2 * Intel IXP4xx Ethernet driver for Linux
4 * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
10 * Ethernet port config (0x00 is not present on IXP42X):
12 * logical port 0x00 0x10 0x20
13 * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
14 * physical PortId 2 0 1
16 * RX-free queue 26 27 28
17 * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
21 * bits 0 -> 1 - NPE ID (RX and TX-done)
22 * bits 0 -> 2 - priority (TX, per 802.1D)
23 * bits 3 -> 4 - port ID (user-set?)
24 * bits 5 -> 31 - physical descriptor address
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/dmapool.h>
30 #include <linux/etherdevice.h>
32 #include <linux/kernel.h>
33 #include <linux/mii.h>
34 #include <linux/platform_device.h>
36 #include <mach/qmgr.h>
38 #define DEBUG_QUEUES 0
42 #define DEBUG_PKT_BYTES 0
46 #define DRV_NAME "ixp4xx_eth"
50 #define RX_DESCS 64 /* also length of all RX queues */
51 #define TX_DESCS 16 /* also length of all TX queues */
52 #define TXDONE_QUEUE_LEN 64 /* dwords */
54 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
55 #define REGS_SIZE 0x1000
56 #define MAX_MRU 1536 /* 0x600 */
57 #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
59 #define NAPI_WEIGHT 16
60 #define MDIO_INTERVAL (3 * HZ)
61 #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
62 #define MAX_MII_RESET_RETRIES 100 /* mdio_read() cycles, typically 4 */
63 #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
65 #define NPE_ID(port_id) ((port_id) >> 4)
66 #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
67 #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
68 #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
69 #define TXDONE_QUEUE 31
71 /* TX Control Registers */
72 #define TX_CNTRL0_TX_EN 0x01
73 #define TX_CNTRL0_HALFDUPLEX 0x02
74 #define TX_CNTRL0_RETRY 0x04
75 #define TX_CNTRL0_PAD_EN 0x08
76 #define TX_CNTRL0_APPEND_FCS 0x10
77 #define TX_CNTRL0_2DEFER 0x20
78 #define TX_CNTRL0_RMII 0x40 /* reduced MII */
79 #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
81 /* RX Control Registers */
82 #define RX_CNTRL0_RX_EN 0x01
83 #define RX_CNTRL0_PADSTRIP_EN 0x02
84 #define RX_CNTRL0_SEND_FCS 0x04
85 #define RX_CNTRL0_PAUSE_EN 0x08
86 #define RX_CNTRL0_LOOP_EN 0x10
87 #define RX_CNTRL0_ADDR_FLTR_EN 0x20
88 #define RX_CNTRL0_RX_RUNT_EN 0x40
89 #define RX_CNTRL0_BCAST_DIS 0x80
90 #define RX_CNTRL1_DEFER_EN 0x01
92 /* Core Control Register */
93 #define CORE_RESET 0x01
94 #define CORE_RX_FIFO_FLUSH 0x02
95 #define CORE_TX_FIFO_FLUSH 0x04
96 #define CORE_SEND_JAM 0x08
97 #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
99 #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
100 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
102 #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
103 #define DEFAULT_CORE_CNTRL CORE_MDC_EN
106 /* NPE message codes */
107 #define NPE_GETSTATUS 0x00
108 #define NPE_EDB_SETPORTADDRESS 0x01
109 #define NPE_EDB_GETMACADDRESSDATABASE 0x02
110 #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
111 #define NPE_GETSTATS 0x04
112 #define NPE_RESETSTATS 0x05
113 #define NPE_SETMAXFRAMELENGTHS 0x06
114 #define NPE_VLAN_SETRXTAGMODE 0x07
115 #define NPE_VLAN_SETDEFAULTRXVID 0x08
116 #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
117 #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
118 #define NPE_VLAN_SETRXQOSENTRY 0x0B
119 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
120 #define NPE_STP_SETBLOCKINGSTATE 0x0D
121 #define NPE_FW_SETFIREWALLMODE 0x0E
122 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
123 #define NPE_PC_SETAPMACTABLE 0x11
124 #define NPE_SETLOOPBACK_MODE 0x12
125 #define NPE_PC_SETBSSIDTABLE 0x13
126 #define NPE_ADDRESS_FILTER_CONFIG 0x14
127 #define NPE_APPENDFCSCONFIG 0x15
128 #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
129 #define NPE_MAC_RECOVERY_START 0x17
133 typedef struct sk_buff buffer_t
;
134 #define free_buffer dev_kfree_skb
135 #define free_buffer_irq dev_kfree_skb_irq
137 typedef void buffer_t
;
138 #define free_buffer kfree
139 #define free_buffer_irq kfree
143 u32 tx_control
[2], __res1
[2]; /* 000 */
144 u32 rx_control
[2], __res2
[2]; /* 010 */
145 u32 random_seed
, __res3
[3]; /* 020 */
146 u32 partial_empty_threshold
, __res4
; /* 030 */
147 u32 partial_full_threshold
, __res5
; /* 038 */
148 u32 tx_start_bytes
, __res6
[3]; /* 040 */
149 u32 tx_deferral
, rx_deferral
, __res7
[2];/* 050 */
150 u32 tx_2part_deferral
[2], __res8
[2]; /* 060 */
151 u32 slot_time
, __res9
[3]; /* 070 */
152 u32 mdio_command
[4]; /* 080 */
153 u32 mdio_status
[4]; /* 090 */
154 u32 mcast_mask
[6], __res10
[2]; /* 0A0 */
155 u32 mcast_addr
[6], __res11
[2]; /* 0C0 */
156 u32 int_clock_threshold
, __res12
[3]; /* 0E0 */
157 u32 hw_addr
[6], __res13
[61]; /* 0F0 */
158 u32 core_control
; /* 1FC */
162 struct resource
*mem_res
;
163 struct eth_regs __iomem
*regs
;
165 struct net_device
*netdev
;
166 struct napi_struct napi
;
167 struct net_device_stats stat
;
168 struct mii_if_info mii
;
169 struct delayed_work mdio_thread
;
170 struct eth_plat_info
*plat
;
171 buffer_t
*rx_buff_tab
[RX_DESCS
], *tx_buff_tab
[TX_DESCS
];
172 struct desc
*desc_tab
; /* coherent */
174 int id
; /* logical port ID */
178 /* NPE message structure */
181 u8 cmd
, eth_id
, byte2
, byte3
;
182 u8 byte4
, byte5
, byte6
, byte7
;
184 u8 byte3
, byte2
, eth_id
, cmd
;
185 u8 byte7
, byte6
, byte5
, byte4
;
189 /* Ethernet packet descriptor */
191 u32 next
; /* pointer to next buffer, unused */
194 u16 buf_len
; /* buffer length */
195 u16 pkt_len
; /* packet length */
196 u32 data
; /* pointer to data buffer in RAM */
204 u16 pkt_len
; /* packet length */
205 u16 buf_len
; /* buffer length */
206 u32 data
; /* pointer to data buffer in RAM */
216 u8 dst_mac_0
, dst_mac_1
, dst_mac_2
, dst_mac_3
;
217 u8 dst_mac_4
, dst_mac_5
, src_mac_0
, src_mac_1
;
218 u8 src_mac_2
, src_mac_3
, src_mac_4
, src_mac_5
;
220 u8 dst_mac_3
, dst_mac_2
, dst_mac_1
, dst_mac_0
;
221 u8 src_mac_1
, src_mac_0
, dst_mac_5
, dst_mac_4
;
222 u8 src_mac_5
, src_mac_4
, src_mac_3
, src_mac_2
;
227 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
228 (n) * sizeof(struct desc))
229 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
231 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
232 ((n) + RX_DESCS) * sizeof(struct desc))
233 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
236 static inline void memcpy_swab32(u32
*dest
, u32
*src
, int cnt
)
239 for (i
= 0; i
< cnt
; i
++)
240 dest
[i
] = swab32(src
[i
]);
244 static spinlock_t mdio_lock
;
245 static struct eth_regs __iomem
*mdio_regs
; /* mdio command and status only */
246 static int ports_open
;
247 static struct port
*npe_port_tab
[MAX_NPES
];
248 static struct dma_pool
*dma_pool
;
251 static u16
mdio_cmd(struct net_device
*dev
, int phy_id
, int location
,
256 if (__raw_readl(&mdio_regs
->mdio_command
[3]) & 0x80) {
257 printk(KERN_ERR
"%s: MII not ready to transmit\n", dev
->name
);
262 __raw_writel(cmd
& 0xFF, &mdio_regs
->mdio_command
[0]);
263 __raw_writel(cmd
>> 8, &mdio_regs
->mdio_command
[1]);
265 __raw_writel(((phy_id
<< 5) | location
) & 0xFF,
266 &mdio_regs
->mdio_command
[2]);
267 __raw_writel((phy_id
>> 3) | (write
<< 2) | 0x80 /* GO */,
268 &mdio_regs
->mdio_command
[3]);
270 while ((cycles
< MAX_MDIO_RETRIES
) &&
271 (__raw_readl(&mdio_regs
->mdio_command
[3]) & 0x80)) {
276 if (cycles
== MAX_MDIO_RETRIES
) {
277 printk(KERN_ERR
"%s: MII write failed\n", dev
->name
);
282 printk(KERN_DEBUG
"%s: mdio_cmd() took %i cycles\n", dev
->name
,
289 if (__raw_readl(&mdio_regs
->mdio_status
[3]) & 0x80) {
290 printk(KERN_ERR
"%s: MII read failed\n", dev
->name
);
294 return (__raw_readl(&mdio_regs
->mdio_status
[0]) & 0xFF) |
295 (__raw_readl(&mdio_regs
->mdio_status
[1]) << 8);
298 static int mdio_read(struct net_device
*dev
, int phy_id
, int location
)
303 spin_lock_irqsave(&mdio_lock
, flags
);
304 val
= mdio_cmd(dev
, phy_id
, location
, 0, 0);
305 spin_unlock_irqrestore(&mdio_lock
, flags
);
309 static void mdio_write(struct net_device
*dev
, int phy_id
, int location
,
314 spin_lock_irqsave(&mdio_lock
, flags
);
315 mdio_cmd(dev
, phy_id
, location
, 1, val
);
316 spin_unlock_irqrestore(&mdio_lock
, flags
);
319 static void phy_reset(struct net_device
*dev
, int phy_id
)
321 struct port
*port
= netdev_priv(dev
);
324 mdio_write(dev
, phy_id
, MII_BMCR
, port
->mii_bmcr
| BMCR_RESET
);
326 while (cycles
< MAX_MII_RESET_RETRIES
) {
327 if (!(mdio_read(dev
, phy_id
, MII_BMCR
) & BMCR_RESET
)) {
329 printk(KERN_DEBUG
"%s: phy_reset() took %i cycles\n",
338 printk(KERN_ERR
"%s: MII reset failed\n", dev
->name
);
341 static void eth_set_duplex(struct port
*port
)
343 if (port
->mii
.full_duplex
)
344 __raw_writel(DEFAULT_TX_CNTRL0
& ~TX_CNTRL0_HALFDUPLEX
,
345 &port
->regs
->tx_control
[0]);
347 __raw_writel(DEFAULT_TX_CNTRL0
| TX_CNTRL0_HALFDUPLEX
,
348 &port
->regs
->tx_control
[0]);
352 static void phy_check_media(struct port
*port
, int init
)
354 if (mii_check_media(&port
->mii
, 1, init
))
355 eth_set_duplex(port
);
356 if (port
->mii
.force_media
) { /* mii_check_media() doesn't work */
357 struct net_device
*dev
= port
->netdev
;
358 int cur_link
= mii_link_ok(&port
->mii
);
359 int prev_link
= netif_carrier_ok(dev
);
361 if (!prev_link
&& cur_link
) {
362 printk(KERN_INFO
"%s: link up\n", dev
->name
);
363 netif_carrier_on(dev
);
364 } else if (prev_link
&& !cur_link
) {
365 printk(KERN_INFO
"%s: link down\n", dev
->name
);
366 netif_carrier_off(dev
);
372 static void mdio_thread(struct work_struct
*work
)
374 struct port
*port
= container_of(work
, struct port
, mdio_thread
.work
);
376 phy_check_media(port
, 0);
377 schedule_delayed_work(&port
->mdio_thread
, MDIO_INTERVAL
);
381 static inline void debug_pkt(struct net_device
*dev
, const char *func
,
387 printk(KERN_DEBUG
"%s: %s(%i) ", dev
->name
, func
, len
);
388 for (i
= 0; i
< len
; i
++) {
389 if (i
>= DEBUG_PKT_BYTES
)
392 ((i
== 6) || (i
== 12) || (i
>= 14)) ? " " : "",
400 static inline void debug_desc(u32 phys
, struct desc
*desc
)
403 printk(KERN_DEBUG
"%X: %X %3X %3X %08X %2X < %2X %4X %X"
404 " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
405 phys
, desc
->next
, desc
->buf_len
, desc
->pkt_len
,
406 desc
->data
, desc
->dest_id
, desc
->src_id
, desc
->flags
,
407 desc
->qos
, desc
->padlen
, desc
->vlan_tci
,
408 desc
->dst_mac_0
, desc
->dst_mac_1
, desc
->dst_mac_2
,
409 desc
->dst_mac_3
, desc
->dst_mac_4
, desc
->dst_mac_5
,
410 desc
->src_mac_0
, desc
->src_mac_1
, desc
->src_mac_2
,
411 desc
->src_mac_3
, desc
->src_mac_4
, desc
->src_mac_5
);
415 static inline void debug_queue(unsigned int queue
, int is_get
, u32 phys
)
422 { TX_QUEUE(0x10), "TX#0 " },
423 { TX_QUEUE(0x20), "TX#1 " },
424 { TX_QUEUE(0x00), "TX#2 " },
425 { RXFREE_QUEUE(0x10), "RX-free#0 " },
426 { RXFREE_QUEUE(0x20), "RX-free#1 " },
427 { RXFREE_QUEUE(0x00), "RX-free#2 " },
428 { TXDONE_QUEUE
, "TX-done " },
432 for (i
= 0; i
< ARRAY_SIZE(names
); i
++)
433 if (names
[i
].queue
== queue
)
436 printk(KERN_DEBUG
"Queue %i %s%s %X\n", queue
,
437 i
< ARRAY_SIZE(names
) ? names
[i
].name
: "",
438 is_get
? "->" : "<-", phys
);
442 static inline u32
queue_get_entry(unsigned int queue
)
444 u32 phys
= qmgr_get_entry(queue
);
445 debug_queue(queue
, 1, phys
);
449 static inline int queue_get_desc(unsigned int queue
, struct port
*port
,
452 u32 phys
, tab_phys
, n_desc
;
455 if (!(phys
= queue_get_entry(queue
)))
458 phys
&= ~0x1F; /* mask out non-address bits */
459 tab_phys
= is_tx
? tx_desc_phys(port
, 0) : rx_desc_phys(port
, 0);
460 tab
= is_tx
? tx_desc_ptr(port
, 0) : rx_desc_ptr(port
, 0);
461 n_desc
= (phys
- tab_phys
) / sizeof(struct desc
);
462 BUG_ON(n_desc
>= (is_tx
? TX_DESCS
: RX_DESCS
));
463 debug_desc(phys
, &tab
[n_desc
]);
464 BUG_ON(tab
[n_desc
].next
);
468 static inline void queue_put_desc(unsigned int queue
, u32 phys
,
471 debug_queue(queue
, 0, phys
);
472 debug_desc(phys
, desc
);
474 qmgr_put_entry(queue
, phys
);
475 BUG_ON(qmgr_stat_overflow(queue
));
479 static inline void dma_unmap_tx(struct port
*port
, struct desc
*desc
)
482 dma_unmap_single(&port
->netdev
->dev
, desc
->data
,
483 desc
->buf_len
, DMA_TO_DEVICE
);
485 dma_unmap_single(&port
->netdev
->dev
, desc
->data
& ~3,
486 ALIGN((desc
->data
& 3) + desc
->buf_len
, 4),
492 static void eth_rx_irq(void *pdev
)
494 struct net_device
*dev
= pdev
;
495 struct port
*port
= netdev_priv(dev
);
498 printk(KERN_DEBUG
"%s: eth_rx_irq\n", dev
->name
);
500 qmgr_disable_irq(port
->plat
->rxq
);
501 netif_rx_schedule(dev
, &port
->napi
);
504 static int eth_poll(struct napi_struct
*napi
, int budget
)
506 struct port
*port
= container_of(napi
, struct port
, napi
);
507 struct net_device
*dev
= port
->netdev
;
508 unsigned int rxq
= port
->plat
->rxq
, rxfreeq
= RXFREE_QUEUE(port
->id
);
512 printk(KERN_DEBUG
"%s: eth_poll\n", dev
->name
);
515 while (received
< budget
) {
520 struct sk_buff
*temp
;
524 if ((n
= queue_get_desc(rxq
, port
, 0)) < 0) {
526 printk(KERN_DEBUG
"%s: eth_poll netif_rx_complete\n",
529 netif_rx_complete(dev
, napi
);
530 qmgr_enable_irq(rxq
);
531 if (!qmgr_stat_empty(rxq
) &&
532 netif_rx_reschedule(dev
, napi
)) {
534 printk(KERN_DEBUG
"%s: eth_poll"
535 " netif_rx_reschedule successed\n",
538 qmgr_disable_irq(rxq
);
542 printk(KERN_DEBUG
"%s: eth_poll all done\n",
545 return received
; /* all work done */
548 desc
= rx_desc_ptr(port
, n
);
551 if ((skb
= netdev_alloc_skb(dev
, RX_BUFF_SIZE
))) {
552 phys
= dma_map_single(&dev
->dev
, skb
->data
,
553 RX_BUFF_SIZE
, DMA_FROM_DEVICE
);
554 if (dma_mapping_error(&dev
->dev
, phys
)) {
560 skb
= netdev_alloc_skb(dev
,
561 ALIGN(NET_IP_ALIGN
+ desc
->pkt_len
, 4));
565 port
->stat
.rx_dropped
++;
566 /* put the desc back on RX-ready queue */
567 desc
->buf_len
= MAX_MRU
;
569 queue_put_desc(rxfreeq
, rx_desc_phys(port
, n
), desc
);
573 /* process received frame */
576 skb
= port
->rx_buff_tab
[n
];
577 dma_unmap_single(&dev
->dev
, desc
->data
- NET_IP_ALIGN
,
578 RX_BUFF_SIZE
, DMA_FROM_DEVICE
);
580 dma_sync_single(&dev
->dev
, desc
->data
- NET_IP_ALIGN
,
581 RX_BUFF_SIZE
, DMA_FROM_DEVICE
);
582 memcpy_swab32((u32
*)skb
->data
, (u32
*)port
->rx_buff_tab
[n
],
583 ALIGN(NET_IP_ALIGN
+ desc
->pkt_len
, 4) / 4);
585 skb_reserve(skb
, NET_IP_ALIGN
);
586 skb_put(skb
, desc
->pkt_len
);
588 debug_pkt(dev
, "eth_poll", skb
->data
, skb
->len
);
590 skb
->protocol
= eth_type_trans(skb
, dev
);
591 dev
->last_rx
= jiffies
;
592 port
->stat
.rx_packets
++;
593 port
->stat
.rx_bytes
+= skb
->len
;
594 netif_receive_skb(skb
);
596 /* put the new buffer on RX-free queue */
598 port
->rx_buff_tab
[n
] = temp
;
599 desc
->data
= phys
+ NET_IP_ALIGN
;
601 desc
->buf_len
= MAX_MRU
;
603 queue_put_desc(rxfreeq
, rx_desc_phys(port
, n
), desc
);
608 printk(KERN_DEBUG
"eth_poll(): end, not all work done\n");
610 return received
; /* not all work done */
614 static void eth_txdone_irq(void *unused
)
619 printk(KERN_DEBUG DRV_NAME
": eth_txdone_irq\n");
621 while ((phys
= queue_get_entry(TXDONE_QUEUE
)) != 0) {
628 BUG_ON(npe_id
>= MAX_NPES
);
629 port
= npe_port_tab
[npe_id
];
631 phys
&= ~0x1F; /* mask out non-address bits */
632 n_desc
= (phys
- tx_desc_phys(port
, 0)) / sizeof(struct desc
);
633 BUG_ON(n_desc
>= TX_DESCS
);
634 desc
= tx_desc_ptr(port
, n_desc
);
635 debug_desc(phys
, desc
);
637 if (port
->tx_buff_tab
[n_desc
]) { /* not the draining packet */
638 port
->stat
.tx_packets
++;
639 port
->stat
.tx_bytes
+= desc
->pkt_len
;
641 dma_unmap_tx(port
, desc
);
643 printk(KERN_DEBUG
"%s: eth_txdone_irq free %p\n",
644 port
->netdev
->name
, port
->tx_buff_tab
[n_desc
]);
646 free_buffer_irq(port
->tx_buff_tab
[n_desc
]);
647 port
->tx_buff_tab
[n_desc
] = NULL
;
650 start
= qmgr_stat_empty(port
->plat
->txreadyq
);
651 queue_put_desc(port
->plat
->txreadyq
, phys
, desc
);
654 printk(KERN_DEBUG
"%s: eth_txdone_irq xmit ready\n",
657 netif_wake_queue(port
->netdev
);
662 static int eth_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
664 struct port
*port
= netdev_priv(dev
);
665 unsigned int txreadyq
= port
->plat
->txreadyq
;
666 int len
, offset
, bytes
, n
;
672 printk(KERN_DEBUG
"%s: eth_xmit\n", dev
->name
);
675 if (unlikely(skb
->len
> MAX_MRU
)) {
677 port
->stat
.tx_errors
++;
681 debug_pkt(dev
, "eth_xmit", skb
->data
, skb
->len
);
685 offset
= 0; /* no need to keep alignment */
689 offset
= (int)skb
->data
& 3; /* keep 32-bit alignment */
690 bytes
= ALIGN(offset
+ len
, 4);
691 if (!(mem
= kmalloc(bytes
, GFP_ATOMIC
))) {
693 port
->stat
.tx_dropped
++;
696 memcpy_swab32(mem
, (u32
*)((int)skb
->data
& ~3), bytes
/ 4);
700 phys
= dma_map_single(&dev
->dev
, mem
, bytes
, DMA_TO_DEVICE
);
701 if (dma_mapping_error(&dev
->dev
, phys
)) {
707 port
->stat
.tx_dropped
++;
711 n
= queue_get_desc(txreadyq
, port
, 1);
713 desc
= tx_desc_ptr(port
, n
);
716 port
->tx_buff_tab
[n
] = skb
;
718 port
->tx_buff_tab
[n
] = mem
;
720 desc
->data
= phys
+ offset
;
721 desc
->buf_len
= desc
->pkt_len
= len
;
723 /* NPE firmware pads short frames with zeros internally */
725 queue_put_desc(TX_QUEUE(port
->id
), tx_desc_phys(port
, n
), desc
);
726 dev
->trans_start
= jiffies
;
728 if (qmgr_stat_empty(txreadyq
)) {
730 printk(KERN_DEBUG
"%s: eth_xmit queue full\n", dev
->name
);
732 netif_stop_queue(dev
);
733 /* we could miss TX ready interrupt */
734 if (!qmgr_stat_empty(txreadyq
)) {
736 printk(KERN_DEBUG
"%s: eth_xmit ready again\n",
739 netif_wake_queue(dev
);
744 printk(KERN_DEBUG
"%s: eth_xmit end\n", dev
->name
);
750 static struct net_device_stats
*eth_stats(struct net_device
*dev
)
752 struct port
*port
= netdev_priv(dev
);
756 static void eth_set_mcast_list(struct net_device
*dev
)
758 struct port
*port
= netdev_priv(dev
);
759 struct dev_mc_list
*mclist
= dev
->mc_list
;
760 u8 diffs
[ETH_ALEN
], *addr
;
761 int cnt
= dev
->mc_count
, i
;
763 if ((dev
->flags
& IFF_PROMISC
) || !mclist
|| !cnt
) {
764 __raw_writel(DEFAULT_RX_CNTRL0
& ~RX_CNTRL0_ADDR_FLTR_EN
,
765 &port
->regs
->rx_control
[0]);
769 memset(diffs
, 0, ETH_ALEN
);
770 addr
= mclist
->dmi_addr
; /* first MAC address */
772 while (--cnt
&& (mclist
= mclist
->next
))
773 for (i
= 0; i
< ETH_ALEN
; i
++)
774 diffs
[i
] |= addr
[i
] ^ mclist
->dmi_addr
[i
];
776 for (i
= 0; i
< ETH_ALEN
; i
++) {
777 __raw_writel(addr
[i
], &port
->regs
->mcast_addr
[i
]);
778 __raw_writel(~diffs
[i
], &port
->regs
->mcast_mask
[i
]);
781 __raw_writel(DEFAULT_RX_CNTRL0
| RX_CNTRL0_ADDR_FLTR_EN
,
782 &port
->regs
->rx_control
[0]);
786 static int eth_ioctl(struct net_device
*dev
, struct ifreq
*req
, int cmd
)
788 struct port
*port
= netdev_priv(dev
);
789 unsigned int duplex_chg
;
792 if (!netif_running(dev
))
794 err
= generic_mii_ioctl(&port
->mii
, if_mii(req
), cmd
, &duplex_chg
);
796 eth_set_duplex(port
);
801 static int request_queues(struct port
*port
)
805 err
= qmgr_request_queue(RXFREE_QUEUE(port
->id
), RX_DESCS
, 0, 0);
809 err
= qmgr_request_queue(port
->plat
->rxq
, RX_DESCS
, 0, 0);
813 err
= qmgr_request_queue(TX_QUEUE(port
->id
), TX_DESCS
, 0, 0);
817 err
= qmgr_request_queue(port
->plat
->txreadyq
, TX_DESCS
, 0, 0);
821 /* TX-done queue handles skbs sent out by the NPEs */
823 err
= qmgr_request_queue(TXDONE_QUEUE
, TXDONE_QUEUE_LEN
, 0, 0);
830 qmgr_release_queue(port
->plat
->txreadyq
);
832 qmgr_release_queue(TX_QUEUE(port
->id
));
834 qmgr_release_queue(port
->plat
->rxq
);
836 qmgr_release_queue(RXFREE_QUEUE(port
->id
));
837 printk(KERN_DEBUG
"%s: unable to request hardware queues\n",
842 static void release_queues(struct port
*port
)
844 qmgr_release_queue(RXFREE_QUEUE(port
->id
));
845 qmgr_release_queue(port
->plat
->rxq
);
846 qmgr_release_queue(TX_QUEUE(port
->id
));
847 qmgr_release_queue(port
->plat
->txreadyq
);
850 qmgr_release_queue(TXDONE_QUEUE
);
853 static int init_queues(struct port
*port
)
858 if (!(dma_pool
= dma_pool_create(DRV_NAME
, NULL
,
859 POOL_ALLOC_SIZE
, 32, 0)))
862 if (!(port
->desc_tab
= dma_pool_alloc(dma_pool
, GFP_KERNEL
,
863 &port
->desc_tab_phys
)))
865 memset(port
->desc_tab
, 0, POOL_ALLOC_SIZE
);
866 memset(port
->rx_buff_tab
, 0, sizeof(port
->rx_buff_tab
)); /* tables */
867 memset(port
->tx_buff_tab
, 0, sizeof(port
->tx_buff_tab
));
869 /* Setup RX buffers */
870 for (i
= 0; i
< RX_DESCS
; i
++) {
871 struct desc
*desc
= rx_desc_ptr(port
, i
);
872 buffer_t
*buff
; /* skb or kmalloc()ated memory */
875 if (!(buff
= netdev_alloc_skb(port
->netdev
, RX_BUFF_SIZE
)))
879 if (!(buff
= kmalloc(RX_BUFF_SIZE
, GFP_KERNEL
)))
883 desc
->buf_len
= MAX_MRU
;
884 desc
->data
= dma_map_single(&port
->netdev
->dev
, data
,
885 RX_BUFF_SIZE
, DMA_FROM_DEVICE
);
886 if (dma_mapping_error(&port
->netdev
->dev
, desc
->data
)) {
890 desc
->data
+= NET_IP_ALIGN
;
891 port
->rx_buff_tab
[i
] = buff
;
897 static void destroy_queues(struct port
*port
)
901 if (port
->desc_tab
) {
902 for (i
= 0; i
< RX_DESCS
; i
++) {
903 struct desc
*desc
= rx_desc_ptr(port
, i
);
904 buffer_t
*buff
= port
->rx_buff_tab
[i
];
906 dma_unmap_single(&port
->netdev
->dev
,
907 desc
->data
- NET_IP_ALIGN
,
908 RX_BUFF_SIZE
, DMA_FROM_DEVICE
);
912 for (i
= 0; i
< TX_DESCS
; i
++) {
913 struct desc
*desc
= tx_desc_ptr(port
, i
);
914 buffer_t
*buff
= port
->tx_buff_tab
[i
];
916 dma_unmap_tx(port
, desc
);
920 dma_pool_free(dma_pool
, port
->desc_tab
, port
->desc_tab_phys
);
921 port
->desc_tab
= NULL
;
924 if (!ports_open
&& dma_pool
) {
925 dma_pool_destroy(dma_pool
);
930 static int eth_open(struct net_device
*dev
)
932 struct port
*port
= netdev_priv(dev
);
933 struct npe
*npe
= port
->npe
;
937 if (!npe_running(npe
)) {
938 err
= npe_load_firmware(npe
, npe_name(npe
), &dev
->dev
);
942 if (npe_recv_message(npe
, &msg
, "ETH_GET_STATUS")) {
943 printk(KERN_ERR
"%s: %s not responding\n", dev
->name
,
949 mdio_write(dev
, port
->plat
->phy
, MII_BMCR
, port
->mii_bmcr
);
951 memset(&msg
, 0, sizeof(msg
));
952 msg
.cmd
= NPE_VLAN_SETRXQOSENTRY
;
953 msg
.eth_id
= port
->id
;
954 msg
.byte5
= port
->plat
->rxq
| 0x80;
955 msg
.byte7
= port
->plat
->rxq
<< 4;
956 for (i
= 0; i
< 8; i
++) {
958 if (npe_send_recv_message(port
->npe
, &msg
, "ETH_SET_RXQ"))
962 msg
.cmd
= NPE_EDB_SETPORTADDRESS
;
963 msg
.eth_id
= PHYSICAL_ID(port
->id
);
964 msg
.byte2
= dev
->dev_addr
[0];
965 msg
.byte3
= dev
->dev_addr
[1];
966 msg
.byte4
= dev
->dev_addr
[2];
967 msg
.byte5
= dev
->dev_addr
[3];
968 msg
.byte6
= dev
->dev_addr
[4];
969 msg
.byte7
= dev
->dev_addr
[5];
970 if (npe_send_recv_message(port
->npe
, &msg
, "ETH_SET_MAC"))
973 memset(&msg
, 0, sizeof(msg
));
974 msg
.cmd
= NPE_FW_SETFIREWALLMODE
;
975 msg
.eth_id
= port
->id
;
976 if (npe_send_recv_message(port
->npe
, &msg
, "ETH_SET_FIREWALL_MODE"))
979 if ((err
= request_queues(port
)) != 0)
982 if ((err
= init_queues(port
)) != 0) {
983 destroy_queues(port
);
984 release_queues(port
);
988 for (i
= 0; i
< ETH_ALEN
; i
++)
989 __raw_writel(dev
->dev_addr
[i
], &port
->regs
->hw_addr
[i
]);
990 __raw_writel(0x08, &port
->regs
->random_seed
);
991 __raw_writel(0x12, &port
->regs
->partial_empty_threshold
);
992 __raw_writel(0x30, &port
->regs
->partial_full_threshold
);
993 __raw_writel(0x08, &port
->regs
->tx_start_bytes
);
994 __raw_writel(0x15, &port
->regs
->tx_deferral
);
995 __raw_writel(0x08, &port
->regs
->tx_2part_deferral
[0]);
996 __raw_writel(0x07, &port
->regs
->tx_2part_deferral
[1]);
997 __raw_writel(0x80, &port
->regs
->slot_time
);
998 __raw_writel(0x01, &port
->regs
->int_clock_threshold
);
1000 /* Populate queues with buffers, no failure after this point */
1001 for (i
= 0; i
< TX_DESCS
; i
++)
1002 queue_put_desc(port
->plat
->txreadyq
,
1003 tx_desc_phys(port
, i
), tx_desc_ptr(port
, i
));
1005 for (i
= 0; i
< RX_DESCS
; i
++)
1006 queue_put_desc(RXFREE_QUEUE(port
->id
),
1007 rx_desc_phys(port
, i
), rx_desc_ptr(port
, i
));
1009 __raw_writel(TX_CNTRL1_RETRIES
, &port
->regs
->tx_control
[1]);
1010 __raw_writel(DEFAULT_TX_CNTRL0
, &port
->regs
->tx_control
[0]);
1011 __raw_writel(0, &port
->regs
->rx_control
[1]);
1012 __raw_writel(DEFAULT_RX_CNTRL0
, &port
->regs
->rx_control
[0]);
1014 napi_enable(&port
->napi
);
1015 phy_check_media(port
, 1);
1016 eth_set_mcast_list(dev
);
1017 netif_start_queue(dev
);
1018 schedule_delayed_work(&port
->mdio_thread
, MDIO_INTERVAL
);
1020 qmgr_set_irq(port
->plat
->rxq
, QUEUE_IRQ_SRC_NOT_EMPTY
,
1023 qmgr_set_irq(TXDONE_QUEUE
, QUEUE_IRQ_SRC_NOT_EMPTY
,
1024 eth_txdone_irq
, NULL
);
1025 qmgr_enable_irq(TXDONE_QUEUE
);
1028 /* we may already have RX data, enables IRQ */
1029 netif_rx_schedule(dev
, &port
->napi
);
1033 static int eth_close(struct net_device
*dev
)
1035 struct port
*port
= netdev_priv(dev
);
1037 int buffs
= RX_DESCS
; /* allocated RX buffers */
1041 qmgr_disable_irq(port
->plat
->rxq
);
1042 napi_disable(&port
->napi
);
1043 netif_stop_queue(dev
);
1045 while (queue_get_desc(RXFREE_QUEUE(port
->id
), port
, 0) >= 0)
1048 memset(&msg
, 0, sizeof(msg
));
1049 msg
.cmd
= NPE_SETLOOPBACK_MODE
;
1050 msg
.eth_id
= port
->id
;
1052 if (npe_send_recv_message(port
->npe
, &msg
, "ETH_ENABLE_LOOPBACK"))
1053 printk(KERN_CRIT
"%s: unable to enable loopback\n", dev
->name
);
1056 do { /* drain RX buffers */
1057 while (queue_get_desc(port
->plat
->rxq
, port
, 0) >= 0)
1061 if (qmgr_stat_empty(TX_QUEUE(port
->id
))) {
1062 /* we have to inject some packet */
1065 int n
= queue_get_desc(port
->plat
->txreadyq
, port
, 1);
1067 desc
= tx_desc_ptr(port
, n
);
1068 phys
= tx_desc_phys(port
, n
);
1069 desc
->buf_len
= desc
->pkt_len
= 1;
1071 queue_put_desc(TX_QUEUE(port
->id
), phys
, desc
);
1074 } while (++i
< MAX_CLOSE_WAIT
);
1077 printk(KERN_CRIT
"%s: unable to drain RX queue, %i buffer(s)"
1078 " left in NPE\n", dev
->name
, buffs
);
1081 printk(KERN_DEBUG
"Draining RX queue took %i cycles\n", i
);
1085 while (queue_get_desc(TX_QUEUE(port
->id
), port
, 1) >= 0)
1086 buffs
--; /* cancel TX */
1090 while (queue_get_desc(port
->plat
->txreadyq
, port
, 1) >= 0)
1094 } while (++i
< MAX_CLOSE_WAIT
);
1097 printk(KERN_CRIT
"%s: unable to drain TX queue, %i buffer(s) "
1098 "left in NPE\n", dev
->name
, buffs
);
1101 printk(KERN_DEBUG
"Draining TX queues took %i cycles\n", i
);
1105 if (npe_send_recv_message(port
->npe
, &msg
, "ETH_DISABLE_LOOPBACK"))
1106 printk(KERN_CRIT
"%s: unable to disable loopback\n",
1109 port
->mii_bmcr
= mdio_read(dev
, port
->plat
->phy
, MII_BMCR
) &
1110 ~(BMCR_RESET
| BMCR_PDOWN
); /* may have been altered */
1111 mdio_write(dev
, port
->plat
->phy
, MII_BMCR
,
1112 port
->mii_bmcr
| BMCR_PDOWN
);
1115 qmgr_disable_irq(TXDONE_QUEUE
);
1116 cancel_rearming_delayed_work(&port
->mdio_thread
);
1117 destroy_queues(port
);
1118 release_queues(port
);
1122 static int __devinit
eth_init_one(struct platform_device
*pdev
)
1125 struct net_device
*dev
;
1126 struct eth_plat_info
*plat
= pdev
->dev
.platform_data
;
1130 if (!(dev
= alloc_etherdev(sizeof(struct port
))))
1133 SET_NETDEV_DEV(dev
, &pdev
->dev
);
1134 port
= netdev_priv(dev
);
1136 port
->id
= pdev
->id
;
1139 case IXP4XX_ETH_NPEA
:
1140 port
->regs
= (struct eth_regs __iomem
*)IXP4XX_EthA_BASE_VIRT
;
1141 regs_phys
= IXP4XX_EthA_BASE_PHYS
;
1143 case IXP4XX_ETH_NPEB
:
1144 port
->regs
= (struct eth_regs __iomem
*)IXP4XX_EthB_BASE_VIRT
;
1145 regs_phys
= IXP4XX_EthB_BASE_PHYS
;
1147 case IXP4XX_ETH_NPEC
:
1148 port
->regs
= (struct eth_regs __iomem
*)IXP4XX_EthC_BASE_VIRT
;
1149 regs_phys
= IXP4XX_EthC_BASE_PHYS
;
1156 dev
->open
= eth_open
;
1157 dev
->hard_start_xmit
= eth_xmit
;
1158 dev
->stop
= eth_close
;
1159 dev
->get_stats
= eth_stats
;
1160 dev
->do_ioctl
= eth_ioctl
;
1161 dev
->set_multicast_list
= eth_set_mcast_list
;
1162 dev
->tx_queue_len
= 100;
1164 netif_napi_add(dev
, &port
->napi
, eth_poll
, NAPI_WEIGHT
);
1166 if (!(port
->npe
= npe_request(NPE_ID(port
->id
)))) {
1171 if (register_netdev(dev
)) {
1176 port
->mem_res
= request_mem_region(regs_phys
, REGS_SIZE
, dev
->name
);
1177 if (!port
->mem_res
) {
1183 npe_port_tab
[NPE_ID(port
->id
)] = port
;
1184 memcpy(dev
->dev_addr
, plat
->hwaddr
, ETH_ALEN
);
1186 platform_set_drvdata(pdev
, dev
);
1188 __raw_writel(DEFAULT_CORE_CNTRL
| CORE_RESET
,
1189 &port
->regs
->core_control
);
1191 __raw_writel(DEFAULT_CORE_CNTRL
, &port
->regs
->core_control
);
1194 port
->mii
.dev
= dev
;
1195 port
->mii
.mdio_read
= mdio_read
;
1196 port
->mii
.mdio_write
= mdio_write
;
1197 port
->mii
.phy_id
= plat
->phy
;
1198 port
->mii
.phy_id_mask
= 0x1F;
1199 port
->mii
.reg_num_mask
= 0x1F;
1201 printk(KERN_INFO
"%s: MII PHY %i on %s\n", dev
->name
, plat
->phy
,
1202 npe_name(port
->npe
));
1204 phy_reset(dev
, plat
->phy
);
1205 port
->mii_bmcr
= mdio_read(dev
, plat
->phy
, MII_BMCR
) &
1206 ~(BMCR_RESET
| BMCR_PDOWN
);
1207 mdio_write(dev
, plat
->phy
, MII_BMCR
, port
->mii_bmcr
| BMCR_PDOWN
);
1209 INIT_DELAYED_WORK(&port
->mdio_thread
, mdio_thread
);
1213 unregister_netdev(dev
);
1215 npe_release(port
->npe
);
1221 static int __devexit
eth_remove_one(struct platform_device
*pdev
)
1223 struct net_device
*dev
= platform_get_drvdata(pdev
);
1224 struct port
*port
= netdev_priv(dev
);
1226 unregister_netdev(dev
);
1227 npe_port_tab
[NPE_ID(port
->id
)] = NULL
;
1228 platform_set_drvdata(pdev
, NULL
);
1229 npe_release(port
->npe
);
1230 release_resource(port
->mem_res
);
1235 static struct platform_driver drv
= {
1236 .driver
.name
= DRV_NAME
,
1237 .probe
= eth_init_one
,
1238 .remove
= eth_remove_one
,
1241 static int __init
eth_init_module(void)
1243 if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0
))
1246 /* All MII PHY accesses use NPE-B Ethernet registers */
1247 spin_lock_init(&mdio_lock
);
1248 mdio_regs
= (struct eth_regs __iomem
*)IXP4XX_EthB_BASE_VIRT
;
1249 __raw_writel(DEFAULT_CORE_CNTRL
, &mdio_regs
->core_control
);
1251 return platform_driver_register(&drv
);
1254 static void __exit
eth_cleanup_module(void)
1256 platform_driver_unregister(&drv
);
1259 MODULE_AUTHOR("Krzysztof Halasa");
1260 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1261 MODULE_LICENSE("GPL v2");
1262 MODULE_ALIAS("platform:ixp4xx_eth");
1263 module_init(eth_init_module
);
1264 module_exit(eth_cleanup_module
);