Linux 4.11-rc6
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
blob2c1f59386a7bac8a8d9034ad8c64ba14d877fed2
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 EXPORT_SYMBOL(sysctl_tcp_timestamps);
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_early_retrans __read_mostly = 3;
100 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 #define REXMIT_NONE 0 /* no loss recovery to do */
126 #define REXMIT_LOST 1 /* retransmit packets marked lost */
127 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
129 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
130 unsigned int len)
132 static bool __once __read_mostly;
134 if (!__once) {
135 struct net_device *dev;
137 __once = true;
139 rcu_read_lock();
140 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
141 if (!dev || len >= dev->mtu)
142 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
143 dev ? dev->name : "Unknown driver");
144 rcu_read_unlock();
148 /* Adapt the MSS value used to make delayed ack decision to the
149 * real world.
151 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
153 struct inet_connection_sock *icsk = inet_csk(sk);
154 const unsigned int lss = icsk->icsk_ack.last_seg_size;
155 unsigned int len;
157 icsk->icsk_ack.last_seg_size = 0;
159 /* skb->len may jitter because of SACKs, even if peer
160 * sends good full-sized frames.
162 len = skb_shinfo(skb)->gso_size ? : skb->len;
163 if (len >= icsk->icsk_ack.rcv_mss) {
164 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
165 tcp_sk(sk)->advmss);
166 /* Account for possibly-removed options */
167 if (unlikely(len > icsk->icsk_ack.rcv_mss +
168 MAX_TCP_OPTION_SPACE))
169 tcp_gro_dev_warn(sk, skb, len);
170 } else {
171 /* Otherwise, we make more careful check taking into account,
172 * that SACKs block is variable.
174 * "len" is invariant segment length, including TCP header.
176 len += skb->data - skb_transport_header(skb);
177 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
178 /* If PSH is not set, packet should be
179 * full sized, provided peer TCP is not badly broken.
180 * This observation (if it is correct 8)) allows
181 * to handle super-low mtu links fairly.
183 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
184 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
185 /* Subtract also invariant (if peer is RFC compliant),
186 * tcp header plus fixed timestamp option length.
187 * Resulting "len" is MSS free of SACK jitter.
189 len -= tcp_sk(sk)->tcp_header_len;
190 icsk->icsk_ack.last_seg_size = len;
191 if (len == lss) {
192 icsk->icsk_ack.rcv_mss = len;
193 return;
196 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
198 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
202 static void tcp_incr_quickack(struct sock *sk)
204 struct inet_connection_sock *icsk = inet_csk(sk);
205 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
207 if (quickacks == 0)
208 quickacks = 2;
209 if (quickacks > icsk->icsk_ack.quick)
210 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
213 static void tcp_enter_quickack_mode(struct sock *sk)
215 struct inet_connection_sock *icsk = inet_csk(sk);
216 tcp_incr_quickack(sk);
217 icsk->icsk_ack.pingpong = 0;
218 icsk->icsk_ack.ato = TCP_ATO_MIN;
221 /* Send ACKs quickly, if "quick" count is not exhausted
222 * and the session is not interactive.
225 static bool tcp_in_quickack_mode(struct sock *sk)
227 const struct inet_connection_sock *icsk = inet_csk(sk);
228 const struct dst_entry *dst = __sk_dst_get(sk);
230 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
231 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
234 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
236 if (tp->ecn_flags & TCP_ECN_OK)
237 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
240 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
242 if (tcp_hdr(skb)->cwr)
243 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
246 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
248 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
251 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
253 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
254 case INET_ECN_NOT_ECT:
255 /* Funny extension: if ECT is not set on a segment,
256 * and we already seen ECT on a previous segment,
257 * it is probably a retransmit.
259 if (tp->ecn_flags & TCP_ECN_SEEN)
260 tcp_enter_quickack_mode((struct sock *)tp);
261 break;
262 case INET_ECN_CE:
263 if (tcp_ca_needs_ecn((struct sock *)tp))
264 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
266 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
267 /* Better not delay acks, sender can have a very low cwnd */
268 tcp_enter_quickack_mode((struct sock *)tp);
269 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
271 tp->ecn_flags |= TCP_ECN_SEEN;
272 break;
273 default:
274 if (tcp_ca_needs_ecn((struct sock *)tp))
275 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
276 tp->ecn_flags |= TCP_ECN_SEEN;
277 break;
281 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
283 if (tp->ecn_flags & TCP_ECN_OK)
284 __tcp_ecn_check_ce(tp, skb);
287 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
289 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
290 tp->ecn_flags &= ~TCP_ECN_OK;
293 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
295 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
296 tp->ecn_flags &= ~TCP_ECN_OK;
299 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
301 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
302 return true;
303 return false;
306 /* Buffer size and advertised window tuning.
308 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
311 static void tcp_sndbuf_expand(struct sock *sk)
313 const struct tcp_sock *tp = tcp_sk(sk);
314 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
315 int sndmem, per_mss;
316 u32 nr_segs;
318 /* Worst case is non GSO/TSO : each frame consumes one skb
319 * and skb->head is kmalloced using power of two area of memory
321 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
322 MAX_TCP_HEADER +
323 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
325 per_mss = roundup_pow_of_two(per_mss) +
326 SKB_DATA_ALIGN(sizeof(struct sk_buff));
328 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
329 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
331 /* Fast Recovery (RFC 5681 3.2) :
332 * Cubic needs 1.7 factor, rounded to 2 to include
333 * extra cushion (application might react slowly to POLLOUT)
335 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
336 sndmem *= nr_segs * per_mss;
338 if (sk->sk_sndbuf < sndmem)
339 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
342 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
344 * All tcp_full_space() is split to two parts: "network" buffer, allocated
345 * forward and advertised in receiver window (tp->rcv_wnd) and
346 * "application buffer", required to isolate scheduling/application
347 * latencies from network.
348 * window_clamp is maximal advertised window. It can be less than
349 * tcp_full_space(), in this case tcp_full_space() - window_clamp
350 * is reserved for "application" buffer. The less window_clamp is
351 * the smoother our behaviour from viewpoint of network, but the lower
352 * throughput and the higher sensitivity of the connection to losses. 8)
354 * rcv_ssthresh is more strict window_clamp used at "slow start"
355 * phase to predict further behaviour of this connection.
356 * It is used for two goals:
357 * - to enforce header prediction at sender, even when application
358 * requires some significant "application buffer". It is check #1.
359 * - to prevent pruning of receive queue because of misprediction
360 * of receiver window. Check #2.
362 * The scheme does not work when sender sends good segments opening
363 * window and then starts to feed us spaghetti. But it should work
364 * in common situations. Otherwise, we have to rely on queue collapsing.
367 /* Slow part of check#2. */
368 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
370 struct tcp_sock *tp = tcp_sk(sk);
371 /* Optimize this! */
372 int truesize = tcp_win_from_space(skb->truesize) >> 1;
373 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
375 while (tp->rcv_ssthresh <= window) {
376 if (truesize <= skb->len)
377 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
379 truesize >>= 1;
380 window >>= 1;
382 return 0;
385 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
387 struct tcp_sock *tp = tcp_sk(sk);
389 /* Check #1 */
390 if (tp->rcv_ssthresh < tp->window_clamp &&
391 (int)tp->rcv_ssthresh < tcp_space(sk) &&
392 !tcp_under_memory_pressure(sk)) {
393 int incr;
395 /* Check #2. Increase window, if skb with such overhead
396 * will fit to rcvbuf in future.
398 if (tcp_win_from_space(skb->truesize) <= skb->len)
399 incr = 2 * tp->advmss;
400 else
401 incr = __tcp_grow_window(sk, skb);
403 if (incr) {
404 incr = max_t(int, incr, 2 * skb->len);
405 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
406 tp->window_clamp);
407 inet_csk(sk)->icsk_ack.quick |= 1;
412 /* 3. Tuning rcvbuf, when connection enters established state. */
413 static void tcp_fixup_rcvbuf(struct sock *sk)
415 u32 mss = tcp_sk(sk)->advmss;
416 int rcvmem;
418 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
419 tcp_default_init_rwnd(mss);
421 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
422 * Allow enough cushion so that sender is not limited by our window
424 if (sysctl_tcp_moderate_rcvbuf)
425 rcvmem <<= 2;
427 if (sk->sk_rcvbuf < rcvmem)
428 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
431 /* 4. Try to fixup all. It is made immediately after connection enters
432 * established state.
434 void tcp_init_buffer_space(struct sock *sk)
436 struct tcp_sock *tp = tcp_sk(sk);
437 int maxwin;
439 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
440 tcp_fixup_rcvbuf(sk);
441 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
442 tcp_sndbuf_expand(sk);
444 tp->rcvq_space.space = tp->rcv_wnd;
445 tp->rcvq_space.time = tcp_time_stamp;
446 tp->rcvq_space.seq = tp->copied_seq;
448 maxwin = tcp_full_space(sk);
450 if (tp->window_clamp >= maxwin) {
451 tp->window_clamp = maxwin;
453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 tp->window_clamp = max(maxwin -
455 (maxwin >> sysctl_tcp_app_win),
456 4 * tp->advmss);
459 /* Force reservation of one segment. */
460 if (sysctl_tcp_app_win &&
461 tp->window_clamp > 2 * tp->advmss &&
462 tp->window_clamp + tp->advmss > maxwin)
463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 tp->snd_cwnd_stamp = tcp_time_stamp;
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
470 static void tcp_clamp_window(struct sock *sk)
472 struct tcp_sock *tp = tcp_sk(sk);
473 struct inet_connection_sock *icsk = inet_csk(sk);
475 icsk->icsk_ack.quick = 0;
477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 !tcp_under_memory_pressure(sk) &&
480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 sysctl_tcp_rmem[2]);
484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
488 /* Initialize RCV_MSS value.
489 * RCV_MSS is an our guess about MSS used by the peer.
490 * We haven't any direct information about the MSS.
491 * It's better to underestimate the RCV_MSS rather than overestimate.
492 * Overestimations make us ACKing less frequently than needed.
493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
495 void tcp_initialize_rcv_mss(struct sock *sk)
497 const struct tcp_sock *tp = tcp_sk(sk);
498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
500 hint = min(hint, tp->rcv_wnd / 2);
501 hint = min(hint, TCP_MSS_DEFAULT);
502 hint = max(hint, TCP_MIN_MSS);
504 inet_csk(sk)->icsk_ack.rcv_mss = hint;
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
508 /* Receiver "autotuning" code.
510 * The algorithm for RTT estimation w/o timestamps is based on
511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512 * <http://public.lanl.gov/radiant/pubs.html#DRS>
514 * More detail on this code can be found at
515 * <http://staff.psc.edu/jheffner/>,
516 * though this reference is out of date. A new paper
517 * is pending.
519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
521 u32 new_sample = tp->rcv_rtt_est.rtt;
522 long m = sample;
524 if (m == 0)
525 m = 1;
527 if (new_sample != 0) {
528 /* If we sample in larger samples in the non-timestamp
529 * case, we could grossly overestimate the RTT especially
530 * with chatty applications or bulk transfer apps which
531 * are stalled on filesystem I/O.
533 * Also, since we are only going for a minimum in the
534 * non-timestamp case, we do not smooth things out
535 * else with timestamps disabled convergence takes too
536 * long.
538 if (!win_dep) {
539 m -= (new_sample >> 3);
540 new_sample += m;
541 } else {
542 m <<= 3;
543 if (m < new_sample)
544 new_sample = m;
546 } else {
547 /* No previous measure. */
548 new_sample = m << 3;
551 if (tp->rcv_rtt_est.rtt != new_sample)
552 tp->rcv_rtt_est.rtt = new_sample;
555 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
557 if (tp->rcv_rtt_est.time == 0)
558 goto new_measure;
559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
560 return;
561 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
563 new_measure:
564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 tp->rcv_rtt_est.time = tcp_time_stamp;
568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 const struct sk_buff *skb)
571 struct tcp_sock *tp = tcp_sk(sk);
572 if (tp->rx_opt.rcv_tsecr &&
573 (TCP_SKB_CB(skb)->end_seq -
574 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
575 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
579 * This function should be called every time data is copied to user space.
580 * It calculates the appropriate TCP receive buffer space.
582 void tcp_rcv_space_adjust(struct sock *sk)
584 struct tcp_sock *tp = tcp_sk(sk);
585 int time;
586 int copied;
588 time = tcp_time_stamp - tp->rcvq_space.time;
589 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
590 return;
592 /* Number of bytes copied to user in last RTT */
593 copied = tp->copied_seq - tp->rcvq_space.seq;
594 if (copied <= tp->rcvq_space.space)
595 goto new_measure;
597 /* A bit of theory :
598 * copied = bytes received in previous RTT, our base window
599 * To cope with packet losses, we need a 2x factor
600 * To cope with slow start, and sender growing its cwin by 100 %
601 * every RTT, we need a 4x factor, because the ACK we are sending
602 * now is for the next RTT, not the current one :
603 * <prev RTT . ><current RTT .. ><next RTT .... >
606 if (sysctl_tcp_moderate_rcvbuf &&
607 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
608 int rcvwin, rcvmem, rcvbuf;
610 /* minimal window to cope with packet losses, assuming
611 * steady state. Add some cushion because of small variations.
613 rcvwin = (copied << 1) + 16 * tp->advmss;
615 /* If rate increased by 25%,
616 * assume slow start, rcvwin = 3 * copied
617 * If rate increased by 50%,
618 * assume sender can use 2x growth, rcvwin = 4 * copied
620 if (copied >=
621 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
622 if (copied >=
623 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
624 rcvwin <<= 1;
625 else
626 rcvwin += (rcvwin >> 1);
629 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
630 while (tcp_win_from_space(rcvmem) < tp->advmss)
631 rcvmem += 128;
633 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
634 if (rcvbuf > sk->sk_rcvbuf) {
635 sk->sk_rcvbuf = rcvbuf;
637 /* Make the window clamp follow along. */
638 tp->window_clamp = rcvwin;
641 tp->rcvq_space.space = copied;
643 new_measure:
644 tp->rcvq_space.seq = tp->copied_seq;
645 tp->rcvq_space.time = tcp_time_stamp;
648 /* There is something which you must keep in mind when you analyze the
649 * behavior of the tp->ato delayed ack timeout interval. When a
650 * connection starts up, we want to ack as quickly as possible. The
651 * problem is that "good" TCP's do slow start at the beginning of data
652 * transmission. The means that until we send the first few ACK's the
653 * sender will sit on his end and only queue most of his data, because
654 * he can only send snd_cwnd unacked packets at any given time. For
655 * each ACK we send, he increments snd_cwnd and transmits more of his
656 * queue. -DaveM
658 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
660 struct tcp_sock *tp = tcp_sk(sk);
661 struct inet_connection_sock *icsk = inet_csk(sk);
662 u32 now;
664 inet_csk_schedule_ack(sk);
666 tcp_measure_rcv_mss(sk, skb);
668 tcp_rcv_rtt_measure(tp);
670 now = tcp_time_stamp;
672 if (!icsk->icsk_ack.ato) {
673 /* The _first_ data packet received, initialize
674 * delayed ACK engine.
676 tcp_incr_quickack(sk);
677 icsk->icsk_ack.ato = TCP_ATO_MIN;
678 } else {
679 int m = now - icsk->icsk_ack.lrcvtime;
681 if (m <= TCP_ATO_MIN / 2) {
682 /* The fastest case is the first. */
683 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
684 } else if (m < icsk->icsk_ack.ato) {
685 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
686 if (icsk->icsk_ack.ato > icsk->icsk_rto)
687 icsk->icsk_ack.ato = icsk->icsk_rto;
688 } else if (m > icsk->icsk_rto) {
689 /* Too long gap. Apparently sender failed to
690 * restart window, so that we send ACKs quickly.
692 tcp_incr_quickack(sk);
693 sk_mem_reclaim(sk);
696 icsk->icsk_ack.lrcvtime = now;
698 tcp_ecn_check_ce(tp, skb);
700 if (skb->len >= 128)
701 tcp_grow_window(sk, skb);
704 /* Called to compute a smoothed rtt estimate. The data fed to this
705 * routine either comes from timestamps, or from segments that were
706 * known _not_ to have been retransmitted [see Karn/Partridge
707 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
708 * piece by Van Jacobson.
709 * NOTE: the next three routines used to be one big routine.
710 * To save cycles in the RFC 1323 implementation it was better to break
711 * it up into three procedures. -- erics
713 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
715 struct tcp_sock *tp = tcp_sk(sk);
716 long m = mrtt_us; /* RTT */
717 u32 srtt = tp->srtt_us;
719 /* The following amusing code comes from Jacobson's
720 * article in SIGCOMM '88. Note that rtt and mdev
721 * are scaled versions of rtt and mean deviation.
722 * This is designed to be as fast as possible
723 * m stands for "measurement".
725 * On a 1990 paper the rto value is changed to:
726 * RTO = rtt + 4 * mdev
728 * Funny. This algorithm seems to be very broken.
729 * These formulae increase RTO, when it should be decreased, increase
730 * too slowly, when it should be increased quickly, decrease too quickly
731 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
732 * does not matter how to _calculate_ it. Seems, it was trap
733 * that VJ failed to avoid. 8)
735 if (srtt != 0) {
736 m -= (srtt >> 3); /* m is now error in rtt est */
737 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
738 if (m < 0) {
739 m = -m; /* m is now abs(error) */
740 m -= (tp->mdev_us >> 2); /* similar update on mdev */
741 /* This is similar to one of Eifel findings.
742 * Eifel blocks mdev updates when rtt decreases.
743 * This solution is a bit different: we use finer gain
744 * for mdev in this case (alpha*beta).
745 * Like Eifel it also prevents growth of rto,
746 * but also it limits too fast rto decreases,
747 * happening in pure Eifel.
749 if (m > 0)
750 m >>= 3;
751 } else {
752 m -= (tp->mdev_us >> 2); /* similar update on mdev */
754 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
755 if (tp->mdev_us > tp->mdev_max_us) {
756 tp->mdev_max_us = tp->mdev_us;
757 if (tp->mdev_max_us > tp->rttvar_us)
758 tp->rttvar_us = tp->mdev_max_us;
760 if (after(tp->snd_una, tp->rtt_seq)) {
761 if (tp->mdev_max_us < tp->rttvar_us)
762 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
763 tp->rtt_seq = tp->snd_nxt;
764 tp->mdev_max_us = tcp_rto_min_us(sk);
766 } else {
767 /* no previous measure. */
768 srtt = m << 3; /* take the measured time to be rtt */
769 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
770 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
771 tp->mdev_max_us = tp->rttvar_us;
772 tp->rtt_seq = tp->snd_nxt;
774 tp->srtt_us = max(1U, srtt);
777 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
778 * Note: TCP stack does not yet implement pacing.
779 * FQ packet scheduler can be used to implement cheap but effective
780 * TCP pacing, to smooth the burst on large writes when packets
781 * in flight is significantly lower than cwnd (or rwin)
783 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
784 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
786 static void tcp_update_pacing_rate(struct sock *sk)
788 const struct tcp_sock *tp = tcp_sk(sk);
789 u64 rate;
791 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
792 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
794 /* current rate is (cwnd * mss) / srtt
795 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
796 * In Congestion Avoidance phase, set it to 120 % the current rate.
798 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
799 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
800 * end of slow start and should slow down.
802 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
803 rate *= sysctl_tcp_pacing_ss_ratio;
804 else
805 rate *= sysctl_tcp_pacing_ca_ratio;
807 rate *= max(tp->snd_cwnd, tp->packets_out);
809 if (likely(tp->srtt_us))
810 do_div(rate, tp->srtt_us);
812 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
813 * without any lock. We want to make sure compiler wont store
814 * intermediate values in this location.
816 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
817 sk->sk_max_pacing_rate);
820 /* Calculate rto without backoff. This is the second half of Van Jacobson's
821 * routine referred to above.
823 static void tcp_set_rto(struct sock *sk)
825 const struct tcp_sock *tp = tcp_sk(sk);
826 /* Old crap is replaced with new one. 8)
828 * More seriously:
829 * 1. If rtt variance happened to be less 50msec, it is hallucination.
830 * It cannot be less due to utterly erratic ACK generation made
831 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
832 * to do with delayed acks, because at cwnd>2 true delack timeout
833 * is invisible. Actually, Linux-2.4 also generates erratic
834 * ACKs in some circumstances.
836 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
838 /* 2. Fixups made earlier cannot be right.
839 * If we do not estimate RTO correctly without them,
840 * all the algo is pure shit and should be replaced
841 * with correct one. It is exactly, which we pretend to do.
844 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
845 * guarantees that rto is higher.
847 tcp_bound_rto(sk);
850 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
852 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
854 if (!cwnd)
855 cwnd = TCP_INIT_CWND;
856 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
863 void tcp_disable_fack(struct tcp_sock *tp)
865 /* RFC3517 uses different metric in lost marker => reset on change */
866 if (tcp_is_fack(tp))
867 tp->lost_skb_hint = NULL;
868 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
874 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
877 static void tcp_update_reordering(struct sock *sk, const int metric,
878 const int ts)
880 struct tcp_sock *tp = tcp_sk(sk);
881 int mib_idx;
883 if (metric > tp->reordering) {
884 tp->reordering = min(sysctl_tcp_max_reordering, metric);
886 #if FASTRETRANS_DEBUG > 1
887 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
888 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
889 tp->reordering,
890 tp->fackets_out,
891 tp->sacked_out,
892 tp->undo_marker ? tp->undo_retrans : 0);
893 #endif
894 tcp_disable_fack(tp);
897 tp->rack.reord = 1;
899 /* This exciting event is worth to be remembered. 8) */
900 if (ts)
901 mib_idx = LINUX_MIB_TCPTSREORDER;
902 else if (tcp_is_reno(tp))
903 mib_idx = LINUX_MIB_TCPRENOREORDER;
904 else if (tcp_is_fack(tp))
905 mib_idx = LINUX_MIB_TCPFACKREORDER;
906 else
907 mib_idx = LINUX_MIB_TCPSACKREORDER;
909 NET_INC_STATS(sock_net(sk), mib_idx);
912 /* This must be called before lost_out is incremented */
913 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
915 if (!tp->retransmit_skb_hint ||
916 before(TCP_SKB_CB(skb)->seq,
917 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
918 tp->retransmit_skb_hint = skb;
921 /* Sum the number of packets on the wire we have marked as lost.
922 * There are two cases we care about here:
923 * a) Packet hasn't been marked lost (nor retransmitted),
924 * and this is the first loss.
925 * b) Packet has been marked both lost and retransmitted,
926 * and this means we think it was lost again.
928 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
930 __u8 sacked = TCP_SKB_CB(skb)->sacked;
932 if (!(sacked & TCPCB_LOST) ||
933 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
934 tp->lost += tcp_skb_pcount(skb);
937 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
939 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
940 tcp_verify_retransmit_hint(tp, skb);
942 tp->lost_out += tcp_skb_pcount(skb);
943 tcp_sum_lost(tp, skb);
944 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
948 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
950 tcp_verify_retransmit_hint(tp, skb);
952 tcp_sum_lost(tp, skb);
953 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
954 tp->lost_out += tcp_skb_pcount(skb);
955 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
959 /* This procedure tags the retransmission queue when SACKs arrive.
961 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
962 * Packets in queue with these bits set are counted in variables
963 * sacked_out, retrans_out and lost_out, correspondingly.
965 * Valid combinations are:
966 * Tag InFlight Description
967 * 0 1 - orig segment is in flight.
968 * S 0 - nothing flies, orig reached receiver.
969 * L 0 - nothing flies, orig lost by net.
970 * R 2 - both orig and retransmit are in flight.
971 * L|R 1 - orig is lost, retransmit is in flight.
972 * S|R 1 - orig reached receiver, retrans is still in flight.
973 * (L|S|R is logically valid, it could occur when L|R is sacked,
974 * but it is equivalent to plain S and code short-curcuits it to S.
975 * L|S is logically invalid, it would mean -1 packet in flight 8))
977 * These 6 states form finite state machine, controlled by the following events:
978 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
979 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
980 * 3. Loss detection event of two flavors:
981 * A. Scoreboard estimator decided the packet is lost.
982 * A'. Reno "three dupacks" marks head of queue lost.
983 * A''. Its FACK modification, head until snd.fack is lost.
984 * B. SACK arrives sacking SND.NXT at the moment, when the
985 * segment was retransmitted.
986 * 4. D-SACK added new rule: D-SACK changes any tag to S.
988 * It is pleasant to note, that state diagram turns out to be commutative,
989 * so that we are allowed not to be bothered by order of our actions,
990 * when multiple events arrive simultaneously. (see the function below).
992 * Reordering detection.
993 * --------------------
994 * Reordering metric is maximal distance, which a packet can be displaced
995 * in packet stream. With SACKs we can estimate it:
997 * 1. SACK fills old hole and the corresponding segment was not
998 * ever retransmitted -> reordering. Alas, we cannot use it
999 * when segment was retransmitted.
1000 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1001 * for retransmitted and already SACKed segment -> reordering..
1002 * Both of these heuristics are not used in Loss state, when we cannot
1003 * account for retransmits accurately.
1005 * SACK block validation.
1006 * ----------------------
1008 * SACK block range validation checks that the received SACK block fits to
1009 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1010 * Note that SND.UNA is not included to the range though being valid because
1011 * it means that the receiver is rather inconsistent with itself reporting
1012 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1013 * perfectly valid, however, in light of RFC2018 which explicitly states
1014 * that "SACK block MUST reflect the newest segment. Even if the newest
1015 * segment is going to be discarded ...", not that it looks very clever
1016 * in case of head skb. Due to potentional receiver driven attacks, we
1017 * choose to avoid immediate execution of a walk in write queue due to
1018 * reneging and defer head skb's loss recovery to standard loss recovery
1019 * procedure that will eventually trigger (nothing forbids us doing this).
1021 * Implements also blockage to start_seq wrap-around. Problem lies in the
1022 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1023 * there's no guarantee that it will be before snd_nxt (n). The problem
1024 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1025 * wrap (s_w):
1027 * <- outs wnd -> <- wrapzone ->
1028 * u e n u_w e_w s n_w
1029 * | | | | | | |
1030 * |<------------+------+----- TCP seqno space --------------+---------->|
1031 * ...-- <2^31 ->| |<--------...
1032 * ...---- >2^31 ------>| |<--------...
1034 * Current code wouldn't be vulnerable but it's better still to discard such
1035 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1036 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1037 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1038 * equal to the ideal case (infinite seqno space without wrap caused issues).
1040 * With D-SACK the lower bound is extended to cover sequence space below
1041 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1042 * again, D-SACK block must not to go across snd_una (for the same reason as
1043 * for the normal SACK blocks, explained above). But there all simplicity
1044 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1045 * fully below undo_marker they do not affect behavior in anyway and can
1046 * therefore be safely ignored. In rare cases (which are more or less
1047 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1048 * fragmentation and packet reordering past skb's retransmission. To consider
1049 * them correctly, the acceptable range must be extended even more though
1050 * the exact amount is rather hard to quantify. However, tp->max_window can
1051 * be used as an exaggerated estimate.
1053 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1054 u32 start_seq, u32 end_seq)
1056 /* Too far in future, or reversed (interpretation is ambiguous) */
1057 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1058 return false;
1060 /* Nasty start_seq wrap-around check (see comments above) */
1061 if (!before(start_seq, tp->snd_nxt))
1062 return false;
1064 /* In outstanding window? ...This is valid exit for D-SACKs too.
1065 * start_seq == snd_una is non-sensical (see comments above)
1067 if (after(start_seq, tp->snd_una))
1068 return true;
1070 if (!is_dsack || !tp->undo_marker)
1071 return false;
1073 /* ...Then it's D-SACK, and must reside below snd_una completely */
1074 if (after(end_seq, tp->snd_una))
1075 return false;
1077 if (!before(start_seq, tp->undo_marker))
1078 return true;
1080 /* Too old */
1081 if (!after(end_seq, tp->undo_marker))
1082 return false;
1084 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1085 * start_seq < undo_marker and end_seq >= undo_marker.
1087 return !before(start_seq, end_seq - tp->max_window);
1090 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1091 struct tcp_sack_block_wire *sp, int num_sacks,
1092 u32 prior_snd_una)
1094 struct tcp_sock *tp = tcp_sk(sk);
1095 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1096 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1097 bool dup_sack = false;
1099 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1100 dup_sack = true;
1101 tcp_dsack_seen(tp);
1102 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1103 } else if (num_sacks > 1) {
1104 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1105 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1107 if (!after(end_seq_0, end_seq_1) &&
1108 !before(start_seq_0, start_seq_1)) {
1109 dup_sack = true;
1110 tcp_dsack_seen(tp);
1111 NET_INC_STATS(sock_net(sk),
1112 LINUX_MIB_TCPDSACKOFORECV);
1116 /* D-SACK for already forgotten data... Do dumb counting. */
1117 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1118 !after(end_seq_0, prior_snd_una) &&
1119 after(end_seq_0, tp->undo_marker))
1120 tp->undo_retrans--;
1122 return dup_sack;
1125 struct tcp_sacktag_state {
1126 int reord;
1127 int fack_count;
1128 /* Timestamps for earliest and latest never-retransmitted segment
1129 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1130 * but congestion control should still get an accurate delay signal.
1132 struct skb_mstamp first_sackt;
1133 struct skb_mstamp last_sackt;
1134 struct skb_mstamp ack_time; /* Timestamp when the S/ACK was received */
1135 struct rate_sample *rate;
1136 int flag;
1139 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1140 * the incoming SACK may not exactly match but we can find smaller MSS
1141 * aligned portion of it that matches. Therefore we might need to fragment
1142 * which may fail and creates some hassle (caller must handle error case
1143 * returns).
1145 * FIXME: this could be merged to shift decision code
1147 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1148 u32 start_seq, u32 end_seq)
1150 int err;
1151 bool in_sack;
1152 unsigned int pkt_len;
1153 unsigned int mss;
1155 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1156 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1158 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1159 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1160 mss = tcp_skb_mss(skb);
1161 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1163 if (!in_sack) {
1164 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1165 if (pkt_len < mss)
1166 pkt_len = mss;
1167 } else {
1168 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1169 if (pkt_len < mss)
1170 return -EINVAL;
1173 /* Round if necessary so that SACKs cover only full MSSes
1174 * and/or the remaining small portion (if present)
1176 if (pkt_len > mss) {
1177 unsigned int new_len = (pkt_len / mss) * mss;
1178 if (!in_sack && new_len < pkt_len) {
1179 new_len += mss;
1180 if (new_len >= skb->len)
1181 return 0;
1183 pkt_len = new_len;
1185 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1186 if (err < 0)
1187 return err;
1190 return in_sack;
1193 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1194 static u8 tcp_sacktag_one(struct sock *sk,
1195 struct tcp_sacktag_state *state, u8 sacked,
1196 u32 start_seq, u32 end_seq,
1197 int dup_sack, int pcount,
1198 const struct skb_mstamp *xmit_time)
1200 struct tcp_sock *tp = tcp_sk(sk);
1201 int fack_count = state->fack_count;
1203 /* Account D-SACK for retransmitted packet. */
1204 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1205 if (tp->undo_marker && tp->undo_retrans > 0 &&
1206 after(end_seq, tp->undo_marker))
1207 tp->undo_retrans--;
1208 if (sacked & TCPCB_SACKED_ACKED)
1209 state->reord = min(fack_count, state->reord);
1212 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1213 if (!after(end_seq, tp->snd_una))
1214 return sacked;
1216 if (!(sacked & TCPCB_SACKED_ACKED)) {
1217 tcp_rack_advance(tp, sacked, end_seq,
1218 xmit_time, &state->ack_time);
1220 if (sacked & TCPCB_SACKED_RETRANS) {
1221 /* If the segment is not tagged as lost,
1222 * we do not clear RETRANS, believing
1223 * that retransmission is still in flight.
1225 if (sacked & TCPCB_LOST) {
1226 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1227 tp->lost_out -= pcount;
1228 tp->retrans_out -= pcount;
1230 } else {
1231 if (!(sacked & TCPCB_RETRANS)) {
1232 /* New sack for not retransmitted frame,
1233 * which was in hole. It is reordering.
1235 if (before(start_seq,
1236 tcp_highest_sack_seq(tp)))
1237 state->reord = min(fack_count,
1238 state->reord);
1239 if (!after(end_seq, tp->high_seq))
1240 state->flag |= FLAG_ORIG_SACK_ACKED;
1241 if (state->first_sackt.v64 == 0)
1242 state->first_sackt = *xmit_time;
1243 state->last_sackt = *xmit_time;
1246 if (sacked & TCPCB_LOST) {
1247 sacked &= ~TCPCB_LOST;
1248 tp->lost_out -= pcount;
1252 sacked |= TCPCB_SACKED_ACKED;
1253 state->flag |= FLAG_DATA_SACKED;
1254 tp->sacked_out += pcount;
1255 tp->delivered += pcount; /* Out-of-order packets delivered */
1257 fack_count += pcount;
1259 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1260 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1261 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1262 tp->lost_cnt_hint += pcount;
1264 if (fack_count > tp->fackets_out)
1265 tp->fackets_out = fack_count;
1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1269 * frames and clear it. undo_retrans is decreased above, L|R frames
1270 * are accounted above as well.
1272 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1273 sacked &= ~TCPCB_SACKED_RETRANS;
1274 tp->retrans_out -= pcount;
1277 return sacked;
1280 /* Shift newly-SACKed bytes from this skb to the immediately previous
1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1283 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1284 struct tcp_sacktag_state *state,
1285 unsigned int pcount, int shifted, int mss,
1286 bool dup_sack)
1288 struct tcp_sock *tp = tcp_sk(sk);
1289 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1290 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1291 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1293 BUG_ON(!pcount);
1295 /* Adjust counters and hints for the newly sacked sequence
1296 * range but discard the return value since prev is already
1297 * marked. We must tag the range first because the seq
1298 * advancement below implicitly advances
1299 * tcp_highest_sack_seq() when skb is highest_sack.
1301 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1302 start_seq, end_seq, dup_sack, pcount,
1303 &skb->skb_mstamp);
1304 tcp_rate_skb_delivered(sk, skb, state->rate);
1306 if (skb == tp->lost_skb_hint)
1307 tp->lost_cnt_hint += pcount;
1309 TCP_SKB_CB(prev)->end_seq += shifted;
1310 TCP_SKB_CB(skb)->seq += shifted;
1312 tcp_skb_pcount_add(prev, pcount);
1313 BUG_ON(tcp_skb_pcount(skb) < pcount);
1314 tcp_skb_pcount_add(skb, -pcount);
1316 /* When we're adding to gso_segs == 1, gso_size will be zero,
1317 * in theory this shouldn't be necessary but as long as DSACK
1318 * code can come after this skb later on it's better to keep
1319 * setting gso_size to something.
1321 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1322 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 if (tcp_skb_pcount(skb) <= 1)
1326 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1331 if (skb->len > 0) {
1332 BUG_ON(!tcp_skb_pcount(skb));
1333 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1334 return false;
1337 /* Whole SKB was eaten :-) */
1339 if (skb == tp->retransmit_skb_hint)
1340 tp->retransmit_skb_hint = prev;
1341 if (skb == tp->lost_skb_hint) {
1342 tp->lost_skb_hint = prev;
1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1347 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1349 TCP_SKB_CB(prev)->end_seq++;
1351 if (skb == tcp_highest_sack(sk))
1352 tcp_advance_highest_sack(sk, skb);
1354 tcp_skb_collapse_tstamp(prev, skb);
1355 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1356 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1358 tcp_unlink_write_queue(skb, sk);
1359 sk_wmem_free_skb(sk, skb);
1361 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1363 return true;
1366 /* I wish gso_size would have a bit more sane initialization than
1367 * something-or-zero which complicates things
1369 static int tcp_skb_seglen(const struct sk_buff *skb)
1371 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1374 /* Shifting pages past head area doesn't work */
1375 static int skb_can_shift(const struct sk_buff *skb)
1377 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1380 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1381 * skb.
1383 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1384 struct tcp_sacktag_state *state,
1385 u32 start_seq, u32 end_seq,
1386 bool dup_sack)
1388 struct tcp_sock *tp = tcp_sk(sk);
1389 struct sk_buff *prev;
1390 int mss;
1391 int pcount = 0;
1392 int len;
1393 int in_sack;
1395 if (!sk_can_gso(sk))
1396 goto fallback;
1398 /* Normally R but no L won't result in plain S */
1399 if (!dup_sack &&
1400 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1401 goto fallback;
1402 if (!skb_can_shift(skb))
1403 goto fallback;
1404 /* This frame is about to be dropped (was ACKed). */
1405 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1406 goto fallback;
1408 /* Can only happen with delayed DSACK + discard craziness */
1409 if (unlikely(skb == tcp_write_queue_head(sk)))
1410 goto fallback;
1411 prev = tcp_write_queue_prev(sk, skb);
1413 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1414 goto fallback;
1416 if (!tcp_skb_can_collapse_to(prev))
1417 goto fallback;
1419 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1420 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1422 if (in_sack) {
1423 len = skb->len;
1424 pcount = tcp_skb_pcount(skb);
1425 mss = tcp_skb_seglen(skb);
1427 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1428 * drop this restriction as unnecessary
1430 if (mss != tcp_skb_seglen(prev))
1431 goto fallback;
1432 } else {
1433 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1434 goto noop;
1435 /* CHECKME: This is non-MSS split case only?, this will
1436 * cause skipped skbs due to advancing loop btw, original
1437 * has that feature too
1439 if (tcp_skb_pcount(skb) <= 1)
1440 goto noop;
1442 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1443 if (!in_sack) {
1444 /* TODO: head merge to next could be attempted here
1445 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1446 * though it might not be worth of the additional hassle
1448 * ...we can probably just fallback to what was done
1449 * previously. We could try merging non-SACKed ones
1450 * as well but it probably isn't going to buy off
1451 * because later SACKs might again split them, and
1452 * it would make skb timestamp tracking considerably
1453 * harder problem.
1455 goto fallback;
1458 len = end_seq - TCP_SKB_CB(skb)->seq;
1459 BUG_ON(len < 0);
1460 BUG_ON(len > skb->len);
1462 /* MSS boundaries should be honoured or else pcount will
1463 * severely break even though it makes things bit trickier.
1464 * Optimize common case to avoid most of the divides
1466 mss = tcp_skb_mss(skb);
1468 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1469 * drop this restriction as unnecessary
1471 if (mss != tcp_skb_seglen(prev))
1472 goto fallback;
1474 if (len == mss) {
1475 pcount = 1;
1476 } else if (len < mss) {
1477 goto noop;
1478 } else {
1479 pcount = len / mss;
1480 len = pcount * mss;
1484 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1485 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1486 goto fallback;
1488 if (!skb_shift(prev, skb, len))
1489 goto fallback;
1490 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1491 goto out;
1493 /* Hole filled allows collapsing with the next as well, this is very
1494 * useful when hole on every nth skb pattern happens
1496 if (prev == tcp_write_queue_tail(sk))
1497 goto out;
1498 skb = tcp_write_queue_next(sk, prev);
1500 if (!skb_can_shift(skb) ||
1501 (skb == tcp_send_head(sk)) ||
1502 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1503 (mss != tcp_skb_seglen(skb)))
1504 goto out;
1506 len = skb->len;
1507 if (skb_shift(prev, skb, len)) {
1508 pcount += tcp_skb_pcount(skb);
1509 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1512 out:
1513 state->fack_count += pcount;
1514 return prev;
1516 noop:
1517 return skb;
1519 fallback:
1520 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1521 return NULL;
1524 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1525 struct tcp_sack_block *next_dup,
1526 struct tcp_sacktag_state *state,
1527 u32 start_seq, u32 end_seq,
1528 bool dup_sack_in)
1530 struct tcp_sock *tp = tcp_sk(sk);
1531 struct sk_buff *tmp;
1533 tcp_for_write_queue_from(skb, sk) {
1534 int in_sack = 0;
1535 bool dup_sack = dup_sack_in;
1537 if (skb == tcp_send_head(sk))
1538 break;
1540 /* queue is in-order => we can short-circuit the walk early */
1541 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1542 break;
1544 if (next_dup &&
1545 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1546 in_sack = tcp_match_skb_to_sack(sk, skb,
1547 next_dup->start_seq,
1548 next_dup->end_seq);
1549 if (in_sack > 0)
1550 dup_sack = true;
1553 /* skb reference here is a bit tricky to get right, since
1554 * shifting can eat and free both this skb and the next,
1555 * so not even _safe variant of the loop is enough.
1557 if (in_sack <= 0) {
1558 tmp = tcp_shift_skb_data(sk, skb, state,
1559 start_seq, end_seq, dup_sack);
1560 if (tmp) {
1561 if (tmp != skb) {
1562 skb = tmp;
1563 continue;
1566 in_sack = 0;
1567 } else {
1568 in_sack = tcp_match_skb_to_sack(sk, skb,
1569 start_seq,
1570 end_seq);
1574 if (unlikely(in_sack < 0))
1575 break;
1577 if (in_sack) {
1578 TCP_SKB_CB(skb)->sacked =
1579 tcp_sacktag_one(sk,
1580 state,
1581 TCP_SKB_CB(skb)->sacked,
1582 TCP_SKB_CB(skb)->seq,
1583 TCP_SKB_CB(skb)->end_seq,
1584 dup_sack,
1585 tcp_skb_pcount(skb),
1586 &skb->skb_mstamp);
1587 tcp_rate_skb_delivered(sk, skb, state->rate);
1589 if (!before(TCP_SKB_CB(skb)->seq,
1590 tcp_highest_sack_seq(tp)))
1591 tcp_advance_highest_sack(sk, skb);
1594 state->fack_count += tcp_skb_pcount(skb);
1596 return skb;
1599 /* Avoid all extra work that is being done by sacktag while walking in
1600 * a normal way
1602 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1603 struct tcp_sacktag_state *state,
1604 u32 skip_to_seq)
1606 tcp_for_write_queue_from(skb, sk) {
1607 if (skb == tcp_send_head(sk))
1608 break;
1610 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1611 break;
1613 state->fack_count += tcp_skb_pcount(skb);
1615 return skb;
1618 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1619 struct sock *sk,
1620 struct tcp_sack_block *next_dup,
1621 struct tcp_sacktag_state *state,
1622 u32 skip_to_seq)
1624 if (!next_dup)
1625 return skb;
1627 if (before(next_dup->start_seq, skip_to_seq)) {
1628 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1629 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1630 next_dup->start_seq, next_dup->end_seq,
1634 return skb;
1637 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1639 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1642 static int
1643 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1644 u32 prior_snd_una, struct tcp_sacktag_state *state)
1646 struct tcp_sock *tp = tcp_sk(sk);
1647 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1648 TCP_SKB_CB(ack_skb)->sacked);
1649 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1650 struct tcp_sack_block sp[TCP_NUM_SACKS];
1651 struct tcp_sack_block *cache;
1652 struct sk_buff *skb;
1653 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1654 int used_sacks;
1655 bool found_dup_sack = false;
1656 int i, j;
1657 int first_sack_index;
1659 state->flag = 0;
1660 state->reord = tp->packets_out;
1662 if (!tp->sacked_out) {
1663 if (WARN_ON(tp->fackets_out))
1664 tp->fackets_out = 0;
1665 tcp_highest_sack_reset(sk);
1668 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1669 num_sacks, prior_snd_una);
1670 if (found_dup_sack) {
1671 state->flag |= FLAG_DSACKING_ACK;
1672 tp->delivered++; /* A spurious retransmission is delivered */
1675 /* Eliminate too old ACKs, but take into
1676 * account more or less fresh ones, they can
1677 * contain valid SACK info.
1679 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1680 return 0;
1682 if (!tp->packets_out)
1683 goto out;
1685 used_sacks = 0;
1686 first_sack_index = 0;
1687 for (i = 0; i < num_sacks; i++) {
1688 bool dup_sack = !i && found_dup_sack;
1690 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1691 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1693 if (!tcp_is_sackblock_valid(tp, dup_sack,
1694 sp[used_sacks].start_seq,
1695 sp[used_sacks].end_seq)) {
1696 int mib_idx;
1698 if (dup_sack) {
1699 if (!tp->undo_marker)
1700 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1701 else
1702 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1703 } else {
1704 /* Don't count olds caused by ACK reordering */
1705 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1706 !after(sp[used_sacks].end_seq, tp->snd_una))
1707 continue;
1708 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1711 NET_INC_STATS(sock_net(sk), mib_idx);
1712 if (i == 0)
1713 first_sack_index = -1;
1714 continue;
1717 /* Ignore very old stuff early */
1718 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1719 continue;
1721 used_sacks++;
1724 /* order SACK blocks to allow in order walk of the retrans queue */
1725 for (i = used_sacks - 1; i > 0; i--) {
1726 for (j = 0; j < i; j++) {
1727 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1728 swap(sp[j], sp[j + 1]);
1730 /* Track where the first SACK block goes to */
1731 if (j == first_sack_index)
1732 first_sack_index = j + 1;
1737 skb = tcp_write_queue_head(sk);
1738 state->fack_count = 0;
1739 i = 0;
1741 if (!tp->sacked_out) {
1742 /* It's already past, so skip checking against it */
1743 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1744 } else {
1745 cache = tp->recv_sack_cache;
1746 /* Skip empty blocks in at head of the cache */
1747 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1748 !cache->end_seq)
1749 cache++;
1752 while (i < used_sacks) {
1753 u32 start_seq = sp[i].start_seq;
1754 u32 end_seq = sp[i].end_seq;
1755 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1756 struct tcp_sack_block *next_dup = NULL;
1758 if (found_dup_sack && ((i + 1) == first_sack_index))
1759 next_dup = &sp[i + 1];
1761 /* Skip too early cached blocks */
1762 while (tcp_sack_cache_ok(tp, cache) &&
1763 !before(start_seq, cache->end_seq))
1764 cache++;
1766 /* Can skip some work by looking recv_sack_cache? */
1767 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1768 after(end_seq, cache->start_seq)) {
1770 /* Head todo? */
1771 if (before(start_seq, cache->start_seq)) {
1772 skb = tcp_sacktag_skip(skb, sk, state,
1773 start_seq);
1774 skb = tcp_sacktag_walk(skb, sk, next_dup,
1775 state,
1776 start_seq,
1777 cache->start_seq,
1778 dup_sack);
1781 /* Rest of the block already fully processed? */
1782 if (!after(end_seq, cache->end_seq))
1783 goto advance_sp;
1785 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1786 state,
1787 cache->end_seq);
1789 /* ...tail remains todo... */
1790 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1791 /* ...but better entrypoint exists! */
1792 skb = tcp_highest_sack(sk);
1793 if (!skb)
1794 break;
1795 state->fack_count = tp->fackets_out;
1796 cache++;
1797 goto walk;
1800 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1801 /* Check overlap against next cached too (past this one already) */
1802 cache++;
1803 continue;
1806 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1807 skb = tcp_highest_sack(sk);
1808 if (!skb)
1809 break;
1810 state->fack_count = tp->fackets_out;
1812 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1814 walk:
1815 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1816 start_seq, end_seq, dup_sack);
1818 advance_sp:
1819 i++;
1822 /* Clear the head of the cache sack blocks so we can skip it next time */
1823 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1824 tp->recv_sack_cache[i].start_seq = 0;
1825 tp->recv_sack_cache[i].end_seq = 0;
1827 for (j = 0; j < used_sacks; j++)
1828 tp->recv_sack_cache[i++] = sp[j];
1830 if ((state->reord < tp->fackets_out) &&
1831 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1832 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1834 tcp_verify_left_out(tp);
1835 out:
1837 #if FASTRETRANS_DEBUG > 0
1838 WARN_ON((int)tp->sacked_out < 0);
1839 WARN_ON((int)tp->lost_out < 0);
1840 WARN_ON((int)tp->retrans_out < 0);
1841 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1842 #endif
1843 return state->flag;
1846 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1847 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1849 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1851 u32 holes;
1853 holes = max(tp->lost_out, 1U);
1854 holes = min(holes, tp->packets_out);
1856 if ((tp->sacked_out + holes) > tp->packets_out) {
1857 tp->sacked_out = tp->packets_out - holes;
1858 return true;
1860 return false;
1863 /* If we receive more dupacks than we expected counting segments
1864 * in assumption of absent reordering, interpret this as reordering.
1865 * The only another reason could be bug in receiver TCP.
1867 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1869 struct tcp_sock *tp = tcp_sk(sk);
1870 if (tcp_limit_reno_sacked(tp))
1871 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1874 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1876 static void tcp_add_reno_sack(struct sock *sk)
1878 struct tcp_sock *tp = tcp_sk(sk);
1879 u32 prior_sacked = tp->sacked_out;
1881 tp->sacked_out++;
1882 tcp_check_reno_reordering(sk, 0);
1883 if (tp->sacked_out > prior_sacked)
1884 tp->delivered++; /* Some out-of-order packet is delivered */
1885 tcp_verify_left_out(tp);
1888 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1890 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1892 struct tcp_sock *tp = tcp_sk(sk);
1894 if (acked > 0) {
1895 /* One ACK acked hole. The rest eat duplicate ACKs. */
1896 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1897 if (acked - 1 >= tp->sacked_out)
1898 tp->sacked_out = 0;
1899 else
1900 tp->sacked_out -= acked - 1;
1902 tcp_check_reno_reordering(sk, acked);
1903 tcp_verify_left_out(tp);
1906 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1908 tp->sacked_out = 0;
1911 void tcp_clear_retrans(struct tcp_sock *tp)
1913 tp->retrans_out = 0;
1914 tp->lost_out = 0;
1915 tp->undo_marker = 0;
1916 tp->undo_retrans = -1;
1917 tp->fackets_out = 0;
1918 tp->sacked_out = 0;
1921 static inline void tcp_init_undo(struct tcp_sock *tp)
1923 tp->undo_marker = tp->snd_una;
1924 /* Retransmission still in flight may cause DSACKs later. */
1925 tp->undo_retrans = tp->retrans_out ? : -1;
1928 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1929 * and reset tags completely, otherwise preserve SACKs. If receiver
1930 * dropped its ofo queue, we will know this due to reneging detection.
1932 void tcp_enter_loss(struct sock *sk)
1934 const struct inet_connection_sock *icsk = inet_csk(sk);
1935 struct tcp_sock *tp = tcp_sk(sk);
1936 struct net *net = sock_net(sk);
1937 struct sk_buff *skb;
1938 bool is_reneg; /* is receiver reneging on SACKs? */
1939 bool mark_lost;
1941 /* Reduce ssthresh if it has not yet been made inside this window. */
1942 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1943 !after(tp->high_seq, tp->snd_una) ||
1944 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1945 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1946 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1947 tcp_ca_event(sk, CA_EVENT_LOSS);
1948 tcp_init_undo(tp);
1950 tp->snd_cwnd = 1;
1951 tp->snd_cwnd_cnt = 0;
1952 tp->snd_cwnd_stamp = tcp_time_stamp;
1954 tp->retrans_out = 0;
1955 tp->lost_out = 0;
1957 if (tcp_is_reno(tp))
1958 tcp_reset_reno_sack(tp);
1960 skb = tcp_write_queue_head(sk);
1961 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1962 if (is_reneg) {
1963 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1964 tp->sacked_out = 0;
1965 tp->fackets_out = 0;
1967 tcp_clear_all_retrans_hints(tp);
1969 tcp_for_write_queue(skb, sk) {
1970 if (skb == tcp_send_head(sk))
1971 break;
1973 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1974 is_reneg);
1975 if (mark_lost)
1976 tcp_sum_lost(tp, skb);
1977 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1978 if (mark_lost) {
1979 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1980 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1981 tp->lost_out += tcp_skb_pcount(skb);
1984 tcp_verify_left_out(tp);
1986 /* Timeout in disordered state after receiving substantial DUPACKs
1987 * suggests that the degree of reordering is over-estimated.
1989 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1990 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1991 tp->reordering = min_t(unsigned int, tp->reordering,
1992 net->ipv4.sysctl_tcp_reordering);
1993 tcp_set_ca_state(sk, TCP_CA_Loss);
1994 tp->high_seq = tp->snd_nxt;
1995 tcp_ecn_queue_cwr(tp);
1997 /* F-RTO RFC5682 sec 3.1 step 1 mandates to disable F-RTO
1998 * if a previous recovery is underway, otherwise it may incorrectly
1999 * call a timeout spurious if some previously retransmitted packets
2000 * are s/acked (sec 3.2). We do not apply that retriction since
2001 * retransmitted skbs are permanently tagged with TCPCB_EVER_RETRANS
2002 * so FLAG_ORIG_SACK_ACKED is always correct. But we do disable F-RTO
2003 * on PTMU discovery to avoid sending new data.
2005 tp->frto = sysctl_tcp_frto && !inet_csk(sk)->icsk_mtup.probe_size;
2008 /* If ACK arrived pointing to a remembered SACK, it means that our
2009 * remembered SACKs do not reflect real state of receiver i.e.
2010 * receiver _host_ is heavily congested (or buggy).
2012 * To avoid big spurious retransmission bursts due to transient SACK
2013 * scoreboard oddities that look like reneging, we give the receiver a
2014 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2015 * restore sanity to the SACK scoreboard. If the apparent reneging
2016 * persists until this RTO then we'll clear the SACK scoreboard.
2018 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2020 if (flag & FLAG_SACK_RENEGING) {
2021 struct tcp_sock *tp = tcp_sk(sk);
2022 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2023 msecs_to_jiffies(10));
2025 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2026 delay, TCP_RTO_MAX);
2027 return true;
2029 return false;
2032 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2034 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2037 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2038 * counter when SACK is enabled (without SACK, sacked_out is used for
2039 * that purpose).
2041 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2042 * segments up to the highest received SACK block so far and holes in
2043 * between them.
2045 * With reordering, holes may still be in flight, so RFC3517 recovery
2046 * uses pure sacked_out (total number of SACKed segments) even though
2047 * it violates the RFC that uses duplicate ACKs, often these are equal
2048 * but when e.g. out-of-window ACKs or packet duplication occurs,
2049 * they differ. Since neither occurs due to loss, TCP should really
2050 * ignore them.
2052 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2054 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2057 /* Linux NewReno/SACK/FACK/ECN state machine.
2058 * --------------------------------------
2060 * "Open" Normal state, no dubious events, fast path.
2061 * "Disorder" In all the respects it is "Open",
2062 * but requires a bit more attention. It is entered when
2063 * we see some SACKs or dupacks. It is split of "Open"
2064 * mainly to move some processing from fast path to slow one.
2065 * "CWR" CWND was reduced due to some Congestion Notification event.
2066 * It can be ECN, ICMP source quench, local device congestion.
2067 * "Recovery" CWND was reduced, we are fast-retransmitting.
2068 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2070 * tcp_fastretrans_alert() is entered:
2071 * - each incoming ACK, if state is not "Open"
2072 * - when arrived ACK is unusual, namely:
2073 * * SACK
2074 * * Duplicate ACK.
2075 * * ECN ECE.
2077 * Counting packets in flight is pretty simple.
2079 * in_flight = packets_out - left_out + retrans_out
2081 * packets_out is SND.NXT-SND.UNA counted in packets.
2083 * retrans_out is number of retransmitted segments.
2085 * left_out is number of segments left network, but not ACKed yet.
2087 * left_out = sacked_out + lost_out
2089 * sacked_out: Packets, which arrived to receiver out of order
2090 * and hence not ACKed. With SACKs this number is simply
2091 * amount of SACKed data. Even without SACKs
2092 * it is easy to give pretty reliable estimate of this number,
2093 * counting duplicate ACKs.
2095 * lost_out: Packets lost by network. TCP has no explicit
2096 * "loss notification" feedback from network (for now).
2097 * It means that this number can be only _guessed_.
2098 * Actually, it is the heuristics to predict lossage that
2099 * distinguishes different algorithms.
2101 * F.e. after RTO, when all the queue is considered as lost,
2102 * lost_out = packets_out and in_flight = retrans_out.
2104 * Essentially, we have now a few algorithms detecting
2105 * lost packets.
2107 * If the receiver supports SACK:
2109 * RFC6675/3517: It is the conventional algorithm. A packet is
2110 * considered lost if the number of higher sequence packets
2111 * SACKed is greater than or equal the DUPACK thoreshold
2112 * (reordering). This is implemented in tcp_mark_head_lost and
2113 * tcp_update_scoreboard.
2115 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2116 * (2017-) that checks timing instead of counting DUPACKs.
2117 * Essentially a packet is considered lost if it's not S/ACKed
2118 * after RTT + reordering_window, where both metrics are
2119 * dynamically measured and adjusted. This is implemented in
2120 * tcp_rack_mark_lost.
2122 * FACK (Disabled by default. Subsumbed by RACK):
2123 * It is the simplest heuristics. As soon as we decided
2124 * that something is lost, we decide that _all_ not SACKed
2125 * packets until the most forward SACK are lost. I.e.
2126 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2127 * It is absolutely correct estimate, if network does not reorder
2128 * packets. And it loses any connection to reality when reordering
2129 * takes place. We use FACK by default until reordering
2130 * is suspected on the path to this destination.
2132 * If the receiver does not support SACK:
2134 * NewReno (RFC6582): in Recovery we assume that one segment
2135 * is lost (classic Reno). While we are in Recovery and
2136 * a partial ACK arrives, we assume that one more packet
2137 * is lost (NewReno). This heuristics are the same in NewReno
2138 * and SACK.
2140 * Really tricky (and requiring careful tuning) part of algorithm
2141 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2142 * The first determines the moment _when_ we should reduce CWND and,
2143 * hence, slow down forward transmission. In fact, it determines the moment
2144 * when we decide that hole is caused by loss, rather than by a reorder.
2146 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2147 * holes, caused by lost packets.
2149 * And the most logically complicated part of algorithm is undo
2150 * heuristics. We detect false retransmits due to both too early
2151 * fast retransmit (reordering) and underestimated RTO, analyzing
2152 * timestamps and D-SACKs. When we detect that some segments were
2153 * retransmitted by mistake and CWND reduction was wrong, we undo
2154 * window reduction and abort recovery phase. This logic is hidden
2155 * inside several functions named tcp_try_undo_<something>.
2158 /* This function decides, when we should leave Disordered state
2159 * and enter Recovery phase, reducing congestion window.
2161 * Main question: may we further continue forward transmission
2162 * with the same cwnd?
2164 static bool tcp_time_to_recover(struct sock *sk, int flag)
2166 struct tcp_sock *tp = tcp_sk(sk);
2168 /* Trick#1: The loss is proven. */
2169 if (tp->lost_out)
2170 return true;
2172 /* Not-A-Trick#2 : Classic rule... */
2173 if (tcp_dupack_heuristics(tp) > tp->reordering)
2174 return true;
2176 return false;
2179 /* Detect loss in event "A" above by marking head of queue up as lost.
2180 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2181 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2182 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2183 * the maximum SACKed segments to pass before reaching this limit.
2185 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2187 struct tcp_sock *tp = tcp_sk(sk);
2188 struct sk_buff *skb;
2189 int cnt, oldcnt, lost;
2190 unsigned int mss;
2191 /* Use SACK to deduce losses of new sequences sent during recovery */
2192 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2194 WARN_ON(packets > tp->packets_out);
2195 if (tp->lost_skb_hint) {
2196 skb = tp->lost_skb_hint;
2197 cnt = tp->lost_cnt_hint;
2198 /* Head already handled? */
2199 if (mark_head && skb != tcp_write_queue_head(sk))
2200 return;
2201 } else {
2202 skb = tcp_write_queue_head(sk);
2203 cnt = 0;
2206 tcp_for_write_queue_from(skb, sk) {
2207 if (skb == tcp_send_head(sk))
2208 break;
2209 /* TODO: do this better */
2210 /* this is not the most efficient way to do this... */
2211 tp->lost_skb_hint = skb;
2212 tp->lost_cnt_hint = cnt;
2214 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2215 break;
2217 oldcnt = cnt;
2218 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2219 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2220 cnt += tcp_skb_pcount(skb);
2222 if (cnt > packets) {
2223 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2224 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2225 (oldcnt >= packets))
2226 break;
2228 mss = tcp_skb_mss(skb);
2229 /* If needed, chop off the prefix to mark as lost. */
2230 lost = (packets - oldcnt) * mss;
2231 if (lost < skb->len &&
2232 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2233 break;
2234 cnt = packets;
2237 tcp_skb_mark_lost(tp, skb);
2239 if (mark_head)
2240 break;
2242 tcp_verify_left_out(tp);
2245 /* Account newly detected lost packet(s) */
2247 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2249 struct tcp_sock *tp = tcp_sk(sk);
2251 if (tcp_is_reno(tp)) {
2252 tcp_mark_head_lost(sk, 1, 1);
2253 } else if (tcp_is_fack(tp)) {
2254 int lost = tp->fackets_out - tp->reordering;
2255 if (lost <= 0)
2256 lost = 1;
2257 tcp_mark_head_lost(sk, lost, 0);
2258 } else {
2259 int sacked_upto = tp->sacked_out - tp->reordering;
2260 if (sacked_upto >= 0)
2261 tcp_mark_head_lost(sk, sacked_upto, 0);
2262 else if (fast_rexmit)
2263 tcp_mark_head_lost(sk, 1, 1);
2267 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2269 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2270 before(tp->rx_opt.rcv_tsecr, when);
2273 /* skb is spurious retransmitted if the returned timestamp echo
2274 * reply is prior to the skb transmission time
2276 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2277 const struct sk_buff *skb)
2279 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2280 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2283 /* Nothing was retransmitted or returned timestamp is less
2284 * than timestamp of the first retransmission.
2286 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2288 return !tp->retrans_stamp ||
2289 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2292 /* Undo procedures. */
2294 /* We can clear retrans_stamp when there are no retransmissions in the
2295 * window. It would seem that it is trivially available for us in
2296 * tp->retrans_out, however, that kind of assumptions doesn't consider
2297 * what will happen if errors occur when sending retransmission for the
2298 * second time. ...It could the that such segment has only
2299 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2300 * the head skb is enough except for some reneging corner cases that
2301 * are not worth the effort.
2303 * Main reason for all this complexity is the fact that connection dying
2304 * time now depends on the validity of the retrans_stamp, in particular,
2305 * that successive retransmissions of a segment must not advance
2306 * retrans_stamp under any conditions.
2308 static bool tcp_any_retrans_done(const struct sock *sk)
2310 const struct tcp_sock *tp = tcp_sk(sk);
2311 struct sk_buff *skb;
2313 if (tp->retrans_out)
2314 return true;
2316 skb = tcp_write_queue_head(sk);
2317 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2318 return true;
2320 return false;
2323 #if FASTRETRANS_DEBUG > 1
2324 static void DBGUNDO(struct sock *sk, const char *msg)
2326 struct tcp_sock *tp = tcp_sk(sk);
2327 struct inet_sock *inet = inet_sk(sk);
2329 if (sk->sk_family == AF_INET) {
2330 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2331 msg,
2332 &inet->inet_daddr, ntohs(inet->inet_dport),
2333 tp->snd_cwnd, tcp_left_out(tp),
2334 tp->snd_ssthresh, tp->prior_ssthresh,
2335 tp->packets_out);
2337 #if IS_ENABLED(CONFIG_IPV6)
2338 else if (sk->sk_family == AF_INET6) {
2339 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2340 msg,
2341 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2342 tp->snd_cwnd, tcp_left_out(tp),
2343 tp->snd_ssthresh, tp->prior_ssthresh,
2344 tp->packets_out);
2346 #endif
2348 #else
2349 #define DBGUNDO(x...) do { } while (0)
2350 #endif
2352 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2354 struct tcp_sock *tp = tcp_sk(sk);
2356 if (unmark_loss) {
2357 struct sk_buff *skb;
2359 tcp_for_write_queue(skb, sk) {
2360 if (skb == tcp_send_head(sk))
2361 break;
2362 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2364 tp->lost_out = 0;
2365 tcp_clear_all_retrans_hints(tp);
2368 if (tp->prior_ssthresh) {
2369 const struct inet_connection_sock *icsk = inet_csk(sk);
2371 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2373 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2374 tp->snd_ssthresh = tp->prior_ssthresh;
2375 tcp_ecn_withdraw_cwr(tp);
2378 tp->snd_cwnd_stamp = tcp_time_stamp;
2379 tp->undo_marker = 0;
2382 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2384 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2387 /* People celebrate: "We love our President!" */
2388 static bool tcp_try_undo_recovery(struct sock *sk)
2390 struct tcp_sock *tp = tcp_sk(sk);
2392 if (tcp_may_undo(tp)) {
2393 int mib_idx;
2395 /* Happy end! We did not retransmit anything
2396 * or our original transmission succeeded.
2398 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2399 tcp_undo_cwnd_reduction(sk, false);
2400 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2401 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2402 else
2403 mib_idx = LINUX_MIB_TCPFULLUNDO;
2405 NET_INC_STATS(sock_net(sk), mib_idx);
2407 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2408 /* Hold old state until something *above* high_seq
2409 * is ACKed. For Reno it is MUST to prevent false
2410 * fast retransmits (RFC2582). SACK TCP is safe. */
2411 if (!tcp_any_retrans_done(sk))
2412 tp->retrans_stamp = 0;
2413 return true;
2415 tcp_set_ca_state(sk, TCP_CA_Open);
2416 return false;
2419 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2420 static bool tcp_try_undo_dsack(struct sock *sk)
2422 struct tcp_sock *tp = tcp_sk(sk);
2424 if (tp->undo_marker && !tp->undo_retrans) {
2425 DBGUNDO(sk, "D-SACK");
2426 tcp_undo_cwnd_reduction(sk, false);
2427 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2428 return true;
2430 return false;
2433 /* Undo during loss recovery after partial ACK or using F-RTO. */
2434 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2436 struct tcp_sock *tp = tcp_sk(sk);
2438 if (frto_undo || tcp_may_undo(tp)) {
2439 tcp_undo_cwnd_reduction(sk, true);
2441 DBGUNDO(sk, "partial loss");
2442 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2443 if (frto_undo)
2444 NET_INC_STATS(sock_net(sk),
2445 LINUX_MIB_TCPSPURIOUSRTOS);
2446 inet_csk(sk)->icsk_retransmits = 0;
2447 if (frto_undo || tcp_is_sack(tp))
2448 tcp_set_ca_state(sk, TCP_CA_Open);
2449 return true;
2451 return false;
2454 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2455 * It computes the number of packets to send (sndcnt) based on packets newly
2456 * delivered:
2457 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2458 * cwnd reductions across a full RTT.
2459 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2460 * But when the retransmits are acked without further losses, PRR
2461 * slow starts cwnd up to ssthresh to speed up the recovery.
2463 static void tcp_init_cwnd_reduction(struct sock *sk)
2465 struct tcp_sock *tp = tcp_sk(sk);
2467 tp->high_seq = tp->snd_nxt;
2468 tp->tlp_high_seq = 0;
2469 tp->snd_cwnd_cnt = 0;
2470 tp->prior_cwnd = tp->snd_cwnd;
2471 tp->prr_delivered = 0;
2472 tp->prr_out = 0;
2473 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2474 tcp_ecn_queue_cwr(tp);
2477 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2479 struct tcp_sock *tp = tcp_sk(sk);
2480 int sndcnt = 0;
2481 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2483 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2484 return;
2486 tp->prr_delivered += newly_acked_sacked;
2487 if (delta < 0) {
2488 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2489 tp->prior_cwnd - 1;
2490 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2491 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2492 !(flag & FLAG_LOST_RETRANS)) {
2493 sndcnt = min_t(int, delta,
2494 max_t(int, tp->prr_delivered - tp->prr_out,
2495 newly_acked_sacked) + 1);
2496 } else {
2497 sndcnt = min(delta, newly_acked_sacked);
2499 /* Force a fast retransmit upon entering fast recovery */
2500 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2501 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2504 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2506 struct tcp_sock *tp = tcp_sk(sk);
2508 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2509 return;
2511 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2512 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2513 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2514 tp->snd_cwnd = tp->snd_ssthresh;
2515 tp->snd_cwnd_stamp = tcp_time_stamp;
2517 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2520 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2521 void tcp_enter_cwr(struct sock *sk)
2523 struct tcp_sock *tp = tcp_sk(sk);
2525 tp->prior_ssthresh = 0;
2526 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2527 tp->undo_marker = 0;
2528 tcp_init_cwnd_reduction(sk);
2529 tcp_set_ca_state(sk, TCP_CA_CWR);
2532 EXPORT_SYMBOL(tcp_enter_cwr);
2534 static void tcp_try_keep_open(struct sock *sk)
2536 struct tcp_sock *tp = tcp_sk(sk);
2537 int state = TCP_CA_Open;
2539 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2540 state = TCP_CA_Disorder;
2542 if (inet_csk(sk)->icsk_ca_state != state) {
2543 tcp_set_ca_state(sk, state);
2544 tp->high_seq = tp->snd_nxt;
2548 static void tcp_try_to_open(struct sock *sk, int flag)
2550 struct tcp_sock *tp = tcp_sk(sk);
2552 tcp_verify_left_out(tp);
2554 if (!tcp_any_retrans_done(sk))
2555 tp->retrans_stamp = 0;
2557 if (flag & FLAG_ECE)
2558 tcp_enter_cwr(sk);
2560 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2561 tcp_try_keep_open(sk);
2565 static void tcp_mtup_probe_failed(struct sock *sk)
2567 struct inet_connection_sock *icsk = inet_csk(sk);
2569 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2570 icsk->icsk_mtup.probe_size = 0;
2571 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2574 static void tcp_mtup_probe_success(struct sock *sk)
2576 struct tcp_sock *tp = tcp_sk(sk);
2577 struct inet_connection_sock *icsk = inet_csk(sk);
2579 /* FIXME: breaks with very large cwnd */
2580 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2581 tp->snd_cwnd = tp->snd_cwnd *
2582 tcp_mss_to_mtu(sk, tp->mss_cache) /
2583 icsk->icsk_mtup.probe_size;
2584 tp->snd_cwnd_cnt = 0;
2585 tp->snd_cwnd_stamp = tcp_time_stamp;
2586 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2588 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2589 icsk->icsk_mtup.probe_size = 0;
2590 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2591 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2594 /* Do a simple retransmit without using the backoff mechanisms in
2595 * tcp_timer. This is used for path mtu discovery.
2596 * The socket is already locked here.
2598 void tcp_simple_retransmit(struct sock *sk)
2600 const struct inet_connection_sock *icsk = inet_csk(sk);
2601 struct tcp_sock *tp = tcp_sk(sk);
2602 struct sk_buff *skb;
2603 unsigned int mss = tcp_current_mss(sk);
2604 u32 prior_lost = tp->lost_out;
2606 tcp_for_write_queue(skb, sk) {
2607 if (skb == tcp_send_head(sk))
2608 break;
2609 if (tcp_skb_seglen(skb) > mss &&
2610 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2611 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2612 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2613 tp->retrans_out -= tcp_skb_pcount(skb);
2615 tcp_skb_mark_lost_uncond_verify(tp, skb);
2619 tcp_clear_retrans_hints_partial(tp);
2621 if (prior_lost == tp->lost_out)
2622 return;
2624 if (tcp_is_reno(tp))
2625 tcp_limit_reno_sacked(tp);
2627 tcp_verify_left_out(tp);
2629 /* Don't muck with the congestion window here.
2630 * Reason is that we do not increase amount of _data_
2631 * in network, but units changed and effective
2632 * cwnd/ssthresh really reduced now.
2634 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2635 tp->high_seq = tp->snd_nxt;
2636 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2637 tp->prior_ssthresh = 0;
2638 tp->undo_marker = 0;
2639 tcp_set_ca_state(sk, TCP_CA_Loss);
2641 tcp_xmit_retransmit_queue(sk);
2643 EXPORT_SYMBOL(tcp_simple_retransmit);
2645 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2647 struct tcp_sock *tp = tcp_sk(sk);
2648 int mib_idx;
2650 if (tcp_is_reno(tp))
2651 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2652 else
2653 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2655 NET_INC_STATS(sock_net(sk), mib_idx);
2657 tp->prior_ssthresh = 0;
2658 tcp_init_undo(tp);
2660 if (!tcp_in_cwnd_reduction(sk)) {
2661 if (!ece_ack)
2662 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2663 tcp_init_cwnd_reduction(sk);
2665 tcp_set_ca_state(sk, TCP_CA_Recovery);
2668 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2669 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2671 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2672 int *rexmit)
2674 struct tcp_sock *tp = tcp_sk(sk);
2675 bool recovered = !before(tp->snd_una, tp->high_seq);
2677 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2678 tcp_try_undo_loss(sk, false))
2679 return;
2681 /* The ACK (s)acks some never-retransmitted data meaning not all
2682 * the data packets before the timeout were lost. Therefore we
2683 * undo the congestion window and state. This is essentially
2684 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2685 * a retransmitted skb is permantly marked, we can apply such an
2686 * operation even if F-RTO was not used.
2688 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2689 tcp_try_undo_loss(sk, tp->undo_marker))
2690 return;
2692 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2693 if (after(tp->snd_nxt, tp->high_seq)) {
2694 if (flag & FLAG_DATA_SACKED || is_dupack)
2695 tp->frto = 0; /* Step 3.a. loss was real */
2696 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2697 tp->high_seq = tp->snd_nxt;
2698 /* Step 2.b. Try send new data (but deferred until cwnd
2699 * is updated in tcp_ack()). Otherwise fall back to
2700 * the conventional recovery.
2702 if (tcp_send_head(sk) &&
2703 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2704 *rexmit = REXMIT_NEW;
2705 return;
2707 tp->frto = 0;
2711 if (recovered) {
2712 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2713 tcp_try_undo_recovery(sk);
2714 return;
2716 if (tcp_is_reno(tp)) {
2717 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2718 * delivered. Lower inflight to clock out (re)tranmissions.
2720 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2721 tcp_add_reno_sack(sk);
2722 else if (flag & FLAG_SND_UNA_ADVANCED)
2723 tcp_reset_reno_sack(tp);
2725 *rexmit = REXMIT_LOST;
2728 /* Undo during fast recovery after partial ACK. */
2729 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2731 struct tcp_sock *tp = tcp_sk(sk);
2733 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2734 /* Plain luck! Hole if filled with delayed
2735 * packet, rather than with a retransmit.
2737 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2739 /* We are getting evidence that the reordering degree is higher
2740 * than we realized. If there are no retransmits out then we
2741 * can undo. Otherwise we clock out new packets but do not
2742 * mark more packets lost or retransmit more.
2744 if (tp->retrans_out)
2745 return true;
2747 if (!tcp_any_retrans_done(sk))
2748 tp->retrans_stamp = 0;
2750 DBGUNDO(sk, "partial recovery");
2751 tcp_undo_cwnd_reduction(sk, true);
2752 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2753 tcp_try_keep_open(sk);
2754 return true;
2756 return false;
2759 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag,
2760 const struct skb_mstamp *ack_time)
2762 struct tcp_sock *tp = tcp_sk(sk);
2764 /* Use RACK to detect loss */
2765 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2766 u32 prior_retrans = tp->retrans_out;
2768 tcp_rack_mark_lost(sk, ack_time);
2769 if (prior_retrans > tp->retrans_out)
2770 *ack_flag |= FLAG_LOST_RETRANS;
2774 /* Process an event, which can update packets-in-flight not trivially.
2775 * Main goal of this function is to calculate new estimate for left_out,
2776 * taking into account both packets sitting in receiver's buffer and
2777 * packets lost by network.
2779 * Besides that it updates the congestion state when packet loss or ECN
2780 * is detected. But it does not reduce the cwnd, it is done by the
2781 * congestion control later.
2783 * It does _not_ decide what to send, it is made in function
2784 * tcp_xmit_retransmit_queue().
2786 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2787 bool is_dupack, int *ack_flag, int *rexmit,
2788 const struct skb_mstamp *ack_time)
2790 struct inet_connection_sock *icsk = inet_csk(sk);
2791 struct tcp_sock *tp = tcp_sk(sk);
2792 int fast_rexmit = 0, flag = *ack_flag;
2793 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2794 (tcp_fackets_out(tp) > tp->reordering));
2796 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2797 tp->sacked_out = 0;
2798 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2799 tp->fackets_out = 0;
2801 /* Now state machine starts.
2802 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2803 if (flag & FLAG_ECE)
2804 tp->prior_ssthresh = 0;
2806 /* B. In all the states check for reneging SACKs. */
2807 if (tcp_check_sack_reneging(sk, flag))
2808 return;
2810 /* C. Check consistency of the current state. */
2811 tcp_verify_left_out(tp);
2813 /* D. Check state exit conditions. State can be terminated
2814 * when high_seq is ACKed. */
2815 if (icsk->icsk_ca_state == TCP_CA_Open) {
2816 WARN_ON(tp->retrans_out != 0);
2817 tp->retrans_stamp = 0;
2818 } else if (!before(tp->snd_una, tp->high_seq)) {
2819 switch (icsk->icsk_ca_state) {
2820 case TCP_CA_CWR:
2821 /* CWR is to be held something *above* high_seq
2822 * is ACKed for CWR bit to reach receiver. */
2823 if (tp->snd_una != tp->high_seq) {
2824 tcp_end_cwnd_reduction(sk);
2825 tcp_set_ca_state(sk, TCP_CA_Open);
2827 break;
2829 case TCP_CA_Recovery:
2830 if (tcp_is_reno(tp))
2831 tcp_reset_reno_sack(tp);
2832 if (tcp_try_undo_recovery(sk))
2833 return;
2834 tcp_end_cwnd_reduction(sk);
2835 break;
2839 /* E. Process state. */
2840 switch (icsk->icsk_ca_state) {
2841 case TCP_CA_Recovery:
2842 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2843 if (tcp_is_reno(tp) && is_dupack)
2844 tcp_add_reno_sack(sk);
2845 } else {
2846 if (tcp_try_undo_partial(sk, acked))
2847 return;
2848 /* Partial ACK arrived. Force fast retransmit. */
2849 do_lost = tcp_is_reno(tp) ||
2850 tcp_fackets_out(tp) > tp->reordering;
2852 if (tcp_try_undo_dsack(sk)) {
2853 tcp_try_keep_open(sk);
2854 return;
2856 tcp_rack_identify_loss(sk, ack_flag, ack_time);
2857 break;
2858 case TCP_CA_Loss:
2859 tcp_process_loss(sk, flag, is_dupack, rexmit);
2860 tcp_rack_identify_loss(sk, ack_flag, ack_time);
2861 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2862 (*ack_flag & FLAG_LOST_RETRANS)))
2863 return;
2864 /* Change state if cwnd is undone or retransmits are lost */
2865 default:
2866 if (tcp_is_reno(tp)) {
2867 if (flag & FLAG_SND_UNA_ADVANCED)
2868 tcp_reset_reno_sack(tp);
2869 if (is_dupack)
2870 tcp_add_reno_sack(sk);
2873 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2874 tcp_try_undo_dsack(sk);
2876 tcp_rack_identify_loss(sk, ack_flag, ack_time);
2877 if (!tcp_time_to_recover(sk, flag)) {
2878 tcp_try_to_open(sk, flag);
2879 return;
2882 /* MTU probe failure: don't reduce cwnd */
2883 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2884 icsk->icsk_mtup.probe_size &&
2885 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2886 tcp_mtup_probe_failed(sk);
2887 /* Restores the reduction we did in tcp_mtup_probe() */
2888 tp->snd_cwnd++;
2889 tcp_simple_retransmit(sk);
2890 return;
2893 /* Otherwise enter Recovery state */
2894 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2895 fast_rexmit = 1;
2898 if (do_lost)
2899 tcp_update_scoreboard(sk, fast_rexmit);
2900 *rexmit = REXMIT_LOST;
2903 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2905 struct tcp_sock *tp = tcp_sk(sk);
2906 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2908 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2909 rtt_us ? : jiffies_to_usecs(1));
2912 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2913 long seq_rtt_us, long sack_rtt_us,
2914 long ca_rtt_us)
2916 const struct tcp_sock *tp = tcp_sk(sk);
2918 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2919 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2920 * Karn's algorithm forbids taking RTT if some retransmitted data
2921 * is acked (RFC6298).
2923 if (seq_rtt_us < 0)
2924 seq_rtt_us = sack_rtt_us;
2926 /* RTTM Rule: A TSecr value received in a segment is used to
2927 * update the averaged RTT measurement only if the segment
2928 * acknowledges some new data, i.e., only if it advances the
2929 * left edge of the send window.
2930 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2932 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2933 flag & FLAG_ACKED)
2934 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2935 tp->rx_opt.rcv_tsecr);
2936 if (seq_rtt_us < 0)
2937 return false;
2939 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2940 * always taken together with ACK, SACK, or TS-opts. Any negative
2941 * values will be skipped with the seq_rtt_us < 0 check above.
2943 tcp_update_rtt_min(sk, ca_rtt_us);
2944 tcp_rtt_estimator(sk, seq_rtt_us);
2945 tcp_set_rto(sk);
2947 /* RFC6298: only reset backoff on valid RTT measurement. */
2948 inet_csk(sk)->icsk_backoff = 0;
2949 return true;
2952 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2953 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2955 long rtt_us = -1L;
2957 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2958 struct skb_mstamp now;
2960 skb_mstamp_get(&now);
2961 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2964 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2968 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2970 const struct inet_connection_sock *icsk = inet_csk(sk);
2972 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2973 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2976 /* Restart timer after forward progress on connection.
2977 * RFC2988 recommends to restart timer to now+rto.
2979 void tcp_rearm_rto(struct sock *sk)
2981 const struct inet_connection_sock *icsk = inet_csk(sk);
2982 struct tcp_sock *tp = tcp_sk(sk);
2984 /* If the retrans timer is currently being used by Fast Open
2985 * for SYN-ACK retrans purpose, stay put.
2987 if (tp->fastopen_rsk)
2988 return;
2990 if (!tp->packets_out) {
2991 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2992 } else {
2993 u32 rto = inet_csk(sk)->icsk_rto;
2994 /* Offset the time elapsed after installing regular RTO */
2995 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2996 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2997 struct sk_buff *skb = tcp_write_queue_head(sk);
2998 const u32 rto_time_stamp =
2999 tcp_skb_timestamp(skb) + rto;
3000 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3001 /* delta may not be positive if the socket is locked
3002 * when the retrans timer fires and is rescheduled.
3004 if (delta > 0)
3005 rto = delta;
3007 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3008 TCP_RTO_MAX);
3012 /* If we get here, the whole TSO packet has not been acked. */
3013 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3015 struct tcp_sock *tp = tcp_sk(sk);
3016 u32 packets_acked;
3018 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3020 packets_acked = tcp_skb_pcount(skb);
3021 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3022 return 0;
3023 packets_acked -= tcp_skb_pcount(skb);
3025 if (packets_acked) {
3026 BUG_ON(tcp_skb_pcount(skb) == 0);
3027 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3030 return packets_acked;
3033 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3034 u32 prior_snd_una)
3036 const struct skb_shared_info *shinfo;
3038 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3039 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3040 return;
3042 shinfo = skb_shinfo(skb);
3043 if (!before(shinfo->tskey, prior_snd_una) &&
3044 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3045 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3048 /* Remove acknowledged frames from the retransmission queue. If our packet
3049 * is before the ack sequence we can discard it as it's confirmed to have
3050 * arrived at the other end.
3052 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3053 u32 prior_snd_una, int *acked,
3054 struct tcp_sacktag_state *sack)
3056 const struct inet_connection_sock *icsk = inet_csk(sk);
3057 struct skb_mstamp first_ackt, last_ackt;
3058 struct skb_mstamp *now = &sack->ack_time;
3059 struct tcp_sock *tp = tcp_sk(sk);
3060 u32 prior_sacked = tp->sacked_out;
3061 u32 reord = tp->packets_out;
3062 bool fully_acked = true;
3063 long sack_rtt_us = -1L;
3064 long seq_rtt_us = -1L;
3065 long ca_rtt_us = -1L;
3066 struct sk_buff *skb;
3067 u32 pkts_acked = 0;
3068 u32 last_in_flight = 0;
3069 bool rtt_update;
3070 int flag = 0;
3072 first_ackt.v64 = 0;
3074 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3075 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3076 u8 sacked = scb->sacked;
3077 u32 acked_pcount;
3079 tcp_ack_tstamp(sk, skb, prior_snd_una);
3081 /* Determine how many packets and what bytes were acked, tso and else */
3082 if (after(scb->end_seq, tp->snd_una)) {
3083 if (tcp_skb_pcount(skb) == 1 ||
3084 !after(tp->snd_una, scb->seq))
3085 break;
3087 acked_pcount = tcp_tso_acked(sk, skb);
3088 if (!acked_pcount)
3089 break;
3090 fully_acked = false;
3091 } else {
3092 /* Speedup tcp_unlink_write_queue() and next loop */
3093 prefetchw(skb->next);
3094 acked_pcount = tcp_skb_pcount(skb);
3097 if (unlikely(sacked & TCPCB_RETRANS)) {
3098 if (sacked & TCPCB_SACKED_RETRANS)
3099 tp->retrans_out -= acked_pcount;
3100 flag |= FLAG_RETRANS_DATA_ACKED;
3101 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3102 last_ackt = skb->skb_mstamp;
3103 WARN_ON_ONCE(last_ackt.v64 == 0);
3104 if (!first_ackt.v64)
3105 first_ackt = last_ackt;
3107 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3108 reord = min(pkts_acked, reord);
3109 if (!after(scb->end_seq, tp->high_seq))
3110 flag |= FLAG_ORIG_SACK_ACKED;
3113 if (sacked & TCPCB_SACKED_ACKED) {
3114 tp->sacked_out -= acked_pcount;
3115 } else if (tcp_is_sack(tp)) {
3116 tp->delivered += acked_pcount;
3117 if (!tcp_skb_spurious_retrans(tp, skb))
3118 tcp_rack_advance(tp, sacked, scb->end_seq,
3119 &skb->skb_mstamp,
3120 &sack->ack_time);
3122 if (sacked & TCPCB_LOST)
3123 tp->lost_out -= acked_pcount;
3125 tp->packets_out -= acked_pcount;
3126 pkts_acked += acked_pcount;
3127 tcp_rate_skb_delivered(sk, skb, sack->rate);
3129 /* Initial outgoing SYN's get put onto the write_queue
3130 * just like anything else we transmit. It is not
3131 * true data, and if we misinform our callers that
3132 * this ACK acks real data, we will erroneously exit
3133 * connection startup slow start one packet too
3134 * quickly. This is severely frowned upon behavior.
3136 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3137 flag |= FLAG_DATA_ACKED;
3138 } else {
3139 flag |= FLAG_SYN_ACKED;
3140 tp->retrans_stamp = 0;
3143 if (!fully_acked)
3144 break;
3146 tcp_unlink_write_queue(skb, sk);
3147 sk_wmem_free_skb(sk, skb);
3148 if (unlikely(skb == tp->retransmit_skb_hint))
3149 tp->retransmit_skb_hint = NULL;
3150 if (unlikely(skb == tp->lost_skb_hint))
3151 tp->lost_skb_hint = NULL;
3154 if (!skb)
3155 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3157 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3158 tp->snd_up = tp->snd_una;
3160 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3161 flag |= FLAG_SACK_RENEGING;
3163 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3164 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3165 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3167 if (sack->first_sackt.v64) {
3168 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3169 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3171 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3172 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3173 ca_rtt_us);
3175 if (flag & FLAG_ACKED) {
3176 tcp_rearm_rto(sk);
3177 if (unlikely(icsk->icsk_mtup.probe_size &&
3178 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3179 tcp_mtup_probe_success(sk);
3182 if (tcp_is_reno(tp)) {
3183 tcp_remove_reno_sacks(sk, pkts_acked);
3184 } else {
3185 int delta;
3187 /* Non-retransmitted hole got filled? That's reordering */
3188 if (reord < prior_fackets)
3189 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3191 delta = tcp_is_fack(tp) ? pkts_acked :
3192 prior_sacked - tp->sacked_out;
3193 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3196 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3198 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3199 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3200 /* Do not re-arm RTO if the sack RTT is measured from data sent
3201 * after when the head was last (re)transmitted. Otherwise the
3202 * timeout may continue to extend in loss recovery.
3204 tcp_rearm_rto(sk);
3207 if (icsk->icsk_ca_ops->pkts_acked) {
3208 struct ack_sample sample = { .pkts_acked = pkts_acked,
3209 .rtt_us = ca_rtt_us,
3210 .in_flight = last_in_flight };
3212 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3215 #if FASTRETRANS_DEBUG > 0
3216 WARN_ON((int)tp->sacked_out < 0);
3217 WARN_ON((int)tp->lost_out < 0);
3218 WARN_ON((int)tp->retrans_out < 0);
3219 if (!tp->packets_out && tcp_is_sack(tp)) {
3220 icsk = inet_csk(sk);
3221 if (tp->lost_out) {
3222 pr_debug("Leak l=%u %d\n",
3223 tp->lost_out, icsk->icsk_ca_state);
3224 tp->lost_out = 0;
3226 if (tp->sacked_out) {
3227 pr_debug("Leak s=%u %d\n",
3228 tp->sacked_out, icsk->icsk_ca_state);
3229 tp->sacked_out = 0;
3231 if (tp->retrans_out) {
3232 pr_debug("Leak r=%u %d\n",
3233 tp->retrans_out, icsk->icsk_ca_state);
3234 tp->retrans_out = 0;
3237 #endif
3238 *acked = pkts_acked;
3239 return flag;
3242 static void tcp_ack_probe(struct sock *sk)
3244 const struct tcp_sock *tp = tcp_sk(sk);
3245 struct inet_connection_sock *icsk = inet_csk(sk);
3247 /* Was it a usable window open? */
3249 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3250 icsk->icsk_backoff = 0;
3251 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3252 /* Socket must be waked up by subsequent tcp_data_snd_check().
3253 * This function is not for random using!
3255 } else {
3256 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3258 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3259 when, TCP_RTO_MAX);
3263 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3265 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3266 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3269 /* Decide wheather to run the increase function of congestion control. */
3270 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3272 /* If reordering is high then always grow cwnd whenever data is
3273 * delivered regardless of its ordering. Otherwise stay conservative
3274 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3275 * new SACK or ECE mark may first advance cwnd here and later reduce
3276 * cwnd in tcp_fastretrans_alert() based on more states.
3278 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3279 return flag & FLAG_FORWARD_PROGRESS;
3281 return flag & FLAG_DATA_ACKED;
3284 /* The "ultimate" congestion control function that aims to replace the rigid
3285 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3286 * It's called toward the end of processing an ACK with precise rate
3287 * information. All transmission or retransmission are delayed afterwards.
3289 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3290 int flag, const struct rate_sample *rs)
3292 const struct inet_connection_sock *icsk = inet_csk(sk);
3294 if (icsk->icsk_ca_ops->cong_control) {
3295 icsk->icsk_ca_ops->cong_control(sk, rs);
3296 return;
3299 if (tcp_in_cwnd_reduction(sk)) {
3300 /* Reduce cwnd if state mandates */
3301 tcp_cwnd_reduction(sk, acked_sacked, flag);
3302 } else if (tcp_may_raise_cwnd(sk, flag)) {
3303 /* Advance cwnd if state allows */
3304 tcp_cong_avoid(sk, ack, acked_sacked);
3306 tcp_update_pacing_rate(sk);
3309 /* Check that window update is acceptable.
3310 * The function assumes that snd_una<=ack<=snd_next.
3312 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3313 const u32 ack, const u32 ack_seq,
3314 const u32 nwin)
3316 return after(ack, tp->snd_una) ||
3317 after(ack_seq, tp->snd_wl1) ||
3318 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3321 /* If we update tp->snd_una, also update tp->bytes_acked */
3322 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3324 u32 delta = ack - tp->snd_una;
3326 sock_owned_by_me((struct sock *)tp);
3327 tp->bytes_acked += delta;
3328 tp->snd_una = ack;
3331 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3332 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3334 u32 delta = seq - tp->rcv_nxt;
3336 sock_owned_by_me((struct sock *)tp);
3337 tp->bytes_received += delta;
3338 tp->rcv_nxt = seq;
3341 /* Update our send window.
3343 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3344 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3346 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3347 u32 ack_seq)
3349 struct tcp_sock *tp = tcp_sk(sk);
3350 int flag = 0;
3351 u32 nwin = ntohs(tcp_hdr(skb)->window);
3353 if (likely(!tcp_hdr(skb)->syn))
3354 nwin <<= tp->rx_opt.snd_wscale;
3356 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3357 flag |= FLAG_WIN_UPDATE;
3358 tcp_update_wl(tp, ack_seq);
3360 if (tp->snd_wnd != nwin) {
3361 tp->snd_wnd = nwin;
3363 /* Note, it is the only place, where
3364 * fast path is recovered for sending TCP.
3366 tp->pred_flags = 0;
3367 tcp_fast_path_check(sk);
3369 if (tcp_send_head(sk))
3370 tcp_slow_start_after_idle_check(sk);
3372 if (nwin > tp->max_window) {
3373 tp->max_window = nwin;
3374 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3379 tcp_snd_una_update(tp, ack);
3381 return flag;
3384 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3385 u32 *last_oow_ack_time)
3387 if (*last_oow_ack_time) {
3388 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3390 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3391 NET_INC_STATS(net, mib_idx);
3392 return true; /* rate-limited: don't send yet! */
3396 *last_oow_ack_time = tcp_time_stamp;
3398 return false; /* not rate-limited: go ahead, send dupack now! */
3401 /* Return true if we're currently rate-limiting out-of-window ACKs and
3402 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3403 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3404 * attacks that send repeated SYNs or ACKs for the same connection. To
3405 * do this, we do not send a duplicate SYNACK or ACK if the remote
3406 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3408 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3409 int mib_idx, u32 *last_oow_ack_time)
3411 /* Data packets without SYNs are not likely part of an ACK loop. */
3412 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3413 !tcp_hdr(skb)->syn)
3414 return false;
3416 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3419 /* RFC 5961 7 [ACK Throttling] */
3420 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3422 /* unprotected vars, we dont care of overwrites */
3423 static u32 challenge_timestamp;
3424 static unsigned int challenge_count;
3425 struct tcp_sock *tp = tcp_sk(sk);
3426 u32 count, now;
3428 /* First check our per-socket dupack rate limit. */
3429 if (__tcp_oow_rate_limited(sock_net(sk),
3430 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3431 &tp->last_oow_ack_time))
3432 return;
3434 /* Then check host-wide RFC 5961 rate limit. */
3435 now = jiffies / HZ;
3436 if (now != challenge_timestamp) {
3437 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3439 challenge_timestamp = now;
3440 WRITE_ONCE(challenge_count, half +
3441 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3443 count = READ_ONCE(challenge_count);
3444 if (count > 0) {
3445 WRITE_ONCE(challenge_count, count - 1);
3446 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3447 tcp_send_ack(sk);
3451 static void tcp_store_ts_recent(struct tcp_sock *tp)
3453 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3454 tp->rx_opt.ts_recent_stamp = get_seconds();
3457 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3459 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3460 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3461 * extra check below makes sure this can only happen
3462 * for pure ACK frames. -DaveM
3464 * Not only, also it occurs for expired timestamps.
3467 if (tcp_paws_check(&tp->rx_opt, 0))
3468 tcp_store_ts_recent(tp);
3472 /* This routine deals with acks during a TLP episode.
3473 * We mark the end of a TLP episode on receiving TLP dupack or when
3474 * ack is after tlp_high_seq.
3475 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3477 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3479 struct tcp_sock *tp = tcp_sk(sk);
3481 if (before(ack, tp->tlp_high_seq))
3482 return;
3484 if (flag & FLAG_DSACKING_ACK) {
3485 /* This DSACK means original and TLP probe arrived; no loss */
3486 tp->tlp_high_seq = 0;
3487 } else if (after(ack, tp->tlp_high_seq)) {
3488 /* ACK advances: there was a loss, so reduce cwnd. Reset
3489 * tlp_high_seq in tcp_init_cwnd_reduction()
3491 tcp_init_cwnd_reduction(sk);
3492 tcp_set_ca_state(sk, TCP_CA_CWR);
3493 tcp_end_cwnd_reduction(sk);
3494 tcp_try_keep_open(sk);
3495 NET_INC_STATS(sock_net(sk),
3496 LINUX_MIB_TCPLOSSPROBERECOVERY);
3497 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3498 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3499 /* Pure dupack: original and TLP probe arrived; no loss */
3500 tp->tlp_high_seq = 0;
3504 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3506 const struct inet_connection_sock *icsk = inet_csk(sk);
3508 if (icsk->icsk_ca_ops->in_ack_event)
3509 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3512 /* Congestion control has updated the cwnd already. So if we're in
3513 * loss recovery then now we do any new sends (for FRTO) or
3514 * retransmits (for CA_Loss or CA_recovery) that make sense.
3516 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3518 struct tcp_sock *tp = tcp_sk(sk);
3520 if (rexmit == REXMIT_NONE)
3521 return;
3523 if (unlikely(rexmit == 2)) {
3524 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3525 TCP_NAGLE_OFF);
3526 if (after(tp->snd_nxt, tp->high_seq))
3527 return;
3528 tp->frto = 0;
3530 tcp_xmit_retransmit_queue(sk);
3533 /* This routine deals with incoming acks, but not outgoing ones. */
3534 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3536 struct inet_connection_sock *icsk = inet_csk(sk);
3537 struct tcp_sock *tp = tcp_sk(sk);
3538 struct tcp_sacktag_state sack_state;
3539 struct rate_sample rs = { .prior_delivered = 0 };
3540 u32 prior_snd_una = tp->snd_una;
3541 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3542 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3543 bool is_dupack = false;
3544 u32 prior_fackets;
3545 int prior_packets = tp->packets_out;
3546 u32 delivered = tp->delivered;
3547 u32 lost = tp->lost;
3548 int acked = 0; /* Number of packets newly acked */
3549 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3551 sack_state.first_sackt.v64 = 0;
3552 sack_state.rate = &rs;
3554 /* We very likely will need to access write queue head. */
3555 prefetchw(sk->sk_write_queue.next);
3557 /* If the ack is older than previous acks
3558 * then we can probably ignore it.
3560 if (before(ack, prior_snd_una)) {
3561 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3562 if (before(ack, prior_snd_una - tp->max_window)) {
3563 tcp_send_challenge_ack(sk, skb);
3564 return -1;
3566 goto old_ack;
3569 /* If the ack includes data we haven't sent yet, discard
3570 * this segment (RFC793 Section 3.9).
3572 if (after(ack, tp->snd_nxt))
3573 goto invalid_ack;
3575 skb_mstamp_get(&sack_state.ack_time);
3577 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3578 tcp_rearm_rto(sk);
3580 if (after(ack, prior_snd_una)) {
3581 flag |= FLAG_SND_UNA_ADVANCED;
3582 icsk->icsk_retransmits = 0;
3585 prior_fackets = tp->fackets_out;
3586 rs.prior_in_flight = tcp_packets_in_flight(tp);
3588 /* ts_recent update must be made after we are sure that the packet
3589 * is in window.
3591 if (flag & FLAG_UPDATE_TS_RECENT)
3592 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3594 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3595 /* Window is constant, pure forward advance.
3596 * No more checks are required.
3597 * Note, we use the fact that SND.UNA>=SND.WL2.
3599 tcp_update_wl(tp, ack_seq);
3600 tcp_snd_una_update(tp, ack);
3601 flag |= FLAG_WIN_UPDATE;
3603 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3605 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3606 } else {
3607 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3609 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3610 flag |= FLAG_DATA;
3611 else
3612 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3614 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3616 if (TCP_SKB_CB(skb)->sacked)
3617 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3618 &sack_state);
3620 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3621 flag |= FLAG_ECE;
3622 ack_ev_flags |= CA_ACK_ECE;
3625 if (flag & FLAG_WIN_UPDATE)
3626 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3628 tcp_in_ack_event(sk, ack_ev_flags);
3631 /* We passed data and got it acked, remove any soft error
3632 * log. Something worked...
3634 sk->sk_err_soft = 0;
3635 icsk->icsk_probes_out = 0;
3636 tp->rcv_tstamp = tcp_time_stamp;
3637 if (!prior_packets)
3638 goto no_queue;
3640 /* See if we can take anything off of the retransmit queue. */
3641 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3642 &sack_state);
3644 if (tcp_ack_is_dubious(sk, flag)) {
3645 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3646 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3647 &sack_state.ack_time);
3649 if (tp->tlp_high_seq)
3650 tcp_process_tlp_ack(sk, ack, flag);
3652 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3653 sk_dst_confirm(sk);
3655 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3656 tcp_schedule_loss_probe(sk);
3657 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3658 lost = tp->lost - lost; /* freshly marked lost */
3659 tcp_rate_gen(sk, delivered, lost, &sack_state.ack_time,
3660 sack_state.rate);
3661 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3662 tcp_xmit_recovery(sk, rexmit);
3663 return 1;
3665 no_queue:
3666 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3667 if (flag & FLAG_DSACKING_ACK)
3668 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3669 &sack_state.ack_time);
3670 /* If this ack opens up a zero window, clear backoff. It was
3671 * being used to time the probes, and is probably far higher than
3672 * it needs to be for normal retransmission.
3674 if (tcp_send_head(sk))
3675 tcp_ack_probe(sk);
3677 if (tp->tlp_high_seq)
3678 tcp_process_tlp_ack(sk, ack, flag);
3679 return 1;
3681 invalid_ack:
3682 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3683 return -1;
3685 old_ack:
3686 /* If data was SACKed, tag it and see if we should send more data.
3687 * If data was DSACKed, see if we can undo a cwnd reduction.
3689 if (TCP_SKB_CB(skb)->sacked) {
3690 skb_mstamp_get(&sack_state.ack_time);
3691 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3692 &sack_state);
3693 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit,
3694 &sack_state.ack_time);
3695 tcp_xmit_recovery(sk, rexmit);
3698 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3699 return 0;
3702 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3703 bool syn, struct tcp_fastopen_cookie *foc,
3704 bool exp_opt)
3706 /* Valid only in SYN or SYN-ACK with an even length. */
3707 if (!foc || !syn || len < 0 || (len & 1))
3708 return;
3710 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3711 len <= TCP_FASTOPEN_COOKIE_MAX)
3712 memcpy(foc->val, cookie, len);
3713 else if (len != 0)
3714 len = -1;
3715 foc->len = len;
3716 foc->exp = exp_opt;
3719 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3720 * But, this can also be called on packets in the established flow when
3721 * the fast version below fails.
3723 void tcp_parse_options(const struct sk_buff *skb,
3724 struct tcp_options_received *opt_rx, int estab,
3725 struct tcp_fastopen_cookie *foc)
3727 const unsigned char *ptr;
3728 const struct tcphdr *th = tcp_hdr(skb);
3729 int length = (th->doff * 4) - sizeof(struct tcphdr);
3731 ptr = (const unsigned char *)(th + 1);
3732 opt_rx->saw_tstamp = 0;
3734 while (length > 0) {
3735 int opcode = *ptr++;
3736 int opsize;
3738 switch (opcode) {
3739 case TCPOPT_EOL:
3740 return;
3741 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3742 length--;
3743 continue;
3744 default:
3745 opsize = *ptr++;
3746 if (opsize < 2) /* "silly options" */
3747 return;
3748 if (opsize > length)
3749 return; /* don't parse partial options */
3750 switch (opcode) {
3751 case TCPOPT_MSS:
3752 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3753 u16 in_mss = get_unaligned_be16(ptr);
3754 if (in_mss) {
3755 if (opt_rx->user_mss &&
3756 opt_rx->user_mss < in_mss)
3757 in_mss = opt_rx->user_mss;
3758 opt_rx->mss_clamp = in_mss;
3761 break;
3762 case TCPOPT_WINDOW:
3763 if (opsize == TCPOLEN_WINDOW && th->syn &&
3764 !estab && sysctl_tcp_window_scaling) {
3765 __u8 snd_wscale = *(__u8 *)ptr;
3766 opt_rx->wscale_ok = 1;
3767 if (snd_wscale > 14) {
3768 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3769 __func__,
3770 snd_wscale);
3771 snd_wscale = 14;
3773 opt_rx->snd_wscale = snd_wscale;
3775 break;
3776 case TCPOPT_TIMESTAMP:
3777 if ((opsize == TCPOLEN_TIMESTAMP) &&
3778 ((estab && opt_rx->tstamp_ok) ||
3779 (!estab && sysctl_tcp_timestamps))) {
3780 opt_rx->saw_tstamp = 1;
3781 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3782 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3784 break;
3785 case TCPOPT_SACK_PERM:
3786 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3787 !estab && sysctl_tcp_sack) {
3788 opt_rx->sack_ok = TCP_SACK_SEEN;
3789 tcp_sack_reset(opt_rx);
3791 break;
3793 case TCPOPT_SACK:
3794 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3795 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3796 opt_rx->sack_ok) {
3797 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3799 break;
3800 #ifdef CONFIG_TCP_MD5SIG
3801 case TCPOPT_MD5SIG:
3803 * The MD5 Hash has already been
3804 * checked (see tcp_v{4,6}_do_rcv()).
3806 break;
3807 #endif
3808 case TCPOPT_FASTOPEN:
3809 tcp_parse_fastopen_option(
3810 opsize - TCPOLEN_FASTOPEN_BASE,
3811 ptr, th->syn, foc, false);
3812 break;
3814 case TCPOPT_EXP:
3815 /* Fast Open option shares code 254 using a
3816 * 16 bits magic number.
3818 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3819 get_unaligned_be16(ptr) ==
3820 TCPOPT_FASTOPEN_MAGIC)
3821 tcp_parse_fastopen_option(opsize -
3822 TCPOLEN_EXP_FASTOPEN_BASE,
3823 ptr + 2, th->syn, foc, true);
3824 break;
3827 ptr += opsize-2;
3828 length -= opsize;
3832 EXPORT_SYMBOL(tcp_parse_options);
3834 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3836 const __be32 *ptr = (const __be32 *)(th + 1);
3838 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3839 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3840 tp->rx_opt.saw_tstamp = 1;
3841 ++ptr;
3842 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3843 ++ptr;
3844 if (*ptr)
3845 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3846 else
3847 tp->rx_opt.rcv_tsecr = 0;
3848 return true;
3850 return false;
3853 /* Fast parse options. This hopes to only see timestamps.
3854 * If it is wrong it falls back on tcp_parse_options().
3856 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3857 const struct tcphdr *th, struct tcp_sock *tp)
3859 /* In the spirit of fast parsing, compare doff directly to constant
3860 * values. Because equality is used, short doff can be ignored here.
3862 if (th->doff == (sizeof(*th) / 4)) {
3863 tp->rx_opt.saw_tstamp = 0;
3864 return false;
3865 } else if (tp->rx_opt.tstamp_ok &&
3866 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3867 if (tcp_parse_aligned_timestamp(tp, th))
3868 return true;
3871 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3872 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3873 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3875 return true;
3878 #ifdef CONFIG_TCP_MD5SIG
3880 * Parse MD5 Signature option
3882 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3884 int length = (th->doff << 2) - sizeof(*th);
3885 const u8 *ptr = (const u8 *)(th + 1);
3887 /* If the TCP option is too short, we can short cut */
3888 if (length < TCPOLEN_MD5SIG)
3889 return NULL;
3891 while (length > 0) {
3892 int opcode = *ptr++;
3893 int opsize;
3895 switch (opcode) {
3896 case TCPOPT_EOL:
3897 return NULL;
3898 case TCPOPT_NOP:
3899 length--;
3900 continue;
3901 default:
3902 opsize = *ptr++;
3903 if (opsize < 2 || opsize > length)
3904 return NULL;
3905 if (opcode == TCPOPT_MD5SIG)
3906 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3908 ptr += opsize - 2;
3909 length -= opsize;
3911 return NULL;
3913 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3914 #endif
3916 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3918 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3919 * it can pass through stack. So, the following predicate verifies that
3920 * this segment is not used for anything but congestion avoidance or
3921 * fast retransmit. Moreover, we even are able to eliminate most of such
3922 * second order effects, if we apply some small "replay" window (~RTO)
3923 * to timestamp space.
3925 * All these measures still do not guarantee that we reject wrapped ACKs
3926 * on networks with high bandwidth, when sequence space is recycled fastly,
3927 * but it guarantees that such events will be very rare and do not affect
3928 * connection seriously. This doesn't look nice, but alas, PAWS is really
3929 * buggy extension.
3931 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3932 * states that events when retransmit arrives after original data are rare.
3933 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3934 * the biggest problem on large power networks even with minor reordering.
3935 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3936 * up to bandwidth of 18Gigabit/sec. 8) ]
3939 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3941 const struct tcp_sock *tp = tcp_sk(sk);
3942 const struct tcphdr *th = tcp_hdr(skb);
3943 u32 seq = TCP_SKB_CB(skb)->seq;
3944 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3946 return (/* 1. Pure ACK with correct sequence number. */
3947 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3949 /* 2. ... and duplicate ACK. */
3950 ack == tp->snd_una &&
3952 /* 3. ... and does not update window. */
3953 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3955 /* 4. ... and sits in replay window. */
3956 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3959 static inline bool tcp_paws_discard(const struct sock *sk,
3960 const struct sk_buff *skb)
3962 const struct tcp_sock *tp = tcp_sk(sk);
3964 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3965 !tcp_disordered_ack(sk, skb);
3968 /* Check segment sequence number for validity.
3970 * Segment controls are considered valid, if the segment
3971 * fits to the window after truncation to the window. Acceptability
3972 * of data (and SYN, FIN, of course) is checked separately.
3973 * See tcp_data_queue(), for example.
3975 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3976 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3977 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3978 * (borrowed from freebsd)
3981 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3983 return !before(end_seq, tp->rcv_wup) &&
3984 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3987 /* When we get a reset we do this. */
3988 void tcp_reset(struct sock *sk)
3990 /* We want the right error as BSD sees it (and indeed as we do). */
3991 switch (sk->sk_state) {
3992 case TCP_SYN_SENT:
3993 sk->sk_err = ECONNREFUSED;
3994 break;
3995 case TCP_CLOSE_WAIT:
3996 sk->sk_err = EPIPE;
3997 break;
3998 case TCP_CLOSE:
3999 return;
4000 default:
4001 sk->sk_err = ECONNRESET;
4003 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4004 smp_wmb();
4006 if (!sock_flag(sk, SOCK_DEAD))
4007 sk->sk_error_report(sk);
4009 tcp_done(sk);
4013 * Process the FIN bit. This now behaves as it is supposed to work
4014 * and the FIN takes effect when it is validly part of sequence
4015 * space. Not before when we get holes.
4017 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4018 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4019 * TIME-WAIT)
4021 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4022 * close and we go into CLOSING (and later onto TIME-WAIT)
4024 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4026 void tcp_fin(struct sock *sk)
4028 struct tcp_sock *tp = tcp_sk(sk);
4030 inet_csk_schedule_ack(sk);
4032 sk->sk_shutdown |= RCV_SHUTDOWN;
4033 sock_set_flag(sk, SOCK_DONE);
4035 switch (sk->sk_state) {
4036 case TCP_SYN_RECV:
4037 case TCP_ESTABLISHED:
4038 /* Move to CLOSE_WAIT */
4039 tcp_set_state(sk, TCP_CLOSE_WAIT);
4040 inet_csk(sk)->icsk_ack.pingpong = 1;
4041 break;
4043 case TCP_CLOSE_WAIT:
4044 case TCP_CLOSING:
4045 /* Received a retransmission of the FIN, do
4046 * nothing.
4048 break;
4049 case TCP_LAST_ACK:
4050 /* RFC793: Remain in the LAST-ACK state. */
4051 break;
4053 case TCP_FIN_WAIT1:
4054 /* This case occurs when a simultaneous close
4055 * happens, we must ack the received FIN and
4056 * enter the CLOSING state.
4058 tcp_send_ack(sk);
4059 tcp_set_state(sk, TCP_CLOSING);
4060 break;
4061 case TCP_FIN_WAIT2:
4062 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4063 tcp_send_ack(sk);
4064 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4065 break;
4066 default:
4067 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4068 * cases we should never reach this piece of code.
4070 pr_err("%s: Impossible, sk->sk_state=%d\n",
4071 __func__, sk->sk_state);
4072 break;
4075 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4076 * Probably, we should reset in this case. For now drop them.
4078 skb_rbtree_purge(&tp->out_of_order_queue);
4079 if (tcp_is_sack(tp))
4080 tcp_sack_reset(&tp->rx_opt);
4081 sk_mem_reclaim(sk);
4083 if (!sock_flag(sk, SOCK_DEAD)) {
4084 sk->sk_state_change(sk);
4086 /* Do not send POLL_HUP for half duplex close. */
4087 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4088 sk->sk_state == TCP_CLOSE)
4089 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4090 else
4091 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4095 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4096 u32 end_seq)
4098 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4099 if (before(seq, sp->start_seq))
4100 sp->start_seq = seq;
4101 if (after(end_seq, sp->end_seq))
4102 sp->end_seq = end_seq;
4103 return true;
4105 return false;
4108 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4110 struct tcp_sock *tp = tcp_sk(sk);
4112 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4113 int mib_idx;
4115 if (before(seq, tp->rcv_nxt))
4116 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4117 else
4118 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4120 NET_INC_STATS(sock_net(sk), mib_idx);
4122 tp->rx_opt.dsack = 1;
4123 tp->duplicate_sack[0].start_seq = seq;
4124 tp->duplicate_sack[0].end_seq = end_seq;
4128 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4130 struct tcp_sock *tp = tcp_sk(sk);
4132 if (!tp->rx_opt.dsack)
4133 tcp_dsack_set(sk, seq, end_seq);
4134 else
4135 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4138 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4140 struct tcp_sock *tp = tcp_sk(sk);
4142 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4143 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4144 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4145 tcp_enter_quickack_mode(sk);
4147 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4148 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4150 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4151 end_seq = tp->rcv_nxt;
4152 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4156 tcp_send_ack(sk);
4159 /* These routines update the SACK block as out-of-order packets arrive or
4160 * in-order packets close up the sequence space.
4162 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4164 int this_sack;
4165 struct tcp_sack_block *sp = &tp->selective_acks[0];
4166 struct tcp_sack_block *swalk = sp + 1;
4168 /* See if the recent change to the first SACK eats into
4169 * or hits the sequence space of other SACK blocks, if so coalesce.
4171 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4172 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4173 int i;
4175 /* Zap SWALK, by moving every further SACK up by one slot.
4176 * Decrease num_sacks.
4178 tp->rx_opt.num_sacks--;
4179 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4180 sp[i] = sp[i + 1];
4181 continue;
4183 this_sack++, swalk++;
4187 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4189 struct tcp_sock *tp = tcp_sk(sk);
4190 struct tcp_sack_block *sp = &tp->selective_acks[0];
4191 int cur_sacks = tp->rx_opt.num_sacks;
4192 int this_sack;
4194 if (!cur_sacks)
4195 goto new_sack;
4197 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4198 if (tcp_sack_extend(sp, seq, end_seq)) {
4199 /* Rotate this_sack to the first one. */
4200 for (; this_sack > 0; this_sack--, sp--)
4201 swap(*sp, *(sp - 1));
4202 if (cur_sacks > 1)
4203 tcp_sack_maybe_coalesce(tp);
4204 return;
4208 /* Could not find an adjacent existing SACK, build a new one,
4209 * put it at the front, and shift everyone else down. We
4210 * always know there is at least one SACK present already here.
4212 * If the sack array is full, forget about the last one.
4214 if (this_sack >= TCP_NUM_SACKS) {
4215 this_sack--;
4216 tp->rx_opt.num_sacks--;
4217 sp--;
4219 for (; this_sack > 0; this_sack--, sp--)
4220 *sp = *(sp - 1);
4222 new_sack:
4223 /* Build the new head SACK, and we're done. */
4224 sp->start_seq = seq;
4225 sp->end_seq = end_seq;
4226 tp->rx_opt.num_sacks++;
4229 /* RCV.NXT advances, some SACKs should be eaten. */
4231 static void tcp_sack_remove(struct tcp_sock *tp)
4233 struct tcp_sack_block *sp = &tp->selective_acks[0];
4234 int num_sacks = tp->rx_opt.num_sacks;
4235 int this_sack;
4237 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4238 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4239 tp->rx_opt.num_sacks = 0;
4240 return;
4243 for (this_sack = 0; this_sack < num_sacks;) {
4244 /* Check if the start of the sack is covered by RCV.NXT. */
4245 if (!before(tp->rcv_nxt, sp->start_seq)) {
4246 int i;
4248 /* RCV.NXT must cover all the block! */
4249 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4251 /* Zap this SACK, by moving forward any other SACKS. */
4252 for (i = this_sack+1; i < num_sacks; i++)
4253 tp->selective_acks[i-1] = tp->selective_acks[i];
4254 num_sacks--;
4255 continue;
4257 this_sack++;
4258 sp++;
4260 tp->rx_opt.num_sacks = num_sacks;
4264 * tcp_try_coalesce - try to merge skb to prior one
4265 * @sk: socket
4266 * @to: prior buffer
4267 * @from: buffer to add in queue
4268 * @fragstolen: pointer to boolean
4270 * Before queueing skb @from after @to, try to merge them
4271 * to reduce overall memory use and queue lengths, if cost is small.
4272 * Packets in ofo or receive queues can stay a long time.
4273 * Better try to coalesce them right now to avoid future collapses.
4274 * Returns true if caller should free @from instead of queueing it
4276 static bool tcp_try_coalesce(struct sock *sk,
4277 struct sk_buff *to,
4278 struct sk_buff *from,
4279 bool *fragstolen)
4281 int delta;
4283 *fragstolen = false;
4285 /* Its possible this segment overlaps with prior segment in queue */
4286 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4287 return false;
4289 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4290 return false;
4292 atomic_add(delta, &sk->sk_rmem_alloc);
4293 sk_mem_charge(sk, delta);
4294 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4295 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4296 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4297 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4298 return true;
4301 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4303 sk_drops_add(sk, skb);
4304 __kfree_skb(skb);
4307 /* This one checks to see if we can put data from the
4308 * out_of_order queue into the receive_queue.
4310 static void tcp_ofo_queue(struct sock *sk)
4312 struct tcp_sock *tp = tcp_sk(sk);
4313 __u32 dsack_high = tp->rcv_nxt;
4314 bool fin, fragstolen, eaten;
4315 struct sk_buff *skb, *tail;
4316 struct rb_node *p;
4318 p = rb_first(&tp->out_of_order_queue);
4319 while (p) {
4320 skb = rb_entry(p, struct sk_buff, rbnode);
4321 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4322 break;
4324 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4325 __u32 dsack = dsack_high;
4326 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4327 dsack_high = TCP_SKB_CB(skb)->end_seq;
4328 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4330 p = rb_next(p);
4331 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4333 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4334 SOCK_DEBUG(sk, "ofo packet was already received\n");
4335 tcp_drop(sk, skb);
4336 continue;
4338 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4339 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4340 TCP_SKB_CB(skb)->end_seq);
4342 tail = skb_peek_tail(&sk->sk_receive_queue);
4343 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4344 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4345 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4346 if (!eaten)
4347 __skb_queue_tail(&sk->sk_receive_queue, skb);
4348 else
4349 kfree_skb_partial(skb, fragstolen);
4351 if (unlikely(fin)) {
4352 tcp_fin(sk);
4353 /* tcp_fin() purges tp->out_of_order_queue,
4354 * so we must end this loop right now.
4356 break;
4361 static bool tcp_prune_ofo_queue(struct sock *sk);
4362 static int tcp_prune_queue(struct sock *sk);
4364 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4365 unsigned int size)
4367 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4368 !sk_rmem_schedule(sk, skb, size)) {
4370 if (tcp_prune_queue(sk) < 0)
4371 return -1;
4373 while (!sk_rmem_schedule(sk, skb, size)) {
4374 if (!tcp_prune_ofo_queue(sk))
4375 return -1;
4378 return 0;
4381 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4383 struct tcp_sock *tp = tcp_sk(sk);
4384 struct rb_node **p, *q, *parent;
4385 struct sk_buff *skb1;
4386 u32 seq, end_seq;
4387 bool fragstolen;
4389 tcp_ecn_check_ce(tp, skb);
4391 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4392 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4393 tcp_drop(sk, skb);
4394 return;
4397 /* Disable header prediction. */
4398 tp->pred_flags = 0;
4399 inet_csk_schedule_ack(sk);
4401 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4402 seq = TCP_SKB_CB(skb)->seq;
4403 end_seq = TCP_SKB_CB(skb)->end_seq;
4404 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4405 tp->rcv_nxt, seq, end_seq);
4407 p = &tp->out_of_order_queue.rb_node;
4408 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4409 /* Initial out of order segment, build 1 SACK. */
4410 if (tcp_is_sack(tp)) {
4411 tp->rx_opt.num_sacks = 1;
4412 tp->selective_acks[0].start_seq = seq;
4413 tp->selective_acks[0].end_seq = end_seq;
4415 rb_link_node(&skb->rbnode, NULL, p);
4416 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4417 tp->ooo_last_skb = skb;
4418 goto end;
4421 /* In the typical case, we are adding an skb to the end of the list.
4422 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4424 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4425 coalesce_done:
4426 tcp_grow_window(sk, skb);
4427 kfree_skb_partial(skb, fragstolen);
4428 skb = NULL;
4429 goto add_sack;
4431 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4432 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4433 parent = &tp->ooo_last_skb->rbnode;
4434 p = &parent->rb_right;
4435 goto insert;
4438 /* Find place to insert this segment. Handle overlaps on the way. */
4439 parent = NULL;
4440 while (*p) {
4441 parent = *p;
4442 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4443 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4444 p = &parent->rb_left;
4445 continue;
4447 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4448 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4449 /* All the bits are present. Drop. */
4450 NET_INC_STATS(sock_net(sk),
4451 LINUX_MIB_TCPOFOMERGE);
4452 __kfree_skb(skb);
4453 skb = NULL;
4454 tcp_dsack_set(sk, seq, end_seq);
4455 goto add_sack;
4457 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4458 /* Partial overlap. */
4459 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4460 } else {
4461 /* skb's seq == skb1's seq and skb covers skb1.
4462 * Replace skb1 with skb.
4464 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4465 &tp->out_of_order_queue);
4466 tcp_dsack_extend(sk,
4467 TCP_SKB_CB(skb1)->seq,
4468 TCP_SKB_CB(skb1)->end_seq);
4469 NET_INC_STATS(sock_net(sk),
4470 LINUX_MIB_TCPOFOMERGE);
4471 __kfree_skb(skb1);
4472 goto merge_right;
4474 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4475 goto coalesce_done;
4477 p = &parent->rb_right;
4479 insert:
4480 /* Insert segment into RB tree. */
4481 rb_link_node(&skb->rbnode, parent, p);
4482 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4484 merge_right:
4485 /* Remove other segments covered by skb. */
4486 while ((q = rb_next(&skb->rbnode)) != NULL) {
4487 skb1 = rb_entry(q, struct sk_buff, rbnode);
4489 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4490 break;
4491 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4492 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4493 end_seq);
4494 break;
4496 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4497 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4498 TCP_SKB_CB(skb1)->end_seq);
4499 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4500 tcp_drop(sk, skb1);
4502 /* If there is no skb after us, we are the last_skb ! */
4503 if (!q)
4504 tp->ooo_last_skb = skb;
4506 add_sack:
4507 if (tcp_is_sack(tp))
4508 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4509 end:
4510 if (skb) {
4511 tcp_grow_window(sk, skb);
4512 skb_condense(skb);
4513 skb_set_owner_r(skb, sk);
4517 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4518 bool *fragstolen)
4520 int eaten;
4521 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4523 __skb_pull(skb, hdrlen);
4524 eaten = (tail &&
4525 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4526 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4527 if (!eaten) {
4528 __skb_queue_tail(&sk->sk_receive_queue, skb);
4529 skb_set_owner_r(skb, sk);
4531 return eaten;
4534 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4536 struct sk_buff *skb;
4537 int err = -ENOMEM;
4538 int data_len = 0;
4539 bool fragstolen;
4541 if (size == 0)
4542 return 0;
4544 if (size > PAGE_SIZE) {
4545 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4547 data_len = npages << PAGE_SHIFT;
4548 size = data_len + (size & ~PAGE_MASK);
4550 skb = alloc_skb_with_frags(size - data_len, data_len,
4551 PAGE_ALLOC_COSTLY_ORDER,
4552 &err, sk->sk_allocation);
4553 if (!skb)
4554 goto err;
4556 skb_put(skb, size - data_len);
4557 skb->data_len = data_len;
4558 skb->len = size;
4560 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4561 goto err_free;
4563 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4564 if (err)
4565 goto err_free;
4567 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4568 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4569 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4571 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4572 WARN_ON_ONCE(fragstolen); /* should not happen */
4573 __kfree_skb(skb);
4575 return size;
4577 err_free:
4578 kfree_skb(skb);
4579 err:
4580 return err;
4584 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4586 struct tcp_sock *tp = tcp_sk(sk);
4587 bool fragstolen = false;
4588 int eaten = -1;
4590 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4591 __kfree_skb(skb);
4592 return;
4594 skb_dst_drop(skb);
4595 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4597 tcp_ecn_accept_cwr(tp, skb);
4599 tp->rx_opt.dsack = 0;
4601 /* Queue data for delivery to the user.
4602 * Packets in sequence go to the receive queue.
4603 * Out of sequence packets to the out_of_order_queue.
4605 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4606 if (tcp_receive_window(tp) == 0)
4607 goto out_of_window;
4609 /* Ok. In sequence. In window. */
4610 if (tp->ucopy.task == current &&
4611 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4612 sock_owned_by_user(sk) && !tp->urg_data) {
4613 int chunk = min_t(unsigned int, skb->len,
4614 tp->ucopy.len);
4616 __set_current_state(TASK_RUNNING);
4618 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4619 tp->ucopy.len -= chunk;
4620 tp->copied_seq += chunk;
4621 eaten = (chunk == skb->len);
4622 tcp_rcv_space_adjust(sk);
4626 if (eaten <= 0) {
4627 queue_and_out:
4628 if (eaten < 0) {
4629 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4630 sk_forced_mem_schedule(sk, skb->truesize);
4631 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4632 goto drop;
4634 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4636 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4637 if (skb->len)
4638 tcp_event_data_recv(sk, skb);
4639 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4640 tcp_fin(sk);
4642 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4643 tcp_ofo_queue(sk);
4645 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4646 * gap in queue is filled.
4648 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4649 inet_csk(sk)->icsk_ack.pingpong = 0;
4652 if (tp->rx_opt.num_sacks)
4653 tcp_sack_remove(tp);
4655 tcp_fast_path_check(sk);
4657 if (eaten > 0)
4658 kfree_skb_partial(skb, fragstolen);
4659 if (!sock_flag(sk, SOCK_DEAD))
4660 sk->sk_data_ready(sk);
4661 return;
4664 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4665 /* A retransmit, 2nd most common case. Force an immediate ack. */
4666 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4667 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4669 out_of_window:
4670 tcp_enter_quickack_mode(sk);
4671 inet_csk_schedule_ack(sk);
4672 drop:
4673 tcp_drop(sk, skb);
4674 return;
4677 /* Out of window. F.e. zero window probe. */
4678 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4679 goto out_of_window;
4681 tcp_enter_quickack_mode(sk);
4683 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4684 /* Partial packet, seq < rcv_next < end_seq */
4685 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4686 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4687 TCP_SKB_CB(skb)->end_seq);
4689 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4691 /* If window is closed, drop tail of packet. But after
4692 * remembering D-SACK for its head made in previous line.
4694 if (!tcp_receive_window(tp))
4695 goto out_of_window;
4696 goto queue_and_out;
4699 tcp_data_queue_ofo(sk, skb);
4702 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4704 if (list)
4705 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4707 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4710 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4711 struct sk_buff_head *list,
4712 struct rb_root *root)
4714 struct sk_buff *next = tcp_skb_next(skb, list);
4716 if (list)
4717 __skb_unlink(skb, list);
4718 else
4719 rb_erase(&skb->rbnode, root);
4721 __kfree_skb(skb);
4722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4724 return next;
4727 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4728 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4730 struct rb_node **p = &root->rb_node;
4731 struct rb_node *parent = NULL;
4732 struct sk_buff *skb1;
4734 while (*p) {
4735 parent = *p;
4736 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4737 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4738 p = &parent->rb_left;
4739 else
4740 p = &parent->rb_right;
4742 rb_link_node(&skb->rbnode, parent, p);
4743 rb_insert_color(&skb->rbnode, root);
4746 /* Collapse contiguous sequence of skbs head..tail with
4747 * sequence numbers start..end.
4749 * If tail is NULL, this means until the end of the queue.
4751 * Segments with FIN/SYN are not collapsed (only because this
4752 * simplifies code)
4754 static void
4755 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4756 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4758 struct sk_buff *skb = head, *n;
4759 struct sk_buff_head tmp;
4760 bool end_of_skbs;
4762 /* First, check that queue is collapsible and find
4763 * the point where collapsing can be useful.
4765 restart:
4766 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4767 n = tcp_skb_next(skb, list);
4769 /* No new bits? It is possible on ofo queue. */
4770 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4771 skb = tcp_collapse_one(sk, skb, list, root);
4772 if (!skb)
4773 break;
4774 goto restart;
4777 /* The first skb to collapse is:
4778 * - not SYN/FIN and
4779 * - bloated or contains data before "start" or
4780 * overlaps to the next one.
4782 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4783 (tcp_win_from_space(skb->truesize) > skb->len ||
4784 before(TCP_SKB_CB(skb)->seq, start))) {
4785 end_of_skbs = false;
4786 break;
4789 if (n && n != tail &&
4790 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4791 end_of_skbs = false;
4792 break;
4795 /* Decided to skip this, advance start seq. */
4796 start = TCP_SKB_CB(skb)->end_seq;
4798 if (end_of_skbs ||
4799 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4800 return;
4802 __skb_queue_head_init(&tmp);
4804 while (before(start, end)) {
4805 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4806 struct sk_buff *nskb;
4808 nskb = alloc_skb(copy, GFP_ATOMIC);
4809 if (!nskb)
4810 break;
4812 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4813 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4814 if (list)
4815 __skb_queue_before(list, skb, nskb);
4816 else
4817 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4818 skb_set_owner_r(nskb, sk);
4820 /* Copy data, releasing collapsed skbs. */
4821 while (copy > 0) {
4822 int offset = start - TCP_SKB_CB(skb)->seq;
4823 int size = TCP_SKB_CB(skb)->end_seq - start;
4825 BUG_ON(offset < 0);
4826 if (size > 0) {
4827 size = min(copy, size);
4828 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4829 BUG();
4830 TCP_SKB_CB(nskb)->end_seq += size;
4831 copy -= size;
4832 start += size;
4834 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4835 skb = tcp_collapse_one(sk, skb, list, root);
4836 if (!skb ||
4837 skb == tail ||
4838 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4839 goto end;
4843 end:
4844 skb_queue_walk_safe(&tmp, skb, n)
4845 tcp_rbtree_insert(root, skb);
4848 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4849 * and tcp_collapse() them until all the queue is collapsed.
4851 static void tcp_collapse_ofo_queue(struct sock *sk)
4853 struct tcp_sock *tp = tcp_sk(sk);
4854 struct sk_buff *skb, *head;
4855 struct rb_node *p;
4856 u32 start, end;
4858 p = rb_first(&tp->out_of_order_queue);
4859 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4860 new_range:
4861 if (!skb) {
4862 p = rb_last(&tp->out_of_order_queue);
4863 /* Note: This is possible p is NULL here. We do not
4864 * use rb_entry_safe(), as ooo_last_skb is valid only
4865 * if rbtree is not empty.
4867 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4868 return;
4870 start = TCP_SKB_CB(skb)->seq;
4871 end = TCP_SKB_CB(skb)->end_seq;
4873 for (head = skb;;) {
4874 skb = tcp_skb_next(skb, NULL);
4876 /* Range is terminated when we see a gap or when
4877 * we are at the queue end.
4879 if (!skb ||
4880 after(TCP_SKB_CB(skb)->seq, end) ||
4881 before(TCP_SKB_CB(skb)->end_seq, start)) {
4882 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4883 head, skb, start, end);
4884 goto new_range;
4887 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4888 start = TCP_SKB_CB(skb)->seq;
4889 if (after(TCP_SKB_CB(skb)->end_seq, end))
4890 end = TCP_SKB_CB(skb)->end_seq;
4895 * Clean the out-of-order queue to make room.
4896 * We drop high sequences packets to :
4897 * 1) Let a chance for holes to be filled.
4898 * 2) not add too big latencies if thousands of packets sit there.
4899 * (But if application shrinks SO_RCVBUF, we could still end up
4900 * freeing whole queue here)
4902 * Return true if queue has shrunk.
4904 static bool tcp_prune_ofo_queue(struct sock *sk)
4906 struct tcp_sock *tp = tcp_sk(sk);
4907 struct rb_node *node, *prev;
4909 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4910 return false;
4912 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4913 node = &tp->ooo_last_skb->rbnode;
4914 do {
4915 prev = rb_prev(node);
4916 rb_erase(node, &tp->out_of_order_queue);
4917 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4918 sk_mem_reclaim(sk);
4919 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4920 !tcp_under_memory_pressure(sk))
4921 break;
4922 node = prev;
4923 } while (node);
4924 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4926 /* Reset SACK state. A conforming SACK implementation will
4927 * do the same at a timeout based retransmit. When a connection
4928 * is in a sad state like this, we care only about integrity
4929 * of the connection not performance.
4931 if (tp->rx_opt.sack_ok)
4932 tcp_sack_reset(&tp->rx_opt);
4933 return true;
4936 /* Reduce allocated memory if we can, trying to get
4937 * the socket within its memory limits again.
4939 * Return less than zero if we should start dropping frames
4940 * until the socket owning process reads some of the data
4941 * to stabilize the situation.
4943 static int tcp_prune_queue(struct sock *sk)
4945 struct tcp_sock *tp = tcp_sk(sk);
4947 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4949 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4951 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4952 tcp_clamp_window(sk);
4953 else if (tcp_under_memory_pressure(sk))
4954 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4956 tcp_collapse_ofo_queue(sk);
4957 if (!skb_queue_empty(&sk->sk_receive_queue))
4958 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4959 skb_peek(&sk->sk_receive_queue),
4960 NULL,
4961 tp->copied_seq, tp->rcv_nxt);
4962 sk_mem_reclaim(sk);
4964 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4965 return 0;
4967 /* Collapsing did not help, destructive actions follow.
4968 * This must not ever occur. */
4970 tcp_prune_ofo_queue(sk);
4972 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4973 return 0;
4975 /* If we are really being abused, tell the caller to silently
4976 * drop receive data on the floor. It will get retransmitted
4977 * and hopefully then we'll have sufficient space.
4979 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4981 /* Massive buffer overcommit. */
4982 tp->pred_flags = 0;
4983 return -1;
4986 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4988 const struct tcp_sock *tp = tcp_sk(sk);
4990 /* If the user specified a specific send buffer setting, do
4991 * not modify it.
4993 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4994 return false;
4996 /* If we are under global TCP memory pressure, do not expand. */
4997 if (tcp_under_memory_pressure(sk))
4998 return false;
5000 /* If we are under soft global TCP memory pressure, do not expand. */
5001 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5002 return false;
5004 /* If we filled the congestion window, do not expand. */
5005 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5006 return false;
5008 return true;
5011 /* When incoming ACK allowed to free some skb from write_queue,
5012 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5013 * on the exit from tcp input handler.
5015 * PROBLEM: sndbuf expansion does not work well with largesend.
5017 static void tcp_new_space(struct sock *sk)
5019 struct tcp_sock *tp = tcp_sk(sk);
5021 if (tcp_should_expand_sndbuf(sk)) {
5022 tcp_sndbuf_expand(sk);
5023 tp->snd_cwnd_stamp = tcp_time_stamp;
5026 sk->sk_write_space(sk);
5029 static void tcp_check_space(struct sock *sk)
5031 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5032 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5033 /* pairs with tcp_poll() */
5034 smp_mb();
5035 if (sk->sk_socket &&
5036 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5037 tcp_new_space(sk);
5038 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5039 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5044 static inline void tcp_data_snd_check(struct sock *sk)
5046 tcp_push_pending_frames(sk);
5047 tcp_check_space(sk);
5051 * Check if sending an ack is needed.
5053 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5055 struct tcp_sock *tp = tcp_sk(sk);
5057 /* More than one full frame received... */
5058 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5059 /* ... and right edge of window advances far enough.
5060 * (tcp_recvmsg() will send ACK otherwise). Or...
5062 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5063 /* We ACK each frame or... */
5064 tcp_in_quickack_mode(sk) ||
5065 /* We have out of order data. */
5066 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5067 /* Then ack it now */
5068 tcp_send_ack(sk);
5069 } else {
5070 /* Else, send delayed ack. */
5071 tcp_send_delayed_ack(sk);
5075 static inline void tcp_ack_snd_check(struct sock *sk)
5077 if (!inet_csk_ack_scheduled(sk)) {
5078 /* We sent a data segment already. */
5079 return;
5081 __tcp_ack_snd_check(sk, 1);
5085 * This routine is only called when we have urgent data
5086 * signaled. Its the 'slow' part of tcp_urg. It could be
5087 * moved inline now as tcp_urg is only called from one
5088 * place. We handle URGent data wrong. We have to - as
5089 * BSD still doesn't use the correction from RFC961.
5090 * For 1003.1g we should support a new option TCP_STDURG to permit
5091 * either form (or just set the sysctl tcp_stdurg).
5094 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5096 struct tcp_sock *tp = tcp_sk(sk);
5097 u32 ptr = ntohs(th->urg_ptr);
5099 if (ptr && !sysctl_tcp_stdurg)
5100 ptr--;
5101 ptr += ntohl(th->seq);
5103 /* Ignore urgent data that we've already seen and read. */
5104 if (after(tp->copied_seq, ptr))
5105 return;
5107 /* Do not replay urg ptr.
5109 * NOTE: interesting situation not covered by specs.
5110 * Misbehaving sender may send urg ptr, pointing to segment,
5111 * which we already have in ofo queue. We are not able to fetch
5112 * such data and will stay in TCP_URG_NOTYET until will be eaten
5113 * by recvmsg(). Seems, we are not obliged to handle such wicked
5114 * situations. But it is worth to think about possibility of some
5115 * DoSes using some hypothetical application level deadlock.
5117 if (before(ptr, tp->rcv_nxt))
5118 return;
5120 /* Do we already have a newer (or duplicate) urgent pointer? */
5121 if (tp->urg_data && !after(ptr, tp->urg_seq))
5122 return;
5124 /* Tell the world about our new urgent pointer. */
5125 sk_send_sigurg(sk);
5127 /* We may be adding urgent data when the last byte read was
5128 * urgent. To do this requires some care. We cannot just ignore
5129 * tp->copied_seq since we would read the last urgent byte again
5130 * as data, nor can we alter copied_seq until this data arrives
5131 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5133 * NOTE. Double Dutch. Rendering to plain English: author of comment
5134 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5135 * and expect that both A and B disappear from stream. This is _wrong_.
5136 * Though this happens in BSD with high probability, this is occasional.
5137 * Any application relying on this is buggy. Note also, that fix "works"
5138 * only in this artificial test. Insert some normal data between A and B and we will
5139 * decline of BSD again. Verdict: it is better to remove to trap
5140 * buggy users.
5142 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5143 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5144 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5145 tp->copied_seq++;
5146 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5147 __skb_unlink(skb, &sk->sk_receive_queue);
5148 __kfree_skb(skb);
5152 tp->urg_data = TCP_URG_NOTYET;
5153 tp->urg_seq = ptr;
5155 /* Disable header prediction. */
5156 tp->pred_flags = 0;
5159 /* This is the 'fast' part of urgent handling. */
5160 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5162 struct tcp_sock *tp = tcp_sk(sk);
5164 /* Check if we get a new urgent pointer - normally not. */
5165 if (th->urg)
5166 tcp_check_urg(sk, th);
5168 /* Do we wait for any urgent data? - normally not... */
5169 if (tp->urg_data == TCP_URG_NOTYET) {
5170 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5171 th->syn;
5173 /* Is the urgent pointer pointing into this packet? */
5174 if (ptr < skb->len) {
5175 u8 tmp;
5176 if (skb_copy_bits(skb, ptr, &tmp, 1))
5177 BUG();
5178 tp->urg_data = TCP_URG_VALID | tmp;
5179 if (!sock_flag(sk, SOCK_DEAD))
5180 sk->sk_data_ready(sk);
5185 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5187 struct tcp_sock *tp = tcp_sk(sk);
5188 int chunk = skb->len - hlen;
5189 int err;
5191 if (skb_csum_unnecessary(skb))
5192 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5193 else
5194 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5196 if (!err) {
5197 tp->ucopy.len -= chunk;
5198 tp->copied_seq += chunk;
5199 tcp_rcv_space_adjust(sk);
5202 return err;
5205 /* Accept RST for rcv_nxt - 1 after a FIN.
5206 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5207 * FIN is sent followed by a RST packet. The RST is sent with the same
5208 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5209 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5210 * ACKs on the closed socket. In addition middleboxes can drop either the
5211 * challenge ACK or a subsequent RST.
5213 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5215 struct tcp_sock *tp = tcp_sk(sk);
5217 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5218 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5219 TCPF_CLOSING));
5222 /* Does PAWS and seqno based validation of an incoming segment, flags will
5223 * play significant role here.
5225 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5226 const struct tcphdr *th, int syn_inerr)
5228 struct tcp_sock *tp = tcp_sk(sk);
5229 bool rst_seq_match = false;
5231 /* RFC1323: H1. Apply PAWS check first. */
5232 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5233 tcp_paws_discard(sk, skb)) {
5234 if (!th->rst) {
5235 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5236 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5237 LINUX_MIB_TCPACKSKIPPEDPAWS,
5238 &tp->last_oow_ack_time))
5239 tcp_send_dupack(sk, skb);
5240 goto discard;
5242 /* Reset is accepted even if it did not pass PAWS. */
5245 /* Step 1: check sequence number */
5246 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5247 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5248 * (RST) segments are validated by checking their SEQ-fields."
5249 * And page 69: "If an incoming segment is not acceptable,
5250 * an acknowledgment should be sent in reply (unless the RST
5251 * bit is set, if so drop the segment and return)".
5253 if (!th->rst) {
5254 if (th->syn)
5255 goto syn_challenge;
5256 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5257 LINUX_MIB_TCPACKSKIPPEDSEQ,
5258 &tp->last_oow_ack_time))
5259 tcp_send_dupack(sk, skb);
5260 } else if (tcp_reset_check(sk, skb)) {
5261 tcp_reset(sk);
5263 goto discard;
5266 /* Step 2: check RST bit */
5267 if (th->rst) {
5268 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5269 * FIN and SACK too if available):
5270 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5271 * the right-most SACK block,
5272 * then
5273 * RESET the connection
5274 * else
5275 * Send a challenge ACK
5277 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5278 tcp_reset_check(sk, skb)) {
5279 rst_seq_match = true;
5280 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5281 struct tcp_sack_block *sp = &tp->selective_acks[0];
5282 int max_sack = sp[0].end_seq;
5283 int this_sack;
5285 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5286 ++this_sack) {
5287 max_sack = after(sp[this_sack].end_seq,
5288 max_sack) ?
5289 sp[this_sack].end_seq : max_sack;
5292 if (TCP_SKB_CB(skb)->seq == max_sack)
5293 rst_seq_match = true;
5296 if (rst_seq_match)
5297 tcp_reset(sk);
5298 else
5299 tcp_send_challenge_ack(sk, skb);
5300 goto discard;
5303 /* step 3: check security and precedence [ignored] */
5305 /* step 4: Check for a SYN
5306 * RFC 5961 4.2 : Send a challenge ack
5308 if (th->syn) {
5309 syn_challenge:
5310 if (syn_inerr)
5311 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5312 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5313 tcp_send_challenge_ack(sk, skb);
5314 goto discard;
5317 return true;
5319 discard:
5320 tcp_drop(sk, skb);
5321 return false;
5325 * TCP receive function for the ESTABLISHED state.
5327 * It is split into a fast path and a slow path. The fast path is
5328 * disabled when:
5329 * - A zero window was announced from us - zero window probing
5330 * is only handled properly in the slow path.
5331 * - Out of order segments arrived.
5332 * - Urgent data is expected.
5333 * - There is no buffer space left
5334 * - Unexpected TCP flags/window values/header lengths are received
5335 * (detected by checking the TCP header against pred_flags)
5336 * - Data is sent in both directions. Fast path only supports pure senders
5337 * or pure receivers (this means either the sequence number or the ack
5338 * value must stay constant)
5339 * - Unexpected TCP option.
5341 * When these conditions are not satisfied it drops into a standard
5342 * receive procedure patterned after RFC793 to handle all cases.
5343 * The first three cases are guaranteed by proper pred_flags setting,
5344 * the rest is checked inline. Fast processing is turned on in
5345 * tcp_data_queue when everything is OK.
5347 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5348 const struct tcphdr *th, unsigned int len)
5350 struct tcp_sock *tp = tcp_sk(sk);
5352 if (unlikely(!sk->sk_rx_dst))
5353 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5355 * Header prediction.
5356 * The code loosely follows the one in the famous
5357 * "30 instruction TCP receive" Van Jacobson mail.
5359 * Van's trick is to deposit buffers into socket queue
5360 * on a device interrupt, to call tcp_recv function
5361 * on the receive process context and checksum and copy
5362 * the buffer to user space. smart...
5364 * Our current scheme is not silly either but we take the
5365 * extra cost of the net_bh soft interrupt processing...
5366 * We do checksum and copy also but from device to kernel.
5369 tp->rx_opt.saw_tstamp = 0;
5371 /* pred_flags is 0xS?10 << 16 + snd_wnd
5372 * if header_prediction is to be made
5373 * 'S' will always be tp->tcp_header_len >> 2
5374 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5375 * turn it off (when there are holes in the receive
5376 * space for instance)
5377 * PSH flag is ignored.
5380 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5381 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5382 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5383 int tcp_header_len = tp->tcp_header_len;
5385 /* Timestamp header prediction: tcp_header_len
5386 * is automatically equal to th->doff*4 due to pred_flags
5387 * match.
5390 /* Check timestamp */
5391 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5392 /* No? Slow path! */
5393 if (!tcp_parse_aligned_timestamp(tp, th))
5394 goto slow_path;
5396 /* If PAWS failed, check it more carefully in slow path */
5397 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5398 goto slow_path;
5400 /* DO NOT update ts_recent here, if checksum fails
5401 * and timestamp was corrupted part, it will result
5402 * in a hung connection since we will drop all
5403 * future packets due to the PAWS test.
5407 if (len <= tcp_header_len) {
5408 /* Bulk data transfer: sender */
5409 if (len == tcp_header_len) {
5410 /* Predicted packet is in window by definition.
5411 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5412 * Hence, check seq<=rcv_wup reduces to:
5414 if (tcp_header_len ==
5415 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5416 tp->rcv_nxt == tp->rcv_wup)
5417 tcp_store_ts_recent(tp);
5419 /* We know that such packets are checksummed
5420 * on entry.
5422 tcp_ack(sk, skb, 0);
5423 __kfree_skb(skb);
5424 tcp_data_snd_check(sk);
5425 return;
5426 } else { /* Header too small */
5427 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5428 goto discard;
5430 } else {
5431 int eaten = 0;
5432 bool fragstolen = false;
5434 if (tp->ucopy.task == current &&
5435 tp->copied_seq == tp->rcv_nxt &&
5436 len - tcp_header_len <= tp->ucopy.len &&
5437 sock_owned_by_user(sk)) {
5438 __set_current_state(TASK_RUNNING);
5440 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5441 /* Predicted packet is in window by definition.
5442 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5443 * Hence, check seq<=rcv_wup reduces to:
5445 if (tcp_header_len ==
5446 (sizeof(struct tcphdr) +
5447 TCPOLEN_TSTAMP_ALIGNED) &&
5448 tp->rcv_nxt == tp->rcv_wup)
5449 tcp_store_ts_recent(tp);
5451 tcp_rcv_rtt_measure_ts(sk, skb);
5453 __skb_pull(skb, tcp_header_len);
5454 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5455 NET_INC_STATS(sock_net(sk),
5456 LINUX_MIB_TCPHPHITSTOUSER);
5457 eaten = 1;
5460 if (!eaten) {
5461 if (tcp_checksum_complete(skb))
5462 goto csum_error;
5464 if ((int)skb->truesize > sk->sk_forward_alloc)
5465 goto step5;
5467 /* Predicted packet is in window by definition.
5468 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5469 * Hence, check seq<=rcv_wup reduces to:
5471 if (tcp_header_len ==
5472 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5473 tp->rcv_nxt == tp->rcv_wup)
5474 tcp_store_ts_recent(tp);
5476 tcp_rcv_rtt_measure_ts(sk, skb);
5478 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5480 /* Bulk data transfer: receiver */
5481 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5482 &fragstolen);
5485 tcp_event_data_recv(sk, skb);
5487 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5488 /* Well, only one small jumplet in fast path... */
5489 tcp_ack(sk, skb, FLAG_DATA);
5490 tcp_data_snd_check(sk);
5491 if (!inet_csk_ack_scheduled(sk))
5492 goto no_ack;
5495 __tcp_ack_snd_check(sk, 0);
5496 no_ack:
5497 if (eaten)
5498 kfree_skb_partial(skb, fragstolen);
5499 sk->sk_data_ready(sk);
5500 return;
5504 slow_path:
5505 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5506 goto csum_error;
5508 if (!th->ack && !th->rst && !th->syn)
5509 goto discard;
5512 * Standard slow path.
5515 if (!tcp_validate_incoming(sk, skb, th, 1))
5516 return;
5518 step5:
5519 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5520 goto discard;
5522 tcp_rcv_rtt_measure_ts(sk, skb);
5524 /* Process urgent data. */
5525 tcp_urg(sk, skb, th);
5527 /* step 7: process the segment text */
5528 tcp_data_queue(sk, skb);
5530 tcp_data_snd_check(sk);
5531 tcp_ack_snd_check(sk);
5532 return;
5534 csum_error:
5535 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5536 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5538 discard:
5539 tcp_drop(sk, skb);
5541 EXPORT_SYMBOL(tcp_rcv_established);
5543 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5545 struct tcp_sock *tp = tcp_sk(sk);
5546 struct inet_connection_sock *icsk = inet_csk(sk);
5548 tcp_set_state(sk, TCP_ESTABLISHED);
5549 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5551 if (skb) {
5552 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5553 security_inet_conn_established(sk, skb);
5556 /* Make sure socket is routed, for correct metrics. */
5557 icsk->icsk_af_ops->rebuild_header(sk);
5559 tcp_init_metrics(sk);
5561 tcp_init_congestion_control(sk);
5563 /* Prevent spurious tcp_cwnd_restart() on first data
5564 * packet.
5566 tp->lsndtime = tcp_time_stamp;
5568 tcp_init_buffer_space(sk);
5570 if (sock_flag(sk, SOCK_KEEPOPEN))
5571 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5573 if (!tp->rx_opt.snd_wscale)
5574 __tcp_fast_path_on(tp, tp->snd_wnd);
5575 else
5576 tp->pred_flags = 0;
5578 if (!sock_flag(sk, SOCK_DEAD)) {
5579 sk->sk_state_change(sk);
5580 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5584 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5585 struct tcp_fastopen_cookie *cookie)
5587 struct tcp_sock *tp = tcp_sk(sk);
5588 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5589 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5590 bool syn_drop = false;
5592 if (mss == tp->rx_opt.user_mss) {
5593 struct tcp_options_received opt;
5595 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5596 tcp_clear_options(&opt);
5597 opt.user_mss = opt.mss_clamp = 0;
5598 tcp_parse_options(synack, &opt, 0, NULL);
5599 mss = opt.mss_clamp;
5602 if (!tp->syn_fastopen) {
5603 /* Ignore an unsolicited cookie */
5604 cookie->len = -1;
5605 } else if (tp->total_retrans) {
5606 /* SYN timed out and the SYN-ACK neither has a cookie nor
5607 * acknowledges data. Presumably the remote received only
5608 * the retransmitted (regular) SYNs: either the original
5609 * SYN-data or the corresponding SYN-ACK was dropped.
5611 syn_drop = (cookie->len < 0 && data);
5612 } else if (cookie->len < 0 && !tp->syn_data) {
5613 /* We requested a cookie but didn't get it. If we did not use
5614 * the (old) exp opt format then try so next time (try_exp=1).
5615 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5617 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5620 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5622 if (data) { /* Retransmit unacked data in SYN */
5623 tcp_for_write_queue_from(data, sk) {
5624 if (data == tcp_send_head(sk) ||
5625 __tcp_retransmit_skb(sk, data, 1))
5626 break;
5628 tcp_rearm_rto(sk);
5629 NET_INC_STATS(sock_net(sk),
5630 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5631 return true;
5633 tp->syn_data_acked = tp->syn_data;
5634 if (tp->syn_data_acked)
5635 NET_INC_STATS(sock_net(sk),
5636 LINUX_MIB_TCPFASTOPENACTIVE);
5638 tcp_fastopen_add_skb(sk, synack);
5640 return false;
5643 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5644 const struct tcphdr *th)
5646 struct inet_connection_sock *icsk = inet_csk(sk);
5647 struct tcp_sock *tp = tcp_sk(sk);
5648 struct tcp_fastopen_cookie foc = { .len = -1 };
5649 int saved_clamp = tp->rx_opt.mss_clamp;
5651 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5652 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5653 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5655 if (th->ack) {
5656 /* rfc793:
5657 * "If the state is SYN-SENT then
5658 * first check the ACK bit
5659 * If the ACK bit is set
5660 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5661 * a reset (unless the RST bit is set, if so drop
5662 * the segment and return)"
5664 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5665 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5666 goto reset_and_undo;
5668 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5669 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5670 tcp_time_stamp)) {
5671 NET_INC_STATS(sock_net(sk),
5672 LINUX_MIB_PAWSACTIVEREJECTED);
5673 goto reset_and_undo;
5676 /* Now ACK is acceptable.
5678 * "If the RST bit is set
5679 * If the ACK was acceptable then signal the user "error:
5680 * connection reset", drop the segment, enter CLOSED state,
5681 * delete TCB, and return."
5684 if (th->rst) {
5685 tcp_reset(sk);
5686 goto discard;
5689 /* rfc793:
5690 * "fifth, if neither of the SYN or RST bits is set then
5691 * drop the segment and return."
5693 * See note below!
5694 * --ANK(990513)
5696 if (!th->syn)
5697 goto discard_and_undo;
5699 /* rfc793:
5700 * "If the SYN bit is on ...
5701 * are acceptable then ...
5702 * (our SYN has been ACKed), change the connection
5703 * state to ESTABLISHED..."
5706 tcp_ecn_rcv_synack(tp, th);
5708 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5709 tcp_ack(sk, skb, FLAG_SLOWPATH);
5711 /* Ok.. it's good. Set up sequence numbers and
5712 * move to established.
5714 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5715 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5717 /* RFC1323: The window in SYN & SYN/ACK segments is
5718 * never scaled.
5720 tp->snd_wnd = ntohs(th->window);
5722 if (!tp->rx_opt.wscale_ok) {
5723 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5724 tp->window_clamp = min(tp->window_clamp, 65535U);
5727 if (tp->rx_opt.saw_tstamp) {
5728 tp->rx_opt.tstamp_ok = 1;
5729 tp->tcp_header_len =
5730 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5731 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5732 tcp_store_ts_recent(tp);
5733 } else {
5734 tp->tcp_header_len = sizeof(struct tcphdr);
5737 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5738 tcp_enable_fack(tp);
5740 tcp_mtup_init(sk);
5741 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5742 tcp_initialize_rcv_mss(sk);
5744 /* Remember, tcp_poll() does not lock socket!
5745 * Change state from SYN-SENT only after copied_seq
5746 * is initialized. */
5747 tp->copied_seq = tp->rcv_nxt;
5749 smp_mb();
5751 tcp_finish_connect(sk, skb);
5753 if ((tp->syn_fastopen || tp->syn_data) &&
5754 tcp_rcv_fastopen_synack(sk, skb, &foc))
5755 return -1;
5757 if (sk->sk_write_pending ||
5758 icsk->icsk_accept_queue.rskq_defer_accept ||
5759 icsk->icsk_ack.pingpong) {
5760 /* Save one ACK. Data will be ready after
5761 * several ticks, if write_pending is set.
5763 * It may be deleted, but with this feature tcpdumps
5764 * look so _wonderfully_ clever, that I was not able
5765 * to stand against the temptation 8) --ANK
5767 inet_csk_schedule_ack(sk);
5768 tcp_enter_quickack_mode(sk);
5769 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5770 TCP_DELACK_MAX, TCP_RTO_MAX);
5772 discard:
5773 tcp_drop(sk, skb);
5774 return 0;
5775 } else {
5776 tcp_send_ack(sk);
5778 return -1;
5781 /* No ACK in the segment */
5783 if (th->rst) {
5784 /* rfc793:
5785 * "If the RST bit is set
5787 * Otherwise (no ACK) drop the segment and return."
5790 goto discard_and_undo;
5793 /* PAWS check. */
5794 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5795 tcp_paws_reject(&tp->rx_opt, 0))
5796 goto discard_and_undo;
5798 if (th->syn) {
5799 /* We see SYN without ACK. It is attempt of
5800 * simultaneous connect with crossed SYNs.
5801 * Particularly, it can be connect to self.
5803 tcp_set_state(sk, TCP_SYN_RECV);
5805 if (tp->rx_opt.saw_tstamp) {
5806 tp->rx_opt.tstamp_ok = 1;
5807 tcp_store_ts_recent(tp);
5808 tp->tcp_header_len =
5809 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5810 } else {
5811 tp->tcp_header_len = sizeof(struct tcphdr);
5814 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5815 tp->copied_seq = tp->rcv_nxt;
5816 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5818 /* RFC1323: The window in SYN & SYN/ACK segments is
5819 * never scaled.
5821 tp->snd_wnd = ntohs(th->window);
5822 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5823 tp->max_window = tp->snd_wnd;
5825 tcp_ecn_rcv_syn(tp, th);
5827 tcp_mtup_init(sk);
5828 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5829 tcp_initialize_rcv_mss(sk);
5831 tcp_send_synack(sk);
5832 #if 0
5833 /* Note, we could accept data and URG from this segment.
5834 * There are no obstacles to make this (except that we must
5835 * either change tcp_recvmsg() to prevent it from returning data
5836 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5838 * However, if we ignore data in ACKless segments sometimes,
5839 * we have no reasons to accept it sometimes.
5840 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5841 * is not flawless. So, discard packet for sanity.
5842 * Uncomment this return to process the data.
5844 return -1;
5845 #else
5846 goto discard;
5847 #endif
5849 /* "fifth, if neither of the SYN or RST bits is set then
5850 * drop the segment and return."
5853 discard_and_undo:
5854 tcp_clear_options(&tp->rx_opt);
5855 tp->rx_opt.mss_clamp = saved_clamp;
5856 goto discard;
5858 reset_and_undo:
5859 tcp_clear_options(&tp->rx_opt);
5860 tp->rx_opt.mss_clamp = saved_clamp;
5861 return 1;
5865 * This function implements the receiving procedure of RFC 793 for
5866 * all states except ESTABLISHED and TIME_WAIT.
5867 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5868 * address independent.
5871 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5873 struct tcp_sock *tp = tcp_sk(sk);
5874 struct inet_connection_sock *icsk = inet_csk(sk);
5875 const struct tcphdr *th = tcp_hdr(skb);
5876 struct request_sock *req;
5877 int queued = 0;
5878 bool acceptable;
5880 switch (sk->sk_state) {
5881 case TCP_CLOSE:
5882 goto discard;
5884 case TCP_LISTEN:
5885 if (th->ack)
5886 return 1;
5888 if (th->rst)
5889 goto discard;
5891 if (th->syn) {
5892 if (th->fin)
5893 goto discard;
5894 /* It is possible that we process SYN packets from backlog,
5895 * so we need to make sure to disable BH right there.
5897 local_bh_disable();
5898 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5899 local_bh_enable();
5901 if (!acceptable)
5902 return 1;
5903 consume_skb(skb);
5904 return 0;
5906 goto discard;
5908 case TCP_SYN_SENT:
5909 tp->rx_opt.saw_tstamp = 0;
5910 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5911 if (queued >= 0)
5912 return queued;
5914 /* Do step6 onward by hand. */
5915 tcp_urg(sk, skb, th);
5916 __kfree_skb(skb);
5917 tcp_data_snd_check(sk);
5918 return 0;
5921 tp->rx_opt.saw_tstamp = 0;
5922 req = tp->fastopen_rsk;
5923 if (req) {
5924 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5925 sk->sk_state != TCP_FIN_WAIT1);
5927 if (!tcp_check_req(sk, skb, req, true))
5928 goto discard;
5931 if (!th->ack && !th->rst && !th->syn)
5932 goto discard;
5934 if (!tcp_validate_incoming(sk, skb, th, 0))
5935 return 0;
5937 /* step 5: check the ACK field */
5938 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5939 FLAG_UPDATE_TS_RECENT) > 0;
5941 switch (sk->sk_state) {
5942 case TCP_SYN_RECV:
5943 if (!acceptable)
5944 return 1;
5946 if (!tp->srtt_us)
5947 tcp_synack_rtt_meas(sk, req);
5949 /* Once we leave TCP_SYN_RECV, we no longer need req
5950 * so release it.
5952 if (req) {
5953 inet_csk(sk)->icsk_retransmits = 0;
5954 reqsk_fastopen_remove(sk, req, false);
5955 } else {
5956 /* Make sure socket is routed, for correct metrics. */
5957 icsk->icsk_af_ops->rebuild_header(sk);
5958 tcp_init_congestion_control(sk);
5960 tcp_mtup_init(sk);
5961 tp->copied_seq = tp->rcv_nxt;
5962 tcp_init_buffer_space(sk);
5964 smp_mb();
5965 tcp_set_state(sk, TCP_ESTABLISHED);
5966 sk->sk_state_change(sk);
5968 /* Note, that this wakeup is only for marginal crossed SYN case.
5969 * Passively open sockets are not waked up, because
5970 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5972 if (sk->sk_socket)
5973 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5975 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5976 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5977 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5979 if (tp->rx_opt.tstamp_ok)
5980 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5982 if (req) {
5983 /* Re-arm the timer because data may have been sent out.
5984 * This is similar to the regular data transmission case
5985 * when new data has just been ack'ed.
5987 * (TFO) - we could try to be more aggressive and
5988 * retransmitting any data sooner based on when they
5989 * are sent out.
5991 tcp_rearm_rto(sk);
5992 } else
5993 tcp_init_metrics(sk);
5995 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5996 tcp_update_pacing_rate(sk);
5998 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5999 tp->lsndtime = tcp_time_stamp;
6001 tcp_initialize_rcv_mss(sk);
6002 tcp_fast_path_on(tp);
6003 break;
6005 case TCP_FIN_WAIT1: {
6006 int tmo;
6008 /* If we enter the TCP_FIN_WAIT1 state and we are a
6009 * Fast Open socket and this is the first acceptable
6010 * ACK we have received, this would have acknowledged
6011 * our SYNACK so stop the SYNACK timer.
6013 if (req) {
6014 /* Return RST if ack_seq is invalid.
6015 * Note that RFC793 only says to generate a
6016 * DUPACK for it but for TCP Fast Open it seems
6017 * better to treat this case like TCP_SYN_RECV
6018 * above.
6020 if (!acceptable)
6021 return 1;
6022 /* We no longer need the request sock. */
6023 reqsk_fastopen_remove(sk, req, false);
6024 tcp_rearm_rto(sk);
6026 if (tp->snd_una != tp->write_seq)
6027 break;
6029 tcp_set_state(sk, TCP_FIN_WAIT2);
6030 sk->sk_shutdown |= SEND_SHUTDOWN;
6032 sk_dst_confirm(sk);
6034 if (!sock_flag(sk, SOCK_DEAD)) {
6035 /* Wake up lingering close() */
6036 sk->sk_state_change(sk);
6037 break;
6040 if (tp->linger2 < 0 ||
6041 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6042 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6043 tcp_done(sk);
6044 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6045 return 1;
6048 tmo = tcp_fin_time(sk);
6049 if (tmo > TCP_TIMEWAIT_LEN) {
6050 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6051 } else if (th->fin || sock_owned_by_user(sk)) {
6052 /* Bad case. We could lose such FIN otherwise.
6053 * It is not a big problem, but it looks confusing
6054 * and not so rare event. We still can lose it now,
6055 * if it spins in bh_lock_sock(), but it is really
6056 * marginal case.
6058 inet_csk_reset_keepalive_timer(sk, tmo);
6059 } else {
6060 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6061 goto discard;
6063 break;
6066 case TCP_CLOSING:
6067 if (tp->snd_una == tp->write_seq) {
6068 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6069 goto discard;
6071 break;
6073 case TCP_LAST_ACK:
6074 if (tp->snd_una == tp->write_seq) {
6075 tcp_update_metrics(sk);
6076 tcp_done(sk);
6077 goto discard;
6079 break;
6082 /* step 6: check the URG bit */
6083 tcp_urg(sk, skb, th);
6085 /* step 7: process the segment text */
6086 switch (sk->sk_state) {
6087 case TCP_CLOSE_WAIT:
6088 case TCP_CLOSING:
6089 case TCP_LAST_ACK:
6090 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6091 break;
6092 case TCP_FIN_WAIT1:
6093 case TCP_FIN_WAIT2:
6094 /* RFC 793 says to queue data in these states,
6095 * RFC 1122 says we MUST send a reset.
6096 * BSD 4.4 also does reset.
6098 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6099 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6100 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6101 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6102 tcp_reset(sk);
6103 return 1;
6106 /* Fall through */
6107 case TCP_ESTABLISHED:
6108 tcp_data_queue(sk, skb);
6109 queued = 1;
6110 break;
6113 /* tcp_data could move socket to TIME-WAIT */
6114 if (sk->sk_state != TCP_CLOSE) {
6115 tcp_data_snd_check(sk);
6116 tcp_ack_snd_check(sk);
6119 if (!queued) {
6120 discard:
6121 tcp_drop(sk, skb);
6123 return 0;
6125 EXPORT_SYMBOL(tcp_rcv_state_process);
6127 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6129 struct inet_request_sock *ireq = inet_rsk(req);
6131 if (family == AF_INET)
6132 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6133 &ireq->ir_rmt_addr, port);
6134 #if IS_ENABLED(CONFIG_IPV6)
6135 else if (family == AF_INET6)
6136 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6137 &ireq->ir_v6_rmt_addr, port);
6138 #endif
6141 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6143 * If we receive a SYN packet with these bits set, it means a
6144 * network is playing bad games with TOS bits. In order to
6145 * avoid possible false congestion notifications, we disable
6146 * TCP ECN negotiation.
6148 * Exception: tcp_ca wants ECN. This is required for DCTCP
6149 * congestion control: Linux DCTCP asserts ECT on all packets,
6150 * including SYN, which is most optimal solution; however,
6151 * others, such as FreeBSD do not.
6153 static void tcp_ecn_create_request(struct request_sock *req,
6154 const struct sk_buff *skb,
6155 const struct sock *listen_sk,
6156 const struct dst_entry *dst)
6158 const struct tcphdr *th = tcp_hdr(skb);
6159 const struct net *net = sock_net(listen_sk);
6160 bool th_ecn = th->ece && th->cwr;
6161 bool ect, ecn_ok;
6162 u32 ecn_ok_dst;
6164 if (!th_ecn)
6165 return;
6167 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6168 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6169 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6171 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6172 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6173 inet_rsk(req)->ecn_ok = 1;
6176 static void tcp_openreq_init(struct request_sock *req,
6177 const struct tcp_options_received *rx_opt,
6178 struct sk_buff *skb, const struct sock *sk)
6180 struct inet_request_sock *ireq = inet_rsk(req);
6182 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6183 req->cookie_ts = 0;
6184 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6185 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6186 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6187 tcp_rsk(req)->last_oow_ack_time = 0;
6188 req->mss = rx_opt->mss_clamp;
6189 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6190 ireq->tstamp_ok = rx_opt->tstamp_ok;
6191 ireq->sack_ok = rx_opt->sack_ok;
6192 ireq->snd_wscale = rx_opt->snd_wscale;
6193 ireq->wscale_ok = rx_opt->wscale_ok;
6194 ireq->acked = 0;
6195 ireq->ecn_ok = 0;
6196 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6197 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6198 ireq->ir_mark = inet_request_mark(sk, skb);
6201 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6202 struct sock *sk_listener,
6203 bool attach_listener)
6205 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6206 attach_listener);
6208 if (req) {
6209 struct inet_request_sock *ireq = inet_rsk(req);
6211 kmemcheck_annotate_bitfield(ireq, flags);
6212 ireq->opt = NULL;
6213 #if IS_ENABLED(CONFIG_IPV6)
6214 ireq->pktopts = NULL;
6215 #endif
6216 atomic64_set(&ireq->ir_cookie, 0);
6217 ireq->ireq_state = TCP_NEW_SYN_RECV;
6218 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6219 ireq->ireq_family = sk_listener->sk_family;
6222 return req;
6224 EXPORT_SYMBOL(inet_reqsk_alloc);
6227 * Return true if a syncookie should be sent
6229 static bool tcp_syn_flood_action(const struct sock *sk,
6230 const struct sk_buff *skb,
6231 const char *proto)
6233 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6234 const char *msg = "Dropping request";
6235 bool want_cookie = false;
6236 struct net *net = sock_net(sk);
6238 #ifdef CONFIG_SYN_COOKIES
6239 if (net->ipv4.sysctl_tcp_syncookies) {
6240 msg = "Sending cookies";
6241 want_cookie = true;
6242 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6243 } else
6244 #endif
6245 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6247 if (!queue->synflood_warned &&
6248 net->ipv4.sysctl_tcp_syncookies != 2 &&
6249 xchg(&queue->synflood_warned, 1) == 0)
6250 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6251 proto, ntohs(tcp_hdr(skb)->dest), msg);
6253 return want_cookie;
6256 static void tcp_reqsk_record_syn(const struct sock *sk,
6257 struct request_sock *req,
6258 const struct sk_buff *skb)
6260 if (tcp_sk(sk)->save_syn) {
6261 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6262 u32 *copy;
6264 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6265 if (copy) {
6266 copy[0] = len;
6267 memcpy(&copy[1], skb_network_header(skb), len);
6268 req->saved_syn = copy;
6273 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6274 const struct tcp_request_sock_ops *af_ops,
6275 struct sock *sk, struct sk_buff *skb)
6277 struct tcp_fastopen_cookie foc = { .len = -1 };
6278 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6279 struct tcp_options_received tmp_opt;
6280 struct tcp_sock *tp = tcp_sk(sk);
6281 struct net *net = sock_net(sk);
6282 struct sock *fastopen_sk = NULL;
6283 struct dst_entry *dst = NULL;
6284 struct request_sock *req;
6285 bool want_cookie = false;
6286 struct flowi fl;
6288 /* TW buckets are converted to open requests without
6289 * limitations, they conserve resources and peer is
6290 * evidently real one.
6292 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6293 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6294 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6295 if (!want_cookie)
6296 goto drop;
6299 if (sk_acceptq_is_full(sk)) {
6300 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6301 goto drop;
6304 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6305 if (!req)
6306 goto drop;
6308 tcp_rsk(req)->af_specific = af_ops;
6309 tcp_rsk(req)->ts_off = 0;
6311 tcp_clear_options(&tmp_opt);
6312 tmp_opt.mss_clamp = af_ops->mss_clamp;
6313 tmp_opt.user_mss = tp->rx_opt.user_mss;
6314 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6316 if (want_cookie && !tmp_opt.saw_tstamp)
6317 tcp_clear_options(&tmp_opt);
6319 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6320 tcp_openreq_init(req, &tmp_opt, skb, sk);
6321 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6323 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6324 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6326 af_ops->init_req(req, sk, skb);
6328 if (security_inet_conn_request(sk, skb, req))
6329 goto drop_and_free;
6331 if (isn && tmp_opt.tstamp_ok)
6332 af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6334 if (!want_cookie && !isn) {
6335 /* VJ's idea. We save last timestamp seen
6336 * from the destination in peer table, when entering
6337 * state TIME-WAIT, and check against it before
6338 * accepting new connection request.
6340 * If "isn" is not zero, this request hit alive
6341 * timewait bucket, so that all the necessary checks
6342 * are made in the function processing timewait state.
6344 if (net->ipv4.tcp_death_row.sysctl_tw_recycle) {
6345 bool strict;
6347 dst = af_ops->route_req(sk, &fl, req, &strict);
6349 if (dst && strict &&
6350 !tcp_peer_is_proven(req, dst, true,
6351 tmp_opt.saw_tstamp)) {
6352 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6353 goto drop_and_release;
6356 /* Kill the following clause, if you dislike this way. */
6357 else if (!net->ipv4.sysctl_tcp_syncookies &&
6358 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6359 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6360 !tcp_peer_is_proven(req, dst, false,
6361 tmp_opt.saw_tstamp)) {
6362 /* Without syncookies last quarter of
6363 * backlog is filled with destinations,
6364 * proven to be alive.
6365 * It means that we continue to communicate
6366 * to destinations, already remembered
6367 * to the moment of synflood.
6369 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6370 rsk_ops->family);
6371 goto drop_and_release;
6374 isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6376 if (!dst) {
6377 dst = af_ops->route_req(sk, &fl, req, NULL);
6378 if (!dst)
6379 goto drop_and_free;
6382 tcp_ecn_create_request(req, skb, sk, dst);
6384 if (want_cookie) {
6385 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6386 tcp_rsk(req)->ts_off = 0;
6387 req->cookie_ts = tmp_opt.tstamp_ok;
6388 if (!tmp_opt.tstamp_ok)
6389 inet_rsk(req)->ecn_ok = 0;
6392 tcp_rsk(req)->snt_isn = isn;
6393 tcp_rsk(req)->txhash = net_tx_rndhash();
6394 tcp_openreq_init_rwin(req, sk, dst);
6395 if (!want_cookie) {
6396 tcp_reqsk_record_syn(sk, req, skb);
6397 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6399 if (fastopen_sk) {
6400 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6401 &foc, TCP_SYNACK_FASTOPEN);
6402 /* Add the child socket directly into the accept queue */
6403 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6404 sk->sk_data_ready(sk);
6405 bh_unlock_sock(fastopen_sk);
6406 sock_put(fastopen_sk);
6407 } else {
6408 tcp_rsk(req)->tfo_listener = false;
6409 if (!want_cookie)
6410 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6411 af_ops->send_synack(sk, dst, &fl, req, &foc,
6412 !want_cookie ? TCP_SYNACK_NORMAL :
6413 TCP_SYNACK_COOKIE);
6414 if (want_cookie) {
6415 reqsk_free(req);
6416 return 0;
6419 reqsk_put(req);
6420 return 0;
6422 drop_and_release:
6423 dst_release(dst);
6424 drop_and_free:
6425 reqsk_free(req);
6426 drop:
6427 tcp_listendrop(sk);
6428 return 0;
6430 EXPORT_SYMBOL(tcp_conn_request);