1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 #include <linux/pci.h>
31 #include <linux/netdevice.h>
33 #include "e1000_mac.h"
37 static s32
igb_set_default_fc(struct e1000_hw
*hw
);
38 static s32
igb_set_fc_watermarks(struct e1000_hw
*hw
);
41 * igb_remove_device - Free device specific structure
42 * @hw: pointer to the HW structure
44 * If a device specific structure was allocated, this function will
47 void igb_remove_device(struct e1000_hw
*hw
)
49 /* Freeing the dev_spec member of e1000_hw structure */
53 static void igb_read_pci_cfg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
55 struct igb_adapter
*adapter
= hw
->back
;
57 pci_read_config_word(adapter
->pdev
, reg
, value
);
60 static s32
igb_read_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
62 struct igb_adapter
*adapter
= hw
->back
;
65 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
67 return -E1000_ERR_CONFIG
;
69 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
75 * igb_get_bus_info_pcie - Get PCIe bus information
76 * @hw: pointer to the HW structure
78 * Determines and stores the system bus information for a particular
79 * network interface. The following bus information is determined and stored:
80 * bus speed, bus width, type (PCIe), and PCIe function.
82 s32
igb_get_bus_info_pcie(struct e1000_hw
*hw
)
84 struct e1000_bus_info
*bus
= &hw
->bus
;
87 u16 pcie_link_status
, pci_header_type
;
89 bus
->type
= e1000_bus_type_pci_express
;
90 bus
->speed
= e1000_bus_speed_2500
;
92 ret_val
= igb_read_pcie_cap_reg(hw
,
96 bus
->width
= e1000_bus_width_unknown
;
98 bus
->width
= (enum e1000_bus_width
)((pcie_link_status
&
99 PCIE_LINK_WIDTH_MASK
) >>
100 PCIE_LINK_WIDTH_SHIFT
);
102 igb_read_pci_cfg(hw
, PCI_HEADER_TYPE_REGISTER
, &pci_header_type
);
103 if (pci_header_type
& PCI_HEADER_TYPE_MULTIFUNC
) {
104 status
= rd32(E1000_STATUS
);
105 bus
->func
= (status
& E1000_STATUS_FUNC_MASK
)
106 >> E1000_STATUS_FUNC_SHIFT
;
115 * igb_clear_vfta - Clear VLAN filter table
116 * @hw: pointer to the HW structure
118 * Clears the register array which contains the VLAN filter table by
119 * setting all the values to 0.
121 void igb_clear_vfta(struct e1000_hw
*hw
)
125 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
126 array_wr32(E1000_VFTA
, offset
, 0);
132 * igb_write_vfta - Write value to VLAN filter table
133 * @hw: pointer to the HW structure
134 * @offset: register offset in VLAN filter table
135 * @value: register value written to VLAN filter table
137 * Writes value at the given offset in the register array which stores
138 * the VLAN filter table.
140 void igb_write_vfta(struct e1000_hw
*hw
, u32 offset
, u32 value
)
142 array_wr32(E1000_VFTA
, offset
, value
);
147 * igb_check_alt_mac_addr - Check for alternate MAC addr
148 * @hw: pointer to the HW structure
150 * Checks the nvm for an alternate MAC address. An alternate MAC address
151 * can be setup by pre-boot software and must be treated like a permanent
152 * address and must override the actual permanent MAC address. If an
153 * alternate MAC address is fopund it is saved in the hw struct and
154 * prgrammed into RAR0 and the cuntion returns success, otherwise the
155 * fucntion returns an error.
157 s32
igb_check_alt_mac_addr(struct e1000_hw
*hw
)
161 u16 offset
, nvm_alt_mac_addr_offset
, nvm_data
;
162 u8 alt_mac_addr
[ETH_ALEN
];
164 ret_val
= hw
->nvm
.ops
.read_nvm(hw
, NVM_ALT_MAC_ADDR_PTR
, 1,
165 &nvm_alt_mac_addr_offset
);
167 hw_dbg("NVM Read Error\n");
171 if (nvm_alt_mac_addr_offset
== 0xFFFF) {
172 ret_val
= -(E1000_NOT_IMPLEMENTED
);
176 if (hw
->bus
.func
== E1000_FUNC_1
)
177 nvm_alt_mac_addr_offset
+= ETH_ALEN
/sizeof(u16
);
179 for (i
= 0; i
< ETH_ALEN
; i
+= 2) {
180 offset
= nvm_alt_mac_addr_offset
+ (i
>> 1);
181 ret_val
= hw
->nvm
.ops
.read_nvm(hw
, offset
, 1, &nvm_data
);
183 hw_dbg("NVM Read Error\n");
187 alt_mac_addr
[i
] = (u8
)(nvm_data
& 0xFF);
188 alt_mac_addr
[i
+ 1] = (u8
)(nvm_data
>> 8);
191 /* if multicast bit is set, the alternate address will not be used */
192 if (alt_mac_addr
[0] & 0x01) {
193 ret_val
= -(E1000_NOT_IMPLEMENTED
);
197 for (i
= 0; i
< ETH_ALEN
; i
++)
198 hw
->mac
.addr
[i
] = hw
->mac
.perm_addr
[i
] = alt_mac_addr
[i
];
200 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.perm_addr
, 0);
207 * igb_rar_set - Set receive address register
208 * @hw: pointer to the HW structure
209 * @addr: pointer to the receive address
210 * @index: receive address array register
212 * Sets the receive address array register at index to the address passed
215 void igb_rar_set(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
217 u32 rar_low
, rar_high
;
220 * HW expects these in little endian so we reverse the byte order
221 * from network order (big endian) to little endian
223 rar_low
= ((u32
) addr
[0] |
224 ((u32
) addr
[1] << 8) |
225 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
227 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
229 if (!hw
->mac
.disable_av
)
230 rar_high
|= E1000_RAH_AV
;
232 array_wr32(E1000_RA
, (index
<< 1), rar_low
);
233 array_wr32(E1000_RA
, ((index
<< 1) + 1), rar_high
);
237 * igb_mta_set - Set multicast filter table address
238 * @hw: pointer to the HW structure
239 * @hash_value: determines the MTA register and bit to set
241 * The multicast table address is a register array of 32-bit registers.
242 * The hash_value is used to determine what register the bit is in, the
243 * current value is read, the new bit is OR'd in and the new value is
244 * written back into the register.
246 void igb_mta_set(struct e1000_hw
*hw
, u32 hash_value
)
248 u32 hash_bit
, hash_reg
, mta
;
251 * The MTA is a register array of 32-bit registers. It is
252 * treated like an array of (32*mta_reg_count) bits. We want to
253 * set bit BitArray[hash_value]. So we figure out what register
254 * the bit is in, read it, OR in the new bit, then write
255 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
256 * mask to bits 31:5 of the hash value which gives us the
257 * register we're modifying. The hash bit within that register
258 * is determined by the lower 5 bits of the hash value.
260 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
261 hash_bit
= hash_value
& 0x1F;
263 mta
= array_rd32(E1000_MTA
, hash_reg
);
265 mta
|= (1 << hash_bit
);
267 array_wr32(E1000_MTA
, hash_reg
, mta
);
272 * igb_hash_mc_addr - Generate a multicast hash value
273 * @hw: pointer to the HW structure
274 * @mc_addr: pointer to a multicast address
276 * Generates a multicast address hash value which is used to determine
277 * the multicast filter table array address and new table value. See
280 u32
igb_hash_mc_addr(struct e1000_hw
*hw
, u8
*mc_addr
)
282 u32 hash_value
, hash_mask
;
285 /* Register count multiplied by bits per register */
286 hash_mask
= (hw
->mac
.mta_reg_count
* 32) - 1;
289 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
290 * where 0xFF would still fall within the hash mask.
292 while (hash_mask
>> bit_shift
!= 0xFF)
296 * The portion of the address that is used for the hash table
297 * is determined by the mc_filter_type setting.
298 * The algorithm is such that there is a total of 8 bits of shifting.
299 * The bit_shift for a mc_filter_type of 0 represents the number of
300 * left-shifts where the MSB of mc_addr[5] would still fall within
301 * the hash_mask. Case 0 does this exactly. Since there are a total
302 * of 8 bits of shifting, then mc_addr[4] will shift right the
303 * remaining number of bits. Thus 8 - bit_shift. The rest of the
304 * cases are a variation of this algorithm...essentially raising the
305 * number of bits to shift mc_addr[5] left, while still keeping the
306 * 8-bit shifting total.
308 * For example, given the following Destination MAC Address and an
309 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
310 * we can see that the bit_shift for case 0 is 4. These are the hash
311 * values resulting from each mc_filter_type...
312 * [0] [1] [2] [3] [4] [5]
316 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
317 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
318 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
319 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
321 switch (hw
->mac
.mc_filter_type
) {
336 hash_value
= hash_mask
& (((mc_addr
[4] >> (8 - bit_shift
)) |
337 (((u16
) mc_addr
[5]) << bit_shift
)));
343 * igb_clear_hw_cntrs_base - Clear base hardware counters
344 * @hw: pointer to the HW structure
346 * Clears the base hardware counters by reading the counter registers.
348 void igb_clear_hw_cntrs_base(struct e1000_hw
*hw
)
352 temp
= rd32(E1000_CRCERRS
);
353 temp
= rd32(E1000_SYMERRS
);
354 temp
= rd32(E1000_MPC
);
355 temp
= rd32(E1000_SCC
);
356 temp
= rd32(E1000_ECOL
);
357 temp
= rd32(E1000_MCC
);
358 temp
= rd32(E1000_LATECOL
);
359 temp
= rd32(E1000_COLC
);
360 temp
= rd32(E1000_DC
);
361 temp
= rd32(E1000_SEC
);
362 temp
= rd32(E1000_RLEC
);
363 temp
= rd32(E1000_XONRXC
);
364 temp
= rd32(E1000_XONTXC
);
365 temp
= rd32(E1000_XOFFRXC
);
366 temp
= rd32(E1000_XOFFTXC
);
367 temp
= rd32(E1000_FCRUC
);
368 temp
= rd32(E1000_GPRC
);
369 temp
= rd32(E1000_BPRC
);
370 temp
= rd32(E1000_MPRC
);
371 temp
= rd32(E1000_GPTC
);
372 temp
= rd32(E1000_GORCL
);
373 temp
= rd32(E1000_GORCH
);
374 temp
= rd32(E1000_GOTCL
);
375 temp
= rd32(E1000_GOTCH
);
376 temp
= rd32(E1000_RNBC
);
377 temp
= rd32(E1000_RUC
);
378 temp
= rd32(E1000_RFC
);
379 temp
= rd32(E1000_ROC
);
380 temp
= rd32(E1000_RJC
);
381 temp
= rd32(E1000_TORL
);
382 temp
= rd32(E1000_TORH
);
383 temp
= rd32(E1000_TOTL
);
384 temp
= rd32(E1000_TOTH
);
385 temp
= rd32(E1000_TPR
);
386 temp
= rd32(E1000_TPT
);
387 temp
= rd32(E1000_MPTC
);
388 temp
= rd32(E1000_BPTC
);
392 * igb_check_for_copper_link - Check for link (Copper)
393 * @hw: pointer to the HW structure
395 * Checks to see of the link status of the hardware has changed. If a
396 * change in link status has been detected, then we read the PHY registers
397 * to get the current speed/duplex if link exists.
399 s32
igb_check_for_copper_link(struct e1000_hw
*hw
)
401 struct e1000_mac_info
*mac
= &hw
->mac
;
406 * We only want to go out to the PHY registers to see if Auto-Neg
407 * has completed and/or if our link status has changed. The
408 * get_link_status flag is set upon receiving a Link Status
409 * Change or Rx Sequence Error interrupt.
411 if (!mac
->get_link_status
) {
417 * First we want to see if the MII Status Register reports
418 * link. If so, then we want to get the current speed/duplex
421 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
426 goto out
; /* No link detected */
428 mac
->get_link_status
= false;
431 * Check if there was DownShift, must be checked
432 * immediately after link-up
434 igb_check_downshift(hw
);
437 * If we are forcing speed/duplex, then we simply return since
438 * we have already determined whether we have link or not.
441 ret_val
= -E1000_ERR_CONFIG
;
446 * Auto-Neg is enabled. Auto Speed Detection takes care
447 * of MAC speed/duplex configuration. So we only need to
448 * configure Collision Distance in the MAC.
450 igb_config_collision_dist(hw
);
453 * Configure Flow Control now that Auto-Neg has completed.
454 * First, we need to restore the desired flow control
455 * settings because we may have had to re-autoneg with a
456 * different link partner.
458 ret_val
= igb_config_fc_after_link_up(hw
);
460 hw_dbg("Error configuring flow control\n");
467 * igb_setup_link - Setup flow control and link settings
468 * @hw: pointer to the HW structure
470 * Determines which flow control settings to use, then configures flow
471 * control. Calls the appropriate media-specific link configuration
472 * function. Assuming the adapter has a valid link partner, a valid link
473 * should be established. Assumes the hardware has previously been reset
474 * and the transmitter and receiver are not enabled.
476 s32
igb_setup_link(struct e1000_hw
*hw
)
481 * In the case of the phy reset being blocked, we already have a link.
482 * We do not need to set it up again.
484 if (igb_check_reset_block(hw
))
487 ret_val
= igb_set_default_fc(hw
);
492 * We want to save off the original Flow Control configuration just
493 * in case we get disconnected and then reconnected into a different
494 * hub or switch with different Flow Control capabilities.
496 hw
->fc
.original_type
= hw
->fc
.type
;
498 hw_dbg("After fix-ups FlowControl is now = %x\n", hw
->fc
.type
);
500 /* Call the necessary media_type subroutine to configure the link. */
501 ret_val
= hw
->mac
.ops
.setup_physical_interface(hw
);
506 * Initialize the flow control address, type, and PAUSE timer
507 * registers to their default values. This is done even if flow
508 * control is disabled, because it does not hurt anything to
509 * initialize these registers.
511 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
512 wr32(E1000_FCT
, FLOW_CONTROL_TYPE
);
513 wr32(E1000_FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
514 wr32(E1000_FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
516 wr32(E1000_FCTTV
, hw
->fc
.pause_time
);
518 ret_val
= igb_set_fc_watermarks(hw
);
525 * igb_config_collision_dist - Configure collision distance
526 * @hw: pointer to the HW structure
528 * Configures the collision distance to the default value and is used
529 * during link setup. Currently no func pointer exists and all
530 * implementations are handled in the generic version of this function.
532 void igb_config_collision_dist(struct e1000_hw
*hw
)
536 tctl
= rd32(E1000_TCTL
);
538 tctl
&= ~E1000_TCTL_COLD
;
539 tctl
|= E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
;
541 wr32(E1000_TCTL
, tctl
);
546 * igb_set_fc_watermarks - Set flow control high/low watermarks
547 * @hw: pointer to the HW structure
549 * Sets the flow control high/low threshold (watermark) registers. If
550 * flow control XON frame transmission is enabled, then set XON frame
551 * tansmission as well.
553 static s32
igb_set_fc_watermarks(struct e1000_hw
*hw
)
556 u32 fcrtl
= 0, fcrth
= 0;
559 * Set the flow control receive threshold registers. Normally,
560 * these registers will be set to a default threshold that may be
561 * adjusted later by the driver's runtime code. However, if the
562 * ability to transmit pause frames is not enabled, then these
563 * registers will be set to 0.
565 if (hw
->fc
.type
& e1000_fc_tx_pause
) {
567 * We need to set up the Receive Threshold high and low water
568 * marks as well as (optionally) enabling the transmission of
571 fcrtl
= hw
->fc
.low_water
;
573 fcrtl
|= E1000_FCRTL_XONE
;
575 fcrth
= hw
->fc
.high_water
;
577 wr32(E1000_FCRTL
, fcrtl
);
578 wr32(E1000_FCRTH
, fcrth
);
584 * igb_set_default_fc - Set flow control default values
585 * @hw: pointer to the HW structure
587 * Read the EEPROM for the default values for flow control and store the
590 static s32
igb_set_default_fc(struct e1000_hw
*hw
)
596 * Read and store word 0x0F of the EEPROM. This word contains bits
597 * that determine the hardware's default PAUSE (flow control) mode,
598 * a bit that determines whether the HW defaults to enabling or
599 * disabling auto-negotiation, and the direction of the
600 * SW defined pins. If there is no SW over-ride of the flow
601 * control setting, then the variable hw->fc will
602 * be initialized based on a value in the EEPROM.
604 ret_val
= hw
->nvm
.ops
.read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1,
608 hw_dbg("NVM Read Error\n");
612 if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == 0)
613 hw
->fc
.type
= e1000_fc_none
;
614 else if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) ==
616 hw
->fc
.type
= e1000_fc_tx_pause
;
618 hw
->fc
.type
= e1000_fc_full
;
625 * igb_force_mac_fc - Force the MAC's flow control settings
626 * @hw: pointer to the HW structure
628 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
629 * device control register to reflect the adapter settings. TFCE and RFCE
630 * need to be explicitly set by software when a copper PHY is used because
631 * autonegotiation is managed by the PHY rather than the MAC. Software must
632 * also configure these bits when link is forced on a fiber connection.
634 s32
igb_force_mac_fc(struct e1000_hw
*hw
)
639 ctrl
= rd32(E1000_CTRL
);
642 * Because we didn't get link via the internal auto-negotiation
643 * mechanism (we either forced link or we got link via PHY
644 * auto-neg), we have to manually enable/disable transmit an
645 * receive flow control.
647 * The "Case" statement below enables/disable flow control
648 * according to the "hw->fc.type" parameter.
650 * The possible values of the "fc" parameter are:
651 * 0: Flow control is completely disabled
652 * 1: Rx flow control is enabled (we can receive pause
653 * frames but not send pause frames).
654 * 2: Tx flow control is enabled (we can send pause frames
655 * frames but we do not receive pause frames).
656 * 3: Both Rx and TX flow control (symmetric) is enabled.
657 * other: No other values should be possible at this point.
659 hw_dbg("hw->fc.type = %u\n", hw
->fc
.type
);
661 switch (hw
->fc
.type
) {
663 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
665 case e1000_fc_rx_pause
:
666 ctrl
&= (~E1000_CTRL_TFCE
);
667 ctrl
|= E1000_CTRL_RFCE
;
669 case e1000_fc_tx_pause
:
670 ctrl
&= (~E1000_CTRL_RFCE
);
671 ctrl
|= E1000_CTRL_TFCE
;
674 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
677 hw_dbg("Flow control param set incorrectly\n");
678 ret_val
= -E1000_ERR_CONFIG
;
682 wr32(E1000_CTRL
, ctrl
);
689 * igb_config_fc_after_link_up - Configures flow control after link
690 * @hw: pointer to the HW structure
692 * Checks the status of auto-negotiation after link up to ensure that the
693 * speed and duplex were not forced. If the link needed to be forced, then
694 * flow control needs to be forced also. If auto-negotiation is enabled
695 * and did not fail, then we configure flow control based on our link
698 s32
igb_config_fc_after_link_up(struct e1000_hw
*hw
)
700 struct e1000_mac_info
*mac
= &hw
->mac
;
702 u16 mii_status_reg
, mii_nway_adv_reg
, mii_nway_lp_ability_reg
;
706 * Check for the case where we have fiber media and auto-neg failed
707 * so we had to force link. In this case, we need to force the
708 * configuration of the MAC to match the "fc" parameter.
710 if (mac
->autoneg_failed
) {
711 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
712 hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
713 ret_val
= igb_force_mac_fc(hw
);
715 if (hw
->phy
.media_type
== e1000_media_type_copper
)
716 ret_val
= igb_force_mac_fc(hw
);
720 hw_dbg("Error forcing flow control settings\n");
725 * Check for the case where we have copper media and auto-neg is
726 * enabled. In this case, we need to check and see if Auto-Neg
727 * has completed, and if so, how the PHY and link partner has
728 * flow control configured.
730 if ((hw
->phy
.media_type
== e1000_media_type_copper
) && mac
->autoneg
) {
732 * Read the MII Status Register and check to see if AutoNeg
733 * has completed. We read this twice because this reg has
734 * some "sticky" (latched) bits.
736 ret_val
= hw
->phy
.ops
.read_phy_reg(hw
, PHY_STATUS
,
740 ret_val
= hw
->phy
.ops
.read_phy_reg(hw
, PHY_STATUS
,
745 if (!(mii_status_reg
& MII_SR_AUTONEG_COMPLETE
)) {
746 hw_dbg("Copper PHY and Auto Neg "
747 "has not completed.\n");
752 * The AutoNeg process has completed, so we now need to
753 * read both the Auto Negotiation Advertisement
754 * Register (Address 4) and the Auto_Negotiation Base
755 * Page Ability Register (Address 5) to determine how
756 * flow control was negotiated.
758 ret_val
= hw
->phy
.ops
.read_phy_reg(hw
, PHY_AUTONEG_ADV
,
762 ret_val
= hw
->phy
.ops
.read_phy_reg(hw
, PHY_LP_ABILITY
,
763 &mii_nway_lp_ability_reg
);
768 * Two bits in the Auto Negotiation Advertisement Register
769 * (Address 4) and two bits in the Auto Negotiation Base
770 * Page Ability Register (Address 5) determine flow control
771 * for both the PHY and the link partner. The following
772 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
773 * 1999, describes these PAUSE resolution bits and how flow
774 * control is determined based upon these settings.
775 * NOTE: DC = Don't Care
777 * LOCAL DEVICE | LINK PARTNER
778 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
779 *-------|---------|-------|---------|--------------------
780 * 0 | 0 | DC | DC | e1000_fc_none
781 * 0 | 1 | 0 | DC | e1000_fc_none
782 * 0 | 1 | 1 | 0 | e1000_fc_none
783 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
784 * 1 | 0 | 0 | DC | e1000_fc_none
785 * 1 | DC | 1 | DC | e1000_fc_full
786 * 1 | 1 | 0 | 0 | e1000_fc_none
787 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
789 * Are both PAUSE bits set to 1? If so, this implies
790 * Symmetric Flow Control is enabled at both ends. The
791 * ASM_DIR bits are irrelevant per the spec.
793 * For Symmetric Flow Control:
795 * LOCAL DEVICE | LINK PARTNER
796 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
797 *-------|---------|-------|---------|--------------------
798 * 1 | DC | 1 | DC | E1000_fc_full
801 if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
802 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
)) {
804 * Now we need to check if the user selected RX ONLY
805 * of pause frames. In this case, we had to advertise
806 * FULL flow control because we could not advertise RX
807 * ONLY. Hence, we must now check to see if we need to
808 * turn OFF the TRANSMISSION of PAUSE frames.
810 if (hw
->fc
.original_type
== e1000_fc_full
) {
811 hw
->fc
.type
= e1000_fc_full
;
812 hw_dbg("Flow Control = FULL.\r\n");
814 hw
->fc
.type
= e1000_fc_rx_pause
;
815 hw_dbg("Flow Control = "
816 "RX PAUSE frames only.\r\n");
820 * For receiving PAUSE frames ONLY.
822 * LOCAL DEVICE | LINK PARTNER
823 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
824 *-------|---------|-------|---------|--------------------
825 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
827 else if (!(mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
828 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
829 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
830 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
831 hw
->fc
.type
= e1000_fc_tx_pause
;
832 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
835 * For transmitting PAUSE frames ONLY.
837 * LOCAL DEVICE | LINK PARTNER
838 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
839 *-------|---------|-------|---------|--------------------
840 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
842 else if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
843 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
844 !(mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
845 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
846 hw
->fc
.type
= e1000_fc_rx_pause
;
847 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
850 * Per the IEEE spec, at this point flow control should be
851 * disabled. However, we want to consider that we could
852 * be connected to a legacy switch that doesn't advertise
853 * desired flow control, but can be forced on the link
854 * partner. So if we advertised no flow control, that is
855 * what we will resolve to. If we advertised some kind of
856 * receive capability (Rx Pause Only or Full Flow Control)
857 * and the link partner advertised none, we will configure
858 * ourselves to enable Rx Flow Control only. We can do
859 * this safely for two reasons: If the link partner really
860 * didn't want flow control enabled, and we enable Rx, no
861 * harm done since we won't be receiving any PAUSE frames
862 * anyway. If the intent on the link partner was to have
863 * flow control enabled, then by us enabling RX only, we
864 * can at least receive pause frames and process them.
865 * This is a good idea because in most cases, since we are
866 * predominantly a server NIC, more times than not we will
867 * be asked to delay transmission of packets than asking
868 * our link partner to pause transmission of frames.
870 else if ((hw
->fc
.original_type
== e1000_fc_none
||
871 hw
->fc
.original_type
== e1000_fc_tx_pause
) ||
872 hw
->fc
.strict_ieee
) {
873 hw
->fc
.type
= e1000_fc_none
;
874 hw_dbg("Flow Control = NONE.\r\n");
876 hw
->fc
.type
= e1000_fc_rx_pause
;
877 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
881 * Now we need to do one last check... If we auto-
882 * negotiated to HALF DUPLEX, flow control should not be
883 * enabled per IEEE 802.3 spec.
885 ret_val
= hw
->mac
.ops
.get_speed_and_duplex(hw
, &speed
, &duplex
);
887 hw_dbg("Error getting link speed and duplex\n");
891 if (duplex
== HALF_DUPLEX
)
892 hw
->fc
.type
= e1000_fc_none
;
895 * Now we call a subroutine to actually force the MAC
896 * controller to use the correct flow control settings.
898 ret_val
= igb_force_mac_fc(hw
);
900 hw_dbg("Error forcing flow control settings\n");
910 * igb_get_speed_and_duplex_copper - Retreive current speed/duplex
911 * @hw: pointer to the HW structure
912 * @speed: stores the current speed
913 * @duplex: stores the current duplex
915 * Read the status register for the current speed/duplex and store the current
916 * speed and duplex for copper connections.
918 s32
igb_get_speed_and_duplex_copper(struct e1000_hw
*hw
, u16
*speed
,
923 status
= rd32(E1000_STATUS
);
924 if (status
& E1000_STATUS_SPEED_1000
) {
926 hw_dbg("1000 Mbs, ");
927 } else if (status
& E1000_STATUS_SPEED_100
) {
935 if (status
& E1000_STATUS_FD
) {
936 *duplex
= FULL_DUPLEX
;
937 hw_dbg("Full Duplex\n");
939 *duplex
= HALF_DUPLEX
;
940 hw_dbg("Half Duplex\n");
947 * igb_get_hw_semaphore - Acquire hardware semaphore
948 * @hw: pointer to the HW structure
950 * Acquire the HW semaphore to access the PHY or NVM
952 s32
igb_get_hw_semaphore(struct e1000_hw
*hw
)
956 s32 timeout
= hw
->nvm
.word_size
+ 1;
959 /* Get the SW semaphore */
960 while (i
< timeout
) {
961 swsm
= rd32(E1000_SWSM
);
962 if (!(swsm
& E1000_SWSM_SMBI
))
970 hw_dbg("Driver can't access device - SMBI bit is set.\n");
971 ret_val
= -E1000_ERR_NVM
;
975 /* Get the FW semaphore. */
976 for (i
= 0; i
< timeout
; i
++) {
977 swsm
= rd32(E1000_SWSM
);
978 wr32(E1000_SWSM
, swsm
| E1000_SWSM_SWESMBI
);
980 /* Semaphore acquired if bit latched */
981 if (rd32(E1000_SWSM
) & E1000_SWSM_SWESMBI
)
988 /* Release semaphores */
989 igb_put_hw_semaphore(hw
);
990 hw_dbg("Driver can't access the NVM\n");
991 ret_val
= -E1000_ERR_NVM
;
1000 * igb_put_hw_semaphore - Release hardware semaphore
1001 * @hw: pointer to the HW structure
1003 * Release hardware semaphore used to access the PHY or NVM
1005 void igb_put_hw_semaphore(struct e1000_hw
*hw
)
1009 swsm
= rd32(E1000_SWSM
);
1011 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
1013 wr32(E1000_SWSM
, swsm
);
1017 * igb_get_auto_rd_done - Check for auto read completion
1018 * @hw: pointer to the HW structure
1020 * Check EEPROM for Auto Read done bit.
1022 s32
igb_get_auto_rd_done(struct e1000_hw
*hw
)
1028 while (i
< AUTO_READ_DONE_TIMEOUT
) {
1029 if (rd32(E1000_EECD
) & E1000_EECD_AUTO_RD
)
1035 if (i
== AUTO_READ_DONE_TIMEOUT
) {
1036 hw_dbg("Auto read by HW from NVM has not completed.\n");
1037 ret_val
= -E1000_ERR_RESET
;
1046 * igb_valid_led_default - Verify a valid default LED config
1047 * @hw: pointer to the HW structure
1048 * @data: pointer to the NVM (EEPROM)
1050 * Read the EEPROM for the current default LED configuration. If the
1051 * LED configuration is not valid, set to a valid LED configuration.
1053 static s32
igb_valid_led_default(struct e1000_hw
*hw
, u16
*data
)
1057 ret_val
= hw
->nvm
.ops
.read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1059 hw_dbg("NVM Read Error\n");
1063 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
1064 *data
= ID_LED_DEFAULT
;
1072 * @hw: pointer to the HW structure
1075 s32
igb_id_led_init(struct e1000_hw
*hw
)
1077 struct e1000_mac_info
*mac
= &hw
->mac
;
1079 const u32 ledctl_mask
= 0x000000FF;
1080 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
1081 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
1083 const u16 led_mask
= 0x0F;
1085 ret_val
= igb_valid_led_default(hw
, &data
);
1089 mac
->ledctl_default
= rd32(E1000_LEDCTL
);
1090 mac
->ledctl_mode1
= mac
->ledctl_default
;
1091 mac
->ledctl_mode2
= mac
->ledctl_default
;
1093 for (i
= 0; i
< 4; i
++) {
1094 temp
= (data
>> (i
<< 2)) & led_mask
;
1096 case ID_LED_ON1_DEF2
:
1097 case ID_LED_ON1_ON2
:
1098 case ID_LED_ON1_OFF2
:
1099 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1100 mac
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
1102 case ID_LED_OFF1_DEF2
:
1103 case ID_LED_OFF1_ON2
:
1104 case ID_LED_OFF1_OFF2
:
1105 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1106 mac
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
1113 case ID_LED_DEF1_ON2
:
1114 case ID_LED_ON1_ON2
:
1115 case ID_LED_OFF1_ON2
:
1116 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1117 mac
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
1119 case ID_LED_DEF1_OFF2
:
1120 case ID_LED_ON1_OFF2
:
1121 case ID_LED_OFF1_OFF2
:
1122 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1123 mac
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
1136 * igb_cleanup_led - Set LED config to default operation
1137 * @hw: pointer to the HW structure
1139 * Remove the current LED configuration and set the LED configuration
1140 * to the default value, saved from the EEPROM.
1142 s32
igb_cleanup_led(struct e1000_hw
*hw
)
1144 wr32(E1000_LEDCTL
, hw
->mac
.ledctl_default
);
1149 * igb_blink_led - Blink LED
1150 * @hw: pointer to the HW structure
1152 * Blink the led's which are set to be on.
1154 s32
igb_blink_led(struct e1000_hw
*hw
)
1156 u32 ledctl_blink
= 0;
1159 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1160 /* always blink LED0 for PCI-E fiber */
1161 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
1162 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
1165 * set the blink bit for each LED that's "on" (0x0E)
1168 ledctl_blink
= hw
->mac
.ledctl_mode2
;
1169 for (i
= 0; i
< 4; i
++)
1170 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1171 E1000_LEDCTL_MODE_LED_ON
)
1172 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
<<
1176 wr32(E1000_LEDCTL
, ledctl_blink
);
1182 * igb_led_off - Turn LED off
1183 * @hw: pointer to the HW structure
1187 s32
igb_led_off(struct e1000_hw
*hw
)
1191 switch (hw
->phy
.media_type
) {
1192 case e1000_media_type_fiber
:
1193 ctrl
= rd32(E1000_CTRL
);
1194 ctrl
|= E1000_CTRL_SWDPIN0
;
1195 ctrl
|= E1000_CTRL_SWDPIO0
;
1196 wr32(E1000_CTRL
, ctrl
);
1198 case e1000_media_type_copper
:
1199 wr32(E1000_LEDCTL
, hw
->mac
.ledctl_mode1
);
1209 * igb_disable_pcie_master - Disables PCI-express master access
1210 * @hw: pointer to the HW structure
1212 * Returns 0 (0) if successful, else returns -10
1213 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1214 * the master requests to be disabled.
1216 * Disables PCI-Express master access and verifies there are no pending
1219 s32
igb_disable_pcie_master(struct e1000_hw
*hw
)
1222 s32 timeout
= MASTER_DISABLE_TIMEOUT
;
1225 if (hw
->bus
.type
!= e1000_bus_type_pci_express
)
1228 ctrl
= rd32(E1000_CTRL
);
1229 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
1230 wr32(E1000_CTRL
, ctrl
);
1233 if (!(rd32(E1000_STATUS
) &
1234 E1000_STATUS_GIO_MASTER_ENABLE
))
1241 hw_dbg("Master requests are pending.\n");
1242 ret_val
= -E1000_ERR_MASTER_REQUESTS_PENDING
;
1251 * igb_reset_adaptive - Reset Adaptive Interframe Spacing
1252 * @hw: pointer to the HW structure
1254 * Reset the Adaptive Interframe Spacing throttle to default values.
1256 void igb_reset_adaptive(struct e1000_hw
*hw
)
1258 struct e1000_mac_info
*mac
= &hw
->mac
;
1260 if (!mac
->adaptive_ifs
) {
1261 hw_dbg("Not in Adaptive IFS mode!\n");
1265 if (!mac
->ifs_params_forced
) {
1266 mac
->current_ifs_val
= 0;
1267 mac
->ifs_min_val
= IFS_MIN
;
1268 mac
->ifs_max_val
= IFS_MAX
;
1269 mac
->ifs_step_size
= IFS_STEP
;
1270 mac
->ifs_ratio
= IFS_RATIO
;
1273 mac
->in_ifs_mode
= false;
1280 * igb_update_adaptive - Update Adaptive Interframe Spacing
1281 * @hw: pointer to the HW structure
1283 * Update the Adaptive Interframe Spacing Throttle value based on the
1284 * time between transmitted packets and time between collisions.
1286 void igb_update_adaptive(struct e1000_hw
*hw
)
1288 struct e1000_mac_info
*mac
= &hw
->mac
;
1290 if (!mac
->adaptive_ifs
) {
1291 hw_dbg("Not in Adaptive IFS mode!\n");
1295 if ((mac
->collision_delta
* mac
->ifs_ratio
) > mac
->tx_packet_delta
) {
1296 if (mac
->tx_packet_delta
> MIN_NUM_XMITS
) {
1297 mac
->in_ifs_mode
= true;
1298 if (mac
->current_ifs_val
< mac
->ifs_max_val
) {
1299 if (!mac
->current_ifs_val
)
1300 mac
->current_ifs_val
= mac
->ifs_min_val
;
1302 mac
->current_ifs_val
+=
1305 mac
->current_ifs_val
);
1309 if (mac
->in_ifs_mode
&&
1310 (mac
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
1311 mac
->current_ifs_val
= 0;
1312 mac
->in_ifs_mode
= false;
1321 * igb_validate_mdi_setting - Verify MDI/MDIx settings
1322 * @hw: pointer to the HW structure
1324 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1325 * set, which is forced to MDI mode only.
1327 s32
igb_validate_mdi_setting(struct e1000_hw
*hw
)
1331 if (!hw
->mac
.autoneg
&& (hw
->phy
.mdix
== 0 || hw
->phy
.mdix
== 3)) {
1332 hw_dbg("Invalid MDI setting detected\n");
1334 ret_val
= -E1000_ERR_CONFIG
;
1343 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1344 * @hw: pointer to the HW structure
1345 * @reg: 32bit register offset such as E1000_SCTL
1346 * @offset: register offset to write to
1347 * @data: data to write at register offset
1349 * Writes an address/data control type register. There are several of these
1350 * and they all have the format address << 8 | data and bit 31 is polled for
1353 s32
igb_write_8bit_ctrl_reg(struct e1000_hw
*hw
, u32 reg
,
1354 u32 offset
, u8 data
)
1356 u32 i
, regvalue
= 0;
1359 /* Set up the address and data */
1360 regvalue
= ((u32
)data
) | (offset
<< E1000_GEN_CTL_ADDRESS_SHIFT
);
1361 wr32(reg
, regvalue
);
1363 /* Poll the ready bit to see if the MDI read completed */
1364 for (i
= 0; i
< E1000_GEN_POLL_TIMEOUT
; i
++) {
1366 regvalue
= rd32(reg
);
1367 if (regvalue
& E1000_GEN_CTL_READY
)
1370 if (!(regvalue
& E1000_GEN_CTL_READY
)) {
1371 hw_dbg("Reg %08x did not indicate ready\n", reg
);
1372 ret_val
= -E1000_ERR_PHY
;
1381 * igb_enable_mng_pass_thru - Enable processing of ARP's
1382 * @hw: pointer to the HW structure
1384 * Verifies the hardware needs to allow ARPs to be processed by the host.
1386 bool igb_enable_mng_pass_thru(struct e1000_hw
*hw
)
1390 bool ret_val
= false;
1392 if (!hw
->mac
.asf_firmware_present
)
1395 manc
= rd32(E1000_MANC
);
1397 if (!(manc
& E1000_MANC_RCV_TCO_EN
) ||
1398 !(manc
& E1000_MANC_EN_MAC_ADDR_FILTER
))
1401 if (hw
->mac
.arc_subsystem_valid
) {
1402 fwsm
= rd32(E1000_FWSM
);
1403 factps
= rd32(E1000_FACTPS
);
1405 if (!(factps
& E1000_FACTPS_MNGCG
) &&
1406 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
1407 (e1000_mng_mode_pt
<< E1000_FWSM_MODE_SHIFT
))) {
1412 if ((manc
& E1000_MANC_SMBUS_EN
) &&
1413 !(manc
& E1000_MANC_ASF_EN
)) {