Linux 4.11-rc6
[linux/fpc-iii.git] / net / ipv4 / ip_output.c
blob7a3fd25e8913a99d0fcbb256bc9001f6f1d4dd6f
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 static int
85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 unsigned int mtu,
87 int (*output)(struct net *, struct sock *, struct sk_buff *));
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr *iph)
92 iph->check = 0;
93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 EXPORT_SYMBOL(ip_send_check);
97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 struct iphdr *iph = ip_hdr(skb);
101 iph->tot_len = htons(skb->len);
102 ip_send_check(iph);
104 /* if egress device is enslaved to an L3 master device pass the
105 * skb to its handler for processing
107 skb = l3mdev_ip_out(sk, skb);
108 if (unlikely(!skb))
109 return 0;
111 skb->protocol = htons(ETH_P_IP);
113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
114 net, sk, skb, NULL, skb_dst(skb)->dev,
115 dst_output);
118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120 int err;
122 err = __ip_local_out(net, sk, skb);
123 if (likely(err == 1))
124 err = dst_output(net, sk, skb);
126 return err;
128 EXPORT_SYMBOL_GPL(ip_local_out);
130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132 int ttl = inet->uc_ttl;
134 if (ttl < 0)
135 ttl = ip4_dst_hoplimit(dst);
136 return ttl;
140 * Add an ip header to a skbuff and send it out.
143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146 struct inet_sock *inet = inet_sk(sk);
147 struct rtable *rt = skb_rtable(skb);
148 struct net *net = sock_net(sk);
149 struct iphdr *iph;
151 /* Build the IP header. */
152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
153 skb_reset_network_header(skb);
154 iph = ip_hdr(skb);
155 iph->version = 4;
156 iph->ihl = 5;
157 iph->tos = inet->tos;
158 iph->ttl = ip_select_ttl(inet, &rt->dst);
159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 iph->saddr = saddr;
161 iph->protocol = sk->sk_protocol;
162 if (ip_dont_fragment(sk, &rt->dst)) {
163 iph->frag_off = htons(IP_DF);
164 iph->id = 0;
165 } else {
166 iph->frag_off = 0;
167 __ip_select_ident(net, iph, 1);
170 if (opt && opt->opt.optlen) {
171 iph->ihl += opt->opt.optlen>>2;
172 ip_options_build(skb, &opt->opt, daddr, rt, 0);
175 skb->priority = sk->sk_priority;
176 skb->mark = sk->sk_mark;
178 /* Send it out. */
179 return ip_local_out(net, skb->sk, skb);
181 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
183 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
185 struct dst_entry *dst = skb_dst(skb);
186 struct rtable *rt = (struct rtable *)dst;
187 struct net_device *dev = dst->dev;
188 unsigned int hh_len = LL_RESERVED_SPACE(dev);
189 struct neighbour *neigh;
190 u32 nexthop;
192 if (rt->rt_type == RTN_MULTICAST) {
193 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
194 } else if (rt->rt_type == RTN_BROADCAST)
195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
197 /* Be paranoid, rather than too clever. */
198 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
199 struct sk_buff *skb2;
201 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
202 if (!skb2) {
203 kfree_skb(skb);
204 return -ENOMEM;
206 if (skb->sk)
207 skb_set_owner_w(skb2, skb->sk);
208 consume_skb(skb);
209 skb = skb2;
212 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
213 int res = lwtunnel_xmit(skb);
215 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
216 return res;
219 rcu_read_lock_bh();
220 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
221 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
222 if (unlikely(!neigh))
223 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
224 if (!IS_ERR(neigh)) {
225 int res;
227 sock_confirm_neigh(skb, neigh);
228 res = neigh_output(neigh, skb);
230 rcu_read_unlock_bh();
231 return res;
233 rcu_read_unlock_bh();
235 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
236 __func__);
237 kfree_skb(skb);
238 return -EINVAL;
241 static int ip_finish_output_gso(struct net *net, struct sock *sk,
242 struct sk_buff *skb, unsigned int mtu)
244 netdev_features_t features;
245 struct sk_buff *segs;
246 int ret = 0;
248 /* common case: seglen is <= mtu
250 if (skb_gso_validate_mtu(skb, mtu))
251 return ip_finish_output2(net, sk, skb);
253 /* Slowpath - GSO segment length exceeds the egress MTU.
255 * This can happen in several cases:
256 * - Forwarding of a TCP GRO skb, when DF flag is not set.
257 * - Forwarding of an skb that arrived on a virtualization interface
258 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
259 * stack.
260 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
261 * interface with a smaller MTU.
262 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
263 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
264 * insufficent MTU.
266 features = netif_skb_features(skb);
267 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
268 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
269 if (IS_ERR_OR_NULL(segs)) {
270 kfree_skb(skb);
271 return -ENOMEM;
274 consume_skb(skb);
276 do {
277 struct sk_buff *nskb = segs->next;
278 int err;
280 segs->next = NULL;
281 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
283 if (err && ret == 0)
284 ret = err;
285 segs = nskb;
286 } while (segs);
288 return ret;
291 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
293 unsigned int mtu;
294 int ret;
296 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
297 if (ret) {
298 kfree_skb(skb);
299 return ret;
302 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
303 /* Policy lookup after SNAT yielded a new policy */
304 if (skb_dst(skb)->xfrm) {
305 IPCB(skb)->flags |= IPSKB_REROUTED;
306 return dst_output(net, sk, skb);
308 #endif
309 mtu = ip_skb_dst_mtu(sk, skb);
310 if (skb_is_gso(skb))
311 return ip_finish_output_gso(net, sk, skb, mtu);
313 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
314 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
316 return ip_finish_output2(net, sk, skb);
319 static int ip_mc_finish_output(struct net *net, struct sock *sk,
320 struct sk_buff *skb)
322 int ret;
324 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
325 if (ret) {
326 kfree_skb(skb);
327 return ret;
330 return dev_loopback_xmit(net, sk, skb);
333 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
335 struct rtable *rt = skb_rtable(skb);
336 struct net_device *dev = rt->dst.dev;
339 * If the indicated interface is up and running, send the packet.
341 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
343 skb->dev = dev;
344 skb->protocol = htons(ETH_P_IP);
347 * Multicasts are looped back for other local users
350 if (rt->rt_flags&RTCF_MULTICAST) {
351 if (sk_mc_loop(sk)
352 #ifdef CONFIG_IP_MROUTE
353 /* Small optimization: do not loopback not local frames,
354 which returned after forwarding; they will be dropped
355 by ip_mr_input in any case.
356 Note, that local frames are looped back to be delivered
357 to local recipients.
359 This check is duplicated in ip_mr_input at the moment.
362 ((rt->rt_flags & RTCF_LOCAL) ||
363 !(IPCB(skb)->flags & IPSKB_FORWARDED))
364 #endif
366 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
367 if (newskb)
368 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
369 net, sk, newskb, NULL, newskb->dev,
370 ip_mc_finish_output);
373 /* Multicasts with ttl 0 must not go beyond the host */
375 if (ip_hdr(skb)->ttl == 0) {
376 kfree_skb(skb);
377 return 0;
381 if (rt->rt_flags&RTCF_BROADCAST) {
382 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
383 if (newskb)
384 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
385 net, sk, newskb, NULL, newskb->dev,
386 ip_mc_finish_output);
389 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
390 net, sk, skb, NULL, skb->dev,
391 ip_finish_output,
392 !(IPCB(skb)->flags & IPSKB_REROUTED));
395 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
397 struct net_device *dev = skb_dst(skb)->dev;
399 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
401 skb->dev = dev;
402 skb->protocol = htons(ETH_P_IP);
404 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
405 net, sk, skb, NULL, dev,
406 ip_finish_output,
407 !(IPCB(skb)->flags & IPSKB_REROUTED));
411 * copy saddr and daddr, possibly using 64bit load/stores
412 * Equivalent to :
413 * iph->saddr = fl4->saddr;
414 * iph->daddr = fl4->daddr;
416 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
418 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
419 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
420 memcpy(&iph->saddr, &fl4->saddr,
421 sizeof(fl4->saddr) + sizeof(fl4->daddr));
424 /* Note: skb->sk can be different from sk, in case of tunnels */
425 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
427 struct inet_sock *inet = inet_sk(sk);
428 struct net *net = sock_net(sk);
429 struct ip_options_rcu *inet_opt;
430 struct flowi4 *fl4;
431 struct rtable *rt;
432 struct iphdr *iph;
433 int res;
435 /* Skip all of this if the packet is already routed,
436 * f.e. by something like SCTP.
438 rcu_read_lock();
439 inet_opt = rcu_dereference(inet->inet_opt);
440 fl4 = &fl->u.ip4;
441 rt = skb_rtable(skb);
442 if (rt)
443 goto packet_routed;
445 /* Make sure we can route this packet. */
446 rt = (struct rtable *)__sk_dst_check(sk, 0);
447 if (!rt) {
448 __be32 daddr;
450 /* Use correct destination address if we have options. */
451 daddr = inet->inet_daddr;
452 if (inet_opt && inet_opt->opt.srr)
453 daddr = inet_opt->opt.faddr;
455 /* If this fails, retransmit mechanism of transport layer will
456 * keep trying until route appears or the connection times
457 * itself out.
459 rt = ip_route_output_ports(net, fl4, sk,
460 daddr, inet->inet_saddr,
461 inet->inet_dport,
462 inet->inet_sport,
463 sk->sk_protocol,
464 RT_CONN_FLAGS(sk),
465 sk->sk_bound_dev_if);
466 if (IS_ERR(rt))
467 goto no_route;
468 sk_setup_caps(sk, &rt->dst);
470 skb_dst_set_noref(skb, &rt->dst);
472 packet_routed:
473 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
474 goto no_route;
476 /* OK, we know where to send it, allocate and build IP header. */
477 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
478 skb_reset_network_header(skb);
479 iph = ip_hdr(skb);
480 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
481 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
482 iph->frag_off = htons(IP_DF);
483 else
484 iph->frag_off = 0;
485 iph->ttl = ip_select_ttl(inet, &rt->dst);
486 iph->protocol = sk->sk_protocol;
487 ip_copy_addrs(iph, fl4);
489 /* Transport layer set skb->h.foo itself. */
491 if (inet_opt && inet_opt->opt.optlen) {
492 iph->ihl += inet_opt->opt.optlen >> 2;
493 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
496 ip_select_ident_segs(net, skb, sk,
497 skb_shinfo(skb)->gso_segs ?: 1);
499 /* TODO : should we use skb->sk here instead of sk ? */
500 skb->priority = sk->sk_priority;
501 skb->mark = sk->sk_mark;
503 res = ip_local_out(net, sk, skb);
504 rcu_read_unlock();
505 return res;
507 no_route:
508 rcu_read_unlock();
509 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
510 kfree_skb(skb);
511 return -EHOSTUNREACH;
513 EXPORT_SYMBOL(ip_queue_xmit);
515 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
517 to->pkt_type = from->pkt_type;
518 to->priority = from->priority;
519 to->protocol = from->protocol;
520 skb_dst_drop(to);
521 skb_dst_copy(to, from);
522 to->dev = from->dev;
523 to->mark = from->mark;
525 /* Copy the flags to each fragment. */
526 IPCB(to)->flags = IPCB(from)->flags;
528 #ifdef CONFIG_NET_SCHED
529 to->tc_index = from->tc_index;
530 #endif
531 nf_copy(to, from);
532 #if IS_ENABLED(CONFIG_IP_VS)
533 to->ipvs_property = from->ipvs_property;
534 #endif
535 skb_copy_secmark(to, from);
538 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
539 unsigned int mtu,
540 int (*output)(struct net *, struct sock *, struct sk_buff *))
542 struct iphdr *iph = ip_hdr(skb);
544 if ((iph->frag_off & htons(IP_DF)) == 0)
545 return ip_do_fragment(net, sk, skb, output);
547 if (unlikely(!skb->ignore_df ||
548 (IPCB(skb)->frag_max_size &&
549 IPCB(skb)->frag_max_size > mtu))) {
550 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
551 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
552 htonl(mtu));
553 kfree_skb(skb);
554 return -EMSGSIZE;
557 return ip_do_fragment(net, sk, skb, output);
561 * This IP datagram is too large to be sent in one piece. Break it up into
562 * smaller pieces (each of size equal to IP header plus
563 * a block of the data of the original IP data part) that will yet fit in a
564 * single device frame, and queue such a frame for sending.
567 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
568 int (*output)(struct net *, struct sock *, struct sk_buff *))
570 struct iphdr *iph;
571 int ptr;
572 struct sk_buff *skb2;
573 unsigned int mtu, hlen, left, len, ll_rs;
574 int offset;
575 __be16 not_last_frag;
576 struct rtable *rt = skb_rtable(skb);
577 int err = 0;
579 /* for offloaded checksums cleanup checksum before fragmentation */
580 if (skb->ip_summed == CHECKSUM_PARTIAL &&
581 (err = skb_checksum_help(skb)))
582 goto fail;
585 * Point into the IP datagram header.
588 iph = ip_hdr(skb);
590 mtu = ip_skb_dst_mtu(sk, skb);
591 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
592 mtu = IPCB(skb)->frag_max_size;
595 * Setup starting values.
598 hlen = iph->ihl * 4;
599 mtu = mtu - hlen; /* Size of data space */
600 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
602 /* When frag_list is given, use it. First, check its validity:
603 * some transformers could create wrong frag_list or break existing
604 * one, it is not prohibited. In this case fall back to copying.
606 * LATER: this step can be merged to real generation of fragments,
607 * we can switch to copy when see the first bad fragment.
609 if (skb_has_frag_list(skb)) {
610 struct sk_buff *frag, *frag2;
611 unsigned int first_len = skb_pagelen(skb);
613 if (first_len - hlen > mtu ||
614 ((first_len - hlen) & 7) ||
615 ip_is_fragment(iph) ||
616 skb_cloned(skb))
617 goto slow_path;
619 skb_walk_frags(skb, frag) {
620 /* Correct geometry. */
621 if (frag->len > mtu ||
622 ((frag->len & 7) && frag->next) ||
623 skb_headroom(frag) < hlen)
624 goto slow_path_clean;
626 /* Partially cloned skb? */
627 if (skb_shared(frag))
628 goto slow_path_clean;
630 BUG_ON(frag->sk);
631 if (skb->sk) {
632 frag->sk = skb->sk;
633 frag->destructor = sock_wfree;
635 skb->truesize -= frag->truesize;
638 /* Everything is OK. Generate! */
640 err = 0;
641 offset = 0;
642 frag = skb_shinfo(skb)->frag_list;
643 skb_frag_list_init(skb);
644 skb->data_len = first_len - skb_headlen(skb);
645 skb->len = first_len;
646 iph->tot_len = htons(first_len);
647 iph->frag_off = htons(IP_MF);
648 ip_send_check(iph);
650 for (;;) {
651 /* Prepare header of the next frame,
652 * before previous one went down. */
653 if (frag) {
654 frag->ip_summed = CHECKSUM_NONE;
655 skb_reset_transport_header(frag);
656 __skb_push(frag, hlen);
657 skb_reset_network_header(frag);
658 memcpy(skb_network_header(frag), iph, hlen);
659 iph = ip_hdr(frag);
660 iph->tot_len = htons(frag->len);
661 ip_copy_metadata(frag, skb);
662 if (offset == 0)
663 ip_options_fragment(frag);
664 offset += skb->len - hlen;
665 iph->frag_off = htons(offset>>3);
666 if (frag->next)
667 iph->frag_off |= htons(IP_MF);
668 /* Ready, complete checksum */
669 ip_send_check(iph);
672 err = output(net, sk, skb);
674 if (!err)
675 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
676 if (err || !frag)
677 break;
679 skb = frag;
680 frag = skb->next;
681 skb->next = NULL;
684 if (err == 0) {
685 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
686 return 0;
689 while (frag) {
690 skb = frag->next;
691 kfree_skb(frag);
692 frag = skb;
694 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
695 return err;
697 slow_path_clean:
698 skb_walk_frags(skb, frag2) {
699 if (frag2 == frag)
700 break;
701 frag2->sk = NULL;
702 frag2->destructor = NULL;
703 skb->truesize += frag2->truesize;
707 slow_path:
708 iph = ip_hdr(skb);
710 left = skb->len - hlen; /* Space per frame */
711 ptr = hlen; /* Where to start from */
713 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
716 * Fragment the datagram.
719 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
720 not_last_frag = iph->frag_off & htons(IP_MF);
723 * Keep copying data until we run out.
726 while (left > 0) {
727 len = left;
728 /* IF: it doesn't fit, use 'mtu' - the data space left */
729 if (len > mtu)
730 len = mtu;
731 /* IF: we are not sending up to and including the packet end
732 then align the next start on an eight byte boundary */
733 if (len < left) {
734 len &= ~7;
737 /* Allocate buffer */
738 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
739 if (!skb2) {
740 err = -ENOMEM;
741 goto fail;
745 * Set up data on packet
748 ip_copy_metadata(skb2, skb);
749 skb_reserve(skb2, ll_rs);
750 skb_put(skb2, len + hlen);
751 skb_reset_network_header(skb2);
752 skb2->transport_header = skb2->network_header + hlen;
755 * Charge the memory for the fragment to any owner
756 * it might possess
759 if (skb->sk)
760 skb_set_owner_w(skb2, skb->sk);
763 * Copy the packet header into the new buffer.
766 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
769 * Copy a block of the IP datagram.
771 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
772 BUG();
773 left -= len;
776 * Fill in the new header fields.
778 iph = ip_hdr(skb2);
779 iph->frag_off = htons((offset >> 3));
781 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
782 iph->frag_off |= htons(IP_DF);
784 /* ANK: dirty, but effective trick. Upgrade options only if
785 * the segment to be fragmented was THE FIRST (otherwise,
786 * options are already fixed) and make it ONCE
787 * on the initial skb, so that all the following fragments
788 * will inherit fixed options.
790 if (offset == 0)
791 ip_options_fragment(skb);
794 * Added AC : If we are fragmenting a fragment that's not the
795 * last fragment then keep MF on each bit
797 if (left > 0 || not_last_frag)
798 iph->frag_off |= htons(IP_MF);
799 ptr += len;
800 offset += len;
803 * Put this fragment into the sending queue.
805 iph->tot_len = htons(len + hlen);
807 ip_send_check(iph);
809 err = output(net, sk, skb2);
810 if (err)
811 goto fail;
813 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
815 consume_skb(skb);
816 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
817 return err;
819 fail:
820 kfree_skb(skb);
821 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
822 return err;
824 EXPORT_SYMBOL(ip_do_fragment);
827 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
829 struct msghdr *msg = from;
831 if (skb->ip_summed == CHECKSUM_PARTIAL) {
832 if (!copy_from_iter_full(to, len, &msg->msg_iter))
833 return -EFAULT;
834 } else {
835 __wsum csum = 0;
836 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
837 return -EFAULT;
838 skb->csum = csum_block_add(skb->csum, csum, odd);
840 return 0;
842 EXPORT_SYMBOL(ip_generic_getfrag);
844 static inline __wsum
845 csum_page(struct page *page, int offset, int copy)
847 char *kaddr;
848 __wsum csum;
849 kaddr = kmap(page);
850 csum = csum_partial(kaddr + offset, copy, 0);
851 kunmap(page);
852 return csum;
855 static inline int ip_ufo_append_data(struct sock *sk,
856 struct sk_buff_head *queue,
857 int getfrag(void *from, char *to, int offset, int len,
858 int odd, struct sk_buff *skb),
859 void *from, int length, int hh_len, int fragheaderlen,
860 int transhdrlen, int maxfraglen, unsigned int flags)
862 struct sk_buff *skb;
863 int err;
865 /* There is support for UDP fragmentation offload by network
866 * device, so create one single skb packet containing complete
867 * udp datagram
869 skb = skb_peek_tail(queue);
870 if (!skb) {
871 skb = sock_alloc_send_skb(sk,
872 hh_len + fragheaderlen + transhdrlen + 20,
873 (flags & MSG_DONTWAIT), &err);
875 if (!skb)
876 return err;
878 /* reserve space for Hardware header */
879 skb_reserve(skb, hh_len);
881 /* create space for UDP/IP header */
882 skb_put(skb, fragheaderlen + transhdrlen);
884 /* initialize network header pointer */
885 skb_reset_network_header(skb);
887 /* initialize protocol header pointer */
888 skb->transport_header = skb->network_header + fragheaderlen;
890 skb->csum = 0;
892 if (flags & MSG_CONFIRM)
893 skb_set_dst_pending_confirm(skb, 1);
895 __skb_queue_tail(queue, skb);
896 } else if (skb_is_gso(skb)) {
897 goto append;
900 skb->ip_summed = CHECKSUM_PARTIAL;
901 /* specify the length of each IP datagram fragment */
902 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
903 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
905 append:
906 return skb_append_datato_frags(sk, skb, getfrag, from,
907 (length - transhdrlen));
910 static int __ip_append_data(struct sock *sk,
911 struct flowi4 *fl4,
912 struct sk_buff_head *queue,
913 struct inet_cork *cork,
914 struct page_frag *pfrag,
915 int getfrag(void *from, char *to, int offset,
916 int len, int odd, struct sk_buff *skb),
917 void *from, int length, int transhdrlen,
918 unsigned int flags)
920 struct inet_sock *inet = inet_sk(sk);
921 struct sk_buff *skb;
923 struct ip_options *opt = cork->opt;
924 int hh_len;
925 int exthdrlen;
926 int mtu;
927 int copy;
928 int err;
929 int offset = 0;
930 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
931 int csummode = CHECKSUM_NONE;
932 struct rtable *rt = (struct rtable *)cork->dst;
933 u32 tskey = 0;
935 skb = skb_peek_tail(queue);
937 exthdrlen = !skb ? rt->dst.header_len : 0;
938 mtu = cork->fragsize;
939 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
940 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
941 tskey = sk->sk_tskey++;
943 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
945 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
946 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
947 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
949 if (cork->length + length > maxnonfragsize - fragheaderlen) {
950 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
951 mtu - (opt ? opt->optlen : 0));
952 return -EMSGSIZE;
956 * transhdrlen > 0 means that this is the first fragment and we wish
957 * it won't be fragmented in the future.
959 if (transhdrlen &&
960 length + fragheaderlen <= mtu &&
961 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
962 !(flags & MSG_MORE) &&
963 !exthdrlen)
964 csummode = CHECKSUM_PARTIAL;
966 cork->length += length;
967 if ((((length + fragheaderlen) > mtu) || (skb && skb_is_gso(skb))) &&
968 (sk->sk_protocol == IPPROTO_UDP) &&
969 (rt->dst.dev->features & NETIF_F_UFO) && !dst_xfrm(&rt->dst) &&
970 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
971 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
972 hh_len, fragheaderlen, transhdrlen,
973 maxfraglen, flags);
974 if (err)
975 goto error;
976 return 0;
979 /* So, what's going on in the loop below?
981 * We use calculated fragment length to generate chained skb,
982 * each of segments is IP fragment ready for sending to network after
983 * adding appropriate IP header.
986 if (!skb)
987 goto alloc_new_skb;
989 while (length > 0) {
990 /* Check if the remaining data fits into current packet. */
991 copy = mtu - skb->len;
992 if (copy < length)
993 copy = maxfraglen - skb->len;
994 if (copy <= 0) {
995 char *data;
996 unsigned int datalen;
997 unsigned int fraglen;
998 unsigned int fraggap;
999 unsigned int alloclen;
1000 struct sk_buff *skb_prev;
1001 alloc_new_skb:
1002 skb_prev = skb;
1003 if (skb_prev)
1004 fraggap = skb_prev->len - maxfraglen;
1005 else
1006 fraggap = 0;
1009 * If remaining data exceeds the mtu,
1010 * we know we need more fragment(s).
1012 datalen = length + fraggap;
1013 if (datalen > mtu - fragheaderlen)
1014 datalen = maxfraglen - fragheaderlen;
1015 fraglen = datalen + fragheaderlen;
1017 if ((flags & MSG_MORE) &&
1018 !(rt->dst.dev->features&NETIF_F_SG))
1019 alloclen = mtu;
1020 else
1021 alloclen = fraglen;
1023 alloclen += exthdrlen;
1025 /* The last fragment gets additional space at tail.
1026 * Note, with MSG_MORE we overallocate on fragments,
1027 * because we have no idea what fragment will be
1028 * the last.
1030 if (datalen == length + fraggap)
1031 alloclen += rt->dst.trailer_len;
1033 if (transhdrlen) {
1034 skb = sock_alloc_send_skb(sk,
1035 alloclen + hh_len + 15,
1036 (flags & MSG_DONTWAIT), &err);
1037 } else {
1038 skb = NULL;
1039 if (atomic_read(&sk->sk_wmem_alloc) <=
1040 2 * sk->sk_sndbuf)
1041 skb = sock_wmalloc(sk,
1042 alloclen + hh_len + 15, 1,
1043 sk->sk_allocation);
1044 if (unlikely(!skb))
1045 err = -ENOBUFS;
1047 if (!skb)
1048 goto error;
1051 * Fill in the control structures
1053 skb->ip_summed = csummode;
1054 skb->csum = 0;
1055 skb_reserve(skb, hh_len);
1057 /* only the initial fragment is time stamped */
1058 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1059 cork->tx_flags = 0;
1060 skb_shinfo(skb)->tskey = tskey;
1061 tskey = 0;
1064 * Find where to start putting bytes.
1066 data = skb_put(skb, fraglen + exthdrlen);
1067 skb_set_network_header(skb, exthdrlen);
1068 skb->transport_header = (skb->network_header +
1069 fragheaderlen);
1070 data += fragheaderlen + exthdrlen;
1072 if (fraggap) {
1073 skb->csum = skb_copy_and_csum_bits(
1074 skb_prev, maxfraglen,
1075 data + transhdrlen, fraggap, 0);
1076 skb_prev->csum = csum_sub(skb_prev->csum,
1077 skb->csum);
1078 data += fraggap;
1079 pskb_trim_unique(skb_prev, maxfraglen);
1082 copy = datalen - transhdrlen - fraggap;
1083 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1084 err = -EFAULT;
1085 kfree_skb(skb);
1086 goto error;
1089 offset += copy;
1090 length -= datalen - fraggap;
1091 transhdrlen = 0;
1092 exthdrlen = 0;
1093 csummode = CHECKSUM_NONE;
1095 if ((flags & MSG_CONFIRM) && !skb_prev)
1096 skb_set_dst_pending_confirm(skb, 1);
1099 * Put the packet on the pending queue.
1101 __skb_queue_tail(queue, skb);
1102 continue;
1105 if (copy > length)
1106 copy = length;
1108 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1109 unsigned int off;
1111 off = skb->len;
1112 if (getfrag(from, skb_put(skb, copy),
1113 offset, copy, off, skb) < 0) {
1114 __skb_trim(skb, off);
1115 err = -EFAULT;
1116 goto error;
1118 } else {
1119 int i = skb_shinfo(skb)->nr_frags;
1121 err = -ENOMEM;
1122 if (!sk_page_frag_refill(sk, pfrag))
1123 goto error;
1125 if (!skb_can_coalesce(skb, i, pfrag->page,
1126 pfrag->offset)) {
1127 err = -EMSGSIZE;
1128 if (i == MAX_SKB_FRAGS)
1129 goto error;
1131 __skb_fill_page_desc(skb, i, pfrag->page,
1132 pfrag->offset, 0);
1133 skb_shinfo(skb)->nr_frags = ++i;
1134 get_page(pfrag->page);
1136 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1137 if (getfrag(from,
1138 page_address(pfrag->page) + pfrag->offset,
1139 offset, copy, skb->len, skb) < 0)
1140 goto error_efault;
1142 pfrag->offset += copy;
1143 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1144 skb->len += copy;
1145 skb->data_len += copy;
1146 skb->truesize += copy;
1147 atomic_add(copy, &sk->sk_wmem_alloc);
1149 offset += copy;
1150 length -= copy;
1153 return 0;
1155 error_efault:
1156 err = -EFAULT;
1157 error:
1158 cork->length -= length;
1159 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1160 return err;
1163 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1164 struct ipcm_cookie *ipc, struct rtable **rtp)
1166 struct ip_options_rcu *opt;
1167 struct rtable *rt;
1170 * setup for corking.
1172 opt = ipc->opt;
1173 if (opt) {
1174 if (!cork->opt) {
1175 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1176 sk->sk_allocation);
1177 if (unlikely(!cork->opt))
1178 return -ENOBUFS;
1180 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1181 cork->flags |= IPCORK_OPT;
1182 cork->addr = ipc->addr;
1184 rt = *rtp;
1185 if (unlikely(!rt))
1186 return -EFAULT;
1188 * We steal reference to this route, caller should not release it
1190 *rtp = NULL;
1191 cork->fragsize = ip_sk_use_pmtu(sk) ?
1192 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1193 cork->dst = &rt->dst;
1194 cork->length = 0;
1195 cork->ttl = ipc->ttl;
1196 cork->tos = ipc->tos;
1197 cork->priority = ipc->priority;
1198 cork->tx_flags = ipc->tx_flags;
1200 return 0;
1204 * ip_append_data() and ip_append_page() can make one large IP datagram
1205 * from many pieces of data. Each pieces will be holded on the socket
1206 * until ip_push_pending_frames() is called. Each piece can be a page
1207 * or non-page data.
1209 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1210 * this interface potentially.
1212 * LATER: length must be adjusted by pad at tail, when it is required.
1214 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1215 int getfrag(void *from, char *to, int offset, int len,
1216 int odd, struct sk_buff *skb),
1217 void *from, int length, int transhdrlen,
1218 struct ipcm_cookie *ipc, struct rtable **rtp,
1219 unsigned int flags)
1221 struct inet_sock *inet = inet_sk(sk);
1222 int err;
1224 if (flags&MSG_PROBE)
1225 return 0;
1227 if (skb_queue_empty(&sk->sk_write_queue)) {
1228 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1229 if (err)
1230 return err;
1231 } else {
1232 transhdrlen = 0;
1235 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1236 sk_page_frag(sk), getfrag,
1237 from, length, transhdrlen, flags);
1240 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1241 int offset, size_t size, int flags)
1243 struct inet_sock *inet = inet_sk(sk);
1244 struct sk_buff *skb;
1245 struct rtable *rt;
1246 struct ip_options *opt = NULL;
1247 struct inet_cork *cork;
1248 int hh_len;
1249 int mtu;
1250 int len;
1251 int err;
1252 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1254 if (inet->hdrincl)
1255 return -EPERM;
1257 if (flags&MSG_PROBE)
1258 return 0;
1260 if (skb_queue_empty(&sk->sk_write_queue))
1261 return -EINVAL;
1263 cork = &inet->cork.base;
1264 rt = (struct rtable *)cork->dst;
1265 if (cork->flags & IPCORK_OPT)
1266 opt = cork->opt;
1268 if (!(rt->dst.dev->features&NETIF_F_SG))
1269 return -EOPNOTSUPP;
1271 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1272 mtu = cork->fragsize;
1274 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1275 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1276 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1278 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1279 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1280 mtu - (opt ? opt->optlen : 0));
1281 return -EMSGSIZE;
1284 skb = skb_peek_tail(&sk->sk_write_queue);
1285 if (!skb)
1286 return -EINVAL;
1288 if ((size + skb->len > mtu) &&
1289 (sk->sk_protocol == IPPROTO_UDP) &&
1290 (rt->dst.dev->features & NETIF_F_UFO)) {
1291 if (skb->ip_summed != CHECKSUM_PARTIAL)
1292 return -EOPNOTSUPP;
1294 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1295 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1297 cork->length += size;
1299 while (size > 0) {
1300 if (skb_is_gso(skb)) {
1301 len = size;
1302 } else {
1304 /* Check if the remaining data fits into current packet. */
1305 len = mtu - skb->len;
1306 if (len < size)
1307 len = maxfraglen - skb->len;
1309 if (len <= 0) {
1310 struct sk_buff *skb_prev;
1311 int alloclen;
1313 skb_prev = skb;
1314 fraggap = skb_prev->len - maxfraglen;
1316 alloclen = fragheaderlen + hh_len + fraggap + 15;
1317 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1318 if (unlikely(!skb)) {
1319 err = -ENOBUFS;
1320 goto error;
1324 * Fill in the control structures
1326 skb->ip_summed = CHECKSUM_NONE;
1327 skb->csum = 0;
1328 skb_reserve(skb, hh_len);
1331 * Find where to start putting bytes.
1333 skb_put(skb, fragheaderlen + fraggap);
1334 skb_reset_network_header(skb);
1335 skb->transport_header = (skb->network_header +
1336 fragheaderlen);
1337 if (fraggap) {
1338 skb->csum = skb_copy_and_csum_bits(skb_prev,
1339 maxfraglen,
1340 skb_transport_header(skb),
1341 fraggap, 0);
1342 skb_prev->csum = csum_sub(skb_prev->csum,
1343 skb->csum);
1344 pskb_trim_unique(skb_prev, maxfraglen);
1348 * Put the packet on the pending queue.
1350 __skb_queue_tail(&sk->sk_write_queue, skb);
1351 continue;
1354 if (len > size)
1355 len = size;
1357 if (skb_append_pagefrags(skb, page, offset, len)) {
1358 err = -EMSGSIZE;
1359 goto error;
1362 if (skb->ip_summed == CHECKSUM_NONE) {
1363 __wsum csum;
1364 csum = csum_page(page, offset, len);
1365 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1368 skb->len += len;
1369 skb->data_len += len;
1370 skb->truesize += len;
1371 atomic_add(len, &sk->sk_wmem_alloc);
1372 offset += len;
1373 size -= len;
1375 return 0;
1377 error:
1378 cork->length -= size;
1379 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1380 return err;
1383 static void ip_cork_release(struct inet_cork *cork)
1385 cork->flags &= ~IPCORK_OPT;
1386 kfree(cork->opt);
1387 cork->opt = NULL;
1388 dst_release(cork->dst);
1389 cork->dst = NULL;
1393 * Combined all pending IP fragments on the socket as one IP datagram
1394 * and push them out.
1396 struct sk_buff *__ip_make_skb(struct sock *sk,
1397 struct flowi4 *fl4,
1398 struct sk_buff_head *queue,
1399 struct inet_cork *cork)
1401 struct sk_buff *skb, *tmp_skb;
1402 struct sk_buff **tail_skb;
1403 struct inet_sock *inet = inet_sk(sk);
1404 struct net *net = sock_net(sk);
1405 struct ip_options *opt = NULL;
1406 struct rtable *rt = (struct rtable *)cork->dst;
1407 struct iphdr *iph;
1408 __be16 df = 0;
1409 __u8 ttl;
1411 skb = __skb_dequeue(queue);
1412 if (!skb)
1413 goto out;
1414 tail_skb = &(skb_shinfo(skb)->frag_list);
1416 /* move skb->data to ip header from ext header */
1417 if (skb->data < skb_network_header(skb))
1418 __skb_pull(skb, skb_network_offset(skb));
1419 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1420 __skb_pull(tmp_skb, skb_network_header_len(skb));
1421 *tail_skb = tmp_skb;
1422 tail_skb = &(tmp_skb->next);
1423 skb->len += tmp_skb->len;
1424 skb->data_len += tmp_skb->len;
1425 skb->truesize += tmp_skb->truesize;
1426 tmp_skb->destructor = NULL;
1427 tmp_skb->sk = NULL;
1430 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1431 * to fragment the frame generated here. No matter, what transforms
1432 * how transforms change size of the packet, it will come out.
1434 skb->ignore_df = ip_sk_ignore_df(sk);
1436 /* DF bit is set when we want to see DF on outgoing frames.
1437 * If ignore_df is set too, we still allow to fragment this frame
1438 * locally. */
1439 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1440 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1441 (skb->len <= dst_mtu(&rt->dst) &&
1442 ip_dont_fragment(sk, &rt->dst)))
1443 df = htons(IP_DF);
1445 if (cork->flags & IPCORK_OPT)
1446 opt = cork->opt;
1448 if (cork->ttl != 0)
1449 ttl = cork->ttl;
1450 else if (rt->rt_type == RTN_MULTICAST)
1451 ttl = inet->mc_ttl;
1452 else
1453 ttl = ip_select_ttl(inet, &rt->dst);
1455 iph = ip_hdr(skb);
1456 iph->version = 4;
1457 iph->ihl = 5;
1458 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1459 iph->frag_off = df;
1460 iph->ttl = ttl;
1461 iph->protocol = sk->sk_protocol;
1462 ip_copy_addrs(iph, fl4);
1463 ip_select_ident(net, skb, sk);
1465 if (opt) {
1466 iph->ihl += opt->optlen>>2;
1467 ip_options_build(skb, opt, cork->addr, rt, 0);
1470 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1471 skb->mark = sk->sk_mark;
1473 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1474 * on dst refcount
1476 cork->dst = NULL;
1477 skb_dst_set(skb, &rt->dst);
1479 if (iph->protocol == IPPROTO_ICMP)
1480 icmp_out_count(net, ((struct icmphdr *)
1481 skb_transport_header(skb))->type);
1483 ip_cork_release(cork);
1484 out:
1485 return skb;
1488 int ip_send_skb(struct net *net, struct sk_buff *skb)
1490 int err;
1492 err = ip_local_out(net, skb->sk, skb);
1493 if (err) {
1494 if (err > 0)
1495 err = net_xmit_errno(err);
1496 if (err)
1497 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1500 return err;
1503 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1505 struct sk_buff *skb;
1507 skb = ip_finish_skb(sk, fl4);
1508 if (!skb)
1509 return 0;
1511 /* Netfilter gets whole the not fragmented skb. */
1512 return ip_send_skb(sock_net(sk), skb);
1516 * Throw away all pending data on the socket.
1518 static void __ip_flush_pending_frames(struct sock *sk,
1519 struct sk_buff_head *queue,
1520 struct inet_cork *cork)
1522 struct sk_buff *skb;
1524 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1525 kfree_skb(skb);
1527 ip_cork_release(cork);
1530 void ip_flush_pending_frames(struct sock *sk)
1532 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1535 struct sk_buff *ip_make_skb(struct sock *sk,
1536 struct flowi4 *fl4,
1537 int getfrag(void *from, char *to, int offset,
1538 int len, int odd, struct sk_buff *skb),
1539 void *from, int length, int transhdrlen,
1540 struct ipcm_cookie *ipc, struct rtable **rtp,
1541 unsigned int flags)
1543 struct inet_cork cork;
1544 struct sk_buff_head queue;
1545 int err;
1547 if (flags & MSG_PROBE)
1548 return NULL;
1550 __skb_queue_head_init(&queue);
1552 cork.flags = 0;
1553 cork.addr = 0;
1554 cork.opt = NULL;
1555 err = ip_setup_cork(sk, &cork, ipc, rtp);
1556 if (err)
1557 return ERR_PTR(err);
1559 err = __ip_append_data(sk, fl4, &queue, &cork,
1560 &current->task_frag, getfrag,
1561 from, length, transhdrlen, flags);
1562 if (err) {
1563 __ip_flush_pending_frames(sk, &queue, &cork);
1564 return ERR_PTR(err);
1567 return __ip_make_skb(sk, fl4, &queue, &cork);
1571 * Fetch data from kernel space and fill in checksum if needed.
1573 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1574 int len, int odd, struct sk_buff *skb)
1576 __wsum csum;
1578 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1579 skb->csum = csum_block_add(skb->csum, csum, odd);
1580 return 0;
1584 * Generic function to send a packet as reply to another packet.
1585 * Used to send some TCP resets/acks so far.
1587 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1588 const struct ip_options *sopt,
1589 __be32 daddr, __be32 saddr,
1590 const struct ip_reply_arg *arg,
1591 unsigned int len)
1593 struct ip_options_data replyopts;
1594 struct ipcm_cookie ipc;
1595 struct flowi4 fl4;
1596 struct rtable *rt = skb_rtable(skb);
1597 struct net *net = sock_net(sk);
1598 struct sk_buff *nskb;
1599 int err;
1600 int oif;
1602 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1603 return;
1605 ipc.addr = daddr;
1606 ipc.opt = NULL;
1607 ipc.tx_flags = 0;
1608 ipc.ttl = 0;
1609 ipc.tos = -1;
1611 if (replyopts.opt.opt.optlen) {
1612 ipc.opt = &replyopts.opt;
1614 if (replyopts.opt.opt.srr)
1615 daddr = replyopts.opt.opt.faddr;
1618 oif = arg->bound_dev_if;
1619 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1620 oif = skb->skb_iif;
1622 flowi4_init_output(&fl4, oif,
1623 IP4_REPLY_MARK(net, skb->mark),
1624 RT_TOS(arg->tos),
1625 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1626 ip_reply_arg_flowi_flags(arg),
1627 daddr, saddr,
1628 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1629 arg->uid);
1630 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1631 rt = ip_route_output_key(net, &fl4);
1632 if (IS_ERR(rt))
1633 return;
1635 inet_sk(sk)->tos = arg->tos;
1637 sk->sk_priority = skb->priority;
1638 sk->sk_protocol = ip_hdr(skb)->protocol;
1639 sk->sk_bound_dev_if = arg->bound_dev_if;
1640 sk->sk_sndbuf = sysctl_wmem_default;
1641 sk->sk_mark = fl4.flowi4_mark;
1642 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1643 len, 0, &ipc, &rt, MSG_DONTWAIT);
1644 if (unlikely(err)) {
1645 ip_flush_pending_frames(sk);
1646 goto out;
1649 nskb = skb_peek(&sk->sk_write_queue);
1650 if (nskb) {
1651 if (arg->csumoffset >= 0)
1652 *((__sum16 *)skb_transport_header(nskb) +
1653 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1654 arg->csum));
1655 nskb->ip_summed = CHECKSUM_NONE;
1656 ip_push_pending_frames(sk, &fl4);
1658 out:
1659 ip_rt_put(rt);
1662 void __init ip_init(void)
1664 ip_rt_init();
1665 inet_initpeers();
1667 #if defined(CONFIG_IP_MULTICAST)
1668 igmp_mc_init();
1669 #endif