1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
33 #include "ixgbe_common.h"
34 #include "ixgbe_phy.h"
36 static s32
ixgbe_clear_hw_cntrs(struct ixgbe_hw
*hw
);
38 static s32
ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw
*hw
);
39 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
41 static u16
ixgbe_calc_eeprom_checksum(struct ixgbe_hw
*hw
);
43 static s32
ixgbe_clear_vfta(struct ixgbe_hw
*hw
);
44 static s32
ixgbe_init_rx_addrs(struct ixgbe_hw
*hw
);
45 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
46 static void ixgbe_add_mc_addr(struct ixgbe_hw
*hw
, u8
*mc_addr
);
49 * ixgbe_start_hw - Prepare hardware for TX/RX
50 * @hw: pointer to hardware structure
52 * Starts the hardware by filling the bus info structure and media type, clears
53 * all on chip counters, initializes receive address registers, multicast
54 * table, VLAN filter table, calls routine to set up link and flow control
55 * settings, and leaves transmit and receive units disabled and uninitialized
57 s32
ixgbe_start_hw(struct ixgbe_hw
*hw
)
61 /* Set the media type */
62 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
64 /* Identify the PHY */
65 ixgbe_identify_phy(hw
);
68 * Store MAC address from RAR0, clear receive address registers, and
69 * clear the multicast table
71 ixgbe_init_rx_addrs(hw
);
73 /* Clear the VLAN filter table */
77 hw
->mac
.ops
.setup_link(hw
);
79 /* Clear statistics registers */
80 ixgbe_clear_hw_cntrs(hw
);
82 /* Set No Snoop Disable */
83 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
84 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
85 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
86 IXGBE_WRITE_FLUSH(hw
);
88 /* Clear adapter stopped flag */
89 hw
->adapter_stopped
= false;
95 * ixgbe_init_hw - Generic hardware initialization
96 * @hw: pointer to hardware structure
98 * Initialize the hardware by reseting the hardware, filling the bus info
99 * structure and media type, clears all on chip counters, initializes receive
100 * address registers, multicast table, VLAN filter table, calls routine to set
101 * up link and flow control settings, and leaves transmit and receive units
102 * disabled and uninitialized
104 s32
ixgbe_init_hw(struct ixgbe_hw
*hw
)
106 /* Reset the hardware */
107 hw
->mac
.ops
.reset(hw
);
116 * ixgbe_clear_hw_cntrs - Generic clear hardware counters
117 * @hw: pointer to hardware structure
119 * Clears all hardware statistics counters by reading them from the hardware
120 * Statistics counters are clear on read.
122 static s32
ixgbe_clear_hw_cntrs(struct ixgbe_hw
*hw
)
126 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
127 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
128 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
129 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
130 for (i
= 0; i
< 8; i
++)
131 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
133 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
134 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
135 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
136 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
137 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
138 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
139 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
141 for (i
= 0; i
< 8; i
++) {
142 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
143 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
144 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
145 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
148 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
149 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
150 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
151 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
152 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
153 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
154 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
155 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
156 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
157 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
158 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
159 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
160 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
161 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
162 for (i
= 0; i
< 8; i
++)
163 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
164 IXGBE_READ_REG(hw
, IXGBE_RUC
);
165 IXGBE_READ_REG(hw
, IXGBE_RFC
);
166 IXGBE_READ_REG(hw
, IXGBE_ROC
);
167 IXGBE_READ_REG(hw
, IXGBE_RJC
);
168 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
169 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
170 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
171 IXGBE_READ_REG(hw
, IXGBE_TORL
);
172 IXGBE_READ_REG(hw
, IXGBE_TORH
);
173 IXGBE_READ_REG(hw
, IXGBE_TPR
);
174 IXGBE_READ_REG(hw
, IXGBE_TPT
);
175 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
176 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
177 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
178 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
179 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
180 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
181 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
182 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
183 for (i
= 0; i
< 16; i
++) {
184 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
185 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
186 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
187 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
194 * ixgbe_get_mac_addr - Generic get MAC address
195 * @hw: pointer to hardware structure
196 * @mac_addr: Adapter MAC address
198 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
199 * A reset of the adapter must be performed prior to calling this function
200 * in order for the MAC address to have been loaded from the EEPROM into RAR0
202 s32
ixgbe_get_mac_addr(struct ixgbe_hw
*hw
, u8
*mac_addr
)
208 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
209 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
211 for (i
= 0; i
< 4; i
++)
212 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
214 for (i
= 0; i
< 2; i
++)
215 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
220 s32
ixgbe_read_part_num(struct ixgbe_hw
*hw
, u32
*part_num
)
225 ret_val
= ixgbe_read_eeprom(hw
, IXGBE_PBANUM0_PTR
, &data
);
227 hw_dbg(hw
, "NVM Read Error\n");
230 *part_num
= (u32
)(data
<< 16);
232 ret_val
= ixgbe_read_eeprom(hw
, IXGBE_PBANUM1_PTR
, &data
);
234 hw_dbg(hw
, "NVM Read Error\n");
243 * ixgbe_stop_adapter - Generic stop TX/RX units
244 * @hw: pointer to hardware structure
246 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
247 * disables transmit and receive units. The adapter_stopped flag is used by
248 * the shared code and drivers to determine if the adapter is in a stopped
249 * state and should not touch the hardware.
251 s32
ixgbe_stop_adapter(struct ixgbe_hw
*hw
)
253 u32 number_of_queues
;
258 * Set the adapter_stopped flag so other driver functions stop touching
261 hw
->adapter_stopped
= true;
263 /* Disable the receive unit */
264 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
265 reg_val
&= ~(IXGBE_RXCTRL_RXEN
);
266 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, reg_val
);
269 /* Clear interrupt mask to stop from interrupts being generated */
270 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
272 /* Clear any pending interrupts */
273 IXGBE_READ_REG(hw
, IXGBE_EICR
);
275 /* Disable the transmit unit. Each queue must be disabled. */
276 number_of_queues
= hw
->mac
.num_tx_queues
;
277 for (i
= 0; i
< number_of_queues
; i
++) {
278 reg_val
= IXGBE_READ_REG(hw
, IXGBE_TXDCTL(i
));
279 if (reg_val
& IXGBE_TXDCTL_ENABLE
) {
280 reg_val
&= ~IXGBE_TXDCTL_ENABLE
;
281 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), reg_val
);
289 * ixgbe_led_on - Turns on the software controllable LEDs.
290 * @hw: pointer to hardware structure
291 * @index: led number to turn on
293 s32
ixgbe_led_on(struct ixgbe_hw
*hw
, u32 index
)
295 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
297 /* To turn on the LED, set mode to ON. */
298 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
299 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
300 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
301 IXGBE_WRITE_FLUSH(hw
);
307 * ixgbe_led_off - Turns off the software controllable LEDs.
308 * @hw: pointer to hardware structure
309 * @index: led number to turn off
311 s32
ixgbe_led_off(struct ixgbe_hw
*hw
, u32 index
)
313 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
315 /* To turn off the LED, set mode to OFF. */
316 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
317 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
318 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
319 IXGBE_WRITE_FLUSH(hw
);
326 * ixgbe_init_eeprom - Initialize EEPROM params
327 * @hw: pointer to hardware structure
329 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
330 * ixgbe_hw struct in order to set up EEPROM access.
332 s32
ixgbe_init_eeprom(struct ixgbe_hw
*hw
)
334 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
338 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
339 eeprom
->type
= ixgbe_eeprom_none
;
342 * Check for EEPROM present first.
343 * If not present leave as none
345 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
346 if (eec
& IXGBE_EEC_PRES
) {
347 eeprom
->type
= ixgbe_eeprom_spi
;
350 * SPI EEPROM is assumed here. This code would need to
351 * change if a future EEPROM is not SPI.
353 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
354 IXGBE_EEC_SIZE_SHIFT
);
355 eeprom
->word_size
= 1 << (eeprom_size
+
356 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
359 if (eec
& IXGBE_EEC_ADDR_SIZE
)
360 eeprom
->address_bits
= 16;
362 eeprom
->address_bits
= 8;
363 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: "
364 "%d\n", eeprom
->type
, eeprom
->word_size
,
365 eeprom
->address_bits
);
372 * ixgbe_read_eeprom - Read EEPROM word using EERD
373 * @hw: pointer to hardware structure
374 * @offset: offset of word in the EEPROM to read
375 * @data: word read from the EEPROM
377 * Reads a 16 bit word from the EEPROM using the EERD register.
379 s32
ixgbe_read_eeprom(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
384 eerd
= (offset
<< IXGBE_EEPROM_READ_ADDR_SHIFT
) +
385 IXGBE_EEPROM_READ_REG_START
;
387 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
388 status
= ixgbe_poll_eeprom_eerd_done(hw
);
391 *data
= (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
392 IXGBE_EEPROM_READ_REG_DATA
);
394 hw_dbg(hw
, "Eeprom read timed out\n");
400 * ixgbe_poll_eeprom_eerd_done - Poll EERD status
401 * @hw: pointer to hardware structure
403 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
405 static s32
ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw
*hw
)
409 s32 status
= IXGBE_ERR_EEPROM
;
411 for (i
= 0; i
< IXGBE_EERD_ATTEMPTS
; i
++) {
412 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
413 if (reg
& IXGBE_EEPROM_READ_REG_DONE
) {
423 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
424 * @hw: pointer to hardware structure
426 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
428 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
430 s32 status
= IXGBE_ERR_EEPROM
;
435 /* Set timeout value based on size of EEPROM */
436 timeout
= hw
->eeprom
.word_size
+ 1;
438 /* Get SMBI software semaphore between device drivers first */
439 for (i
= 0; i
< timeout
; i
++) {
441 * If the SMBI bit is 0 when we read it, then the bit will be
442 * set and we have the semaphore
444 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
445 if (!(swsm
& IXGBE_SWSM_SMBI
)) {
452 /* Now get the semaphore between SW/FW through the SWESMBI bit */
454 for (i
= 0; i
< timeout
; i
++) {
455 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
457 /* Set the SW EEPROM semaphore bit to request access */
458 swsm
|= IXGBE_SWSM_SWESMBI
;
459 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
462 * If we set the bit successfully then we got the
465 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
466 if (swsm
& IXGBE_SWSM_SWESMBI
)
473 * Release semaphores and return error if SW EEPROM semaphore
474 * was not granted because we don't have access to the EEPROM
477 hw_dbg(hw
, "Driver can't access the Eeprom - Semaphore "
479 ixgbe_release_eeprom_semaphore(hw
);
480 status
= IXGBE_ERR_EEPROM
;
488 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
489 * @hw: pointer to hardware structure
491 * This function clears hardware semaphore bits.
493 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
497 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
499 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
500 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
501 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
502 IXGBE_WRITE_FLUSH(hw
);
506 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
507 * @hw: pointer to hardware structure
509 static u16
ixgbe_calc_eeprom_checksum(struct ixgbe_hw
*hw
)
518 /* Include 0x0-0x3F in the checksum */
519 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
520 if (ixgbe_read_eeprom(hw
, i
, &word
) != 0) {
521 hw_dbg(hw
, "EEPROM read failed\n");
527 /* Include all data from pointers except for the fw pointer */
528 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
529 ixgbe_read_eeprom(hw
, i
, &pointer
);
531 /* Make sure the pointer seems valid */
532 if (pointer
!= 0xFFFF && pointer
!= 0) {
533 ixgbe_read_eeprom(hw
, pointer
, &length
);
535 if (length
!= 0xFFFF && length
!= 0) {
536 for (j
= pointer
+1; j
<= pointer
+length
; j
++) {
537 ixgbe_read_eeprom(hw
, j
, &word
);
544 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
550 * ixgbe_validate_eeprom_checksum - Validate EEPROM checksum
551 * @hw: pointer to hardware structure
552 * @checksum_val: calculated checksum
554 * Performs checksum calculation and validates the EEPROM checksum. If the
555 * caller does not need checksum_val, the value can be NULL.
557 s32
ixgbe_validate_eeprom_checksum(struct ixgbe_hw
*hw
, u16
*checksum_val
)
561 u16 read_checksum
= 0;
564 * Read the first word from the EEPROM. If this times out or fails, do
565 * not continue or we could be in for a very long wait while every
568 status
= ixgbe_read_eeprom(hw
, 0, &checksum
);
571 checksum
= ixgbe_calc_eeprom_checksum(hw
);
573 ixgbe_read_eeprom(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
576 * Verify read checksum from EEPROM is the same as
577 * calculated checksum
579 if (read_checksum
!= checksum
)
580 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
582 /* If the user cares, return the calculated checksum */
584 *checksum_val
= checksum
;
586 hw_dbg(hw
, "EEPROM read failed\n");
593 * ixgbe_validate_mac_addr - Validate MAC address
594 * @mac_addr: pointer to MAC address.
596 * Tests a MAC address to ensure it is a valid Individual Address
598 s32
ixgbe_validate_mac_addr(u8
*mac_addr
)
602 /* Make sure it is not a multicast address */
603 if (IXGBE_IS_MULTICAST(mac_addr
))
604 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
605 /* Not a broadcast address */
606 else if (IXGBE_IS_BROADCAST(mac_addr
))
607 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
608 /* Reject the zero address */
609 else if (mac_addr
[0] == 0 && mac_addr
[1] == 0 && mac_addr
[2] == 0 &&
610 mac_addr
[3] == 0 && mac_addr
[4] == 0 && mac_addr
[5] == 0)
611 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
617 * ixgbe_set_rar - Set RX address register
618 * @hw: pointer to hardware structure
619 * @addr: Address to put into receive address register
620 * @index: Receive address register to write
621 * @vind: Vind to set RAR to
622 * @enable_addr: set flag that address is active
624 * Puts an ethernet address into a receive address register.
626 s32
ixgbe_set_rar(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vind
,
629 u32 rar_low
, rar_high
;
632 * HW expects these in little endian so we reverse the byte order from
633 * network order (big endian) to little endian
635 rar_low
= ((u32
)addr
[0] |
636 ((u32
)addr
[1] << 8) |
637 ((u32
)addr
[2] << 16) |
638 ((u32
)addr
[3] << 24));
640 rar_high
= ((u32
)addr
[4] |
641 ((u32
)addr
[5] << 8) |
642 ((vind
<< IXGBE_RAH_VIND_SHIFT
) & IXGBE_RAH_VIND_MASK
));
644 if (enable_addr
!= 0)
645 rar_high
|= IXGBE_RAH_AV
;
647 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
648 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
654 * ixgbe_init_rx_addrs - Initializes receive address filters.
655 * @hw: pointer to hardware structure
657 * Places the MAC address in receive address register 0 and clears the rest
658 * of the receive addresss registers. Clears the multicast table. Assumes
659 * the receiver is in reset when the routine is called.
661 static s32
ixgbe_init_rx_addrs(struct ixgbe_hw
*hw
)
664 u32 rar_entries
= hw
->mac
.num_rar_entries
;
667 * If the current mac address is valid, assume it is a software override
668 * to the permanent address.
669 * Otherwise, use the permanent address from the eeprom.
671 if (ixgbe_validate_mac_addr(hw
->mac
.addr
) ==
672 IXGBE_ERR_INVALID_MAC_ADDR
) {
673 /* Get the MAC address from the RAR0 for later reference */
674 ixgbe_get_mac_addr(hw
, hw
->mac
.addr
);
676 hw_dbg(hw
, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
677 hw
->mac
.addr
[0], hw
->mac
.addr
[1],
679 hw_dbg(hw
, "%.2X %.2X %.2X\n", hw
->mac
.addr
[3],
680 hw
->mac
.addr
[4], hw
->mac
.addr
[5]);
682 /* Setup the receive address. */
683 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
684 hw_dbg(hw
, " New MAC Addr =%.2X %.2X %.2X ",
685 hw
->mac
.addr
[0], hw
->mac
.addr
[1],
687 hw_dbg(hw
, "%.2X %.2X %.2X\n", hw
->mac
.addr
[3],
688 hw
->mac
.addr
[4], hw
->mac
.addr
[5]);
690 ixgbe_set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
693 hw
->addr_ctrl
.rar_used_count
= 1;
695 /* Zero out the other receive addresses. */
696 hw_dbg(hw
, "Clearing RAR[1-15]\n");
697 for (i
= 1; i
< rar_entries
; i
++) {
698 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
699 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
703 hw
->addr_ctrl
.mc_addr_in_rar_count
= 0;
704 hw
->addr_ctrl
.mta_in_use
= 0;
705 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
707 hw_dbg(hw
, " Clearing MTA\n");
708 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
709 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
715 * ixgbe_add_uc_addr - Adds a secondary unicast address.
716 * @hw: pointer to hardware structure
719 * Adds it to unused receive address register or goes into promiscuous mode.
721 void ixgbe_add_uc_addr(struct ixgbe_hw
*hw
, u8
*addr
)
723 u32 rar_entries
= hw
->mac
.num_rar_entries
;
726 hw_dbg(hw
, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
727 addr
[0], addr
[1], addr
[2], addr
[3], addr
[4], addr
[5]);
730 * Place this address in the RAR if there is room,
731 * else put the controller into promiscuous mode
733 if (hw
->addr_ctrl
.rar_used_count
< rar_entries
) {
734 rar
= hw
->addr_ctrl
.rar_used_count
-
735 hw
->addr_ctrl
.mc_addr_in_rar_count
;
736 ixgbe_set_rar(hw
, rar
, addr
, 0, IXGBE_RAH_AV
);
737 hw_dbg(hw
, "Added a secondary address to RAR[%d]\n", rar
);
738 hw
->addr_ctrl
.rar_used_count
++;
740 hw
->addr_ctrl
.overflow_promisc
++;
743 hw_dbg(hw
, "ixgbe_add_uc_addr Complete\n");
747 * ixgbe_update_uc_addr_list - Updates MAC list of secondary addresses
748 * @hw: pointer to hardware structure
749 * @addr_list: the list of new addresses
750 * @addr_count: number of addresses
751 * @next: iterator function to walk the address list
753 * The given list replaces any existing list. Clears the secondary addrs from
754 * receive address registers. Uses unused receive address registers for the
755 * first secondary addresses, and falls back to promiscuous mode as needed.
757 * Drivers using secondary unicast addresses must set user_set_promisc when
758 * manually putting the device into promiscuous mode.
760 s32
ixgbe_update_uc_addr_list(struct ixgbe_hw
*hw
, u8
*addr_list
,
761 u32 addr_count
, ixgbe_mc_addr_itr next
)
765 u32 old_promisc_setting
= hw
->addr_ctrl
.overflow_promisc
;
771 * Clear accounting of old secondary address list,
774 uc_addr_in_use
= hw
->addr_ctrl
.rar_used_count
-
775 hw
->addr_ctrl
.mc_addr_in_rar_count
- 1;
776 hw
->addr_ctrl
.rar_used_count
-= uc_addr_in_use
;
777 hw
->addr_ctrl
.overflow_promisc
= 0;
779 /* Zero out the other receive addresses */
780 hw_dbg(hw
, "Clearing RAR[1-%d]\n", uc_addr_in_use
);
781 for (i
= 1; i
<= uc_addr_in_use
; i
++) {
782 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
783 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
786 /* Add the new addresses */
787 for (i
= 0; i
< addr_count
; i
++) {
788 hw_dbg(hw
, " Adding the secondary addresses:\n");
789 addr
= next(hw
, &addr_list
, &vmdq
);
790 ixgbe_add_uc_addr(hw
, addr
);
793 if (hw
->addr_ctrl
.overflow_promisc
) {
794 /* enable promisc if not already in overflow or set by user */
795 if (!old_promisc_setting
&& !hw
->addr_ctrl
.user_set_promisc
) {
796 hw_dbg(hw
, " Entering address overflow promisc mode\n");
797 fctrl
= IXGBE_READ_REG(hw
, IXGBE_FCTRL
);
798 fctrl
|= IXGBE_FCTRL_UPE
;
799 IXGBE_WRITE_REG(hw
, IXGBE_FCTRL
, fctrl
);
802 /* only disable if set by overflow, not by user */
803 if (old_promisc_setting
&& !hw
->addr_ctrl
.user_set_promisc
) {
804 hw_dbg(hw
, " Leaving address overflow promisc mode\n");
805 fctrl
= IXGBE_READ_REG(hw
, IXGBE_FCTRL
);
806 fctrl
&= ~IXGBE_FCTRL_UPE
;
807 IXGBE_WRITE_REG(hw
, IXGBE_FCTRL
, fctrl
);
811 hw_dbg(hw
, "ixgbe_update_uc_addr_list Complete\n");
816 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
817 * @hw: pointer to hardware structure
818 * @mc_addr: the multicast address
820 * Extracts the 12 bits, from a multicast address, to determine which
821 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
822 * incoming rx multicast addresses, to determine the bit-vector to check in
823 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
824 * by the MO field of the MCSTCTRL. The MO field is set during initalization
827 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
831 switch (hw
->mac
.mc_filter_type
) {
832 case 0: /* use bits [47:36] of the address */
833 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
835 case 1: /* use bits [46:35] of the address */
836 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
838 case 2: /* use bits [45:34] of the address */
839 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
841 case 3: /* use bits [43:32] of the address */
842 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
844 default: /* Invalid mc_filter_type */
845 hw_dbg(hw
, "MC filter type param set incorrectly\n");
849 /* vector can only be 12-bits or boundary will be exceeded */
855 * ixgbe_set_mta - Set bit-vector in multicast table
856 * @hw: pointer to hardware structure
857 * @hash_value: Multicast address hash value
859 * Sets the bit-vector in the multicast table.
861 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
868 hw
->addr_ctrl
.mta_in_use
++;
870 vector
= ixgbe_mta_vector(hw
, mc_addr
);
871 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
874 * The MTA is a register array of 128 32-bit registers. It is treated
875 * like an array of 4096 bits. We want to set bit
876 * BitArray[vector_value]. So we figure out what register the bit is
877 * in, read it, OR in the new bit, then write back the new value. The
878 * register is determined by the upper 7 bits of the vector value and
879 * the bit within that register are determined by the lower 5 bits of
882 vector_reg
= (vector
>> 5) & 0x7F;
883 vector_bit
= vector
& 0x1F;
884 mta_reg
= IXGBE_READ_REG(hw
, IXGBE_MTA(vector_reg
));
885 mta_reg
|= (1 << vector_bit
);
886 IXGBE_WRITE_REG(hw
, IXGBE_MTA(vector_reg
), mta_reg
);
890 * ixgbe_add_mc_addr - Adds a multicast address.
891 * @hw: pointer to hardware structure
892 * @mc_addr: new multicast address
894 * Adds it to unused receive address register or to the multicast table.
896 static void ixgbe_add_mc_addr(struct ixgbe_hw
*hw
, u8
*mc_addr
)
898 u32 rar_entries
= hw
->mac
.num_rar_entries
;
900 hw_dbg(hw
, " MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n",
901 mc_addr
[0], mc_addr
[1], mc_addr
[2],
902 mc_addr
[3], mc_addr
[4], mc_addr
[5]);
905 * Place this multicast address in the RAR if there is room,
906 * else put it in the MTA
908 if (hw
->addr_ctrl
.rar_used_count
< rar_entries
) {
909 ixgbe_set_rar(hw
, hw
->addr_ctrl
.rar_used_count
,
910 mc_addr
, 0, IXGBE_RAH_AV
);
911 hw_dbg(hw
, "Added a multicast address to RAR[%d]\n",
912 hw
->addr_ctrl
.rar_used_count
);
913 hw
->addr_ctrl
.rar_used_count
++;
914 hw
->addr_ctrl
.mc_addr_in_rar_count
++;
916 ixgbe_set_mta(hw
, mc_addr
);
919 hw_dbg(hw
, "ixgbe_add_mc_addr Complete\n");
923 * ixgbe_update_mc_addr_list - Updates MAC list of multicast addresses
924 * @hw: pointer to hardware structure
925 * @mc_addr_list: the list of new multicast addresses
926 * @mc_addr_count: number of addresses
927 * @next: iterator function to walk the multicast address list
929 * The given list replaces any existing list. Clears the MC addrs from receive
930 * address registers and the multicast table. Uses unsed receive address
931 * registers for the first multicast addresses, and hashes the rest into the
934 s32
ixgbe_update_mc_addr_list(struct ixgbe_hw
*hw
, u8
*mc_addr_list
,
935 u32 mc_addr_count
, ixgbe_mc_addr_itr next
)
938 u32 rar_entries
= hw
->mac
.num_rar_entries
;
942 * Set the new number of MC addresses that we are being requested to
945 hw
->addr_ctrl
.num_mc_addrs
= mc_addr_count
;
946 hw
->addr_ctrl
.rar_used_count
-= hw
->addr_ctrl
.mc_addr_in_rar_count
;
947 hw
->addr_ctrl
.mc_addr_in_rar_count
= 0;
948 hw
->addr_ctrl
.mta_in_use
= 0;
950 /* Zero out the other receive addresses. */
951 hw_dbg(hw
, "Clearing RAR[1-15]\n");
952 for (i
= hw
->addr_ctrl
.rar_used_count
; i
< rar_entries
; i
++) {
953 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
954 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
958 hw_dbg(hw
, " Clearing MTA\n");
959 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
960 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
962 /* Add the new addresses */
963 for (i
= 0; i
< mc_addr_count
; i
++) {
964 hw_dbg(hw
, " Adding the multicast addresses:\n");
965 ixgbe_add_mc_addr(hw
, next(hw
, &mc_addr_list
, &vmdq
));
969 if (hw
->addr_ctrl
.mta_in_use
> 0)
970 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
971 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
973 hw_dbg(hw
, "ixgbe_update_mc_addr_list Complete\n");
978 * ixgbe_clear_vfta - Clear VLAN filter table
979 * @hw: pointer to hardware structure
981 * Clears the VLAN filer table, and the VMDq index associated with the filter
983 static s32
ixgbe_clear_vfta(struct ixgbe_hw
*hw
)
988 for (offset
= 0; offset
< hw
->mac
.vft_size
; offset
++)
989 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
991 for (vlanbyte
= 0; vlanbyte
< 4; vlanbyte
++)
992 for (offset
= 0; offset
< hw
->mac
.vft_size
; offset
++)
993 IXGBE_WRITE_REG(hw
, IXGBE_VFTAVIND(vlanbyte
, offset
),
1000 * ixgbe_set_vfta - Set VLAN filter table
1001 * @hw: pointer to hardware structure
1002 * @vlan: VLAN id to write to VLAN filter
1003 * @vind: VMDq output index that maps queue to VLAN id in VFTA
1004 * @vlan_on: boolean flag to turn on/off VLAN in VFTA
1006 * Turn on/off specified VLAN in the VLAN filter table.
1008 s32
ixgbe_set_vfta(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
1016 /* Determine 32-bit word position in array */
1017 VftaIndex
= (vlan
>> 5) & 0x7F; /* upper seven bits */
1019 /* Determine the location of the (VMD) queue index */
1020 VftaByte
= ((vlan
>> 3) & 0x03); /* bits (4:3) indicating byte array */
1021 BitOffset
= (vlan
& 0x7) << 2; /* lower 3 bits indicate nibble */
1023 /* Set the nibble for VMD queue index */
1024 VftaReg
= IXGBE_READ_REG(hw
, IXGBE_VFTAVIND(VftaByte
, VftaIndex
));
1025 VftaReg
&= (~(0x0F << BitOffset
));
1026 VftaReg
|= (vind
<< BitOffset
);
1027 IXGBE_WRITE_REG(hw
, IXGBE_VFTAVIND(VftaByte
, VftaIndex
), VftaReg
);
1029 /* Determine the location of the bit for this VLAN id */
1030 BitOffset
= vlan
& 0x1F; /* lower five bits */
1032 VftaReg
= IXGBE_READ_REG(hw
, IXGBE_VFTA(VftaIndex
));
1034 /* Turn on this VLAN id */
1035 VftaReg
|= (1 << BitOffset
);
1037 /* Turn off this VLAN id */
1038 VftaReg
&= ~(1 << BitOffset
);
1039 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(VftaIndex
), VftaReg
);
1045 * ixgbe_setup_fc - Configure flow control settings
1046 * @hw: pointer to hardware structure
1047 * @packetbuf_num: packet buffer number (0-7)
1049 * Configures the flow control settings based on SW configuration.
1050 * This function is used for 802.3x flow control configuration only.
1052 s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
1057 if (packetbuf_num
< 0 || packetbuf_num
> 7)
1058 hw_dbg(hw
, "Invalid packet buffer number [%d], expected range "
1059 "is 0-7\n", packetbuf_num
);
1061 frctl_reg
= IXGBE_READ_REG(hw
, IXGBE_FCTRL
);
1062 frctl_reg
&= ~(IXGBE_FCTRL_RFCE
| IXGBE_FCTRL_RPFCE
);
1064 rmcs_reg
= IXGBE_READ_REG(hw
, IXGBE_RMCS
);
1065 rmcs_reg
&= ~(IXGBE_RMCS_TFCE_PRIORITY
| IXGBE_RMCS_TFCE_802_3X
);
1068 * 10 gig parts do not have a word in the EEPROM to determine the
1069 * default flow control setting, so we explicitly set it to full.
1071 if (hw
->fc
.type
== ixgbe_fc_default
)
1072 hw
->fc
.type
= ixgbe_fc_full
;
1075 * We want to save off the original Flow Control configuration just in
1076 * case we get disconnected and then reconnected into a different hub
1077 * or switch with different Flow Control capabilities.
1079 hw
->fc
.type
= hw
->fc
.original_type
;
1082 * The possible values of the "flow_control" parameter are:
1083 * 0: Flow control is completely disabled
1084 * 1: Rx flow control is enabled (we can receive pause frames but not
1085 * send pause frames).
1086 * 2: Tx flow control is enabled (we can send pause frames but we do not
1087 * support receiving pause frames)
1088 * 3: Both Rx and TX flow control (symmetric) are enabled.
1091 switch (hw
->fc
.type
) {
1094 case ixgbe_fc_rx_pause
:
1096 * RX Flow control is enabled,
1097 * and TX Flow control is disabled.
1099 frctl_reg
|= IXGBE_FCTRL_RFCE
;
1101 case ixgbe_fc_tx_pause
:
1103 * TX Flow control is enabled, and RX Flow control is disabled,
1104 * by a software over-ride.
1106 rmcs_reg
|= IXGBE_RMCS_TFCE_802_3X
;
1110 * Flow control (both RX and TX) is enabled by a software
1113 frctl_reg
|= IXGBE_FCTRL_RFCE
;
1114 rmcs_reg
|= IXGBE_RMCS_TFCE_802_3X
;
1117 /* We should never get here. The value should be 0-3. */
1118 hw_dbg(hw
, "Flow control param set incorrectly\n");
1122 /* Enable 802.3x based flow control settings. */
1123 IXGBE_WRITE_REG(hw
, IXGBE_FCTRL
, frctl_reg
);
1124 IXGBE_WRITE_REG(hw
, IXGBE_RMCS
, rmcs_reg
);
1127 * Check for invalid software configuration, zeros are completely
1128 * invalid for all parameters used past this point, and if we enable
1129 * flow control with zero water marks, we blast flow control packets.
1131 if (!hw
->fc
.low_water
|| !hw
->fc
.high_water
|| !hw
->fc
.pause_time
) {
1132 hw_dbg(hw
, "Flow control structure initialized incorrectly\n");
1133 return IXGBE_ERR_INVALID_LINK_SETTINGS
;
1137 * We need to set up the Receive Threshold high and low water
1138 * marks as well as (optionally) enabling the transmission of
1141 if (hw
->fc
.type
& ixgbe_fc_tx_pause
) {
1142 if (hw
->fc
.send_xon
) {
1143 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL(packetbuf_num
),
1144 (hw
->fc
.low_water
| IXGBE_FCRTL_XONE
));
1146 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL(packetbuf_num
),
1149 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH(packetbuf_num
),
1150 (hw
->fc
.high_water
)|IXGBE_FCRTH_FCEN
);
1153 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(0), hw
->fc
.pause_time
);
1154 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, (hw
->fc
.pause_time
>> 1));
1160 * ixgbe_disable_pcie_master - Disable PCI-express master access
1161 * @hw: pointer to hardware structure
1163 * Disables PCI-Express master access and verifies there are no pending
1164 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1165 * bit hasn't caused the master requests to be disabled, else 0
1166 * is returned signifying master requests disabled.
1168 s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
1172 s32 status
= IXGBE_ERR_MASTER_REQUESTS_PENDING
;
1174 ctrl
= IXGBE_READ_REG(hw
, IXGBE_CTRL
);
1175 ctrl
|= IXGBE_CTRL_GIO_DIS
;
1176 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, ctrl
);
1178 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
1179 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
)) {
1191 * ixgbe_acquire_swfw_sync - Aquire SWFW semaphore
1192 * @hw: pointer to hardware structure
1193 * @mask: Mask to specify wich semaphore to acquire
1195 * Aquires the SWFW semaphore throught the GSSR register for the specified
1196 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1198 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
1202 u32 fwmask
= mask
<< 5;
1206 if (ixgbe_get_eeprom_semaphore(hw
))
1207 return -IXGBE_ERR_SWFW_SYNC
;
1209 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
1210 if (!(gssr
& (fwmask
| swmask
)))
1214 * Firmware currently using resource (fwmask) or other software
1215 * thread currently using resource (swmask)
1217 ixgbe_release_eeprom_semaphore(hw
);
1223 hw_dbg(hw
, "Driver can't access resource, GSSR timeout.\n");
1224 return -IXGBE_ERR_SWFW_SYNC
;
1228 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
1230 ixgbe_release_eeprom_semaphore(hw
);
1235 * ixgbe_release_swfw_sync - Release SWFW semaphore
1236 * @hw: pointer to hardware structure
1237 * @mask: Mask to specify wich semaphore to release
1239 * Releases the SWFW semaphore throught the GSSR register for the specified
1240 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1242 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
1247 ixgbe_get_eeprom_semaphore(hw
);
1249 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
1251 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
1253 ixgbe_release_eeprom_semaphore(hw
);
1257 * ixgbe_read_analog_reg8 - Reads 8 bit Atlas analog register
1258 * @hw: pointer to hardware structure
1259 * @reg: analog register to read
1262 * Performs write operation to analog register specified.
1264 s32
ixgbe_read_analog_reg8(struct ixgbe_hw
*hw
, u32 reg
, u8
*val
)
1268 IXGBE_WRITE_REG(hw
, IXGBE_ATLASCTL
,
1269 IXGBE_ATLASCTL_WRITE_CMD
| (reg
<< 8));
1270 IXGBE_WRITE_FLUSH(hw
);
1272 atlas_ctl
= IXGBE_READ_REG(hw
, IXGBE_ATLASCTL
);
1273 *val
= (u8
)atlas_ctl
;
1279 * ixgbe_write_analog_reg8 - Writes 8 bit Atlas analog register
1280 * @hw: pointer to hardware structure
1281 * @reg: atlas register to write
1282 * @val: value to write
1284 * Performs write operation to Atlas analog register specified.
1286 s32
ixgbe_write_analog_reg8(struct ixgbe_hw
*hw
, u32 reg
, u8 val
)
1290 atlas_ctl
= (reg
<< 8) | val
;
1291 IXGBE_WRITE_REG(hw
, IXGBE_ATLASCTL
, atlas_ctl
);
1292 IXGBE_WRITE_FLUSH(hw
);