1 ARM64 CPU Feature Registers
2 ===========================
4 Author: Suzuki K Poulose <suzuki.poulose@arm.com>
7 This file describes the ABI for exporting the AArch64 CPU ID/feature
8 registers to userspace. The availability of this ABI is advertised
9 via the HWCAP_CPUID in HWCAPs.
14 The ARM architecture defines a set of feature registers, which describe
15 the capabilities of the CPU/system. Access to these system registers is
16 restricted from EL0 and there is no reliable way for an application to
17 extract this information to make better decisions at runtime. There is
18 limited information available to the application via HWCAPs, however
19 there are some issues with their usage.
21 a) Any change to the HWCAPs requires an update to userspace (e.g libc)
22 to detect the new changes, which can take a long time to appear in
23 distributions. Exposing the registers allows applications to get the
24 information without requiring updates to the toolchains.
26 b) Access to HWCAPs is sometimes limited (e.g prior to libc, or
27 when ld is initialised at startup time).
29 c) HWCAPs cannot represent non-boolean information effectively. The
30 architecture defines a canonical format for representing features
31 in the ID registers; this is well defined and is capable of
32 representing all valid architecture variations.
39 Applications should be able to use the information provided by the
40 infrastructure to run safely across the system. This has greater
41 implications on a system with heterogeneous CPUs.
42 The infrastructure exports a value that is safe across all the
43 available CPU on the system.
45 e.g, If at least one CPU doesn't implement CRC32 instructions, while
46 others do, we should report that the CRC32 is not implemented.
47 Otherwise an application could crash when scheduled on the CPU
48 which doesn't support CRC32.
51 Applications should only be able to receive information that is
52 relevant to the normal operation in userspace. Hence, some of the
53 fields are masked out(i.e, made invisible) and their values are set to
54 indicate the feature is 'not supported'. See Section 4 for the list
55 of visible features. Also, the kernel may manipulate the fields
56 based on what it supports. e.g, If FP is not supported by the
57 kernel, the values could indicate that the FP is not available
58 (even when the CPU provides it).
60 c) Implementation Defined Features
61 The infrastructure doesn't expose any register which is
62 IMPLEMENTATION DEFINED as per ARMv8-A Architecture.
64 d) CPU Identification :
65 MIDR_EL1 is exposed to help identify the processor. On a
66 heterogeneous system, this could be racy (just like getcpu()). The
67 process could be migrated to another CPU by the time it uses the
68 register value, unless the CPU affinity is set. Hence, there is no
69 guarantee that the value reflects the processor that it is
70 currently executing on. The REVIDR is not exposed due to this
71 constraint, as REVIDR makes sense only in conjunction with the
72 MIDR. Alternately, MIDR_EL1 and REVIDR_EL1 are exposed via sysfs
75 /sys/devices/system/cpu/cpu$ID/regs/identification/
82 The infrastructure is built on the emulation of the 'MRS' instruction.
83 Accessing a restricted system register from an application generates an
84 exception and ends up in SIGILL being delivered to the process.
85 The infrastructure hooks into the exception handler and emulates the
86 operation if the source belongs to the supported system register space.
88 The infrastructure emulates only the following system register space:
89 Op0=3, Op1=0, CRn=0, CRm=0,4,5,6,7
91 (See Table C5-6 'System instruction encodings for non-Debug System
92 register accesses' in ARMv8 ARM DDI 0487A.h, for the list of
95 The following rules are applied to the value returned by the
98 a) The value of an 'IMPLEMENTATION DEFINED' field is set to 0.
99 b) The value of a reserved field is populated with the reserved
100 value as defined by the architecture.
101 c) The value of a 'visible' field holds the system wide safe value
102 for the particular feature (except for MIDR_EL1, see section 4).
103 d) All other fields (i.e, invisible fields) are set to indicate
104 the feature is missing (as defined by the architecture).
106 4. List of registers with visible features
107 -------------------------------------------
109 1) ID_AA64ISAR0_EL1 - Instruction Set Attribute Register 0
110 x--------------------------------------------------x
111 | Name | bits | visible |
112 |--------------------------------------------------|
113 | RES0 | [63-32] | n |
114 |--------------------------------------------------|
115 | RDM | [31-28] | y |
116 |--------------------------------------------------|
117 | ATOMICS | [23-20] | y |
118 |--------------------------------------------------|
119 | CRC32 | [19-16] | y |
120 |--------------------------------------------------|
121 | SHA2 | [15-12] | y |
122 |--------------------------------------------------|
123 | SHA1 | [11-8] | y |
124 |--------------------------------------------------|
126 |--------------------------------------------------|
128 x--------------------------------------------------x
131 2) ID_AA64PFR0_EL1 - Processor Feature Register 0
132 x--------------------------------------------------x
133 | Name | bits | visible |
134 |--------------------------------------------------|
135 | RES0 | [63-28] | n |
136 |--------------------------------------------------|
137 | GIC | [27-24] | n |
138 |--------------------------------------------------|
139 | AdvSIMD | [23-20] | y |
140 |--------------------------------------------------|
142 |--------------------------------------------------|
143 | EL3 | [15-12] | n |
144 |--------------------------------------------------|
146 |--------------------------------------------------|
148 |--------------------------------------------------|
150 x--------------------------------------------------x
153 3) MIDR_EL1 - Main ID Register
154 x--------------------------------------------------x
155 | Name | bits | visible |
156 |--------------------------------------------------|
157 | Implementer | [31-24] | y |
158 |--------------------------------------------------|
159 | Variant | [23-20] | y |
160 |--------------------------------------------------|
161 | Architecture | [19-16] | y |
162 |--------------------------------------------------|
163 | PartNum | [15-4] | y |
164 |--------------------------------------------------|
165 | Revision | [3-0] | y |
166 x--------------------------------------------------x
168 NOTE: The 'visible' fields of MIDR_EL1 will contain the value
169 as available on the CPU where it is fetched and is not a system
173 ---------------------------
176 * Sample program to demonstrate the MRS emulation ABI.
178 * Copyright (C) 2015-2016, ARM Ltd
180 * Author: Suzuki K Poulose <suzuki.poulose@arm.com>
182 * This program is free software; you can redistribute it and/or modify
183 * it under the terms of the GNU General Public License version 2 as
184 * published by the Free Software Foundation.
186 * This program is distributed in the hope that it will be useful,
187 * but WITHOUT ANY WARRANTY; without even the implied warranty of
188 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
189 * GNU General Public License for more details.
190 * This program is free software; you can redistribute it and/or modify
191 * it under the terms of the GNU General Public License version 2 as
192 * published by the Free Software Foundation.
194 * This program is distributed in the hope that it will be useful,
195 * but WITHOUT ANY WARRANTY; without even the implied warranty of
196 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
197 * GNU General Public License for more details.
200 #include <asm/hwcap.h>
202 #include <sys/auxv.h>
204 #define get_cpu_ftr(id) ({ \
205 unsigned long __val; \
206 asm("mrs %0, "#id : "=r" (__val)); \
207 printf("%-20s: 0x%016lx\n", #id, __val); \
213 if (!(getauxval(AT_HWCAP) & HWCAP_CPUID)) {
214 fputs("CPUID registers unavailable\n", stderr);
218 get_cpu_ftr(ID_AA64ISAR0_EL1);
219 get_cpu_ftr(ID_AA64ISAR1_EL1);
220 get_cpu_ftr(ID_AA64MMFR0_EL1);
221 get_cpu_ftr(ID_AA64MMFR1_EL1);
222 get_cpu_ftr(ID_AA64PFR0_EL1);
223 get_cpu_ftr(ID_AA64PFR1_EL1);
224 get_cpu_ftr(ID_AA64DFR0_EL1);
225 get_cpu_ftr(ID_AA64DFR1_EL1);
227 get_cpu_ftr(MIDR_EL1);
228 get_cpu_ftr(MPIDR_EL1);
229 get_cpu_ftr(REVIDR_EL1);
232 /* Unexposed register access causes SIGILL */
233 get_cpu_ftr(ID_MMFR0_EL1);