2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly
= 262144;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
65 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
66 int push_one
, gfp_t gfp
);
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock
*sk
, const struct sk_buff
*skb
)
71 struct inet_connection_sock
*icsk
= inet_csk(sk
);
72 struct tcp_sock
*tp
= tcp_sk(sk
);
73 unsigned int prior_packets
= tp
->packets_out
;
75 tcp_advance_send_head(sk
, skb
);
76 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
78 tp
->packets_out
+= tcp_skb_pcount(skb
);
79 if (!prior_packets
|| icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
82 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
,
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
93 static inline __u32
tcp_acceptable_seq(const struct sock
*sk
)
95 const struct tcp_sock
*tp
= tcp_sk(sk
);
97 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
) ||
98 (tp
->rx_opt
.wscale_ok
&&
99 ((tp
->snd_nxt
- tcp_wnd_end(tp
)) < (1 << tp
->rx_opt
.rcv_wscale
))))
102 return tcp_wnd_end(tp
);
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
119 static __u16
tcp_advertise_mss(struct sock
*sk
)
121 struct tcp_sock
*tp
= tcp_sk(sk
);
122 const struct dst_entry
*dst
= __sk_dst_get(sk
);
123 int mss
= tp
->advmss
;
126 unsigned int metric
= dst_metric_advmss(dst
);
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
140 void tcp_cwnd_restart(struct sock
*sk
, s32 delta
)
142 struct tcp_sock
*tp
= tcp_sk(sk
);
143 u32 restart_cwnd
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
144 u32 cwnd
= tp
->snd_cwnd
;
146 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
148 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
149 restart_cwnd
= min(restart_cwnd
, cwnd
);
151 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
153 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
154 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
155 tp
->snd_cwnd_used
= 0;
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock
*tp
,
162 struct inet_connection_sock
*icsk
= inet_csk(sk
);
163 const u32 now
= tcp_time_stamp
;
165 if (tcp_packets_in_flight(tp
) == 0)
166 tcp_ca_event(sk
, CA_EVENT_TX_START
);
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
173 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
174 icsk
->icsk_ack
.pingpong
= 1;
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
180 tcp_dec_quickack_mode(sk
, pkts
);
181 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
185 u32
tcp_default_init_rwnd(u32 mss
)
187 /* Initial receive window should be twice of TCP_INIT_CWND to
188 * enable proper sending of new unsent data during fast recovery
189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 * limit when mss is larger than 1460.
192 u32 init_rwnd
= TCP_INIT_CWND
* 2;
195 init_rwnd
= max((1460 * init_rwnd
) / mss
, 2U);
199 /* Determine a window scaling and initial window to offer.
200 * Based on the assumption that the given amount of space
201 * will be offered. Store the results in the tp structure.
202 * NOTE: for smooth operation initial space offering should
203 * be a multiple of mss if possible. We assume here that mss >= 1.
204 * This MUST be enforced by all callers.
206 void tcp_select_initial_window(int __space
, __u32 mss
,
207 __u32
*rcv_wnd
, __u32
*window_clamp
,
208 int wscale_ok
, __u8
*rcv_wscale
,
211 unsigned int space
= (__space
< 0 ? 0 : __space
);
213 /* If no clamp set the clamp to the max possible scaled window */
214 if (*window_clamp
== 0)
215 (*window_clamp
) = (65535 << 14);
216 space
= min(*window_clamp
, space
);
218 /* Quantize space offering to a multiple of mss if possible. */
220 space
= (space
/ mss
) * mss
;
222 /* NOTE: offering an initial window larger than 32767
223 * will break some buggy TCP stacks. If the admin tells us
224 * it is likely we could be speaking with such a buggy stack
225 * we will truncate our initial window offering to 32K-1
226 * unless the remote has sent us a window scaling option,
227 * which we interpret as a sign the remote TCP is not
228 * misinterpreting the window field as a signed quantity.
230 if (sysctl_tcp_workaround_signed_windows
)
231 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
237 /* Set window scaling on max possible window
238 * See RFC1323 for an explanation of the limit to 14
240 space
= max_t(u32
, space
, sysctl_tcp_rmem
[2]);
241 space
= max_t(u32
, space
, sysctl_rmem_max
);
242 space
= min_t(u32
, space
, *window_clamp
);
243 while (space
> 65535 && (*rcv_wscale
) < 14) {
249 if (mss
> (1 << *rcv_wscale
)) {
250 if (!init_rcv_wnd
) /* Use default unless specified otherwise */
251 init_rcv_wnd
= tcp_default_init_rwnd(mss
);
252 *rcv_wnd
= min(*rcv_wnd
, init_rcv_wnd
* mss
);
255 /* Set the clamp no higher than max representable value */
256 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
258 EXPORT_SYMBOL(tcp_select_initial_window
);
260 /* Chose a new window to advertise, update state in tcp_sock for the
261 * socket, and return result with RFC1323 scaling applied. The return
262 * value can be stuffed directly into th->window for an outgoing
265 static u16
tcp_select_window(struct sock
*sk
)
267 struct tcp_sock
*tp
= tcp_sk(sk
);
268 u32 old_win
= tp
->rcv_wnd
;
269 u32 cur_win
= tcp_receive_window(tp
);
270 u32 new_win
= __tcp_select_window(sk
);
272 /* Never shrink the offered window */
273 if (new_win
< cur_win
) {
274 /* Danger Will Robinson!
275 * Don't update rcv_wup/rcv_wnd here or else
276 * we will not be able to advertise a zero
277 * window in time. --DaveM
279 * Relax Will Robinson.
282 NET_INC_STATS(sock_net(sk
),
283 LINUX_MIB_TCPWANTZEROWINDOWADV
);
284 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
286 tp
->rcv_wnd
= new_win
;
287 tp
->rcv_wup
= tp
->rcv_nxt
;
289 /* Make sure we do not exceed the maximum possible
292 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
293 new_win
= min(new_win
, MAX_TCP_WINDOW
);
295 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
297 /* RFC1323 scaling applied */
298 new_win
>>= tp
->rx_opt
.rcv_wscale
;
300 /* If we advertise zero window, disable fast path. */
304 NET_INC_STATS(sock_net(sk
),
305 LINUX_MIB_TCPTOZEROWINDOWADV
);
306 } else if (old_win
== 0) {
307 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFROMZEROWINDOWADV
);
313 /* Packet ECN state for a SYN-ACK */
314 static void tcp_ecn_send_synack(struct sock
*sk
, struct sk_buff
*skb
)
316 const struct tcp_sock
*tp
= tcp_sk(sk
);
318 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_CWR
;
319 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
320 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_ECE
;
321 else if (tcp_ca_needs_ecn(sk
))
325 /* Packet ECN state for a SYN. */
326 static void tcp_ecn_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
328 struct tcp_sock
*tp
= tcp_sk(sk
);
329 bool use_ecn
= sock_net(sk
)->ipv4
.sysctl_tcp_ecn
== 1 ||
330 tcp_ca_needs_ecn(sk
);
333 const struct dst_entry
*dst
= __sk_dst_get(sk
);
335 if (dst
&& dst_feature(dst
, RTAX_FEATURE_ECN
))
342 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ECE
| TCPHDR_CWR
;
343 tp
->ecn_flags
= TCP_ECN_OK
;
344 if (tcp_ca_needs_ecn(sk
))
349 static void tcp_ecn_clear_syn(struct sock
*sk
, struct sk_buff
*skb
)
351 if (sock_net(sk
)->ipv4
.sysctl_tcp_ecn_fallback
)
352 /* tp->ecn_flags are cleared at a later point in time when
353 * SYN ACK is ultimatively being received.
355 TCP_SKB_CB(skb
)->tcp_flags
&= ~(TCPHDR_ECE
| TCPHDR_CWR
);
359 tcp_ecn_make_synack(const struct request_sock
*req
, struct tcphdr
*th
)
361 if (inet_rsk(req
)->ecn_ok
)
365 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
368 static void tcp_ecn_send(struct sock
*sk
, struct sk_buff
*skb
,
369 struct tcphdr
*th
, int tcp_header_len
)
371 struct tcp_sock
*tp
= tcp_sk(sk
);
373 if (tp
->ecn_flags
& TCP_ECN_OK
) {
374 /* Not-retransmitted data segment: set ECT and inject CWR. */
375 if (skb
->len
!= tcp_header_len
&&
376 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
378 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
379 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
381 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
383 } else if (!tcp_ca_needs_ecn(sk
)) {
384 /* ACK or retransmitted segment: clear ECT|CE */
385 INET_ECN_dontxmit(sk
);
387 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
392 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
393 * auto increment end seqno.
395 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
397 skb
->ip_summed
= CHECKSUM_PARTIAL
;
400 TCP_SKB_CB(skb
)->tcp_flags
= flags
;
401 TCP_SKB_CB(skb
)->sacked
= 0;
403 tcp_skb_pcount_set(skb
, 1);
405 TCP_SKB_CB(skb
)->seq
= seq
;
406 if (flags
& (TCPHDR_SYN
| TCPHDR_FIN
))
408 TCP_SKB_CB(skb
)->end_seq
= seq
;
411 static inline bool tcp_urg_mode(const struct tcp_sock
*tp
)
413 return tp
->snd_una
!= tp
->snd_up
;
416 #define OPTION_SACK_ADVERTISE (1 << 0)
417 #define OPTION_TS (1 << 1)
418 #define OPTION_MD5 (1 << 2)
419 #define OPTION_WSCALE (1 << 3)
420 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
422 struct tcp_out_options
{
423 u16 options
; /* bit field of OPTION_* */
424 u16 mss
; /* 0 to disable */
425 u8 ws
; /* window scale, 0 to disable */
426 u8 num_sack_blocks
; /* number of SACK blocks to include */
427 u8 hash_size
; /* bytes in hash_location */
428 __u8
*hash_location
; /* temporary pointer, overloaded */
429 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
430 struct tcp_fastopen_cookie
*fastopen_cookie
; /* Fast open cookie */
433 /* Write previously computed TCP options to the packet.
435 * Beware: Something in the Internet is very sensitive to the ordering of
436 * TCP options, we learned this through the hard way, so be careful here.
437 * Luckily we can at least blame others for their non-compliance but from
438 * inter-operability perspective it seems that we're somewhat stuck with
439 * the ordering which we have been using if we want to keep working with
440 * those broken things (not that it currently hurts anybody as there isn't
441 * particular reason why the ordering would need to be changed).
443 * At least SACK_PERM as the first option is known to lead to a disaster
444 * (but it may well be that other scenarios fail similarly).
446 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
447 struct tcp_out_options
*opts
)
449 u16 options
= opts
->options
; /* mungable copy */
451 if (unlikely(OPTION_MD5
& options
)) {
452 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
453 (TCPOPT_MD5SIG
<< 8) | TCPOLEN_MD5SIG
);
454 /* overload cookie hash location */
455 opts
->hash_location
= (__u8
*)ptr
;
459 if (unlikely(opts
->mss
)) {
460 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
461 (TCPOLEN_MSS
<< 16) |
465 if (likely(OPTION_TS
& options
)) {
466 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
467 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
468 (TCPOLEN_SACK_PERM
<< 16) |
469 (TCPOPT_TIMESTAMP
<< 8) |
471 options
&= ~OPTION_SACK_ADVERTISE
;
473 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
475 (TCPOPT_TIMESTAMP
<< 8) |
478 *ptr
++ = htonl(opts
->tsval
);
479 *ptr
++ = htonl(opts
->tsecr
);
482 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
483 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
485 (TCPOPT_SACK_PERM
<< 8) |
489 if (unlikely(OPTION_WSCALE
& options
)) {
490 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
491 (TCPOPT_WINDOW
<< 16) |
492 (TCPOLEN_WINDOW
<< 8) |
496 if (unlikely(opts
->num_sack_blocks
)) {
497 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
498 tp
->duplicate_sack
: tp
->selective_acks
;
501 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
504 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
505 TCPOLEN_SACK_PERBLOCK
)));
507 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
509 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
510 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
513 tp
->rx_opt
.dsack
= 0;
516 if (unlikely(OPTION_FAST_OPEN_COOKIE
& options
)) {
517 struct tcp_fastopen_cookie
*foc
= opts
->fastopen_cookie
;
519 u32 len
; /* Fast Open option length */
522 len
= TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
;
523 *ptr
= htonl((TCPOPT_EXP
<< 24) | (len
<< 16) |
524 TCPOPT_FASTOPEN_MAGIC
);
525 p
+= TCPOLEN_EXP_FASTOPEN_BASE
;
527 len
= TCPOLEN_FASTOPEN_BASE
+ foc
->len
;
528 *p
++ = TCPOPT_FASTOPEN
;
532 memcpy(p
, foc
->val
, foc
->len
);
533 if ((len
& 3) == 2) {
534 p
[foc
->len
] = TCPOPT_NOP
;
535 p
[foc
->len
+ 1] = TCPOPT_NOP
;
537 ptr
+= (len
+ 3) >> 2;
541 /* Compute TCP options for SYN packets. This is not the final
542 * network wire format yet.
544 static unsigned int tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
545 struct tcp_out_options
*opts
,
546 struct tcp_md5sig_key
**md5
)
548 struct tcp_sock
*tp
= tcp_sk(sk
);
549 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
550 struct tcp_fastopen_request
*fastopen
= tp
->fastopen_req
;
552 #ifdef CONFIG_TCP_MD5SIG
553 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
555 opts
->options
|= OPTION_MD5
;
556 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
562 /* We always get an MSS option. The option bytes which will be seen in
563 * normal data packets should timestamps be used, must be in the MSS
564 * advertised. But we subtract them from tp->mss_cache so that
565 * calculations in tcp_sendmsg are simpler etc. So account for this
566 * fact here if necessary. If we don't do this correctly, as a
567 * receiver we won't recognize data packets as being full sized when we
568 * should, and thus we won't abide by the delayed ACK rules correctly.
569 * SACKs don't matter, we never delay an ACK when we have any of those
571 opts
->mss
= tcp_advertise_mss(sk
);
572 remaining
-= TCPOLEN_MSS_ALIGNED
;
574 if (likely(sysctl_tcp_timestamps
&& !*md5
)) {
575 opts
->options
|= OPTION_TS
;
576 opts
->tsval
= tcp_skb_timestamp(skb
) + tp
->tsoffset
;
577 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
578 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
580 if (likely(sysctl_tcp_window_scaling
)) {
581 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
582 opts
->options
|= OPTION_WSCALE
;
583 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
585 if (likely(sysctl_tcp_sack
)) {
586 opts
->options
|= OPTION_SACK_ADVERTISE
;
587 if (unlikely(!(OPTION_TS
& opts
->options
)))
588 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
591 if (fastopen
&& fastopen
->cookie
.len
>= 0) {
592 u32 need
= fastopen
->cookie
.len
;
594 need
+= fastopen
->cookie
.exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
595 TCPOLEN_FASTOPEN_BASE
;
596 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
597 if (remaining
>= need
) {
598 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
599 opts
->fastopen_cookie
= &fastopen
->cookie
;
601 tp
->syn_fastopen
= 1;
602 tp
->syn_fastopen_exp
= fastopen
->cookie
.exp
? 1 : 0;
606 return MAX_TCP_OPTION_SPACE
- remaining
;
609 /* Set up TCP options for SYN-ACKs. */
610 static unsigned int tcp_synack_options(struct request_sock
*req
,
611 unsigned int mss
, struct sk_buff
*skb
,
612 struct tcp_out_options
*opts
,
613 const struct tcp_md5sig_key
*md5
,
614 struct tcp_fastopen_cookie
*foc
)
616 struct inet_request_sock
*ireq
= inet_rsk(req
);
617 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
619 #ifdef CONFIG_TCP_MD5SIG
621 opts
->options
|= OPTION_MD5
;
622 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
624 /* We can't fit any SACK blocks in a packet with MD5 + TS
625 * options. There was discussion about disabling SACK
626 * rather than TS in order to fit in better with old,
627 * buggy kernels, but that was deemed to be unnecessary.
629 ireq
->tstamp_ok
&= !ireq
->sack_ok
;
633 /* We always send an MSS option. */
635 remaining
-= TCPOLEN_MSS_ALIGNED
;
637 if (likely(ireq
->wscale_ok
)) {
638 opts
->ws
= ireq
->rcv_wscale
;
639 opts
->options
|= OPTION_WSCALE
;
640 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
642 if (likely(ireq
->tstamp_ok
)) {
643 opts
->options
|= OPTION_TS
;
644 opts
->tsval
= tcp_skb_timestamp(skb
) + tcp_rsk(req
)->ts_off
;
645 opts
->tsecr
= req
->ts_recent
;
646 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
648 if (likely(ireq
->sack_ok
)) {
649 opts
->options
|= OPTION_SACK_ADVERTISE
;
650 if (unlikely(!ireq
->tstamp_ok
))
651 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
653 if (foc
!= NULL
&& foc
->len
>= 0) {
656 need
+= foc
->exp
? TCPOLEN_EXP_FASTOPEN_BASE
:
657 TCPOLEN_FASTOPEN_BASE
;
658 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
659 if (remaining
>= need
) {
660 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
661 opts
->fastopen_cookie
= foc
;
666 return MAX_TCP_OPTION_SPACE
- remaining
;
669 /* Compute TCP options for ESTABLISHED sockets. This is not the
670 * final wire format yet.
672 static unsigned int tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
673 struct tcp_out_options
*opts
,
674 struct tcp_md5sig_key
**md5
)
676 struct tcp_sock
*tp
= tcp_sk(sk
);
677 unsigned int size
= 0;
678 unsigned int eff_sacks
;
682 #ifdef CONFIG_TCP_MD5SIG
683 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
684 if (unlikely(*md5
)) {
685 opts
->options
|= OPTION_MD5
;
686 size
+= TCPOLEN_MD5SIG_ALIGNED
;
692 if (likely(tp
->rx_opt
.tstamp_ok
)) {
693 opts
->options
|= OPTION_TS
;
694 opts
->tsval
= skb
? tcp_skb_timestamp(skb
) + tp
->tsoffset
: 0;
695 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
696 size
+= TCPOLEN_TSTAMP_ALIGNED
;
699 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
700 if (unlikely(eff_sacks
)) {
701 const unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
702 opts
->num_sack_blocks
=
703 min_t(unsigned int, eff_sacks
,
704 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
705 TCPOLEN_SACK_PERBLOCK
);
706 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
707 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
714 /* TCP SMALL QUEUES (TSQ)
716 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
717 * to reduce RTT and bufferbloat.
718 * We do this using a special skb destructor (tcp_wfree).
720 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
721 * needs to be reallocated in a driver.
722 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
724 * Since transmit from skb destructor is forbidden, we use a tasklet
725 * to process all sockets that eventually need to send more skbs.
726 * We use one tasklet per cpu, with its own queue of sockets.
729 struct tasklet_struct tasklet
;
730 struct list_head head
; /* queue of tcp sockets */
732 static DEFINE_PER_CPU(struct tsq_tasklet
, tsq_tasklet
);
734 static void tcp_tsq_handler(struct sock
*sk
)
736 if ((1 << sk
->sk_state
) &
737 (TCPF_ESTABLISHED
| TCPF_FIN_WAIT1
| TCPF_CLOSING
|
738 TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
)) {
739 struct tcp_sock
*tp
= tcp_sk(sk
);
741 if (tp
->lost_out
> tp
->retrans_out
&&
742 tp
->snd_cwnd
> tcp_packets_in_flight(tp
))
743 tcp_xmit_retransmit_queue(sk
);
745 tcp_write_xmit(sk
, tcp_current_mss(sk
), tp
->nonagle
,
750 * One tasklet per cpu tries to send more skbs.
751 * We run in tasklet context but need to disable irqs when
752 * transferring tsq->head because tcp_wfree() might
753 * interrupt us (non NAPI drivers)
755 static void tcp_tasklet_func(unsigned long data
)
757 struct tsq_tasklet
*tsq
= (struct tsq_tasklet
*)data
;
760 struct list_head
*q
, *n
;
764 local_irq_save(flags
);
765 list_splice_init(&tsq
->head
, &list
);
766 local_irq_restore(flags
);
768 list_for_each_safe(q
, n
, &list
) {
769 tp
= list_entry(q
, struct tcp_sock
, tsq_node
);
770 list_del(&tp
->tsq_node
);
772 sk
= (struct sock
*)tp
;
773 smp_mb__before_atomic();
774 clear_bit(TSQ_QUEUED
, &sk
->sk_tsq_flags
);
776 if (!sk
->sk_lock
.owned
&&
777 test_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
)) {
779 if (!sock_owned_by_user(sk
)) {
780 clear_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
);
790 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
791 TCPF_WRITE_TIMER_DEFERRED | \
792 TCPF_DELACK_TIMER_DEFERRED | \
793 TCPF_MTU_REDUCED_DEFERRED)
795 * tcp_release_cb - tcp release_sock() callback
798 * called from release_sock() to perform protocol dependent
799 * actions before socket release.
801 void tcp_release_cb(struct sock
*sk
)
803 unsigned long flags
, nflags
;
805 /* perform an atomic operation only if at least one flag is set */
807 flags
= sk
->sk_tsq_flags
;
808 if (!(flags
& TCP_DEFERRED_ALL
))
810 nflags
= flags
& ~TCP_DEFERRED_ALL
;
811 } while (cmpxchg(&sk
->sk_tsq_flags
, flags
, nflags
) != flags
);
813 if (flags
& TCPF_TSQ_DEFERRED
)
816 /* Here begins the tricky part :
817 * We are called from release_sock() with :
819 * 2) sk_lock.slock spinlock held
820 * 3) socket owned by us (sk->sk_lock.owned == 1)
822 * But following code is meant to be called from BH handlers,
823 * so we should keep BH disabled, but early release socket ownership
825 sock_release_ownership(sk
);
827 if (flags
& TCPF_WRITE_TIMER_DEFERRED
) {
828 tcp_write_timer_handler(sk
);
831 if (flags
& TCPF_DELACK_TIMER_DEFERRED
) {
832 tcp_delack_timer_handler(sk
);
835 if (flags
& TCPF_MTU_REDUCED_DEFERRED
) {
836 inet_csk(sk
)->icsk_af_ops
->mtu_reduced(sk
);
840 EXPORT_SYMBOL(tcp_release_cb
);
842 void __init
tcp_tasklet_init(void)
846 for_each_possible_cpu(i
) {
847 struct tsq_tasklet
*tsq
= &per_cpu(tsq_tasklet
, i
);
849 INIT_LIST_HEAD(&tsq
->head
);
850 tasklet_init(&tsq
->tasklet
,
857 * Write buffer destructor automatically called from kfree_skb.
858 * We can't xmit new skbs from this context, as we might already
861 void tcp_wfree(struct sk_buff
*skb
)
863 struct sock
*sk
= skb
->sk
;
864 struct tcp_sock
*tp
= tcp_sk(sk
);
865 unsigned long flags
, nval
, oval
;
868 /* Keep one reference on sk_wmem_alloc.
869 * Will be released by sk_free() from here or tcp_tasklet_func()
871 wmem
= atomic_sub_return(skb
->truesize
- 1, &sk
->sk_wmem_alloc
);
873 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
874 * Wait until our queues (qdisc + devices) are drained.
876 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
877 * - chance for incoming ACK (processed by another cpu maybe)
878 * to migrate this flow (skb->ooo_okay will be eventually set)
880 if (wmem
>= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current
)
883 for (oval
= READ_ONCE(sk
->sk_tsq_flags
);; oval
= nval
) {
884 struct tsq_tasklet
*tsq
;
887 if (!(oval
& TSQF_THROTTLED
) || (oval
& TSQF_QUEUED
))
890 nval
= (oval
& ~TSQF_THROTTLED
) | TSQF_QUEUED
| TCPF_TSQ_DEFERRED
;
891 nval
= cmpxchg(&sk
->sk_tsq_flags
, oval
, nval
);
895 /* queue this socket to tasklet queue */
896 local_irq_save(flags
);
897 tsq
= this_cpu_ptr(&tsq_tasklet
);
898 empty
= list_empty(&tsq
->head
);
899 list_add(&tp
->tsq_node
, &tsq
->head
);
901 tasklet_schedule(&tsq
->tasklet
);
902 local_irq_restore(flags
);
909 /* This routine actually transmits TCP packets queued in by
910 * tcp_do_sendmsg(). This is used by both the initial
911 * transmission and possible later retransmissions.
912 * All SKB's seen here are completely headerless. It is our
913 * job to build the TCP header, and pass the packet down to
914 * IP so it can do the same plus pass the packet off to the
917 * We are working here with either a clone of the original
918 * SKB, or a fresh unique copy made by the retransmit engine.
920 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
923 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
924 struct inet_sock
*inet
;
926 struct tcp_skb_cb
*tcb
;
927 struct tcp_out_options opts
;
928 unsigned int tcp_options_size
, tcp_header_size
;
929 struct tcp_md5sig_key
*md5
;
933 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
937 skb_mstamp_get(&skb
->skb_mstamp
);
938 TCP_SKB_CB(skb
)->tx
.in_flight
= TCP_SKB_CB(skb
)->end_seq
940 tcp_rate_skb_sent(sk
, skb
);
942 if (unlikely(skb_cloned(skb
)))
943 skb
= pskb_copy(skb
, gfp_mask
);
945 skb
= skb_clone(skb
, gfp_mask
);
951 tcb
= TCP_SKB_CB(skb
);
952 memset(&opts
, 0, sizeof(opts
));
954 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
))
955 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
957 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
959 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
961 /* if no packet is in qdisc/device queue, then allow XPS to select
962 * another queue. We can be called from tcp_tsq_handler()
963 * which holds one reference to sk_wmem_alloc.
965 * TODO: Ideally, in-flight pure ACK packets should not matter here.
966 * One way to get this would be to set skb->truesize = 2 on them.
968 skb
->ooo_okay
= sk_wmem_alloc_get(sk
) < SKB_TRUESIZE(1);
970 /* If we had to use memory reserve to allocate this skb,
971 * this might cause drops if packet is looped back :
972 * Other socket might not have SOCK_MEMALLOC.
973 * Packets not looped back do not care about pfmemalloc.
977 skb_push(skb
, tcp_header_size
);
978 skb_reset_transport_header(skb
);
982 skb
->destructor
= skb_is_tcp_pure_ack(skb
) ? __sock_wfree
: tcp_wfree
;
983 skb_set_hash_from_sk(skb
, sk
);
984 atomic_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
986 skb_set_dst_pending_confirm(skb
, sk
->sk_dst_pending_confirm
);
988 /* Build TCP header and checksum it. */
989 th
= (struct tcphdr
*)skb
->data
;
990 th
->source
= inet
->inet_sport
;
991 th
->dest
= inet
->inet_dport
;
992 th
->seq
= htonl(tcb
->seq
);
993 th
->ack_seq
= htonl(tp
->rcv_nxt
);
994 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
1000 /* The urg_mode check is necessary during a below snd_una win probe */
1001 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
1002 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
1003 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
1005 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
1006 th
->urg_ptr
= htons(0xFFFF);
1011 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
1012 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
1013 if (likely(!(tcb
->tcp_flags
& TCPHDR_SYN
))) {
1014 th
->window
= htons(tcp_select_window(sk
));
1015 tcp_ecn_send(sk
, skb
, th
, tcp_header_size
);
1017 /* RFC1323: The window in SYN & SYN/ACK segments
1020 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
1022 #ifdef CONFIG_TCP_MD5SIG
1023 /* Calculate the MD5 hash, as we have all we need now */
1025 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
1026 tp
->af_specific
->calc_md5_hash(opts
.hash_location
,
1031 icsk
->icsk_af_ops
->send_check(sk
, skb
);
1033 if (likely(tcb
->tcp_flags
& TCPHDR_ACK
))
1034 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
1036 if (skb
->len
!= tcp_header_size
) {
1037 tcp_event_data_sent(tp
, sk
);
1038 tp
->data_segs_out
+= tcp_skb_pcount(skb
);
1041 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
1042 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
,
1043 tcp_skb_pcount(skb
));
1045 tp
->segs_out
+= tcp_skb_pcount(skb
);
1046 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1047 skb_shinfo(skb
)->gso_segs
= tcp_skb_pcount(skb
);
1048 skb_shinfo(skb
)->gso_size
= tcp_skb_mss(skb
);
1050 /* Our usage of tstamp should remain private */
1053 /* Cleanup our debris for IP stacks */
1054 memset(skb
->cb
, 0, max(sizeof(struct inet_skb_parm
),
1055 sizeof(struct inet6_skb_parm
)));
1057 err
= icsk
->icsk_af_ops
->queue_xmit(sk
, skb
, &inet
->cork
.fl
);
1059 if (likely(err
<= 0))
1064 return net_xmit_eval(err
);
1067 /* This routine just queues the buffer for sending.
1069 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1070 * otherwise socket can stall.
1072 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
1074 struct tcp_sock
*tp
= tcp_sk(sk
);
1076 /* Advance write_seq and place onto the write_queue. */
1077 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
1078 __skb_header_release(skb
);
1079 tcp_add_write_queue_tail(sk
, skb
);
1080 sk
->sk_wmem_queued
+= skb
->truesize
;
1081 sk_mem_charge(sk
, skb
->truesize
);
1084 /* Initialize TSO segments for a packet. */
1085 static void tcp_set_skb_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1087 if (skb
->len
<= mss_now
|| skb
->ip_summed
== CHECKSUM_NONE
) {
1088 /* Avoid the costly divide in the normal
1091 tcp_skb_pcount_set(skb
, 1);
1092 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1094 tcp_skb_pcount_set(skb
, DIV_ROUND_UP(skb
->len
, mss_now
));
1095 TCP_SKB_CB(skb
)->tcp_gso_size
= mss_now
;
1099 /* When a modification to fackets out becomes necessary, we need to check
1100 * skb is counted to fackets_out or not.
1102 static void tcp_adjust_fackets_out(struct sock
*sk
, const struct sk_buff
*skb
,
1105 struct tcp_sock
*tp
= tcp_sk(sk
);
1107 if (!tp
->sacked_out
|| tcp_is_reno(tp
))
1110 if (after(tcp_highest_sack_seq(tp
), TCP_SKB_CB(skb
)->seq
))
1111 tp
->fackets_out
-= decr
;
1114 /* Pcount in the middle of the write queue got changed, we need to do various
1115 * tweaks to fix counters
1117 static void tcp_adjust_pcount(struct sock
*sk
, const struct sk_buff
*skb
, int decr
)
1119 struct tcp_sock
*tp
= tcp_sk(sk
);
1121 tp
->packets_out
-= decr
;
1123 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1124 tp
->sacked_out
-= decr
;
1125 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1126 tp
->retrans_out
-= decr
;
1127 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
1128 tp
->lost_out
-= decr
;
1130 /* Reno case is special. Sigh... */
1131 if (tcp_is_reno(tp
) && decr
> 0)
1132 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
1134 tcp_adjust_fackets_out(sk
, skb
, decr
);
1136 if (tp
->lost_skb_hint
&&
1137 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
1138 (tcp_is_fack(tp
) || (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)))
1139 tp
->lost_cnt_hint
-= decr
;
1141 tcp_verify_left_out(tp
);
1144 static bool tcp_has_tx_tstamp(const struct sk_buff
*skb
)
1146 return TCP_SKB_CB(skb
)->txstamp_ack
||
1147 (skb_shinfo(skb
)->tx_flags
& SKBTX_ANY_TSTAMP
);
1150 static void tcp_fragment_tstamp(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1152 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1154 if (unlikely(tcp_has_tx_tstamp(skb
)) &&
1155 !before(shinfo
->tskey
, TCP_SKB_CB(skb2
)->seq
)) {
1156 struct skb_shared_info
*shinfo2
= skb_shinfo(skb2
);
1157 u8 tsflags
= shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
1159 shinfo
->tx_flags
&= ~tsflags
;
1160 shinfo2
->tx_flags
|= tsflags
;
1161 swap(shinfo
->tskey
, shinfo2
->tskey
);
1162 TCP_SKB_CB(skb2
)->txstamp_ack
= TCP_SKB_CB(skb
)->txstamp_ack
;
1163 TCP_SKB_CB(skb
)->txstamp_ack
= 0;
1167 static void tcp_skb_fragment_eor(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1169 TCP_SKB_CB(skb2
)->eor
= TCP_SKB_CB(skb
)->eor
;
1170 TCP_SKB_CB(skb
)->eor
= 0;
1173 /* Function to create two new TCP segments. Shrinks the given segment
1174 * to the specified size and appends a new segment with the rest of the
1175 * packet to the list. This won't be called frequently, I hope.
1176 * Remember, these are still headerless SKBs at this point.
1178 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
,
1179 unsigned int mss_now
, gfp_t gfp
)
1181 struct tcp_sock
*tp
= tcp_sk(sk
);
1182 struct sk_buff
*buff
;
1183 int nsize
, old_factor
;
1187 if (WARN_ON(len
> skb
->len
))
1190 nsize
= skb_headlen(skb
) - len
;
1194 if (skb_unclone(skb
, gfp
))
1197 /* Get a new skb... force flag on. */
1198 buff
= sk_stream_alloc_skb(sk
, nsize
, gfp
, true);
1200 return -ENOMEM
; /* We'll just try again later. */
1202 sk
->sk_wmem_queued
+= buff
->truesize
;
1203 sk_mem_charge(sk
, buff
->truesize
);
1204 nlen
= skb
->len
- len
- nsize
;
1205 buff
->truesize
+= nlen
;
1206 skb
->truesize
-= nlen
;
1208 /* Correct the sequence numbers. */
1209 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1210 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1211 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1213 /* PSH and FIN should only be set in the second packet. */
1214 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1215 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1216 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1217 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
1218 tcp_skb_fragment_eor(skb
, buff
);
1220 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
1221 /* Copy and checksum data tail into the new buffer. */
1222 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
1223 skb_put(buff
, nsize
),
1228 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
1230 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1231 skb_split(skb
, buff
, len
);
1234 buff
->ip_summed
= skb
->ip_summed
;
1236 buff
->tstamp
= skb
->tstamp
;
1237 tcp_fragment_tstamp(skb
, buff
);
1239 old_factor
= tcp_skb_pcount(skb
);
1241 /* Fix up tso_factor for both original and new SKB. */
1242 tcp_set_skb_tso_segs(skb
, mss_now
);
1243 tcp_set_skb_tso_segs(buff
, mss_now
);
1245 /* Update delivered info for the new segment */
1246 TCP_SKB_CB(buff
)->tx
= TCP_SKB_CB(skb
)->tx
;
1248 /* If this packet has been sent out already, we must
1249 * adjust the various packet counters.
1251 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
1252 int diff
= old_factor
- tcp_skb_pcount(skb
) -
1253 tcp_skb_pcount(buff
);
1256 tcp_adjust_pcount(sk
, skb
, diff
);
1259 /* Link BUFF into the send queue. */
1260 __skb_header_release(buff
);
1261 tcp_insert_write_queue_after(skb
, buff
, sk
);
1266 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1267 * eventually). The difference is that pulled data not copied, but
1268 * immediately discarded.
1270 static void __pskb_trim_head(struct sk_buff
*skb
, int len
)
1272 struct skb_shared_info
*shinfo
;
1275 eat
= min_t(int, len
, skb_headlen(skb
));
1277 __skb_pull(skb
, eat
);
1284 shinfo
= skb_shinfo(skb
);
1285 for (i
= 0; i
< shinfo
->nr_frags
; i
++) {
1286 int size
= skb_frag_size(&shinfo
->frags
[i
]);
1289 skb_frag_unref(skb
, i
);
1292 shinfo
->frags
[k
] = shinfo
->frags
[i
];
1294 shinfo
->frags
[k
].page_offset
+= eat
;
1295 skb_frag_size_sub(&shinfo
->frags
[k
], eat
);
1301 shinfo
->nr_frags
= k
;
1303 skb_reset_tail_pointer(skb
);
1304 skb
->data_len
-= len
;
1305 skb
->len
= skb
->data_len
;
1308 /* Remove acked data from a packet in the transmit queue. */
1309 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
1311 if (skb_unclone(skb
, GFP_ATOMIC
))
1314 __pskb_trim_head(skb
, len
);
1316 TCP_SKB_CB(skb
)->seq
+= len
;
1317 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1319 skb
->truesize
-= len
;
1320 sk
->sk_wmem_queued
-= len
;
1321 sk_mem_uncharge(sk
, len
);
1322 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1324 /* Any change of skb->len requires recalculation of tso factor. */
1325 if (tcp_skb_pcount(skb
) > 1)
1326 tcp_set_skb_tso_segs(skb
, tcp_skb_mss(skb
));
1331 /* Calculate MSS not accounting any TCP options. */
1332 static inline int __tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1334 const struct tcp_sock
*tp
= tcp_sk(sk
);
1335 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1338 /* Calculate base mss without TCP options:
1339 It is MMS_S - sizeof(tcphdr) of rfc1122
1341 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
1343 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1344 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1345 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1347 if (dst
&& dst_allfrag(dst
))
1348 mss_now
-= icsk
->icsk_af_ops
->net_frag_header_len
;
1351 /* Clamp it (mss_clamp does not include tcp options) */
1352 if (mss_now
> tp
->rx_opt
.mss_clamp
)
1353 mss_now
= tp
->rx_opt
.mss_clamp
;
1355 /* Now subtract optional transport overhead */
1356 mss_now
-= icsk
->icsk_ext_hdr_len
;
1358 /* Then reserve room for full set of TCP options and 8 bytes of data */
1364 /* Calculate MSS. Not accounting for SACKs here. */
1365 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1367 /* Subtract TCP options size, not including SACKs */
1368 return __tcp_mtu_to_mss(sk
, pmtu
) -
1369 (tcp_sk(sk
)->tcp_header_len
- sizeof(struct tcphdr
));
1372 /* Inverse of above */
1373 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
1375 const struct tcp_sock
*tp
= tcp_sk(sk
);
1376 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1380 tp
->tcp_header_len
+
1381 icsk
->icsk_ext_hdr_len
+
1382 icsk
->icsk_af_ops
->net_header_len
;
1384 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1385 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1386 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1388 if (dst
&& dst_allfrag(dst
))
1389 mtu
+= icsk
->icsk_af_ops
->net_frag_header_len
;
1393 EXPORT_SYMBOL(tcp_mss_to_mtu
);
1395 /* MTU probing init per socket */
1396 void tcp_mtup_init(struct sock
*sk
)
1398 struct tcp_sock
*tp
= tcp_sk(sk
);
1399 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1400 struct net
*net
= sock_net(sk
);
1402 icsk
->icsk_mtup
.enabled
= net
->ipv4
.sysctl_tcp_mtu_probing
> 1;
1403 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1404 icsk
->icsk_af_ops
->net_header_len
;
1405 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, net
->ipv4
.sysctl_tcp_base_mss
);
1406 icsk
->icsk_mtup
.probe_size
= 0;
1407 if (icsk
->icsk_mtup
.enabled
)
1408 icsk
->icsk_mtup
.probe_timestamp
= tcp_time_stamp
;
1410 EXPORT_SYMBOL(tcp_mtup_init
);
1412 /* This function synchronize snd mss to current pmtu/exthdr set.
1414 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1415 for TCP options, but includes only bare TCP header.
1417 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1418 It is minimum of user_mss and mss received with SYN.
1419 It also does not include TCP options.
1421 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1423 tp->mss_cache is current effective sending mss, including
1424 all tcp options except for SACKs. It is evaluated,
1425 taking into account current pmtu, but never exceeds
1426 tp->rx_opt.mss_clamp.
1428 NOTE1. rfc1122 clearly states that advertised MSS
1429 DOES NOT include either tcp or ip options.
1431 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1432 are READ ONLY outside this function. --ANK (980731)
1434 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1436 struct tcp_sock
*tp
= tcp_sk(sk
);
1437 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1440 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1441 icsk
->icsk_mtup
.search_high
= pmtu
;
1443 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1444 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1446 /* And store cached results */
1447 icsk
->icsk_pmtu_cookie
= pmtu
;
1448 if (icsk
->icsk_mtup
.enabled
)
1449 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1450 tp
->mss_cache
= mss_now
;
1454 EXPORT_SYMBOL(tcp_sync_mss
);
1456 /* Compute the current effective MSS, taking SACKs and IP options,
1457 * and even PMTU discovery events into account.
1459 unsigned int tcp_current_mss(struct sock
*sk
)
1461 const struct tcp_sock
*tp
= tcp_sk(sk
);
1462 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1464 unsigned int header_len
;
1465 struct tcp_out_options opts
;
1466 struct tcp_md5sig_key
*md5
;
1468 mss_now
= tp
->mss_cache
;
1471 u32 mtu
= dst_mtu(dst
);
1472 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1473 mss_now
= tcp_sync_mss(sk
, mtu
);
1476 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1477 sizeof(struct tcphdr
);
1478 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1479 * some common options. If this is an odd packet (because we have SACK
1480 * blocks etc) then our calculated header_len will be different, and
1481 * we have to adjust mss_now correspondingly */
1482 if (header_len
!= tp
->tcp_header_len
) {
1483 int delta
= (int) header_len
- tp
->tcp_header_len
;
1490 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1491 * As additional protections, we do not touch cwnd in retransmission phases,
1492 * and if application hit its sndbuf limit recently.
1494 static void tcp_cwnd_application_limited(struct sock
*sk
)
1496 struct tcp_sock
*tp
= tcp_sk(sk
);
1498 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
1499 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1500 /* Limited by application or receiver window. */
1501 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
1502 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
1503 if (win_used
< tp
->snd_cwnd
) {
1504 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1505 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
1507 tp
->snd_cwnd_used
= 0;
1509 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1512 static void tcp_cwnd_validate(struct sock
*sk
, bool is_cwnd_limited
)
1514 struct tcp_sock
*tp
= tcp_sk(sk
);
1516 /* Track the maximum number of outstanding packets in each
1517 * window, and remember whether we were cwnd-limited then.
1519 if (!before(tp
->snd_una
, tp
->max_packets_seq
) ||
1520 tp
->packets_out
> tp
->max_packets_out
) {
1521 tp
->max_packets_out
= tp
->packets_out
;
1522 tp
->max_packets_seq
= tp
->snd_nxt
;
1523 tp
->is_cwnd_limited
= is_cwnd_limited
;
1526 if (tcp_is_cwnd_limited(sk
)) {
1527 /* Network is feed fully. */
1528 tp
->snd_cwnd_used
= 0;
1529 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1531 /* Network starves. */
1532 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1533 tp
->snd_cwnd_used
= tp
->packets_out
;
1535 if (sysctl_tcp_slow_start_after_idle
&&
1536 (s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
1537 tcp_cwnd_application_limited(sk
);
1539 /* The following conditions together indicate the starvation
1540 * is caused by insufficient sender buffer:
1541 * 1) just sent some data (see tcp_write_xmit)
1542 * 2) not cwnd limited (this else condition)
1543 * 3) no more data to send (null tcp_send_head )
1544 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1546 if (!tcp_send_head(sk
) && sk
->sk_socket
&&
1547 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
) &&
1548 (1 << sk
->sk_state
) & (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
))
1549 tcp_chrono_start(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1553 /* Minshall's variant of the Nagle send check. */
1554 static bool tcp_minshall_check(const struct tcp_sock
*tp
)
1556 return after(tp
->snd_sml
, tp
->snd_una
) &&
1557 !after(tp
->snd_sml
, tp
->snd_nxt
);
1560 /* Update snd_sml if this skb is under mss
1561 * Note that a TSO packet might end with a sub-mss segment
1562 * The test is really :
1563 * if ((skb->len % mss) != 0)
1564 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1565 * But we can avoid doing the divide again given we already have
1566 * skb_pcount = skb->len / mss_now
1568 static void tcp_minshall_update(struct tcp_sock
*tp
, unsigned int mss_now
,
1569 const struct sk_buff
*skb
)
1571 if (skb
->len
< tcp_skb_pcount(skb
) * mss_now
)
1572 tp
->snd_sml
= TCP_SKB_CB(skb
)->end_seq
;
1575 /* Return false, if packet can be sent now without violation Nagle's rules:
1576 * 1. It is full sized. (provided by caller in %partial bool)
1577 * 2. Or it contains FIN. (already checked by caller)
1578 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1579 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1580 * With Minshall's modification: all sent small packets are ACKed.
1582 static bool tcp_nagle_check(bool partial
, const struct tcp_sock
*tp
,
1586 ((nonagle
& TCP_NAGLE_CORK
) ||
1587 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
)));
1590 /* Return how many segs we'd like on a TSO packet,
1591 * to send one TSO packet per ms
1593 u32
tcp_tso_autosize(const struct sock
*sk
, unsigned int mss_now
,
1598 bytes
= min(sk
->sk_pacing_rate
>> 10,
1599 sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
);
1601 /* Goal is to send at least one packet per ms,
1602 * not one big TSO packet every 100 ms.
1603 * This preserves ACK clocking and is consistent
1604 * with tcp_tso_should_defer() heuristic.
1606 segs
= max_t(u32
, bytes
/ mss_now
, min_tso_segs
);
1608 return min_t(u32
, segs
, sk
->sk_gso_max_segs
);
1610 EXPORT_SYMBOL(tcp_tso_autosize
);
1612 /* Return the number of segments we want in the skb we are transmitting.
1613 * See if congestion control module wants to decide; otherwise, autosize.
1615 static u32
tcp_tso_segs(struct sock
*sk
, unsigned int mss_now
)
1617 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
1618 u32 tso_segs
= ca_ops
->tso_segs_goal
? ca_ops
->tso_segs_goal(sk
) : 0;
1621 tcp_tso_autosize(sk
, mss_now
, sysctl_tcp_min_tso_segs
);
1624 /* Returns the portion of skb which can be sent right away */
1625 static unsigned int tcp_mss_split_point(const struct sock
*sk
,
1626 const struct sk_buff
*skb
,
1627 unsigned int mss_now
,
1628 unsigned int max_segs
,
1631 const struct tcp_sock
*tp
= tcp_sk(sk
);
1632 u32 partial
, needed
, window
, max_len
;
1634 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1635 max_len
= mss_now
* max_segs
;
1637 if (likely(max_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1640 needed
= min(skb
->len
, window
);
1642 if (max_len
<= needed
)
1645 partial
= needed
% mss_now
;
1646 /* If last segment is not a full MSS, check if Nagle rules allow us
1647 * to include this last segment in this skb.
1648 * Otherwise, we'll split the skb at last MSS boundary
1650 if (tcp_nagle_check(partial
!= 0, tp
, nonagle
))
1651 return needed
- partial
;
1656 /* Can at least one segment of SKB be sent right now, according to the
1657 * congestion window rules? If so, return how many segments are allowed.
1659 static inline unsigned int tcp_cwnd_test(const struct tcp_sock
*tp
,
1660 const struct sk_buff
*skb
)
1662 u32 in_flight
, cwnd
, halfcwnd
;
1664 /* Don't be strict about the congestion window for the final FIN. */
1665 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) &&
1666 tcp_skb_pcount(skb
) == 1)
1669 in_flight
= tcp_packets_in_flight(tp
);
1670 cwnd
= tp
->snd_cwnd
;
1671 if (in_flight
>= cwnd
)
1674 /* For better scheduling, ensure we have at least
1675 * 2 GSO packets in flight.
1677 halfcwnd
= max(cwnd
>> 1, 1U);
1678 return min(halfcwnd
, cwnd
- in_flight
);
1681 /* Initialize TSO state of a skb.
1682 * This must be invoked the first time we consider transmitting
1683 * SKB onto the wire.
1685 static int tcp_init_tso_segs(struct sk_buff
*skb
, unsigned int mss_now
)
1687 int tso_segs
= tcp_skb_pcount(skb
);
1689 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1690 tcp_set_skb_tso_segs(skb
, mss_now
);
1691 tso_segs
= tcp_skb_pcount(skb
);
1697 /* Return true if the Nagle test allows this packet to be
1700 static inline bool tcp_nagle_test(const struct tcp_sock
*tp
, const struct sk_buff
*skb
,
1701 unsigned int cur_mss
, int nonagle
)
1703 /* Nagle rule does not apply to frames, which sit in the middle of the
1704 * write_queue (they have no chances to get new data).
1706 * This is implemented in the callers, where they modify the 'nonagle'
1707 * argument based upon the location of SKB in the send queue.
1709 if (nonagle
& TCP_NAGLE_PUSH
)
1712 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1713 if (tcp_urg_mode(tp
) || (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
1716 if (!tcp_nagle_check(skb
->len
< cur_mss
, tp
, nonagle
))
1722 /* Does at least the first segment of SKB fit into the send window? */
1723 static bool tcp_snd_wnd_test(const struct tcp_sock
*tp
,
1724 const struct sk_buff
*skb
,
1725 unsigned int cur_mss
)
1727 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1729 if (skb
->len
> cur_mss
)
1730 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1732 return !after(end_seq
, tcp_wnd_end(tp
));
1735 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1736 * should be put on the wire right now. If so, it returns the number of
1737 * packets allowed by the congestion window.
1739 static unsigned int tcp_snd_test(const struct sock
*sk
, struct sk_buff
*skb
,
1740 unsigned int cur_mss
, int nonagle
)
1742 const struct tcp_sock
*tp
= tcp_sk(sk
);
1743 unsigned int cwnd_quota
;
1745 tcp_init_tso_segs(skb
, cur_mss
);
1747 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
1750 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1751 if (cwnd_quota
&& !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1757 /* Test if sending is allowed right now. */
1758 bool tcp_may_send_now(struct sock
*sk
)
1760 const struct tcp_sock
*tp
= tcp_sk(sk
);
1761 struct sk_buff
*skb
= tcp_send_head(sk
);
1764 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
),
1765 (tcp_skb_is_last(sk
, skb
) ?
1766 tp
->nonagle
: TCP_NAGLE_PUSH
));
1769 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1770 * which is put after SKB on the list. It is very much like
1771 * tcp_fragment() except that it may make several kinds of assumptions
1772 * in order to speed up the splitting operation. In particular, we
1773 * know that all the data is in scatter-gather pages, and that the
1774 * packet has never been sent out before (and thus is not cloned).
1776 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1777 unsigned int mss_now
, gfp_t gfp
)
1779 struct sk_buff
*buff
;
1780 int nlen
= skb
->len
- len
;
1783 /* All of a TSO frame must be composed of paged data. */
1784 if (skb
->len
!= skb
->data_len
)
1785 return tcp_fragment(sk
, skb
, len
, mss_now
, gfp
);
1787 buff
= sk_stream_alloc_skb(sk
, 0, gfp
, true);
1788 if (unlikely(!buff
))
1791 sk
->sk_wmem_queued
+= buff
->truesize
;
1792 sk_mem_charge(sk
, buff
->truesize
);
1793 buff
->truesize
+= nlen
;
1794 skb
->truesize
-= nlen
;
1796 /* Correct the sequence numbers. */
1797 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1798 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1799 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1801 /* PSH and FIN should only be set in the second packet. */
1802 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1803 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1804 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1806 /* This packet was never sent out yet, so no SACK bits. */
1807 TCP_SKB_CB(buff
)->sacked
= 0;
1809 tcp_skb_fragment_eor(skb
, buff
);
1811 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1812 skb_split(skb
, buff
, len
);
1813 tcp_fragment_tstamp(skb
, buff
);
1815 /* Fix up tso_factor for both original and new SKB. */
1816 tcp_set_skb_tso_segs(skb
, mss_now
);
1817 tcp_set_skb_tso_segs(buff
, mss_now
);
1819 /* Link BUFF into the send queue. */
1820 __skb_header_release(buff
);
1821 tcp_insert_write_queue_after(skb
, buff
, sk
);
1826 /* Try to defer sending, if possible, in order to minimize the amount
1827 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1829 * This algorithm is from John Heffner.
1831 static bool tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
,
1832 bool *is_cwnd_limited
, u32 max_segs
)
1834 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1835 u32 age
, send_win
, cong_win
, limit
, in_flight
;
1836 struct tcp_sock
*tp
= tcp_sk(sk
);
1837 struct skb_mstamp now
;
1838 struct sk_buff
*head
;
1841 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1844 if (icsk
->icsk_ca_state
>= TCP_CA_Recovery
)
1847 /* Avoid bursty behavior by allowing defer
1848 * only if the last write was recent.
1850 if ((s32
)(tcp_time_stamp
- tp
->lsndtime
) > 0)
1853 in_flight
= tcp_packets_in_flight(tp
);
1855 BUG_ON(tcp_skb_pcount(skb
) <= 1 || (tp
->snd_cwnd
<= in_flight
));
1857 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1859 /* From in_flight test above, we know that cwnd > in_flight. */
1860 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1862 limit
= min(send_win
, cong_win
);
1864 /* If a full-sized TSO skb can be sent, do it. */
1865 if (limit
>= max_segs
* tp
->mss_cache
)
1868 /* Middle in queue won't get any more data, full sendable already? */
1869 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
1872 win_divisor
= ACCESS_ONCE(sysctl_tcp_tso_win_divisor
);
1874 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1876 /* If at least some fraction of a window is available,
1879 chunk
/= win_divisor
;
1883 /* Different approach, try not to defer past a single
1884 * ACK. Receiver should ACK every other full sized
1885 * frame, so if we have space for more than 3 frames
1888 if (limit
> tcp_max_tso_deferred_mss(tp
) * tp
->mss_cache
)
1892 head
= tcp_write_queue_head(sk
);
1893 skb_mstamp_get(&now
);
1894 age
= skb_mstamp_us_delta(&now
, &head
->skb_mstamp
);
1895 /* If next ACK is likely to come too late (half srtt), do not defer */
1896 if (age
< (tp
->srtt_us
>> 4))
1899 /* Ok, it looks like it is advisable to defer. */
1901 if (cong_win
< send_win
&& cong_win
<= skb
->len
)
1902 *is_cwnd_limited
= true;
1910 static inline void tcp_mtu_check_reprobe(struct sock
*sk
)
1912 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1913 struct tcp_sock
*tp
= tcp_sk(sk
);
1914 struct net
*net
= sock_net(sk
);
1918 interval
= net
->ipv4
.sysctl_tcp_probe_interval
;
1919 delta
= tcp_time_stamp
- icsk
->icsk_mtup
.probe_timestamp
;
1920 if (unlikely(delta
>= interval
* HZ
)) {
1921 int mss
= tcp_current_mss(sk
);
1923 /* Update current search range */
1924 icsk
->icsk_mtup
.probe_size
= 0;
1925 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+
1926 sizeof(struct tcphdr
) +
1927 icsk
->icsk_af_ops
->net_header_len
;
1928 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, mss
);
1930 /* Update probe time stamp */
1931 icsk
->icsk_mtup
.probe_timestamp
= tcp_time_stamp
;
1935 /* Create a new MTU probe if we are ready.
1936 * MTU probe is regularly attempting to increase the path MTU by
1937 * deliberately sending larger packets. This discovers routing
1938 * changes resulting in larger path MTUs.
1940 * Returns 0 if we should wait to probe (no cwnd available),
1941 * 1 if a probe was sent,
1944 static int tcp_mtu_probe(struct sock
*sk
)
1946 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1947 struct tcp_sock
*tp
= tcp_sk(sk
);
1948 struct sk_buff
*skb
, *nskb
, *next
;
1949 struct net
*net
= sock_net(sk
);
1956 /* Not currently probing/verifying,
1958 * have enough cwnd, and
1959 * not SACKing (the variable headers throw things off)
1961 if (likely(!icsk
->icsk_mtup
.enabled
||
1962 icsk
->icsk_mtup
.probe_size
||
1963 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1964 tp
->snd_cwnd
< 11 ||
1965 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
))
1968 /* Use binary search for probe_size between tcp_mss_base,
1969 * and current mss_clamp. if (search_high - search_low)
1970 * smaller than a threshold, backoff from probing.
1972 mss_now
= tcp_current_mss(sk
);
1973 probe_size
= tcp_mtu_to_mss(sk
, (icsk
->icsk_mtup
.search_high
+
1974 icsk
->icsk_mtup
.search_low
) >> 1);
1975 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
1976 interval
= icsk
->icsk_mtup
.search_high
- icsk
->icsk_mtup
.search_low
;
1977 /* When misfortune happens, we are reprobing actively,
1978 * and then reprobe timer has expired. We stick with current
1979 * probing process by not resetting search range to its orignal.
1981 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
) ||
1982 interval
< net
->ipv4
.sysctl_tcp_probe_threshold
) {
1983 /* Check whether enough time has elaplased for
1984 * another round of probing.
1986 tcp_mtu_check_reprobe(sk
);
1990 /* Have enough data in the send queue to probe? */
1991 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
1994 if (tp
->snd_wnd
< size_needed
)
1996 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
1999 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2000 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
2001 if (!tcp_packets_in_flight(tp
))
2007 /* We're allowed to probe. Build it now. */
2008 nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
, false);
2011 sk
->sk_wmem_queued
+= nskb
->truesize
;
2012 sk_mem_charge(sk
, nskb
->truesize
);
2014 skb
= tcp_send_head(sk
);
2016 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
2017 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
2018 TCP_SKB_CB(nskb
)->tcp_flags
= TCPHDR_ACK
;
2019 TCP_SKB_CB(nskb
)->sacked
= 0;
2021 nskb
->ip_summed
= skb
->ip_summed
;
2023 tcp_insert_write_queue_before(nskb
, skb
, sk
);
2026 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
2027 copy
= min_t(int, skb
->len
, probe_size
- len
);
2028 if (nskb
->ip_summed
) {
2029 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
2031 __wsum csum
= skb_copy_and_csum_bits(skb
, 0,
2032 skb_put(nskb
, copy
),
2034 nskb
->csum
= csum_block_add(nskb
->csum
, csum
, len
);
2037 if (skb
->len
<= copy
) {
2038 /* We've eaten all the data from this skb.
2040 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
2041 tcp_unlink_write_queue(skb
, sk
);
2042 sk_wmem_free_skb(sk
, skb
);
2044 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
&
2045 ~(TCPHDR_FIN
|TCPHDR_PSH
);
2046 if (!skb_shinfo(skb
)->nr_frags
) {
2047 skb_pull(skb
, copy
);
2048 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2049 skb
->csum
= csum_partial(skb
->data
,
2052 __pskb_trim_head(skb
, copy
);
2053 tcp_set_skb_tso_segs(skb
, mss_now
);
2055 TCP_SKB_CB(skb
)->seq
+= copy
;
2060 if (len
>= probe_size
)
2063 tcp_init_tso_segs(nskb
, nskb
->len
);
2065 /* We're ready to send. If this fails, the probe will
2066 * be resegmented into mss-sized pieces by tcp_write_xmit().
2068 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
2069 /* Decrement cwnd here because we are sending
2070 * effectively two packets. */
2072 tcp_event_new_data_sent(sk
, nskb
);
2074 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
2075 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
2076 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
2084 /* TCP Small Queues :
2085 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2086 * (These limits are doubled for retransmits)
2088 * - better RTT estimation and ACK scheduling
2091 * Alas, some drivers / subsystems require a fair amount
2092 * of queued bytes to ensure line rate.
2093 * One example is wifi aggregation (802.11 AMPDU)
2095 static bool tcp_small_queue_check(struct sock
*sk
, const struct sk_buff
*skb
,
2096 unsigned int factor
)
2100 limit
= max(2 * skb
->truesize
, sk
->sk_pacing_rate
>> 10);
2101 limit
= min_t(u32
, limit
, sysctl_tcp_limit_output_bytes
);
2104 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
) {
2105 /* Always send the 1st or 2nd skb in write queue.
2106 * No need to wait for TX completion to call us back,
2107 * after softirq/tasklet schedule.
2108 * This helps when TX completions are delayed too much.
2110 if (skb
== sk
->sk_write_queue
.next
||
2111 skb
->prev
== sk
->sk_write_queue
.next
)
2114 set_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
);
2115 /* It is possible TX completion already happened
2116 * before we set TSQ_THROTTLED, so we must
2117 * test again the condition.
2119 smp_mb__after_atomic();
2120 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
)
2126 static void tcp_chrono_set(struct tcp_sock
*tp
, const enum tcp_chrono
new)
2128 const u32 now
= tcp_time_stamp
;
2130 if (tp
->chrono_type
> TCP_CHRONO_UNSPEC
)
2131 tp
->chrono_stat
[tp
->chrono_type
- 1] += now
- tp
->chrono_start
;
2132 tp
->chrono_start
= now
;
2133 tp
->chrono_type
= new;
2136 void tcp_chrono_start(struct sock
*sk
, const enum tcp_chrono type
)
2138 struct tcp_sock
*tp
= tcp_sk(sk
);
2140 /* If there are multiple conditions worthy of tracking in a
2141 * chronograph then the highest priority enum takes precedence
2142 * over the other conditions. So that if something "more interesting"
2143 * starts happening, stop the previous chrono and start a new one.
2145 if (type
> tp
->chrono_type
)
2146 tcp_chrono_set(tp
, type
);
2149 void tcp_chrono_stop(struct sock
*sk
, const enum tcp_chrono type
)
2151 struct tcp_sock
*tp
= tcp_sk(sk
);
2154 /* There are multiple conditions worthy of tracking in a
2155 * chronograph, so that the highest priority enum takes
2156 * precedence over the other conditions (see tcp_chrono_start).
2157 * If a condition stops, we only stop chrono tracking if
2158 * it's the "most interesting" or current chrono we are
2159 * tracking and starts busy chrono if we have pending data.
2161 if (tcp_write_queue_empty(sk
))
2162 tcp_chrono_set(tp
, TCP_CHRONO_UNSPEC
);
2163 else if (type
== tp
->chrono_type
)
2164 tcp_chrono_set(tp
, TCP_CHRONO_BUSY
);
2167 /* This routine writes packets to the network. It advances the
2168 * send_head. This happens as incoming acks open up the remote
2171 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2172 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2173 * account rare use of URG, this is not a big flaw.
2175 * Send at most one packet when push_one > 0. Temporarily ignore
2176 * cwnd limit to force at most one packet out when push_one == 2.
2178 * Returns true, if no segments are in flight and we have queued segments,
2179 * but cannot send anything now because of SWS or another problem.
2181 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
2182 int push_one
, gfp_t gfp
)
2184 struct tcp_sock
*tp
= tcp_sk(sk
);
2185 struct sk_buff
*skb
;
2186 unsigned int tso_segs
, sent_pkts
;
2189 bool is_cwnd_limited
= false, is_rwnd_limited
= false;
2195 /* Do MTU probing. */
2196 result
= tcp_mtu_probe(sk
);
2199 } else if (result
> 0) {
2204 max_segs
= tcp_tso_segs(sk
, mss_now
);
2205 while ((skb
= tcp_send_head(sk
))) {
2208 tso_segs
= tcp_init_tso_segs(skb
, mss_now
);
2211 if (unlikely(tp
->repair
) && tp
->repair_queue
== TCP_SEND_QUEUE
) {
2212 /* "skb_mstamp" is used as a start point for the retransmit timer */
2213 skb_mstamp_get(&skb
->skb_mstamp
);
2214 goto repair
; /* Skip network transmission */
2217 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
2220 /* Force out a loss probe pkt. */
2226 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
))) {
2227 is_rwnd_limited
= true;
2231 if (tso_segs
== 1) {
2232 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
2233 (tcp_skb_is_last(sk
, skb
) ?
2234 nonagle
: TCP_NAGLE_PUSH
))))
2238 tcp_tso_should_defer(sk
, skb
, &is_cwnd_limited
,
2244 if (tso_segs
> 1 && !tcp_urg_mode(tp
))
2245 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
2251 if (skb
->len
> limit
&&
2252 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
, gfp
)))
2255 if (test_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
))
2256 clear_bit(TCP_TSQ_DEFERRED
, &sk
->sk_tsq_flags
);
2257 if (tcp_small_queue_check(sk
, skb
, 0))
2260 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
2264 /* Advance the send_head. This one is sent out.
2265 * This call will increment packets_out.
2267 tcp_event_new_data_sent(sk
, skb
);
2269 tcp_minshall_update(tp
, mss_now
, skb
);
2270 sent_pkts
+= tcp_skb_pcount(skb
);
2276 if (is_rwnd_limited
)
2277 tcp_chrono_start(sk
, TCP_CHRONO_RWND_LIMITED
);
2279 tcp_chrono_stop(sk
, TCP_CHRONO_RWND_LIMITED
);
2281 if (likely(sent_pkts
)) {
2282 if (tcp_in_cwnd_reduction(sk
))
2283 tp
->prr_out
+= sent_pkts
;
2285 /* Send one loss probe per tail loss episode. */
2287 tcp_schedule_loss_probe(sk
);
2288 is_cwnd_limited
|= (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
);
2289 tcp_cwnd_validate(sk
, is_cwnd_limited
);
2292 return !tp
->packets_out
&& tcp_send_head(sk
);
2295 bool tcp_schedule_loss_probe(struct sock
*sk
)
2297 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2298 struct tcp_sock
*tp
= tcp_sk(sk
);
2299 u32 timeout
, tlp_time_stamp
, rto_time_stamp
;
2300 u32 rtt
= usecs_to_jiffies(tp
->srtt_us
>> 3);
2302 /* No consecutive loss probes. */
2303 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)) {
2307 /* Don't do any loss probe on a Fast Open connection before 3WHS
2310 if (tp
->fastopen_rsk
)
2313 /* TLP is only scheduled when next timer event is RTO. */
2314 if (icsk
->icsk_pending
!= ICSK_TIME_RETRANS
)
2317 /* Schedule a loss probe in 2*RTT for SACK capable connections
2318 * in Open state, that are either limited by cwnd or application.
2320 if ((sysctl_tcp_early_retrans
!= 3 && sysctl_tcp_early_retrans
!= 4) ||
2321 !tp
->packets_out
|| !tcp_is_sack(tp
) ||
2322 icsk
->icsk_ca_state
!= TCP_CA_Open
)
2325 if ((tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) &&
2329 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2330 * for delayed ack when there's one outstanding packet. If no RTT
2331 * sample is available then probe after TCP_TIMEOUT_INIT.
2333 timeout
= rtt
<< 1 ? : TCP_TIMEOUT_INIT
;
2334 if (tp
->packets_out
== 1)
2335 timeout
= max_t(u32
, timeout
,
2336 (rtt
+ (rtt
>> 1) + TCP_DELACK_MAX
));
2337 timeout
= max_t(u32
, timeout
, msecs_to_jiffies(10));
2339 /* If RTO is shorter, just schedule TLP in its place. */
2340 tlp_time_stamp
= tcp_time_stamp
+ timeout
;
2341 rto_time_stamp
= (u32
)inet_csk(sk
)->icsk_timeout
;
2342 if ((s32
)(tlp_time_stamp
- rto_time_stamp
) > 0) {
2343 s32 delta
= rto_time_stamp
- tcp_time_stamp
;
2348 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_LOSS_PROBE
, timeout
,
2353 /* Thanks to skb fast clones, we can detect if a prior transmit of
2354 * a packet is still in a qdisc or driver queue.
2355 * In this case, there is very little point doing a retransmit !
2357 static bool skb_still_in_host_queue(const struct sock
*sk
,
2358 const struct sk_buff
*skb
)
2360 if (unlikely(skb_fclone_busy(sk
, skb
))) {
2361 NET_INC_STATS(sock_net(sk
),
2362 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES
);
2368 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2369 * retransmit the last segment.
2371 void tcp_send_loss_probe(struct sock
*sk
)
2373 struct tcp_sock
*tp
= tcp_sk(sk
);
2374 struct sk_buff
*skb
;
2376 int mss
= tcp_current_mss(sk
);
2378 skb
= tcp_send_head(sk
);
2380 if (tcp_snd_wnd_test(tp
, skb
, mss
)) {
2381 pcount
= tp
->packets_out
;
2382 tcp_write_xmit(sk
, mss
, TCP_NAGLE_OFF
, 2, GFP_ATOMIC
);
2383 if (tp
->packets_out
> pcount
)
2387 skb
= tcp_write_queue_prev(sk
, skb
);
2389 skb
= tcp_write_queue_tail(sk
);
2392 /* At most one outstanding TLP retransmission. */
2393 if (tp
->tlp_high_seq
)
2396 /* Retransmit last segment. */
2400 if (skb_still_in_host_queue(sk
, skb
))
2403 pcount
= tcp_skb_pcount(skb
);
2404 if (WARN_ON(!pcount
))
2407 if ((pcount
> 1) && (skb
->len
> (pcount
- 1) * mss
)) {
2408 if (unlikely(tcp_fragment(sk
, skb
, (pcount
- 1) * mss
, mss
,
2411 skb
= tcp_write_queue_next(sk
, skb
);
2414 if (WARN_ON(!skb
|| !tcp_skb_pcount(skb
)))
2417 if (__tcp_retransmit_skb(sk
, skb
, 1))
2420 /* Record snd_nxt for loss detection. */
2421 tp
->tlp_high_seq
= tp
->snd_nxt
;
2424 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSPROBES
);
2425 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2426 inet_csk(sk
)->icsk_pending
= 0;
2431 /* Push out any pending frames which were held back due to
2432 * TCP_CORK or attempt at coalescing tiny packets.
2433 * The socket must be locked by the caller.
2435 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
2438 /* If we are closed, the bytes will have to remain here.
2439 * In time closedown will finish, we empty the write queue and
2440 * all will be happy.
2442 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
2445 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0,
2446 sk_gfp_mask(sk
, GFP_ATOMIC
)))
2447 tcp_check_probe_timer(sk
);
2450 /* Send _single_ skb sitting at the send head. This function requires
2451 * true push pending frames to setup probe timer etc.
2453 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
2455 struct sk_buff
*skb
= tcp_send_head(sk
);
2457 BUG_ON(!skb
|| skb
->len
< mss_now
);
2459 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
2462 /* This function returns the amount that we can raise the
2463 * usable window based on the following constraints
2465 * 1. The window can never be shrunk once it is offered (RFC 793)
2466 * 2. We limit memory per socket
2469 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2470 * RECV.NEXT + RCV.WIN fixed until:
2471 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2473 * i.e. don't raise the right edge of the window until you can raise
2474 * it at least MSS bytes.
2476 * Unfortunately, the recommended algorithm breaks header prediction,
2477 * since header prediction assumes th->window stays fixed.
2479 * Strictly speaking, keeping th->window fixed violates the receiver
2480 * side SWS prevention criteria. The problem is that under this rule
2481 * a stream of single byte packets will cause the right side of the
2482 * window to always advance by a single byte.
2484 * Of course, if the sender implements sender side SWS prevention
2485 * then this will not be a problem.
2487 * BSD seems to make the following compromise:
2489 * If the free space is less than the 1/4 of the maximum
2490 * space available and the free space is less than 1/2 mss,
2491 * then set the window to 0.
2492 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2493 * Otherwise, just prevent the window from shrinking
2494 * and from being larger than the largest representable value.
2496 * This prevents incremental opening of the window in the regime
2497 * where TCP is limited by the speed of the reader side taking
2498 * data out of the TCP receive queue. It does nothing about
2499 * those cases where the window is constrained on the sender side
2500 * because the pipeline is full.
2502 * BSD also seems to "accidentally" limit itself to windows that are a
2503 * multiple of MSS, at least until the free space gets quite small.
2504 * This would appear to be a side effect of the mbuf implementation.
2505 * Combining these two algorithms results in the observed behavior
2506 * of having a fixed window size at almost all times.
2508 * Below we obtain similar behavior by forcing the offered window to
2509 * a multiple of the mss when it is feasible to do so.
2511 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2512 * Regular options like TIMESTAMP are taken into account.
2514 u32
__tcp_select_window(struct sock
*sk
)
2516 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2517 struct tcp_sock
*tp
= tcp_sk(sk
);
2518 /* MSS for the peer's data. Previous versions used mss_clamp
2519 * here. I don't know if the value based on our guesses
2520 * of peer's MSS is better for the performance. It's more correct
2521 * but may be worse for the performance because of rcv_mss
2522 * fluctuations. --SAW 1998/11/1
2524 int mss
= icsk
->icsk_ack
.rcv_mss
;
2525 int free_space
= tcp_space(sk
);
2526 int allowed_space
= tcp_full_space(sk
);
2527 int full_space
= min_t(int, tp
->window_clamp
, allowed_space
);
2530 if (unlikely(mss
> full_space
)) {
2535 if (free_space
< (full_space
>> 1)) {
2536 icsk
->icsk_ack
.quick
= 0;
2538 if (tcp_under_memory_pressure(sk
))
2539 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
2542 /* free_space might become our new window, make sure we don't
2543 * increase it due to wscale.
2545 free_space
= round_down(free_space
, 1 << tp
->rx_opt
.rcv_wscale
);
2547 /* if free space is less than mss estimate, or is below 1/16th
2548 * of the maximum allowed, try to move to zero-window, else
2549 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2550 * new incoming data is dropped due to memory limits.
2551 * With large window, mss test triggers way too late in order
2552 * to announce zero window in time before rmem limit kicks in.
2554 if (free_space
< (allowed_space
>> 4) || free_space
< mss
)
2558 if (free_space
> tp
->rcv_ssthresh
)
2559 free_space
= tp
->rcv_ssthresh
;
2561 /* Don't do rounding if we are using window scaling, since the
2562 * scaled window will not line up with the MSS boundary anyway.
2564 window
= tp
->rcv_wnd
;
2565 if (tp
->rx_opt
.rcv_wscale
) {
2566 window
= free_space
;
2568 /* Advertise enough space so that it won't get scaled away.
2569 * Import case: prevent zero window announcement if
2570 * 1<<rcv_wscale > mss.
2572 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
2573 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
2574 << tp
->rx_opt
.rcv_wscale
);
2576 /* Get the largest window that is a nice multiple of mss.
2577 * Window clamp already applied above.
2578 * If our current window offering is within 1 mss of the
2579 * free space we just keep it. This prevents the divide
2580 * and multiply from happening most of the time.
2581 * We also don't do any window rounding when the free space
2584 if (window
<= free_space
- mss
|| window
> free_space
)
2585 window
= (free_space
/ mss
) * mss
;
2586 else if (mss
== full_space
&&
2587 free_space
> window
+ (full_space
>> 1))
2588 window
= free_space
;
2594 void tcp_skb_collapse_tstamp(struct sk_buff
*skb
,
2595 const struct sk_buff
*next_skb
)
2597 if (unlikely(tcp_has_tx_tstamp(next_skb
))) {
2598 const struct skb_shared_info
*next_shinfo
=
2599 skb_shinfo(next_skb
);
2600 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
2602 shinfo
->tx_flags
|= next_shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
2603 shinfo
->tskey
= next_shinfo
->tskey
;
2604 TCP_SKB_CB(skb
)->txstamp_ack
|=
2605 TCP_SKB_CB(next_skb
)->txstamp_ack
;
2609 /* Collapses two adjacent SKB's during retransmission. */
2610 static bool tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
2612 struct tcp_sock
*tp
= tcp_sk(sk
);
2613 struct sk_buff
*next_skb
= tcp_write_queue_next(sk
, skb
);
2614 int skb_size
, next_skb_size
;
2616 skb_size
= skb
->len
;
2617 next_skb_size
= next_skb
->len
;
2619 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
2621 if (next_skb_size
) {
2622 if (next_skb_size
<= skb_availroom(skb
))
2623 skb_copy_bits(next_skb
, 0, skb_put(skb
, next_skb_size
),
2625 else if (!skb_shift(skb
, next_skb
, next_skb_size
))
2628 tcp_highest_sack_combine(sk
, next_skb
, skb
);
2630 tcp_unlink_write_queue(next_skb
, sk
);
2632 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
2633 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2635 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2636 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
2638 /* Update sequence range on original skb. */
2639 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
2641 /* Merge over control information. This moves PSH/FIN etc. over */
2642 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(next_skb
)->tcp_flags
;
2644 /* All done, get rid of second SKB and account for it so
2645 * packet counting does not break.
2647 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
2648 TCP_SKB_CB(skb
)->eor
= TCP_SKB_CB(next_skb
)->eor
;
2650 /* changed transmit queue under us so clear hints */
2651 tcp_clear_retrans_hints_partial(tp
);
2652 if (next_skb
== tp
->retransmit_skb_hint
)
2653 tp
->retransmit_skb_hint
= skb
;
2655 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
2657 tcp_skb_collapse_tstamp(skb
, next_skb
);
2659 sk_wmem_free_skb(sk
, next_skb
);
2663 /* Check if coalescing SKBs is legal. */
2664 static bool tcp_can_collapse(const struct sock
*sk
, const struct sk_buff
*skb
)
2666 if (tcp_skb_pcount(skb
) > 1)
2668 if (skb_cloned(skb
))
2670 if (skb
== tcp_send_head(sk
))
2672 /* Some heuristics for collapsing over SACK'd could be invented */
2673 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2679 /* Collapse packets in the retransmit queue to make to create
2680 * less packets on the wire. This is only done on retransmission.
2682 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
2685 struct tcp_sock
*tp
= tcp_sk(sk
);
2686 struct sk_buff
*skb
= to
, *tmp
;
2689 if (!sysctl_tcp_retrans_collapse
)
2691 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2694 tcp_for_write_queue_from_safe(skb
, tmp
, sk
) {
2695 if (!tcp_can_collapse(sk
, skb
))
2698 if (!tcp_skb_can_collapse_to(to
))
2711 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
2714 if (!tcp_collapse_retrans(sk
, to
))
2719 /* This retransmits one SKB. Policy decisions and retransmit queue
2720 * state updates are done by the caller. Returns non-zero if an
2721 * error occurred which prevented the send.
2723 int __tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int segs
)
2725 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2726 struct tcp_sock
*tp
= tcp_sk(sk
);
2727 unsigned int cur_mss
;
2731 /* Inconclusive MTU probe */
2732 if (icsk
->icsk_mtup
.probe_size
)
2733 icsk
->icsk_mtup
.probe_size
= 0;
2735 /* Do not sent more than we queued. 1/4 is reserved for possible
2736 * copying overhead: fragmentation, tunneling, mangling etc.
2738 if (atomic_read(&sk
->sk_wmem_alloc
) >
2739 min_t(u32
, sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2),
2743 if (skb_still_in_host_queue(sk
, skb
))
2746 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
2747 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
2749 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2753 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
2754 return -EHOSTUNREACH
; /* Routing failure or similar. */
2756 cur_mss
= tcp_current_mss(sk
);
2758 /* If receiver has shrunk his window, and skb is out of
2759 * new window, do not retransmit it. The exception is the
2760 * case, when window is shrunk to zero. In this case
2761 * our retransmit serves as a zero window probe.
2763 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
)) &&
2764 TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
2767 len
= cur_mss
* segs
;
2768 if (skb
->len
> len
) {
2769 if (tcp_fragment(sk
, skb
, len
, cur_mss
, GFP_ATOMIC
))
2770 return -ENOMEM
; /* We'll try again later. */
2772 if (skb_unclone(skb
, GFP_ATOMIC
))
2775 diff
= tcp_skb_pcount(skb
);
2776 tcp_set_skb_tso_segs(skb
, cur_mss
);
2777 diff
-= tcp_skb_pcount(skb
);
2779 tcp_adjust_pcount(sk
, skb
, diff
);
2780 if (skb
->len
< cur_mss
)
2781 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
2784 /* RFC3168, section 6.1.1.1. ECN fallback */
2785 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN_ECN
) == TCPHDR_SYN_ECN
)
2786 tcp_ecn_clear_syn(sk
, skb
);
2788 /* Update global and local TCP statistics. */
2789 segs
= tcp_skb_pcount(skb
);
2790 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
, segs
);
2791 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2792 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
2793 tp
->total_retrans
+= segs
;
2795 /* make sure skb->data is aligned on arches that require it
2796 * and check if ack-trimming & collapsing extended the headroom
2797 * beyond what csum_start can cover.
2799 if (unlikely((NET_IP_ALIGN
&& ((unsigned long)skb
->data
& 3)) ||
2800 skb_headroom(skb
) >= 0xFFFF)) {
2801 struct sk_buff
*nskb
;
2803 skb_mstamp_get(&skb
->skb_mstamp
);
2804 nskb
= __pskb_copy(skb
, MAX_TCP_HEADER
, GFP_ATOMIC
);
2805 err
= nskb
? tcp_transmit_skb(sk
, nskb
, 0, GFP_ATOMIC
) :
2808 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2812 TCP_SKB_CB(skb
)->sacked
|= TCPCB_EVER_RETRANS
;
2813 } else if (err
!= -EBUSY
) {
2814 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRETRANSFAIL
);
2819 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int segs
)
2821 struct tcp_sock
*tp
= tcp_sk(sk
);
2822 int err
= __tcp_retransmit_skb(sk
, skb
, segs
);
2825 #if FASTRETRANS_DEBUG > 0
2826 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2827 net_dbg_ratelimited("retrans_out leaked\n");
2830 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
2831 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2833 /* Save stamp of the first retransmit. */
2834 if (!tp
->retrans_stamp
)
2835 tp
->retrans_stamp
= tcp_skb_timestamp(skb
);
2839 if (tp
->undo_retrans
< 0)
2840 tp
->undo_retrans
= 0;
2841 tp
->undo_retrans
+= tcp_skb_pcount(skb
);
2845 /* This gets called after a retransmit timeout, and the initially
2846 * retransmitted data is acknowledged. It tries to continue
2847 * resending the rest of the retransmit queue, until either
2848 * we've sent it all or the congestion window limit is reached.
2849 * If doing SACK, the first ACK which comes back for a timeout
2850 * based retransmit packet might feed us FACK information again.
2851 * If so, we use it to avoid unnecessarily retransmissions.
2853 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2855 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2856 struct tcp_sock
*tp
= tcp_sk(sk
);
2857 struct sk_buff
*skb
;
2858 struct sk_buff
*hole
= NULL
;
2862 if (!tp
->packets_out
)
2865 if (tp
->retransmit_skb_hint
) {
2866 skb
= tp
->retransmit_skb_hint
;
2868 skb
= tcp_write_queue_head(sk
);
2871 max_segs
= tcp_tso_segs(sk
, tcp_current_mss(sk
));
2872 tcp_for_write_queue_from(skb
, sk
) {
2876 if (skb
== tcp_send_head(sk
))
2878 /* we could do better than to assign each time */
2880 tp
->retransmit_skb_hint
= skb
;
2882 segs
= tp
->snd_cwnd
- tcp_packets_in_flight(tp
);
2885 sacked
= TCP_SKB_CB(skb
)->sacked
;
2886 /* In case tcp_shift_skb_data() have aggregated large skbs,
2887 * we need to make sure not sending too bigs TSO packets
2889 segs
= min_t(int, segs
, max_segs
);
2891 if (tp
->retrans_out
>= tp
->lost_out
) {
2893 } else if (!(sacked
& TCPCB_LOST
)) {
2894 if (!hole
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
2899 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
2900 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
2902 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
2905 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
2908 if (tcp_small_queue_check(sk
, skb
, 1))
2911 if (tcp_retransmit_skb(sk
, skb
, segs
))
2914 NET_ADD_STATS(sock_net(sk
), mib_idx
, tcp_skb_pcount(skb
));
2916 if (tcp_in_cwnd_reduction(sk
))
2917 tp
->prr_out
+= tcp_skb_pcount(skb
);
2919 if (skb
== tcp_write_queue_head(sk
) &&
2920 icsk
->icsk_pending
!= ICSK_TIME_REO_TIMEOUT
)
2921 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2922 inet_csk(sk
)->icsk_rto
,
2927 /* We allow to exceed memory limits for FIN packets to expedite
2928 * connection tear down and (memory) recovery.
2929 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2930 * or even be forced to close flow without any FIN.
2931 * In general, we want to allow one skb per socket to avoid hangs
2932 * with edge trigger epoll()
2934 void sk_forced_mem_schedule(struct sock
*sk
, int size
)
2938 if (size
<= sk
->sk_forward_alloc
)
2940 amt
= sk_mem_pages(size
);
2941 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
2942 sk_memory_allocated_add(sk
, amt
);
2944 if (mem_cgroup_sockets_enabled
&& sk
->sk_memcg
)
2945 mem_cgroup_charge_skmem(sk
->sk_memcg
, amt
);
2948 /* Send a FIN. The caller locks the socket for us.
2949 * We should try to send a FIN packet really hard, but eventually give up.
2951 void tcp_send_fin(struct sock
*sk
)
2953 struct sk_buff
*skb
, *tskb
= tcp_write_queue_tail(sk
);
2954 struct tcp_sock
*tp
= tcp_sk(sk
);
2956 /* Optimization, tack on the FIN if we have one skb in write queue and
2957 * this skb was not yet sent, or we are under memory pressure.
2958 * Note: in the latter case, FIN packet will be sent after a timeout,
2959 * as TCP stack thinks it has already been transmitted.
2961 if (tskb
&& (tcp_send_head(sk
) || tcp_under_memory_pressure(sk
))) {
2963 TCP_SKB_CB(tskb
)->tcp_flags
|= TCPHDR_FIN
;
2964 TCP_SKB_CB(tskb
)->end_seq
++;
2966 if (!tcp_send_head(sk
)) {
2967 /* This means tskb was already sent.
2968 * Pretend we included the FIN on previous transmit.
2969 * We need to set tp->snd_nxt to the value it would have
2970 * if FIN had been sent. This is because retransmit path
2971 * does not change tp->snd_nxt.
2977 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, sk
->sk_allocation
);
2978 if (unlikely(!skb
)) {
2983 skb_reserve(skb
, MAX_TCP_HEADER
);
2984 sk_forced_mem_schedule(sk
, skb
->truesize
);
2985 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2986 tcp_init_nondata_skb(skb
, tp
->write_seq
,
2987 TCPHDR_ACK
| TCPHDR_FIN
);
2988 tcp_queue_skb(sk
, skb
);
2990 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
), TCP_NAGLE_OFF
);
2993 /* We get here when a process closes a file descriptor (either due to
2994 * an explicit close() or as a byproduct of exit()'ing) and there
2995 * was unread data in the receive queue. This behavior is recommended
2996 * by RFC 2525, section 2.17. -DaveM
2998 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
3000 struct sk_buff
*skb
;
3002 /* NOTE: No TCP options attached and we never retransmit this. */
3003 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
3005 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
3009 /* Reserve space for headers and prepare control bits. */
3010 skb_reserve(skb
, MAX_TCP_HEADER
);
3011 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
3012 TCPHDR_ACK
| TCPHDR_RST
);
3013 skb_mstamp_get(&skb
->skb_mstamp
);
3015 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
3016 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
3018 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
3021 /* Send a crossed SYN-ACK during socket establishment.
3022 * WARNING: This routine must only be called when we have already sent
3023 * a SYN packet that crossed the incoming SYN that caused this routine
3024 * to get called. If this assumption fails then the initial rcv_wnd
3025 * and rcv_wscale values will not be correct.
3027 int tcp_send_synack(struct sock
*sk
)
3029 struct sk_buff
*skb
;
3031 skb
= tcp_write_queue_head(sk
);
3032 if (!skb
|| !(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
3033 pr_debug("%s: wrong queue state\n", __func__
);
3036 if (!(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_ACK
)) {
3037 if (skb_cloned(skb
)) {
3038 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
3041 tcp_unlink_write_queue(skb
, sk
);
3042 __skb_header_release(nskb
);
3043 __tcp_add_write_queue_head(sk
, nskb
);
3044 sk_wmem_free_skb(sk
, skb
);
3045 sk
->sk_wmem_queued
+= nskb
->truesize
;
3046 sk_mem_charge(sk
, nskb
->truesize
);
3050 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ACK
;
3051 tcp_ecn_send_synack(sk
, skb
);
3053 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3057 * tcp_make_synack - Prepare a SYN-ACK.
3058 * sk: listener socket
3059 * dst: dst entry attached to the SYNACK
3060 * req: request_sock pointer
3062 * Allocate one skb and build a SYNACK packet.
3063 * @dst is consumed : Caller should not use it again.
3065 struct sk_buff
*tcp_make_synack(const struct sock
*sk
, struct dst_entry
*dst
,
3066 struct request_sock
*req
,
3067 struct tcp_fastopen_cookie
*foc
,
3068 enum tcp_synack_type synack_type
)
3070 struct inet_request_sock
*ireq
= inet_rsk(req
);
3071 const struct tcp_sock
*tp
= tcp_sk(sk
);
3072 struct tcp_md5sig_key
*md5
= NULL
;
3073 struct tcp_out_options opts
;
3074 struct sk_buff
*skb
;
3075 int tcp_header_size
;
3079 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
3080 if (unlikely(!skb
)) {
3084 /* Reserve space for headers. */
3085 skb_reserve(skb
, MAX_TCP_HEADER
);
3087 switch (synack_type
) {
3088 case TCP_SYNACK_NORMAL
:
3089 skb_set_owner_w(skb
, req_to_sk(req
));
3091 case TCP_SYNACK_COOKIE
:
3092 /* Under synflood, we do not attach skb to a socket,
3093 * to avoid false sharing.
3096 case TCP_SYNACK_FASTOPEN
:
3097 /* sk is a const pointer, because we want to express multiple
3098 * cpu might call us concurrently.
3099 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3101 skb_set_owner_w(skb
, (struct sock
*)sk
);
3104 skb_dst_set(skb
, dst
);
3106 mss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
3108 memset(&opts
, 0, sizeof(opts
));
3109 #ifdef CONFIG_SYN_COOKIES
3110 if (unlikely(req
->cookie_ts
))
3111 skb
->skb_mstamp
.stamp_jiffies
= cookie_init_timestamp(req
);
3114 skb_mstamp_get(&skb
->skb_mstamp
);
3116 #ifdef CONFIG_TCP_MD5SIG
3118 md5
= tcp_rsk(req
)->af_specific
->req_md5_lookup(sk
, req_to_sk(req
));
3120 skb_set_hash(skb
, tcp_rsk(req
)->txhash
, PKT_HASH_TYPE_L4
);
3121 tcp_header_size
= tcp_synack_options(req
, mss
, skb
, &opts
, md5
, foc
) +
3124 skb_push(skb
, tcp_header_size
);
3125 skb_reset_transport_header(skb
);
3127 th
= (struct tcphdr
*)skb
->data
;
3128 memset(th
, 0, sizeof(struct tcphdr
));
3131 tcp_ecn_make_synack(req
, th
);
3132 th
->source
= htons(ireq
->ir_num
);
3133 th
->dest
= ireq
->ir_rmt_port
;
3134 /* Setting of flags are superfluous here for callers (and ECE is
3135 * not even correctly set)
3137 tcp_init_nondata_skb(skb
, tcp_rsk(req
)->snt_isn
,
3138 TCPHDR_SYN
| TCPHDR_ACK
);
3140 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
3141 /* XXX data is queued and acked as is. No buffer/window check */
3142 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_nxt
);
3144 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3145 th
->window
= htons(min(req
->rsk_rcv_wnd
, 65535U));
3146 tcp_options_write((__be32
*)(th
+ 1), NULL
, &opts
);
3147 th
->doff
= (tcp_header_size
>> 2);
3148 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
);
3150 #ifdef CONFIG_TCP_MD5SIG
3151 /* Okay, we have all we need - do the md5 hash if needed */
3153 tcp_rsk(req
)->af_specific
->calc_md5_hash(opts
.hash_location
,
3154 md5
, req_to_sk(req
), skb
);
3158 /* Do not fool tcpdump (if any), clean our debris */
3162 EXPORT_SYMBOL(tcp_make_synack
);
3164 static void tcp_ca_dst_init(struct sock
*sk
, const struct dst_entry
*dst
)
3166 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3167 const struct tcp_congestion_ops
*ca
;
3168 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
3170 if (ca_key
== TCP_CA_UNSPEC
)
3174 ca
= tcp_ca_find_key(ca_key
);
3175 if (likely(ca
&& try_module_get(ca
->owner
))) {
3176 module_put(icsk
->icsk_ca_ops
->owner
);
3177 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
3178 icsk
->icsk_ca_ops
= ca
;
3183 /* Do all connect socket setups that can be done AF independent. */
3184 static void tcp_connect_init(struct sock
*sk
)
3186 const struct dst_entry
*dst
= __sk_dst_get(sk
);
3187 struct tcp_sock
*tp
= tcp_sk(sk
);
3190 /* We'll fix this up when we get a response from the other end.
3191 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3193 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
3194 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
3196 #ifdef CONFIG_TCP_MD5SIG
3197 if (tp
->af_specific
->md5_lookup(sk
, sk
))
3198 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
3201 /* If user gave his TCP_MAXSEG, record it to clamp */
3202 if (tp
->rx_opt
.user_mss
)
3203 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3206 tcp_sync_mss(sk
, dst_mtu(dst
));
3208 tcp_ca_dst_init(sk
, dst
);
3210 if (!tp
->window_clamp
)
3211 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
3212 tp
->advmss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
3214 tcp_initialize_rcv_mss(sk
);
3216 /* limit the window selection if the user enforce a smaller rx buffer */
3217 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
3218 (tp
->window_clamp
> tcp_full_space(sk
) || tp
->window_clamp
== 0))
3219 tp
->window_clamp
= tcp_full_space(sk
);
3221 tcp_select_initial_window(tcp_full_space(sk
),
3222 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
3225 sysctl_tcp_window_scaling
,
3227 dst_metric(dst
, RTAX_INITRWND
));
3229 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
3230 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
3233 sock_reset_flag(sk
, SOCK_DONE
);
3236 tp
->snd_una
= tp
->write_seq
;
3237 tp
->snd_sml
= tp
->write_seq
;
3238 tp
->snd_up
= tp
->write_seq
;
3239 tp
->snd_nxt
= tp
->write_seq
;
3241 if (likely(!tp
->repair
))
3244 tp
->rcv_tstamp
= tcp_time_stamp
;
3245 tp
->rcv_wup
= tp
->rcv_nxt
;
3246 tp
->copied_seq
= tp
->rcv_nxt
;
3248 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
3249 inet_csk(sk
)->icsk_retransmits
= 0;
3250 tcp_clear_retrans(tp
);
3253 static void tcp_connect_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
3255 struct tcp_sock
*tp
= tcp_sk(sk
);
3256 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
3258 tcb
->end_seq
+= skb
->len
;
3259 __skb_header_release(skb
);
3260 __tcp_add_write_queue_tail(sk
, skb
);
3261 sk
->sk_wmem_queued
+= skb
->truesize
;
3262 sk_mem_charge(sk
, skb
->truesize
);
3263 tp
->write_seq
= tcb
->end_seq
;
3264 tp
->packets_out
+= tcp_skb_pcount(skb
);
3267 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3268 * queue a data-only packet after the regular SYN, such that regular SYNs
3269 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3270 * only the SYN sequence, the data are retransmitted in the first ACK.
3271 * If cookie is not cached or other error occurs, falls back to send a
3272 * regular SYN with Fast Open cookie request option.
3274 static int tcp_send_syn_data(struct sock
*sk
, struct sk_buff
*syn
)
3276 struct tcp_sock
*tp
= tcp_sk(sk
);
3277 struct tcp_fastopen_request
*fo
= tp
->fastopen_req
;
3279 struct sk_buff
*syn_data
;
3281 tp
->rx_opt
.mss_clamp
= tp
->advmss
; /* If MSS is not cached */
3282 if (!tcp_fastopen_cookie_check(sk
, &tp
->rx_opt
.mss_clamp
, &fo
->cookie
))
3285 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3286 * user-MSS. Reserve maximum option space for middleboxes that add
3287 * private TCP options. The cost is reduced data space in SYN :(
3289 tp
->rx_opt
.mss_clamp
= tcp_mss_clamp(tp
, tp
->rx_opt
.mss_clamp
);
3291 space
= __tcp_mtu_to_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
) -
3292 MAX_TCP_OPTION_SPACE
;
3294 space
= min_t(size_t, space
, fo
->size
);
3296 /* limit to order-0 allocations */
3297 space
= min_t(size_t, space
, SKB_MAX_HEAD(MAX_TCP_HEADER
));
3299 syn_data
= sk_stream_alloc_skb(sk
, space
, sk
->sk_allocation
, false);
3302 syn_data
->ip_summed
= CHECKSUM_PARTIAL
;
3303 memcpy(syn_data
->cb
, syn
->cb
, sizeof(syn
->cb
));
3305 int copied
= copy_from_iter(skb_put(syn_data
, space
), space
,
3306 &fo
->data
->msg_iter
);
3307 if (unlikely(!copied
)) {
3308 kfree_skb(syn_data
);
3311 if (copied
!= space
) {
3312 skb_trim(syn_data
, copied
);
3316 /* No more data pending in inet_wait_for_connect() */
3317 if (space
== fo
->size
)
3321 tcp_connect_queue_skb(sk
, syn_data
);
3323 tcp_chrono_start(sk
, TCP_CHRONO_BUSY
);
3325 err
= tcp_transmit_skb(sk
, syn_data
, 1, sk
->sk_allocation
);
3327 syn
->skb_mstamp
= syn_data
->skb_mstamp
;
3329 /* Now full SYN+DATA was cloned and sent (or not),
3330 * remove the SYN from the original skb (syn_data)
3331 * we keep in write queue in case of a retransmit, as we
3332 * also have the SYN packet (with no data) in the same queue.
3334 TCP_SKB_CB(syn_data
)->seq
++;
3335 TCP_SKB_CB(syn_data
)->tcp_flags
= TCPHDR_ACK
| TCPHDR_PSH
;
3337 tp
->syn_data
= (fo
->copied
> 0);
3338 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
);
3343 /* Send a regular SYN with Fast Open cookie request option */
3344 if (fo
->cookie
.len
> 0)
3346 err
= tcp_transmit_skb(sk
, syn
, 1, sk
->sk_allocation
);
3348 tp
->syn_fastopen
= 0;
3350 fo
->cookie
.len
= -1; /* Exclude Fast Open option for SYN retries */
3354 /* Build a SYN and send it off. */
3355 int tcp_connect(struct sock
*sk
)
3357 struct tcp_sock
*tp
= tcp_sk(sk
);
3358 struct sk_buff
*buff
;
3361 tcp_connect_init(sk
);
3363 if (unlikely(tp
->repair
)) {
3364 tcp_finish_connect(sk
, NULL
);
3368 buff
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
, true);
3369 if (unlikely(!buff
))
3372 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPHDR_SYN
);
3373 tp
->retrans_stamp
= tcp_time_stamp
;
3374 tcp_connect_queue_skb(sk
, buff
);
3375 tcp_ecn_send_syn(sk
, buff
);
3377 /* Send off SYN; include data in Fast Open. */
3378 err
= tp
->fastopen_req
? tcp_send_syn_data(sk
, buff
) :
3379 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
3380 if (err
== -ECONNREFUSED
)
3383 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3384 * in order to make this packet get counted in tcpOutSegs.
3386 tp
->snd_nxt
= tp
->write_seq
;
3387 tp
->pushed_seq
= tp
->write_seq
;
3388 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
3390 /* Timer for repeating the SYN until an answer. */
3391 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3392 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3395 EXPORT_SYMBOL(tcp_connect
);
3397 /* Send out a delayed ack, the caller does the policy checking
3398 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3401 void tcp_send_delayed_ack(struct sock
*sk
)
3403 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3404 int ato
= icsk
->icsk_ack
.ato
;
3405 unsigned long timeout
;
3407 tcp_ca_event(sk
, CA_EVENT_DELAYED_ACK
);
3409 if (ato
> TCP_DELACK_MIN
) {
3410 const struct tcp_sock
*tp
= tcp_sk(sk
);
3411 int max_ato
= HZ
/ 2;
3413 if (icsk
->icsk_ack
.pingpong
||
3414 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
3415 max_ato
= TCP_DELACK_MAX
;
3417 /* Slow path, intersegment interval is "high". */
3419 /* If some rtt estimate is known, use it to bound delayed ack.
3420 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3424 int rtt
= max_t(int, usecs_to_jiffies(tp
->srtt_us
>> 3),
3431 ato
= min(ato
, max_ato
);
3434 /* Stay within the limit we were given */
3435 timeout
= jiffies
+ ato
;
3437 /* Use new timeout only if there wasn't a older one earlier. */
3438 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
3439 /* If delack timer was blocked or is about to expire,
3442 if (icsk
->icsk_ack
.blocked
||
3443 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
3448 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
3449 timeout
= icsk
->icsk_ack
.timeout
;
3451 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
3452 icsk
->icsk_ack
.timeout
= timeout
;
3453 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
3456 /* This routine sends an ack and also updates the window. */
3457 void tcp_send_ack(struct sock
*sk
)
3459 struct sk_buff
*buff
;
3461 /* If we have been reset, we may not send again. */
3462 if (sk
->sk_state
== TCP_CLOSE
)
3465 tcp_ca_event(sk
, CA_EVENT_NON_DELAYED_ACK
);
3467 /* We are not putting this on the write queue, so
3468 * tcp_transmit_skb() will set the ownership to this
3471 buff
= alloc_skb(MAX_TCP_HEADER
,
3472 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3473 if (unlikely(!buff
)) {
3474 inet_csk_schedule_ack(sk
);
3475 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
3476 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3477 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3481 /* Reserve space for headers and prepare control bits. */
3482 skb_reserve(buff
, MAX_TCP_HEADER
);
3483 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPHDR_ACK
);
3485 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3487 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3489 skb_set_tcp_pure_ack(buff
);
3491 /* Send it off, this clears delayed acks for us. */
3492 skb_mstamp_get(&buff
->skb_mstamp
);
3493 tcp_transmit_skb(sk
, buff
, 0, (__force gfp_t
)0);
3495 EXPORT_SYMBOL_GPL(tcp_send_ack
);
3497 /* This routine sends a packet with an out of date sequence
3498 * number. It assumes the other end will try to ack it.
3500 * Question: what should we make while urgent mode?
3501 * 4.4BSD forces sending single byte of data. We cannot send
3502 * out of window data, because we have SND.NXT==SND.MAX...
3504 * Current solution: to send TWO zero-length segments in urgent mode:
3505 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3506 * out-of-date with SND.UNA-1 to probe window.
3508 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
, int mib
)
3510 struct tcp_sock
*tp
= tcp_sk(sk
);
3511 struct sk_buff
*skb
;
3513 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3514 skb
= alloc_skb(MAX_TCP_HEADER
,
3515 sk_gfp_mask(sk
, GFP_ATOMIC
| __GFP_NOWARN
));
3519 /* Reserve space for headers and set control bits. */
3520 skb_reserve(skb
, MAX_TCP_HEADER
);
3521 /* Use a previous sequence. This should cause the other
3522 * end to send an ack. Don't queue or clone SKB, just
3525 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPHDR_ACK
);
3526 skb_mstamp_get(&skb
->skb_mstamp
);
3527 NET_INC_STATS(sock_net(sk
), mib
);
3528 return tcp_transmit_skb(sk
, skb
, 0, (__force gfp_t
)0);
3531 void tcp_send_window_probe(struct sock
*sk
)
3533 if (sk
->sk_state
== TCP_ESTABLISHED
) {
3534 tcp_sk(sk
)->snd_wl1
= tcp_sk(sk
)->rcv_nxt
- 1;
3535 tcp_xmit_probe_skb(sk
, 0, LINUX_MIB_TCPWINPROBE
);
3539 /* Initiate keepalive or window probe from timer. */
3540 int tcp_write_wakeup(struct sock
*sk
, int mib
)
3542 struct tcp_sock
*tp
= tcp_sk(sk
);
3543 struct sk_buff
*skb
;
3545 if (sk
->sk_state
== TCP_CLOSE
)
3548 skb
= tcp_send_head(sk
);
3549 if (skb
&& before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
3551 unsigned int mss
= tcp_current_mss(sk
);
3552 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
3554 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
3555 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
3557 /* We are probing the opening of a window
3558 * but the window size is != 0
3559 * must have been a result SWS avoidance ( sender )
3561 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
3563 seg_size
= min(seg_size
, mss
);
3564 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3565 if (tcp_fragment(sk
, skb
, seg_size
, mss
, GFP_ATOMIC
))
3567 } else if (!tcp_skb_pcount(skb
))
3568 tcp_set_skb_tso_segs(skb
, mss
);
3570 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3571 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3573 tcp_event_new_data_sent(sk
, skb
);
3576 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
3577 tcp_xmit_probe_skb(sk
, 1, mib
);
3578 return tcp_xmit_probe_skb(sk
, 0, mib
);
3582 /* A window probe timeout has occurred. If window is not closed send
3583 * a partial packet else a zero probe.
3585 void tcp_send_probe0(struct sock
*sk
)
3587 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3588 struct tcp_sock
*tp
= tcp_sk(sk
);
3589 struct net
*net
= sock_net(sk
);
3590 unsigned long probe_max
;
3593 err
= tcp_write_wakeup(sk
, LINUX_MIB_TCPWINPROBE
);
3595 if (tp
->packets_out
|| !tcp_send_head(sk
)) {
3596 /* Cancel probe timer, if it is not required. */
3597 icsk
->icsk_probes_out
= 0;
3598 icsk
->icsk_backoff
= 0;
3603 if (icsk
->icsk_backoff
< net
->ipv4
.sysctl_tcp_retries2
)
3604 icsk
->icsk_backoff
++;
3605 icsk
->icsk_probes_out
++;
3606 probe_max
= TCP_RTO_MAX
;
3608 /* If packet was not sent due to local congestion,
3609 * do not backoff and do not remember icsk_probes_out.
3610 * Let local senders to fight for local resources.
3612 * Use accumulated backoff yet.
3614 if (!icsk
->icsk_probes_out
)
3615 icsk
->icsk_probes_out
= 1;
3616 probe_max
= TCP_RESOURCE_PROBE_INTERVAL
;
3618 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3619 tcp_probe0_when(sk
, probe_max
),
3623 int tcp_rtx_synack(const struct sock
*sk
, struct request_sock
*req
)
3625 const struct tcp_request_sock_ops
*af_ops
= tcp_rsk(req
)->af_specific
;
3629 tcp_rsk(req
)->txhash
= net_tx_rndhash();
3630 res
= af_ops
->send_synack(sk
, NULL
, &fl
, req
, NULL
, TCP_SYNACK_NORMAL
);
3632 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
3633 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3634 if (unlikely(tcp_passive_fastopen(sk
)))
3635 tcp_sk(sk
)->total_retrans
++;
3639 EXPORT_SYMBOL(tcp_rtx_synack
);