2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
85 ip_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
87 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*));
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr
*iph
)
93 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
95 EXPORT_SYMBOL(ip_send_check
);
97 int __ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
99 struct iphdr
*iph
= ip_hdr(skb
);
101 iph
->tot_len
= htons(skb
->len
);
104 /* if egress device is enslaved to an L3 master device pass the
105 * skb to its handler for processing
107 skb
= l3mdev_ip_out(sk
, skb
);
111 skb
->protocol
= htons(ETH_P_IP
);
113 return nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
,
114 net
, sk
, skb
, NULL
, skb_dst(skb
)->dev
,
118 int ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
122 err
= __ip_local_out(net
, sk
, skb
);
123 if (likely(err
== 1))
124 err
= dst_output(net
, sk
, skb
);
128 EXPORT_SYMBOL_GPL(ip_local_out
);
130 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
132 int ttl
= inet
->uc_ttl
;
135 ttl
= ip4_dst_hoplimit(dst
);
140 * Add an ip header to a skbuff and send it out.
143 int ip_build_and_send_pkt(struct sk_buff
*skb
, const struct sock
*sk
,
144 __be32 saddr
, __be32 daddr
, struct ip_options_rcu
*opt
)
146 struct inet_sock
*inet
= inet_sk(sk
);
147 struct rtable
*rt
= skb_rtable(skb
);
148 struct net
*net
= sock_net(sk
);
151 /* Build the IP header. */
152 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->opt
.optlen
: 0));
153 skb_reset_network_header(skb
);
157 iph
->tos
= inet
->tos
;
158 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
159 iph
->daddr
= (opt
&& opt
->opt
.srr
? opt
->opt
.faddr
: daddr
);
161 iph
->protocol
= sk
->sk_protocol
;
162 if (ip_dont_fragment(sk
, &rt
->dst
)) {
163 iph
->frag_off
= htons(IP_DF
);
167 __ip_select_ident(net
, iph
, 1);
170 if (opt
&& opt
->opt
.optlen
) {
171 iph
->ihl
+= opt
->opt
.optlen
>>2;
172 ip_options_build(skb
, &opt
->opt
, daddr
, rt
, 0);
175 skb
->priority
= sk
->sk_priority
;
176 skb
->mark
= sk
->sk_mark
;
179 return ip_local_out(net
, skb
->sk
, skb
);
181 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
183 static int ip_finish_output2(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
185 struct dst_entry
*dst
= skb_dst(skb
);
186 struct rtable
*rt
= (struct rtable
*)dst
;
187 struct net_device
*dev
= dst
->dev
;
188 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
189 struct neighbour
*neigh
;
192 if (rt
->rt_type
== RTN_MULTICAST
) {
193 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUTMCAST
, skb
->len
);
194 } else if (rt
->rt_type
== RTN_BROADCAST
)
195 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUTBCAST
, skb
->len
);
197 /* Be paranoid, rather than too clever. */
198 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
199 struct sk_buff
*skb2
;
201 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
207 skb_set_owner_w(skb2
, skb
->sk
);
212 if (lwtunnel_xmit_redirect(dst
->lwtstate
)) {
213 int res
= lwtunnel_xmit(skb
);
215 if (res
< 0 || res
== LWTUNNEL_XMIT_DONE
)
220 nexthop
= (__force u32
) rt_nexthop(rt
, ip_hdr(skb
)->daddr
);
221 neigh
= __ipv4_neigh_lookup_noref(dev
, nexthop
);
222 if (unlikely(!neigh
))
223 neigh
= __neigh_create(&arp_tbl
, &nexthop
, dev
, false);
224 if (!IS_ERR(neigh
)) {
227 sock_confirm_neigh(skb
, neigh
);
228 res
= neigh_output(neigh
, skb
);
230 rcu_read_unlock_bh();
233 rcu_read_unlock_bh();
235 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
241 static int ip_finish_output_gso(struct net
*net
, struct sock
*sk
,
242 struct sk_buff
*skb
, unsigned int mtu
)
244 netdev_features_t features
;
245 struct sk_buff
*segs
;
248 /* common case: seglen is <= mtu
250 if (skb_gso_validate_mtu(skb
, mtu
))
251 return ip_finish_output2(net
, sk
, skb
);
253 /* Slowpath - GSO segment length exceeds the egress MTU.
255 * This can happen in several cases:
256 * - Forwarding of a TCP GRO skb, when DF flag is not set.
257 * - Forwarding of an skb that arrived on a virtualization interface
258 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
260 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
261 * interface with a smaller MTU.
262 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
263 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
266 features
= netif_skb_features(skb
);
267 BUILD_BUG_ON(sizeof(*IPCB(skb
)) > SKB_SGO_CB_OFFSET
);
268 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
269 if (IS_ERR_OR_NULL(segs
)) {
277 struct sk_buff
*nskb
= segs
->next
;
281 err
= ip_fragment(net
, sk
, segs
, mtu
, ip_finish_output2
);
291 static int ip_finish_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
296 ret
= BPF_CGROUP_RUN_PROG_INET_EGRESS(sk
, skb
);
302 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
303 /* Policy lookup after SNAT yielded a new policy */
304 if (skb_dst(skb
)->xfrm
) {
305 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
306 return dst_output(net
, sk
, skb
);
309 mtu
= ip_skb_dst_mtu(sk
, skb
);
311 return ip_finish_output_gso(net
, sk
, skb
, mtu
);
313 if (skb
->len
> mtu
|| (IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
))
314 return ip_fragment(net
, sk
, skb
, mtu
, ip_finish_output2
);
316 return ip_finish_output2(net
, sk
, skb
);
319 static int ip_mc_finish_output(struct net
*net
, struct sock
*sk
,
324 ret
= BPF_CGROUP_RUN_PROG_INET_EGRESS(sk
, skb
);
330 return dev_loopback_xmit(net
, sk
, skb
);
333 int ip_mc_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
335 struct rtable
*rt
= skb_rtable(skb
);
336 struct net_device
*dev
= rt
->dst
.dev
;
339 * If the indicated interface is up and running, send the packet.
341 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
344 skb
->protocol
= htons(ETH_P_IP
);
347 * Multicasts are looped back for other local users
350 if (rt
->rt_flags
&RTCF_MULTICAST
) {
352 #ifdef CONFIG_IP_MROUTE
353 /* Small optimization: do not loopback not local frames,
354 which returned after forwarding; they will be dropped
355 by ip_mr_input in any case.
356 Note, that local frames are looped back to be delivered
359 This check is duplicated in ip_mr_input at the moment.
362 ((rt
->rt_flags
& RTCF_LOCAL
) ||
363 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
366 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
368 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
369 net
, sk
, newskb
, NULL
, newskb
->dev
,
370 ip_mc_finish_output
);
373 /* Multicasts with ttl 0 must not go beyond the host */
375 if (ip_hdr(skb
)->ttl
== 0) {
381 if (rt
->rt_flags
&RTCF_BROADCAST
) {
382 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
384 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
385 net
, sk
, newskb
, NULL
, newskb
->dev
,
386 ip_mc_finish_output
);
389 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
390 net
, sk
, skb
, NULL
, skb
->dev
,
392 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
395 int ip_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
397 struct net_device
*dev
= skb_dst(skb
)->dev
;
399 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
402 skb
->protocol
= htons(ETH_P_IP
);
404 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
405 net
, sk
, skb
, NULL
, dev
,
407 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
411 * copy saddr and daddr, possibly using 64bit load/stores
413 * iph->saddr = fl4->saddr;
414 * iph->daddr = fl4->daddr;
416 static void ip_copy_addrs(struct iphdr
*iph
, const struct flowi4
*fl4
)
418 BUILD_BUG_ON(offsetof(typeof(*fl4
), daddr
) !=
419 offsetof(typeof(*fl4
), saddr
) + sizeof(fl4
->saddr
));
420 memcpy(&iph
->saddr
, &fl4
->saddr
,
421 sizeof(fl4
->saddr
) + sizeof(fl4
->daddr
));
424 /* Note: skb->sk can be different from sk, in case of tunnels */
425 int ip_queue_xmit(struct sock
*sk
, struct sk_buff
*skb
, struct flowi
*fl
)
427 struct inet_sock
*inet
= inet_sk(sk
);
428 struct net
*net
= sock_net(sk
);
429 struct ip_options_rcu
*inet_opt
;
435 /* Skip all of this if the packet is already routed,
436 * f.e. by something like SCTP.
439 inet_opt
= rcu_dereference(inet
->inet_opt
);
441 rt
= skb_rtable(skb
);
445 /* Make sure we can route this packet. */
446 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
450 /* Use correct destination address if we have options. */
451 daddr
= inet
->inet_daddr
;
452 if (inet_opt
&& inet_opt
->opt
.srr
)
453 daddr
= inet_opt
->opt
.faddr
;
455 /* If this fails, retransmit mechanism of transport layer will
456 * keep trying until route appears or the connection times
459 rt
= ip_route_output_ports(net
, fl4
, sk
,
460 daddr
, inet
->inet_saddr
,
465 sk
->sk_bound_dev_if
);
468 sk_setup_caps(sk
, &rt
->dst
);
470 skb_dst_set_noref(skb
, &rt
->dst
);
473 if (inet_opt
&& inet_opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
476 /* OK, we know where to send it, allocate and build IP header. */
477 skb_push(skb
, sizeof(struct iphdr
) + (inet_opt
? inet_opt
->opt
.optlen
: 0));
478 skb_reset_network_header(skb
);
480 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
481 if (ip_dont_fragment(sk
, &rt
->dst
) && !skb
->ignore_df
)
482 iph
->frag_off
= htons(IP_DF
);
485 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
486 iph
->protocol
= sk
->sk_protocol
;
487 ip_copy_addrs(iph
, fl4
);
489 /* Transport layer set skb->h.foo itself. */
491 if (inet_opt
&& inet_opt
->opt
.optlen
) {
492 iph
->ihl
+= inet_opt
->opt
.optlen
>> 2;
493 ip_options_build(skb
, &inet_opt
->opt
, inet
->inet_daddr
, rt
, 0);
496 ip_select_ident_segs(net
, skb
, sk
,
497 skb_shinfo(skb
)->gso_segs
?: 1);
499 /* TODO : should we use skb->sk here instead of sk ? */
500 skb
->priority
= sk
->sk_priority
;
501 skb
->mark
= sk
->sk_mark
;
503 res
= ip_local_out(net
, sk
, skb
);
509 IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
511 return -EHOSTUNREACH
;
513 EXPORT_SYMBOL(ip_queue_xmit
);
515 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
517 to
->pkt_type
= from
->pkt_type
;
518 to
->priority
= from
->priority
;
519 to
->protocol
= from
->protocol
;
521 skb_dst_copy(to
, from
);
523 to
->mark
= from
->mark
;
525 /* Copy the flags to each fragment. */
526 IPCB(to
)->flags
= IPCB(from
)->flags
;
528 #ifdef CONFIG_NET_SCHED
529 to
->tc_index
= from
->tc_index
;
532 #if IS_ENABLED(CONFIG_IP_VS)
533 to
->ipvs_property
= from
->ipvs_property
;
535 skb_copy_secmark(to
, from
);
538 static int ip_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
540 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*))
542 struct iphdr
*iph
= ip_hdr(skb
);
544 if ((iph
->frag_off
& htons(IP_DF
)) == 0)
545 return ip_do_fragment(net
, sk
, skb
, output
);
547 if (unlikely(!skb
->ignore_df
||
548 (IPCB(skb
)->frag_max_size
&&
549 IPCB(skb
)->frag_max_size
> mtu
))) {
550 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
551 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
557 return ip_do_fragment(net
, sk
, skb
, output
);
561 * This IP datagram is too large to be sent in one piece. Break it up into
562 * smaller pieces (each of size equal to IP header plus
563 * a block of the data of the original IP data part) that will yet fit in a
564 * single device frame, and queue such a frame for sending.
567 int ip_do_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
568 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*))
572 struct sk_buff
*skb2
;
573 unsigned int mtu
, hlen
, left
, len
, ll_rs
;
575 __be16 not_last_frag
;
576 struct rtable
*rt
= skb_rtable(skb
);
579 /* for offloaded checksums cleanup checksum before fragmentation */
580 if (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
581 (err
= skb_checksum_help(skb
)))
585 * Point into the IP datagram header.
590 mtu
= ip_skb_dst_mtu(sk
, skb
);
591 if (IPCB(skb
)->frag_max_size
&& IPCB(skb
)->frag_max_size
< mtu
)
592 mtu
= IPCB(skb
)->frag_max_size
;
595 * Setup starting values.
599 mtu
= mtu
- hlen
; /* Size of data space */
600 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
602 /* When frag_list is given, use it. First, check its validity:
603 * some transformers could create wrong frag_list or break existing
604 * one, it is not prohibited. In this case fall back to copying.
606 * LATER: this step can be merged to real generation of fragments,
607 * we can switch to copy when see the first bad fragment.
609 if (skb_has_frag_list(skb
)) {
610 struct sk_buff
*frag
, *frag2
;
611 unsigned int first_len
= skb_pagelen(skb
);
613 if (first_len
- hlen
> mtu
||
614 ((first_len
- hlen
) & 7) ||
615 ip_is_fragment(iph
) ||
619 skb_walk_frags(skb
, frag
) {
620 /* Correct geometry. */
621 if (frag
->len
> mtu
||
622 ((frag
->len
& 7) && frag
->next
) ||
623 skb_headroom(frag
) < hlen
)
624 goto slow_path_clean
;
626 /* Partially cloned skb? */
627 if (skb_shared(frag
))
628 goto slow_path_clean
;
633 frag
->destructor
= sock_wfree
;
635 skb
->truesize
-= frag
->truesize
;
638 /* Everything is OK. Generate! */
642 frag
= skb_shinfo(skb
)->frag_list
;
643 skb_frag_list_init(skb
);
644 skb
->data_len
= first_len
- skb_headlen(skb
);
645 skb
->len
= first_len
;
646 iph
->tot_len
= htons(first_len
);
647 iph
->frag_off
= htons(IP_MF
);
651 /* Prepare header of the next frame,
652 * before previous one went down. */
654 frag
->ip_summed
= CHECKSUM_NONE
;
655 skb_reset_transport_header(frag
);
656 __skb_push(frag
, hlen
);
657 skb_reset_network_header(frag
);
658 memcpy(skb_network_header(frag
), iph
, hlen
);
660 iph
->tot_len
= htons(frag
->len
);
661 ip_copy_metadata(frag
, skb
);
663 ip_options_fragment(frag
);
664 offset
+= skb
->len
- hlen
;
665 iph
->frag_off
= htons(offset
>>3);
667 iph
->frag_off
|= htons(IP_MF
);
668 /* Ready, complete checksum */
672 err
= output(net
, sk
, skb
);
675 IP_INC_STATS(net
, IPSTATS_MIB_FRAGCREATES
);
685 IP_INC_STATS(net
, IPSTATS_MIB_FRAGOKS
);
694 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
698 skb_walk_frags(skb
, frag2
) {
702 frag2
->destructor
= NULL
;
703 skb
->truesize
+= frag2
->truesize
;
710 left
= skb
->len
- hlen
; /* Space per frame */
711 ptr
= hlen
; /* Where to start from */
713 ll_rs
= LL_RESERVED_SPACE(rt
->dst
.dev
);
716 * Fragment the datagram.
719 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
720 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
723 * Keep copying data until we run out.
728 /* IF: it doesn't fit, use 'mtu' - the data space left */
731 /* IF: we are not sending up to and including the packet end
732 then align the next start on an eight byte boundary */
737 /* Allocate buffer */
738 skb2
= alloc_skb(len
+ hlen
+ ll_rs
, GFP_ATOMIC
);
745 * Set up data on packet
748 ip_copy_metadata(skb2
, skb
);
749 skb_reserve(skb2
, ll_rs
);
750 skb_put(skb2
, len
+ hlen
);
751 skb_reset_network_header(skb2
);
752 skb2
->transport_header
= skb2
->network_header
+ hlen
;
755 * Charge the memory for the fragment to any owner
760 skb_set_owner_w(skb2
, skb
->sk
);
763 * Copy the packet header into the new buffer.
766 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
769 * Copy a block of the IP datagram.
771 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
776 * Fill in the new header fields.
779 iph
->frag_off
= htons((offset
>> 3));
781 if (IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
)
782 iph
->frag_off
|= htons(IP_DF
);
784 /* ANK: dirty, but effective trick. Upgrade options only if
785 * the segment to be fragmented was THE FIRST (otherwise,
786 * options are already fixed) and make it ONCE
787 * on the initial skb, so that all the following fragments
788 * will inherit fixed options.
791 ip_options_fragment(skb
);
794 * Added AC : If we are fragmenting a fragment that's not the
795 * last fragment then keep MF on each bit
797 if (left
> 0 || not_last_frag
)
798 iph
->frag_off
|= htons(IP_MF
);
803 * Put this fragment into the sending queue.
805 iph
->tot_len
= htons(len
+ hlen
);
809 err
= output(net
, sk
, skb2
);
813 IP_INC_STATS(net
, IPSTATS_MIB_FRAGCREATES
);
816 IP_INC_STATS(net
, IPSTATS_MIB_FRAGOKS
);
821 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
824 EXPORT_SYMBOL(ip_do_fragment
);
827 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
829 struct msghdr
*msg
= from
;
831 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
832 if (!copy_from_iter_full(to
, len
, &msg
->msg_iter
))
836 if (!csum_and_copy_from_iter_full(to
, len
, &csum
, &msg
->msg_iter
))
838 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
842 EXPORT_SYMBOL(ip_generic_getfrag
);
845 csum_page(struct page
*page
, int offset
, int copy
)
850 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
855 static inline int ip_ufo_append_data(struct sock
*sk
,
856 struct sk_buff_head
*queue
,
857 int getfrag(void *from
, char *to
, int offset
, int len
,
858 int odd
, struct sk_buff
*skb
),
859 void *from
, int length
, int hh_len
, int fragheaderlen
,
860 int transhdrlen
, int maxfraglen
, unsigned int flags
)
865 /* There is support for UDP fragmentation offload by network
866 * device, so create one single skb packet containing complete
869 skb
= skb_peek_tail(queue
);
871 skb
= sock_alloc_send_skb(sk
,
872 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
873 (flags
& MSG_DONTWAIT
), &err
);
878 /* reserve space for Hardware header */
879 skb_reserve(skb
, hh_len
);
881 /* create space for UDP/IP header */
882 skb_put(skb
, fragheaderlen
+ transhdrlen
);
884 /* initialize network header pointer */
885 skb_reset_network_header(skb
);
887 /* initialize protocol header pointer */
888 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
892 if (flags
& MSG_CONFIRM
)
893 skb_set_dst_pending_confirm(skb
, 1);
895 __skb_queue_tail(queue
, skb
);
896 } else if (skb_is_gso(skb
)) {
900 skb
->ip_summed
= CHECKSUM_PARTIAL
;
901 /* specify the length of each IP datagram fragment */
902 skb_shinfo(skb
)->gso_size
= maxfraglen
- fragheaderlen
;
903 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
906 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
907 (length
- transhdrlen
));
910 static int __ip_append_data(struct sock
*sk
,
912 struct sk_buff_head
*queue
,
913 struct inet_cork
*cork
,
914 struct page_frag
*pfrag
,
915 int getfrag(void *from
, char *to
, int offset
,
916 int len
, int odd
, struct sk_buff
*skb
),
917 void *from
, int length
, int transhdrlen
,
920 struct inet_sock
*inet
= inet_sk(sk
);
923 struct ip_options
*opt
= cork
->opt
;
930 unsigned int maxfraglen
, fragheaderlen
, maxnonfragsize
;
931 int csummode
= CHECKSUM_NONE
;
932 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
935 skb
= skb_peek_tail(queue
);
937 exthdrlen
= !skb
? rt
->dst
.header_len
: 0;
938 mtu
= cork
->fragsize
;
939 if (cork
->tx_flags
& SKBTX_ANY_SW_TSTAMP
&&
940 sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)
941 tskey
= sk
->sk_tskey
++;
943 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
945 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
946 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
947 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
949 if (cork
->length
+ length
> maxnonfragsize
- fragheaderlen
) {
950 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
951 mtu
- (opt
? opt
->optlen
: 0));
956 * transhdrlen > 0 means that this is the first fragment and we wish
957 * it won't be fragmented in the future.
960 length
+ fragheaderlen
<= mtu
&&
961 rt
->dst
.dev
->features
& (NETIF_F_HW_CSUM
| NETIF_F_IP_CSUM
) &&
962 !(flags
& MSG_MORE
) &&
964 csummode
= CHECKSUM_PARTIAL
;
966 cork
->length
+= length
;
967 if ((((length
+ fragheaderlen
) > mtu
) || (skb
&& skb_is_gso(skb
))) &&
968 (sk
->sk_protocol
== IPPROTO_UDP
) &&
969 (rt
->dst
.dev
->features
& NETIF_F_UFO
) && !dst_xfrm(&rt
->dst
) &&
970 (sk
->sk_type
== SOCK_DGRAM
) && !sk
->sk_no_check_tx
) {
971 err
= ip_ufo_append_data(sk
, queue
, getfrag
, from
, length
,
972 hh_len
, fragheaderlen
, transhdrlen
,
979 /* So, what's going on in the loop below?
981 * We use calculated fragment length to generate chained skb,
982 * each of segments is IP fragment ready for sending to network after
983 * adding appropriate IP header.
990 /* Check if the remaining data fits into current packet. */
991 copy
= mtu
- skb
->len
;
993 copy
= maxfraglen
- skb
->len
;
996 unsigned int datalen
;
997 unsigned int fraglen
;
998 unsigned int fraggap
;
999 unsigned int alloclen
;
1000 struct sk_buff
*skb_prev
;
1004 fraggap
= skb_prev
->len
- maxfraglen
;
1009 * If remaining data exceeds the mtu,
1010 * we know we need more fragment(s).
1012 datalen
= length
+ fraggap
;
1013 if (datalen
> mtu
- fragheaderlen
)
1014 datalen
= maxfraglen
- fragheaderlen
;
1015 fraglen
= datalen
+ fragheaderlen
;
1017 if ((flags
& MSG_MORE
) &&
1018 !(rt
->dst
.dev
->features
&NETIF_F_SG
))
1023 alloclen
+= exthdrlen
;
1025 /* The last fragment gets additional space at tail.
1026 * Note, with MSG_MORE we overallocate on fragments,
1027 * because we have no idea what fragment will be
1030 if (datalen
== length
+ fraggap
)
1031 alloclen
+= rt
->dst
.trailer_len
;
1034 skb
= sock_alloc_send_skb(sk
,
1035 alloclen
+ hh_len
+ 15,
1036 (flags
& MSG_DONTWAIT
), &err
);
1039 if (atomic_read(&sk
->sk_wmem_alloc
) <=
1041 skb
= sock_wmalloc(sk
,
1042 alloclen
+ hh_len
+ 15, 1,
1051 * Fill in the control structures
1053 skb
->ip_summed
= csummode
;
1055 skb_reserve(skb
, hh_len
);
1057 /* only the initial fragment is time stamped */
1058 skb_shinfo(skb
)->tx_flags
= cork
->tx_flags
;
1060 skb_shinfo(skb
)->tskey
= tskey
;
1064 * Find where to start putting bytes.
1066 data
= skb_put(skb
, fraglen
+ exthdrlen
);
1067 skb_set_network_header(skb
, exthdrlen
);
1068 skb
->transport_header
= (skb
->network_header
+
1070 data
+= fragheaderlen
+ exthdrlen
;
1073 skb
->csum
= skb_copy_and_csum_bits(
1074 skb_prev
, maxfraglen
,
1075 data
+ transhdrlen
, fraggap
, 0);
1076 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1079 pskb_trim_unique(skb_prev
, maxfraglen
);
1082 copy
= datalen
- transhdrlen
- fraggap
;
1083 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
1090 length
-= datalen
- fraggap
;
1093 csummode
= CHECKSUM_NONE
;
1095 if ((flags
& MSG_CONFIRM
) && !skb_prev
)
1096 skb_set_dst_pending_confirm(skb
, 1);
1099 * Put the packet on the pending queue.
1101 __skb_queue_tail(queue
, skb
);
1108 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
)) {
1112 if (getfrag(from
, skb_put(skb
, copy
),
1113 offset
, copy
, off
, skb
) < 0) {
1114 __skb_trim(skb
, off
);
1119 int i
= skb_shinfo(skb
)->nr_frags
;
1122 if (!sk_page_frag_refill(sk
, pfrag
))
1125 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1128 if (i
== MAX_SKB_FRAGS
)
1131 __skb_fill_page_desc(skb
, i
, pfrag
->page
,
1133 skb_shinfo(skb
)->nr_frags
= ++i
;
1134 get_page(pfrag
->page
);
1136 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1138 page_address(pfrag
->page
) + pfrag
->offset
,
1139 offset
, copy
, skb
->len
, skb
) < 0)
1142 pfrag
->offset
+= copy
;
1143 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1145 skb
->data_len
+= copy
;
1146 skb
->truesize
+= copy
;
1147 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1158 cork
->length
-= length
;
1159 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1163 static int ip_setup_cork(struct sock
*sk
, struct inet_cork
*cork
,
1164 struct ipcm_cookie
*ipc
, struct rtable
**rtp
)
1166 struct ip_options_rcu
*opt
;
1170 * setup for corking.
1175 cork
->opt
= kmalloc(sizeof(struct ip_options
) + 40,
1177 if (unlikely(!cork
->opt
))
1180 memcpy(cork
->opt
, &opt
->opt
, sizeof(struct ip_options
) + opt
->opt
.optlen
);
1181 cork
->flags
|= IPCORK_OPT
;
1182 cork
->addr
= ipc
->addr
;
1188 * We steal reference to this route, caller should not release it
1191 cork
->fragsize
= ip_sk_use_pmtu(sk
) ?
1192 dst_mtu(&rt
->dst
) : rt
->dst
.dev
->mtu
;
1193 cork
->dst
= &rt
->dst
;
1195 cork
->ttl
= ipc
->ttl
;
1196 cork
->tos
= ipc
->tos
;
1197 cork
->priority
= ipc
->priority
;
1198 cork
->tx_flags
= ipc
->tx_flags
;
1204 * ip_append_data() and ip_append_page() can make one large IP datagram
1205 * from many pieces of data. Each pieces will be holded on the socket
1206 * until ip_push_pending_frames() is called. Each piece can be a page
1209 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1210 * this interface potentially.
1212 * LATER: length must be adjusted by pad at tail, when it is required.
1214 int ip_append_data(struct sock
*sk
, struct flowi4
*fl4
,
1215 int getfrag(void *from
, char *to
, int offset
, int len
,
1216 int odd
, struct sk_buff
*skb
),
1217 void *from
, int length
, int transhdrlen
,
1218 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1221 struct inet_sock
*inet
= inet_sk(sk
);
1224 if (flags
&MSG_PROBE
)
1227 if (skb_queue_empty(&sk
->sk_write_queue
)) {
1228 err
= ip_setup_cork(sk
, &inet
->cork
.base
, ipc
, rtp
);
1235 return __ip_append_data(sk
, fl4
, &sk
->sk_write_queue
, &inet
->cork
.base
,
1236 sk_page_frag(sk
), getfrag
,
1237 from
, length
, transhdrlen
, flags
);
1240 ssize_t
ip_append_page(struct sock
*sk
, struct flowi4
*fl4
, struct page
*page
,
1241 int offset
, size_t size
, int flags
)
1243 struct inet_sock
*inet
= inet_sk(sk
);
1244 struct sk_buff
*skb
;
1246 struct ip_options
*opt
= NULL
;
1247 struct inet_cork
*cork
;
1252 unsigned int maxfraglen
, fragheaderlen
, fraggap
, maxnonfragsize
;
1257 if (flags
&MSG_PROBE
)
1260 if (skb_queue_empty(&sk
->sk_write_queue
))
1263 cork
= &inet
->cork
.base
;
1264 rt
= (struct rtable
*)cork
->dst
;
1265 if (cork
->flags
& IPCORK_OPT
)
1268 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
))
1271 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
1272 mtu
= cork
->fragsize
;
1274 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1275 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1276 maxnonfragsize
= ip_sk_ignore_df(sk
) ? 0xFFFF : mtu
;
1278 if (cork
->length
+ size
> maxnonfragsize
- fragheaderlen
) {
1279 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
1280 mtu
- (opt
? opt
->optlen
: 0));
1284 skb
= skb_peek_tail(&sk
->sk_write_queue
);
1288 if ((size
+ skb
->len
> mtu
) &&
1289 (sk
->sk_protocol
== IPPROTO_UDP
) &&
1290 (rt
->dst
.dev
->features
& NETIF_F_UFO
)) {
1291 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1294 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1295 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1297 cork
->length
+= size
;
1300 if (skb_is_gso(skb
)) {
1304 /* Check if the remaining data fits into current packet. */
1305 len
= mtu
- skb
->len
;
1307 len
= maxfraglen
- skb
->len
;
1310 struct sk_buff
*skb_prev
;
1314 fraggap
= skb_prev
->len
- maxfraglen
;
1316 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1317 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1318 if (unlikely(!skb
)) {
1324 * Fill in the control structures
1326 skb
->ip_summed
= CHECKSUM_NONE
;
1328 skb_reserve(skb
, hh_len
);
1331 * Find where to start putting bytes.
1333 skb_put(skb
, fragheaderlen
+ fraggap
);
1334 skb_reset_network_header(skb
);
1335 skb
->transport_header
= (skb
->network_header
+
1338 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1340 skb_transport_header(skb
),
1342 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1344 pskb_trim_unique(skb_prev
, maxfraglen
);
1348 * Put the packet on the pending queue.
1350 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1357 if (skb_append_pagefrags(skb
, page
, offset
, len
)) {
1362 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1364 csum
= csum_page(page
, offset
, len
);
1365 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1369 skb
->data_len
+= len
;
1370 skb
->truesize
+= len
;
1371 atomic_add(len
, &sk
->sk_wmem_alloc
);
1378 cork
->length
-= size
;
1379 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1383 static void ip_cork_release(struct inet_cork
*cork
)
1385 cork
->flags
&= ~IPCORK_OPT
;
1388 dst_release(cork
->dst
);
1393 * Combined all pending IP fragments on the socket as one IP datagram
1394 * and push them out.
1396 struct sk_buff
*__ip_make_skb(struct sock
*sk
,
1398 struct sk_buff_head
*queue
,
1399 struct inet_cork
*cork
)
1401 struct sk_buff
*skb
, *tmp_skb
;
1402 struct sk_buff
**tail_skb
;
1403 struct inet_sock
*inet
= inet_sk(sk
);
1404 struct net
*net
= sock_net(sk
);
1405 struct ip_options
*opt
= NULL
;
1406 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
1411 skb
= __skb_dequeue(queue
);
1414 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1416 /* move skb->data to ip header from ext header */
1417 if (skb
->data
< skb_network_header(skb
))
1418 __skb_pull(skb
, skb_network_offset(skb
));
1419 while ((tmp_skb
= __skb_dequeue(queue
)) != NULL
) {
1420 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1421 *tail_skb
= tmp_skb
;
1422 tail_skb
= &(tmp_skb
->next
);
1423 skb
->len
+= tmp_skb
->len
;
1424 skb
->data_len
+= tmp_skb
->len
;
1425 skb
->truesize
+= tmp_skb
->truesize
;
1426 tmp_skb
->destructor
= NULL
;
1430 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1431 * to fragment the frame generated here. No matter, what transforms
1432 * how transforms change size of the packet, it will come out.
1434 skb
->ignore_df
= ip_sk_ignore_df(sk
);
1436 /* DF bit is set when we want to see DF on outgoing frames.
1437 * If ignore_df is set too, we still allow to fragment this frame
1439 if (inet
->pmtudisc
== IP_PMTUDISC_DO
||
1440 inet
->pmtudisc
== IP_PMTUDISC_PROBE
||
1441 (skb
->len
<= dst_mtu(&rt
->dst
) &&
1442 ip_dont_fragment(sk
, &rt
->dst
)))
1445 if (cork
->flags
& IPCORK_OPT
)
1450 else if (rt
->rt_type
== RTN_MULTICAST
)
1453 ttl
= ip_select_ttl(inet
, &rt
->dst
);
1458 iph
->tos
= (cork
->tos
!= -1) ? cork
->tos
: inet
->tos
;
1461 iph
->protocol
= sk
->sk_protocol
;
1462 ip_copy_addrs(iph
, fl4
);
1463 ip_select_ident(net
, skb
, sk
);
1466 iph
->ihl
+= opt
->optlen
>>2;
1467 ip_options_build(skb
, opt
, cork
->addr
, rt
, 0);
1470 skb
->priority
= (cork
->tos
!= -1) ? cork
->priority
: sk
->sk_priority
;
1471 skb
->mark
= sk
->sk_mark
;
1473 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1477 skb_dst_set(skb
, &rt
->dst
);
1479 if (iph
->protocol
== IPPROTO_ICMP
)
1480 icmp_out_count(net
, ((struct icmphdr
*)
1481 skb_transport_header(skb
))->type
);
1483 ip_cork_release(cork
);
1488 int ip_send_skb(struct net
*net
, struct sk_buff
*skb
)
1492 err
= ip_local_out(net
, skb
->sk
, skb
);
1495 err
= net_xmit_errno(err
);
1497 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1503 int ip_push_pending_frames(struct sock
*sk
, struct flowi4
*fl4
)
1505 struct sk_buff
*skb
;
1507 skb
= ip_finish_skb(sk
, fl4
);
1511 /* Netfilter gets whole the not fragmented skb. */
1512 return ip_send_skb(sock_net(sk
), skb
);
1516 * Throw away all pending data on the socket.
1518 static void __ip_flush_pending_frames(struct sock
*sk
,
1519 struct sk_buff_head
*queue
,
1520 struct inet_cork
*cork
)
1522 struct sk_buff
*skb
;
1524 while ((skb
= __skb_dequeue_tail(queue
)) != NULL
)
1527 ip_cork_release(cork
);
1530 void ip_flush_pending_frames(struct sock
*sk
)
1532 __ip_flush_pending_frames(sk
, &sk
->sk_write_queue
, &inet_sk(sk
)->cork
.base
);
1535 struct sk_buff
*ip_make_skb(struct sock
*sk
,
1537 int getfrag(void *from
, char *to
, int offset
,
1538 int len
, int odd
, struct sk_buff
*skb
),
1539 void *from
, int length
, int transhdrlen
,
1540 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1543 struct inet_cork cork
;
1544 struct sk_buff_head queue
;
1547 if (flags
& MSG_PROBE
)
1550 __skb_queue_head_init(&queue
);
1555 err
= ip_setup_cork(sk
, &cork
, ipc
, rtp
);
1557 return ERR_PTR(err
);
1559 err
= __ip_append_data(sk
, fl4
, &queue
, &cork
,
1560 ¤t
->task_frag
, getfrag
,
1561 from
, length
, transhdrlen
, flags
);
1563 __ip_flush_pending_frames(sk
, &queue
, &cork
);
1564 return ERR_PTR(err
);
1567 return __ip_make_skb(sk
, fl4
, &queue
, &cork
);
1571 * Fetch data from kernel space and fill in checksum if needed.
1573 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1574 int len
, int odd
, struct sk_buff
*skb
)
1578 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1579 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1584 * Generic function to send a packet as reply to another packet.
1585 * Used to send some TCP resets/acks so far.
1587 void ip_send_unicast_reply(struct sock
*sk
, struct sk_buff
*skb
,
1588 const struct ip_options
*sopt
,
1589 __be32 daddr
, __be32 saddr
,
1590 const struct ip_reply_arg
*arg
,
1593 struct ip_options_data replyopts
;
1594 struct ipcm_cookie ipc
;
1596 struct rtable
*rt
= skb_rtable(skb
);
1597 struct net
*net
= sock_net(sk
);
1598 struct sk_buff
*nskb
;
1602 if (__ip_options_echo(&replyopts
.opt
.opt
, skb
, sopt
))
1611 if (replyopts
.opt
.opt
.optlen
) {
1612 ipc
.opt
= &replyopts
.opt
;
1614 if (replyopts
.opt
.opt
.srr
)
1615 daddr
= replyopts
.opt
.opt
.faddr
;
1618 oif
= arg
->bound_dev_if
;
1619 if (!oif
&& netif_index_is_l3_master(net
, skb
->skb_iif
))
1622 flowi4_init_output(&fl4
, oif
,
1623 IP4_REPLY_MARK(net
, skb
->mark
),
1625 RT_SCOPE_UNIVERSE
, ip_hdr(skb
)->protocol
,
1626 ip_reply_arg_flowi_flags(arg
),
1628 tcp_hdr(skb
)->source
, tcp_hdr(skb
)->dest
,
1630 security_skb_classify_flow(skb
, flowi4_to_flowi(&fl4
));
1631 rt
= ip_route_output_key(net
, &fl4
);
1635 inet_sk(sk
)->tos
= arg
->tos
;
1637 sk
->sk_priority
= skb
->priority
;
1638 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1639 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1640 sk
->sk_sndbuf
= sysctl_wmem_default
;
1641 sk
->sk_mark
= fl4
.flowi4_mark
;
1642 err
= ip_append_data(sk
, &fl4
, ip_reply_glue_bits
, arg
->iov
->iov_base
,
1643 len
, 0, &ipc
, &rt
, MSG_DONTWAIT
);
1644 if (unlikely(err
)) {
1645 ip_flush_pending_frames(sk
);
1649 nskb
= skb_peek(&sk
->sk_write_queue
);
1651 if (arg
->csumoffset
>= 0)
1652 *((__sum16
*)skb_transport_header(nskb
) +
1653 arg
->csumoffset
) = csum_fold(csum_add(nskb
->csum
,
1655 nskb
->ip_summed
= CHECKSUM_NONE
;
1656 ip_push_pending_frames(sk
, &fl4
);
1662 void __init
ip_init(void)
1667 #if defined(CONFIG_IP_MULTICAST)