmit_high = tp->snd_una;
2642 if (tp->retransmit_skb_hint) {
2643 skb = tp->retransmit_skb_hint;
2644 last_lost = TCP_SKB_CB(skb)->end_seq;
2645 if (after(last_lost, tp->retransmit_high))
2646 last_lost = tp->retransmit_high;
2647 } else {
2648 skb = tcp_write_queue_head(sk);
2649 last_lost = tp->snd_una;
2652 tcp_for_write_queue_from(skb, sk) {
2653 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2655 if (skb == tcp_send_head(sk))
2656 break;
2657 /* we could do better than to assign each time */
2658 if (hole == NULL)
2659 tp->retransmit_skb_hint = skb;
2661 /* Assume this retransmit will generate
2662 * only one packet for congestion window
2663 * calculation purposes. This works because
2664 * tcp_retransmit_skb() will chop up the
2665 * packet to be MSS sized and all the
2666 * packet counting works out.
2668 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2669 return;
2671 if (fwd_rexmitting) {
2672 begin_fwd:
2673 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2674 break;
2675 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2677 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2678 tp->retransmit_high = last_lost;
2679 if (!tcp_can_forward_retransmit(sk))
2680 break;
2681 /* Backtrack if necessary to non-L'ed skb */
2682 if (hole != NULL) {
2683 skb = hole;
2684 hole = NULL;
2686 fwd_rexmitting = 1;
2687 goto begin_fwd;
2689 } else if (!(sacked & TCPCB_LOST)) {
2690 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2691 hole = skb;
2692 continue;
2694 } else {
2695 last_lost = TCP_SKB_CB(skb)->end_seq;
2696 if (icsk->icsk_ca_state != TCP_CA_Loss)
2697 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2698 else
2699 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2702 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2703 continue;
2705 if (tcp_retransmit_skb(sk, skb))
2706 return;
2708 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2710 if (tcp_in_cwnd_reduction(sk))
2711 tp->prr_out += tcp_skb_pcount(skb);
2713 if (skb == tcp_write_queue_head(sk))
2714 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2715 inet_csk(sk)->icsk_rto,
2716 TCP_RTO_MAX);
2720 /* Send a fin. The caller locks the socket for us. This cannot be
2721 * allowed to fail queueing a FIN frame under any circumstances.
2723 void tcp_send_fin(struct sock *sk)
2725 struct tcp_sock *tp = tcp_sk(sk);
2726 struct sk_buff *skb = tcp_write_queue_tail(sk);
2727 int mss_now;
2729 /* Optimization, tack on the FIN if we have a queue of
2730 * unsent frames. But be careful about outgoing SACKS
2731 * and IP options.
2733 mss_now = tcp_current_mss(sk);
2735 if (tcp_send_head(sk) != NULL) {
2736 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2737 TCP_SKB_CB(skb)->end_seq++;
2738 tp->write_seq++;
2739 } else {
2740 /* Socket is locked, keep trying until memory is available. */
2741 for (;;) {
2742 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2743 sk->sk_allocation);
2744 if (skb)
2745 break;
2746 yield();
2749 /* Reserve space for headers and prepare control bits. */
2750 skb_reserve(skb, MAX_TCP_HEADER);
2751 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2752 tcp_init_nondata_skb(skb, tp->write_seq,
2753 TCPHDR_ACK | TCPHDR_FIN);
2754 tcp_queue_skb(sk, skb);
2756 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2759 /* We get here when a process closes a file descriptor (either due to
2760 * an explicit close() or as a byproduct of exit()'ing) and there
2761 * was unread data in the receive queue. This behavior is recommended
2762 * by RFC 2525, section 2.17. -DaveM
2764 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2766 struct sk_buff *skb;
2768 /* NOTE: No TCP options attached and we never retransmit this. */
2769 skb = alloc_skb(MAX_TCP_HEADER, priority);
2770 if (!skb) {
2771 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2772 return;
2775 /* Reserve space for headers and prepare control bits. */
2776 skb_reserve(skb, MAX_TCP_HEADER);
2777 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2778 TCPHDR_ACK | TCPHDR_RST);
2779 /* Send it off. */
2780 if (tcp_transmit_skb(sk, skb, 0, priority))
2781 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2783 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2786 /* Send a crossed SYN-ACK during socket establishment.
2787 * WARNING: This routine must only be called when we have already sent
2788 * a SYN packet that crossed the incoming SYN that caused this routine
2789 * to get called. If this assumption fails then the initial rcv_wnd
2790 * and rcv_wscale values will not be correct.
2792 int tcp_send_synack(struct sock *sk)
2794 struct sk_buff *skb;
2796 skb = tcp_write_queue_head(sk);
2797 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2798 pr_debug("%s: wrong queue state\n", __func__);
2799 return -EFAULT;
2801 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2802 if (skb_cloned(skb)) {
2803 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2804 if (nskb == NULL)
2805 return -ENOMEM;
2806 tcp_unlink_write_queue(skb, sk);
2807 __skb_header_release(nskb);
2808 __tcp_add_write_queue_head(sk, nskb);
2809 sk_wmem_free_skb(sk, skb);
2810 sk->sk_wmem_queued += nskb->truesize;
2811 sk_mem_charge(sk, nskb->truesize);
2812 skb = nskb;
2815 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2816 tcp_ecn_send_synack(sk, skb);
2818 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2822 * tcp_make_synack - Prepare a SYN-ACK.
2823 * sk: listener socket
2824 * dst: dst entry attached to the SYNACK
2825 * req: request_sock pointer
2827 * Allocate one skb and build a SYNACK packet.
2828 * @dst is consumed : Caller should not use it again.
2830 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2831 struct request_sock *req,
2832 struct tcp_fastopen_cookie *foc)
2834 struct tcp_out_options opts;
2835 struct inet_request_sock *ireq = inet_rsk(req);
2836 struct tcp_sock *tp = tcp_sk(sk);
2837 struct tcphdr *th;
2838 struct sk_buff *skb;
2839 struct tcp_md5sig_key *md5;
2840 int tcp_header_size;
2841 int mss;
2843 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2844 if (unlikely(!skb)) {
2845 dst_release(dst);
2846 return NULL;
2848 /* Reserve space for headers. */
2849 skb_reserve(skb, MAX_TCP_HEADER);
2851 skb_dst_set(skb, dst);
2852 security_skb_owned_by(skb, sk);
2854 mss = dst_metric_advmss(dst);
2855 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2856 mss = tp->rx_opt.user_mss;
2858 memset(&opts, 0, sizeof(opts));
2859 #ifdef CONFIG_SYN_COOKIES
2860 if (unlikely(req->cookie_ts))
2861 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2862 else
2863 #endif
2864 skb_mstamp_get(&skb->skb_mstamp);
2865 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2866 foc) + sizeof(*th);
2868 skb_push(skb, tcp_header_size);
2869 skb_reset_transport_header(skb);
2871 th = tcp_hdr(skb);
2872 memset(th, 0, sizeof(struct tcphdr));
2873 th->syn = 1;
2874 th->ack = 1;
2875 tcp_ecn_make_synack(req, th, sk);
2876 th->source = htons(ireq->ir_num);
2877 th->dest = ireq->ir_rmt_port;
2878 /* Setting of flags are superfluous here for callers (and ECE is
2879 * not even correctly set)
2881 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2882 TCPHDR_SYN | TCPHDR_ACK);
2884 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2885 /* XXX data is queued and acked as is. No buffer/window check */
2886 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2888 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2889 th->window = htons(min(req->rcv_wnd, 65535U));
2890 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2891 th->doff = (tcp_header_size >> 2);
2892 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2894 #ifdef CONFIG_TCP_MD5SIG
2895 /* Okay, we have all we need - do the md5 hash if needed */
2896 if (md5) {
2897 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2898 md5, NULL, req, skb);
2900 #endif
2902 return skb;
2904 EXPORT_SYMBOL(tcp_make_synack);
2906 /* Do all connect socket setups that can be done AF independent. */
2907 static void tcp_connect_init(struct sock *sk)
2909 const struct dst_entry *dst = __sk_dst_get(sk);
2910 struct tcp_sock *tp = tcp_sk(sk);
2911 __u8 rcv_wscale;
2913 /* We'll fix this up when we get a response from the other end.
2914 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2916 tp->tcp_header_len = sizeof(struct tcphdr) +
2917 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2919 #ifdef CONFIG_TCP_MD5SIG
2920 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2921 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2922 #endif
2924 /* If user gave his TCP_MAXSEG, record it to clamp */
2925 if (tp->rx_opt.user_mss)
2926 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2927 tp->max_window = 0;
2928 tcp_mtup_init(sk);
2929 tcp_sync_mss(sk, dst_mtu(dst));
2931 if (!tp->window_clamp)
2932 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2933 tp->advmss = dst_metric_advmss(dst);
2934 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2935 tp->advmss = tp->rx_opt.user_mss;
2937 tcp_initialize_rcv_mss(sk);
2939 /* limit the window selection if the user enforce a smaller rx buffer */
2940 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2941 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2942 tp->window_clamp = tcp_full_space(sk);
2944 tcp_select_initial_window(tcp_full_space(sk),
2945 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2946 &tp->rcv_wnd,
2947 &tp->window_clamp,
2948 sysctl_tcp_window_scaling,
2949 &rcv_wscale,
2950 dst_metric(dst, RTAX_INITRWND));
2952 tp->rx_opt.rcv_wscale = rcv_wscale;
2953 tp->rcv_ssthresh = tp->rcv_wnd;
2955 sk->sk_err = 0;
2956 sock_reset_flag(sk, SOCK_DONE);
2957 tp->snd_wnd = 0;
2958 tcp_init_wl(tp, 0);
2959 tp->snd_una = tp->write_seq;
2960 tp->snd_sml = tp->write_seq;
2961 tp->snd_up = tp->write_seq;
2962 tp->snd_nxt = tp->write_seq;
2964 if (likely(!tp->repair))
2965 tp->rcv_nxt = 0;
2966 else
2967 tp->rcv_tstamp = tcp_time_stamp;
2968 tp->rcv_wup = tp->rcv_nxt;
2969 tp->copied_seq = tp->rcv_nxt;
2971 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2972 inet_csk(sk)->icsk_retransmits = 0;
2973 tcp_clear_retrans(tp);
2976 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2978 struct tcp_sock *tp = tcp_sk(sk);
2979 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2981 tcb->end_seq += skb->len;
2982 __skb_header_release(skb);
2983 __tcp_add_write_queue_tail(sk, skb);
2984 sk->sk_wmem_queued += skb->truesize;
2985 sk_mem_charge(sk, skb->truesize);
2986 tp->write_seq = tcb->end_seq;
2987 tp->packets_out += tcp_skb_pcount(skb);
2990 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2991 * queue a data-only packet after the regular SYN, such that regular SYNs
2992 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2993 * only the SYN sequence, the data are retransmitted in the first ACK.
2994 * If cookie is not cached or other error occurs, falls back to send a
2995 * regular SYN with Fast Open cookie request option.
2997 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2999 struct tcp_sock *tp = tcp_sk(sk);
3000 struct tcp_fastopen_request *fo = tp->fastopen_req;
3001 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
3002 struct sk_buff *syn_data = NULL, *data;
3003 unsigned long last_syn_loss = 0;
3005 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3006 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3007 &syn_loss, &last_syn_loss);
3008 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3009 if (syn_loss > 1 &&
3010 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3011 fo->cookie.len = -1;
3012 goto fallback;
3015 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3016 fo->cookie.len = -1;
3017 else if (fo->cookie.len <= 0)
3018 goto fallback;
3020 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3021 * user-MSS. Reserve maximum option space for middleboxes that add
3022 * private TCP options. The cost is reduced data space in SYN :(
3024 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3025 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3026 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3027 MAX_TCP_OPTION_SPACE;
3029 space = min_t(size_t, space, fo->size);
3031 /* limit to order-0 allocations */
3032 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3034 syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space,
3035 sk->sk_allocation);
3036 if (syn_data == NULL)
3037 goto fallback;
3039 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
3040 struct iovec *iov = &fo->data->msg_iov[i];
3041 unsigned char __user *from = iov->iov_base;
3042 int len = iov->iov_len;
3044 if (syn_data->len + len > space)
3045 len = space - syn_data->len;
3046 else if (i + 1 == iovlen)
3047 /* No more data pending in inet_wait_for_connect() */
3048 fo->data = NULL;
3050 if (skb_add_data(syn_data, from, len))
3051 goto fallback;
3054 /* Queue a data-only packet after the regular SYN for retransmission */
3055 data = pskb_copy(syn_data, sk->sk_allocation);
3056 if (data == NULL)
3057 goto fallback;
3058 TCP_SKB_CB(data)->seq++;
3059 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
3060 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
3061 tcp_connect_queue_skb(sk, data);
3062 fo->copied = data->len;
3064 /* syn_data is about to be sent, we need to take current time stamps
3065 * for the packets that are in write queue : SYN packet and DATA
3067 skb_mstamp_get(&syn->skb_mstamp);
3068 data->skb_mstamp = syn->skb_mstamp;
3070 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
3071 tp->syn_data = (fo->copied > 0);
3072 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3073 goto done;
3075 syn_data = NULL;
3077 fallback:
3078 /* Send a regular SYN with Fast Open cookie request option */
3079 if (fo->cookie.len > 0)
3080 fo->cookie.len = 0;
3081 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3082 if (err)
3083 tp->syn_fastopen = 0;
3084 kfree_skb(syn_data);
3085 done:
3086 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3087 return err;
3090 /* Build a SYN and send it off. */
3091 int tcp_connect(struct sock *sk)
3093 struct tcp_sock *tp = tcp_sk(sk);
3094 struct sk_buff *buff;
3095 int err;
3097 tcp_connect_init(sk);
3099 if (unlikely(tp->repair)) {
3100 tcp_finish_connect(sk, NULL);
3101 return 0;
3104 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
3105 if (unlikely(buff == NULL))
3106 return -ENOBUFS;
3108 /* Reserve space for headers. */
3109 skb_reserve(buff, MAX_TCP_HEADER);
3111 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3112 tp->retrans_stamp = tcp_time_stamp;
3113 tcp_connect_queue_skb(sk, buff);
3114 tcp_ecn_send_syn(sk, buff);
3116 /* Send off SYN; include data in Fast Open. */
3117 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3118 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3119 if (err == -ECONNREFUSED)
3120 return err;
3122 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3123 * in order to make this packet get counted in tcpOutSegs.
3125 tp->snd_nxt = tp->write_seq;
3126 tp->pushed_seq = tp->write_seq;
3127 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3129 /* Timer for repeating the SYN until an answer. */
3130 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3131 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3132 return 0;
3134 EXPORT_SYMBOL(tcp_connect);
3136 /* Send out a delayed ack, the caller does the policy checking
3137 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3138 * for details.
3140 void tcp_send_delayed_ack(struct sock *sk)
3142 struct inet_connection_sock *icsk = inet_csk(sk);
3143 int ato = icsk->icsk_ack.ato;
3144 unsigned long timeout;
3146 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3148 if (ato > TCP_DELACK_MIN) {
3149 const struct tcp_sock *tp = tcp_sk(sk);
3150 int max_ato = HZ / 2;
3152 if (icsk->icsk_ack.pingpong ||
3153 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3154 max_ato = TCP_DELACK_MAX;
3156 /* Slow path, intersegment interval is "high". */
3158 /* If some rtt estimate is known, use it to bound delayed ack.
3159 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3160 * directly.
3162 if (tp->srtt_us) {
3163 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3164 TCP_DELACK_MIN);
3166 if (rtt < max_ato)
3167 max_ato = rtt;
3170 ato = min(ato, max_ato);
3173 /* Stay within the limit we were given */
3174 timeout = jiffies + ato;
3176 /* Use new timeout only if there wasn't a older one earlier. */
3177 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3178 /* If delack timer was blocked or is about to expire,
3179 * send ACK now.
3181 if (icsk->icsk_ack.blocked ||
3182 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3183 tcp_send_ack(sk);
3184 return;
3187 if (!time_before(timeout, icsk->icsk_ack.timeout))
3188 timeout = icsk->icsk_ack.timeout;
3190 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3191 icsk->icsk_ack.timeout = timeout;
3192 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3195 /* This routine sends an ack and also updates the window. */
3196 void tcp_send_ack(struct sock *sk)
3198 struct sk_buff *buff;
3200 /* If we have been reset, we may not send again. */
3201 if (sk->sk_state == TCP_CLOSE)
3202 return;
3204 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3206 /* We are not putting this on the write queue, so
3207 * tcp_transmit_skb() will set the ownership to this
3208 * sock.
3210 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3211 if (buff == NULL) {
3212 inet_csk_schedule_ack(sk);
3213 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3214 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3215 TCP_DELACK_MAX, TCP_RTO_MAX);
3216 return;
3219 /* Reserve space for headers and prepare control bits. */
3220 skb_reserve(buff, MAX_TCP_HEADER);
3221 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3223 /* Send it off, this clears delayed acks for us. */
3224 skb_mstamp_get(&buff->skb_mstamp);
3225 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3227 EXPORT_SYMBOL_GPL(tcp_send_ack);
3229 /* This routine sends a packet with an out of date sequence
3230 * number. It assumes the other end will try to ack it.
3232 * Question: what should we make while urgent mode?
3233 * 4.4BSD forces sending single byte of data. We cannot send
3234 * out of window data, because we have SND.NXT==SND.MAX...
3236 * Current solution: to send TWO zero-length segments in urgent mode:
3237 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3238 * out-of-date with SND.UNA-1 to probe window.
3240 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3242 struct tcp_sock *tp = tcp_sk(sk);
3243 struct sk_buff *skb;
3245 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3246 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3247 if (skb == NULL)
3248 return -1;
3250 /* Reserve space for headers and set control bits. */
3251 skb_reserve(skb, MAX_TCP_HEADER);
3252 /* Use a previous sequence. This should cause the other
3253 * end to send an ack. Don't queue or clone SKB, just
3254 * send it.
3256 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3257 skb_mstamp_get(&skb->skb_mstamp);
3258 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3261 void tcp_send_window_probe(struct sock *sk)
3263 if (sk->sk_state == TCP_ESTABLISHED) {
3264 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3265 tcp_xmit_probe_skb(sk, 0);
3269 /* Initiate keepalive or window probe from timer. */
3270 int tcp_write_wakeup(struct sock *sk)
3272 struct tcp_sock *tp = tcp_sk(sk);
3273 struct sk_buff *skb;
3275 if (sk->sk_state == TCP_CLOSE)
3276 return -1;
3278 if ((skb = tcp_send_head(sk)) != NULL &&
3279 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3280 int err;
3281 unsigned int mss = tcp_current_mss(sk);
3282 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3284 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3285 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3287 /* We are probing the opening of a window
3288 * but the window size is != 0
3289 * must have been a result SWS avoidance ( sender )
3291 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3292 skb->len > mss) {
3293 seg_size = min(seg_size, mss);
3294 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3295 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3296 return -1;
3297 } else if (!tcp_skb_pcount(skb))
3298 tcp_set_skb_tso_segs(sk, skb, mss);
3300 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3301 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3302 if (!err)
3303 tcp_event_new_data_sent(sk, skb);
3304 return err;
3305 } else {
3306 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3307 tcp_xmit_probe_skb(sk, 1);
3308 return tcp_xmit_probe_skb(sk, 0);
3312 /* A window probe timeout has occurred. If window is not closed send
3313 * a partial packet else a zero probe.
3315 void tcp_send_probe0(struct sock *sk)
3317 struct inet_connection_sock *icsk = inet_csk(sk);
3318 struct tcp_sock *tp = tcp_sk(sk);
3319 unsigned long probe_max;
3320 int err;
3322 err = tcp_write_wakeup(sk);
3324 if (tp->packets_out || !tcp_send_head(sk)) {
3325 /* Cancel probe timer, if it is not required. */
3326 icsk->icsk_probes_out = 0;
3327 icsk->icsk_backoff = 0;
3328 return;
3331 if (err <= 0) {
3332 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3333 icsk->icsk_backoff++;
3334 icsk->icsk_probes_out++;
3335 probe_max = TCP_RTO_MAX;
3336 } else {
3337 /* If packet was not sent due to local congestion,
3338 * do not backoff and do not remember icsk_probes_out.
3339 * Let local senders to fight for local resources.
3341 * Use accumulated backoff yet.
3343 if (!icsk->icsk_probes_out)
3344 icsk->icsk_probes_out = 1;
3345 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3347 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3348 inet_csk_rto_backoff(icsk, probe_max),
3349 TCP_RTO_MAX);
3352 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3354 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3355 struct flowi fl;
3356 int res;
3358 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3359 if (!res) {
3360 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3361 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3363 return res;
3365 EXPORT_SYMBOL(tcp_rtx_synack);