libertas: convert SNMP_MIB to a direct command
[linux/fpc-iii.git] / drivers / net / ixgbe / ixgbe_common.c
blob9c0d0a1964ebac9508fcdde6a1384eebe27020ca
1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
33 #include "ixgbe_common.h"
34 #include "ixgbe_phy.h"
36 static s32 ixgbe_clear_hw_cntrs(struct ixgbe_hw *hw);
38 static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
43 static s32 ixgbe_clear_vfta(struct ixgbe_hw *hw);
44 static s32 ixgbe_init_rx_addrs(struct ixgbe_hw *hw);
45 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
46 static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr);
48 /**
49 * ixgbe_start_hw - Prepare hardware for TX/RX
50 * @hw: pointer to hardware structure
52 * Starts the hardware by filling the bus info structure and media type, clears
53 * all on chip counters, initializes receive address registers, multicast
54 * table, VLAN filter table, calls routine to set up link and flow control
55 * settings, and leaves transmit and receive units disabled and uninitialized
56 **/
57 s32 ixgbe_start_hw(struct ixgbe_hw *hw)
59 u32 ctrl_ext;
61 /* Set the media type */
62 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
64 /* Identify the PHY */
65 ixgbe_identify_phy(hw);
68 * Store MAC address from RAR0, clear receive address registers, and
69 * clear the multicast table
71 ixgbe_init_rx_addrs(hw);
73 /* Clear the VLAN filter table */
74 ixgbe_clear_vfta(hw);
76 /* Set up link */
77 hw->mac.ops.setup_link(hw);
79 /* Clear statistics registers */
80 ixgbe_clear_hw_cntrs(hw);
82 /* Set No Snoop Disable */
83 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
84 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
85 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
86 IXGBE_WRITE_FLUSH(hw);
88 /* Clear adapter stopped flag */
89 hw->adapter_stopped = false;
91 return 0;
94 /**
95 * ixgbe_init_hw - Generic hardware initialization
96 * @hw: pointer to hardware structure
98 * Initialize the hardware by reseting the hardware, filling the bus info
99 * structure and media type, clears all on chip counters, initializes receive
100 * address registers, multicast table, VLAN filter table, calls routine to set
101 * up link and flow control settings, and leaves transmit and receive units
102 * disabled and uninitialized
104 s32 ixgbe_init_hw(struct ixgbe_hw *hw)
106 /* Reset the hardware */
107 hw->mac.ops.reset(hw);
109 /* Start the HW */
110 ixgbe_start_hw(hw);
112 return 0;
116 * ixgbe_clear_hw_cntrs - Generic clear hardware counters
117 * @hw: pointer to hardware structure
119 * Clears all hardware statistics counters by reading them from the hardware
120 * Statistics counters are clear on read.
122 static s32 ixgbe_clear_hw_cntrs(struct ixgbe_hw *hw)
124 u16 i = 0;
126 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
127 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
128 IXGBE_READ_REG(hw, IXGBE_ERRBC);
129 IXGBE_READ_REG(hw, IXGBE_MSPDC);
130 for (i = 0; i < 8; i++)
131 IXGBE_READ_REG(hw, IXGBE_MPC(i));
133 IXGBE_READ_REG(hw, IXGBE_MLFC);
134 IXGBE_READ_REG(hw, IXGBE_MRFC);
135 IXGBE_READ_REG(hw, IXGBE_RLEC);
136 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
137 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
138 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
139 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
141 for (i = 0; i < 8; i++) {
142 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
143 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
144 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
145 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
148 IXGBE_READ_REG(hw, IXGBE_PRC64);
149 IXGBE_READ_REG(hw, IXGBE_PRC127);
150 IXGBE_READ_REG(hw, IXGBE_PRC255);
151 IXGBE_READ_REG(hw, IXGBE_PRC511);
152 IXGBE_READ_REG(hw, IXGBE_PRC1023);
153 IXGBE_READ_REG(hw, IXGBE_PRC1522);
154 IXGBE_READ_REG(hw, IXGBE_GPRC);
155 IXGBE_READ_REG(hw, IXGBE_BPRC);
156 IXGBE_READ_REG(hw, IXGBE_MPRC);
157 IXGBE_READ_REG(hw, IXGBE_GPTC);
158 IXGBE_READ_REG(hw, IXGBE_GORCL);
159 IXGBE_READ_REG(hw, IXGBE_GORCH);
160 IXGBE_READ_REG(hw, IXGBE_GOTCL);
161 IXGBE_READ_REG(hw, IXGBE_GOTCH);
162 for (i = 0; i < 8; i++)
163 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
164 IXGBE_READ_REG(hw, IXGBE_RUC);
165 IXGBE_READ_REG(hw, IXGBE_RFC);
166 IXGBE_READ_REG(hw, IXGBE_ROC);
167 IXGBE_READ_REG(hw, IXGBE_RJC);
168 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
169 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
170 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
171 IXGBE_READ_REG(hw, IXGBE_TORL);
172 IXGBE_READ_REG(hw, IXGBE_TORH);
173 IXGBE_READ_REG(hw, IXGBE_TPR);
174 IXGBE_READ_REG(hw, IXGBE_TPT);
175 IXGBE_READ_REG(hw, IXGBE_PTC64);
176 IXGBE_READ_REG(hw, IXGBE_PTC127);
177 IXGBE_READ_REG(hw, IXGBE_PTC255);
178 IXGBE_READ_REG(hw, IXGBE_PTC511);
179 IXGBE_READ_REG(hw, IXGBE_PTC1023);
180 IXGBE_READ_REG(hw, IXGBE_PTC1522);
181 IXGBE_READ_REG(hw, IXGBE_MPTC);
182 IXGBE_READ_REG(hw, IXGBE_BPTC);
183 for (i = 0; i < 16; i++) {
184 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
185 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
186 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
187 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
190 return 0;
194 * ixgbe_get_mac_addr - Generic get MAC address
195 * @hw: pointer to hardware structure
196 * @mac_addr: Adapter MAC address
198 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
199 * A reset of the adapter must be performed prior to calling this function
200 * in order for the MAC address to have been loaded from the EEPROM into RAR0
202 s32 ixgbe_get_mac_addr(struct ixgbe_hw *hw, u8 *mac_addr)
204 u32 rar_high;
205 u32 rar_low;
206 u16 i;
208 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
209 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
211 for (i = 0; i < 4; i++)
212 mac_addr[i] = (u8)(rar_low >> (i*8));
214 for (i = 0; i < 2; i++)
215 mac_addr[i+4] = (u8)(rar_high >> (i*8));
217 return 0;
220 s32 ixgbe_read_part_num(struct ixgbe_hw *hw, u32 *part_num)
222 s32 ret_val;
223 u16 data;
225 ret_val = ixgbe_read_eeprom(hw, IXGBE_PBANUM0_PTR, &data);
226 if (ret_val) {
227 hw_dbg(hw, "NVM Read Error\n");
228 return ret_val;
230 *part_num = (u32)(data << 16);
232 ret_val = ixgbe_read_eeprom(hw, IXGBE_PBANUM1_PTR, &data);
233 if (ret_val) {
234 hw_dbg(hw, "NVM Read Error\n");
235 return ret_val;
237 *part_num |= data;
239 return 0;
243 * ixgbe_stop_adapter - Generic stop TX/RX units
244 * @hw: pointer to hardware structure
246 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
247 * disables transmit and receive units. The adapter_stopped flag is used by
248 * the shared code and drivers to determine if the adapter is in a stopped
249 * state and should not touch the hardware.
251 s32 ixgbe_stop_adapter(struct ixgbe_hw *hw)
253 u32 number_of_queues;
254 u32 reg_val;
255 u16 i;
258 * Set the adapter_stopped flag so other driver functions stop touching
259 * the hardware
261 hw->adapter_stopped = true;
263 /* Disable the receive unit */
264 reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
265 reg_val &= ~(IXGBE_RXCTRL_RXEN);
266 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
267 msleep(2);
269 /* Clear interrupt mask to stop from interrupts being generated */
270 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
272 /* Clear any pending interrupts */
273 IXGBE_READ_REG(hw, IXGBE_EICR);
275 /* Disable the transmit unit. Each queue must be disabled. */
276 number_of_queues = hw->mac.num_tx_queues;
277 for (i = 0; i < number_of_queues; i++) {
278 reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
279 if (reg_val & IXGBE_TXDCTL_ENABLE) {
280 reg_val &= ~IXGBE_TXDCTL_ENABLE;
281 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
285 return 0;
289 * ixgbe_led_on - Turns on the software controllable LEDs.
290 * @hw: pointer to hardware structure
291 * @index: led number to turn on
293 s32 ixgbe_led_on(struct ixgbe_hw *hw, u32 index)
295 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
297 /* To turn on the LED, set mode to ON. */
298 led_reg &= ~IXGBE_LED_MODE_MASK(index);
299 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
300 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
301 IXGBE_WRITE_FLUSH(hw);
303 return 0;
307 * ixgbe_led_off - Turns off the software controllable LEDs.
308 * @hw: pointer to hardware structure
309 * @index: led number to turn off
311 s32 ixgbe_led_off(struct ixgbe_hw *hw, u32 index)
313 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
315 /* To turn off the LED, set mode to OFF. */
316 led_reg &= ~IXGBE_LED_MODE_MASK(index);
317 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
318 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
319 IXGBE_WRITE_FLUSH(hw);
321 return 0;
326 * ixgbe_init_eeprom - Initialize EEPROM params
327 * @hw: pointer to hardware structure
329 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
330 * ixgbe_hw struct in order to set up EEPROM access.
332 s32 ixgbe_init_eeprom(struct ixgbe_hw *hw)
334 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
335 u32 eec;
336 u16 eeprom_size;
338 if (eeprom->type == ixgbe_eeprom_uninitialized) {
339 eeprom->type = ixgbe_eeprom_none;
342 * Check for EEPROM present first.
343 * If not present leave as none
345 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
346 if (eec & IXGBE_EEC_PRES) {
347 eeprom->type = ixgbe_eeprom_spi;
350 * SPI EEPROM is assumed here. This code would need to
351 * change if a future EEPROM is not SPI.
353 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
354 IXGBE_EEC_SIZE_SHIFT);
355 eeprom->word_size = 1 << (eeprom_size +
356 IXGBE_EEPROM_WORD_SIZE_SHIFT);
359 if (eec & IXGBE_EEC_ADDR_SIZE)
360 eeprom->address_bits = 16;
361 else
362 eeprom->address_bits = 8;
363 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
364 "%d\n", eeprom->type, eeprom->word_size,
365 eeprom->address_bits);
368 return 0;
372 * ixgbe_read_eeprom - Read EEPROM word using EERD
373 * @hw: pointer to hardware structure
374 * @offset: offset of word in the EEPROM to read
375 * @data: word read from the EEPROM
377 * Reads a 16 bit word from the EEPROM using the EERD register.
379 s32 ixgbe_read_eeprom(struct ixgbe_hw *hw, u16 offset, u16 *data)
381 u32 eerd;
382 s32 status;
384 eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
385 IXGBE_EEPROM_READ_REG_START;
387 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
388 status = ixgbe_poll_eeprom_eerd_done(hw);
390 if (status == 0)
391 *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
392 IXGBE_EEPROM_READ_REG_DATA);
393 else
394 hw_dbg(hw, "Eeprom read timed out\n");
396 return status;
400 * ixgbe_poll_eeprom_eerd_done - Poll EERD status
401 * @hw: pointer to hardware structure
403 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
405 static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
407 u32 i;
408 u32 reg;
409 s32 status = IXGBE_ERR_EEPROM;
411 for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
412 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
413 if (reg & IXGBE_EEPROM_READ_REG_DONE) {
414 status = 0;
415 break;
417 udelay(5);
419 return status;
423 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
424 * @hw: pointer to hardware structure
426 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
428 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
430 s32 status = IXGBE_ERR_EEPROM;
431 u32 timeout;
432 u32 i;
433 u32 swsm;
435 /* Set timeout value based on size of EEPROM */
436 timeout = hw->eeprom.word_size + 1;
438 /* Get SMBI software semaphore between device drivers first */
439 for (i = 0; i < timeout; i++) {
441 * If the SMBI bit is 0 when we read it, then the bit will be
442 * set and we have the semaphore
444 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
445 if (!(swsm & IXGBE_SWSM_SMBI)) {
446 status = 0;
447 break;
449 msleep(1);
452 /* Now get the semaphore between SW/FW through the SWESMBI bit */
453 if (status == 0) {
454 for (i = 0; i < timeout; i++) {
455 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
457 /* Set the SW EEPROM semaphore bit to request access */
458 swsm |= IXGBE_SWSM_SWESMBI;
459 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
462 * If we set the bit successfully then we got the
463 * semaphore.
465 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
466 if (swsm & IXGBE_SWSM_SWESMBI)
467 break;
469 udelay(50);
473 * Release semaphores and return error if SW EEPROM semaphore
474 * was not granted because we don't have access to the EEPROM
476 if (i >= timeout) {
477 hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
478 "not granted.\n");
479 ixgbe_release_eeprom_semaphore(hw);
480 status = IXGBE_ERR_EEPROM;
484 return status;
488 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
489 * @hw: pointer to hardware structure
491 * This function clears hardware semaphore bits.
493 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
495 u32 swsm;
497 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
499 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
500 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
501 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
502 IXGBE_WRITE_FLUSH(hw);
506 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
507 * @hw: pointer to hardware structure
509 static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
511 u16 i;
512 u16 j;
513 u16 checksum = 0;
514 u16 length = 0;
515 u16 pointer = 0;
516 u16 word = 0;
518 /* Include 0x0-0x3F in the checksum */
519 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
520 if (ixgbe_read_eeprom(hw, i, &word) != 0) {
521 hw_dbg(hw, "EEPROM read failed\n");
522 break;
524 checksum += word;
527 /* Include all data from pointers except for the fw pointer */
528 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
529 ixgbe_read_eeprom(hw, i, &pointer);
531 /* Make sure the pointer seems valid */
532 if (pointer != 0xFFFF && pointer != 0) {
533 ixgbe_read_eeprom(hw, pointer, &length);
535 if (length != 0xFFFF && length != 0) {
536 for (j = pointer+1; j <= pointer+length; j++) {
537 ixgbe_read_eeprom(hw, j, &word);
538 checksum += word;
544 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
546 return checksum;
550 * ixgbe_validate_eeprom_checksum - Validate EEPROM checksum
551 * @hw: pointer to hardware structure
552 * @checksum_val: calculated checksum
554 * Performs checksum calculation and validates the EEPROM checksum. If the
555 * caller does not need checksum_val, the value can be NULL.
557 s32 ixgbe_validate_eeprom_checksum(struct ixgbe_hw *hw, u16 *checksum_val)
559 s32 status;
560 u16 checksum;
561 u16 read_checksum = 0;
564 * Read the first word from the EEPROM. If this times out or fails, do
565 * not continue or we could be in for a very long wait while every
566 * EEPROM read fails
568 status = ixgbe_read_eeprom(hw, 0, &checksum);
570 if (status == 0) {
571 checksum = ixgbe_calc_eeprom_checksum(hw);
573 ixgbe_read_eeprom(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
576 * Verify read checksum from EEPROM is the same as
577 * calculated checksum
579 if (read_checksum != checksum)
580 status = IXGBE_ERR_EEPROM_CHECKSUM;
582 /* If the user cares, return the calculated checksum */
583 if (checksum_val)
584 *checksum_val = checksum;
585 } else {
586 hw_dbg(hw, "EEPROM read failed\n");
589 return status;
593 * ixgbe_validate_mac_addr - Validate MAC address
594 * @mac_addr: pointer to MAC address.
596 * Tests a MAC address to ensure it is a valid Individual Address
598 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
600 s32 status = 0;
602 /* Make sure it is not a multicast address */
603 if (IXGBE_IS_MULTICAST(mac_addr))
604 status = IXGBE_ERR_INVALID_MAC_ADDR;
605 /* Not a broadcast address */
606 else if (IXGBE_IS_BROADCAST(mac_addr))
607 status = IXGBE_ERR_INVALID_MAC_ADDR;
608 /* Reject the zero address */
609 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
610 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
611 status = IXGBE_ERR_INVALID_MAC_ADDR;
613 return status;
617 * ixgbe_set_rar - Set RX address register
618 * @hw: pointer to hardware structure
619 * @addr: Address to put into receive address register
620 * @index: Receive address register to write
621 * @vind: Vind to set RAR to
622 * @enable_addr: set flag that address is active
624 * Puts an ethernet address into a receive address register.
626 s32 ixgbe_set_rar(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vind,
627 u32 enable_addr)
629 u32 rar_low, rar_high;
632 * HW expects these in little endian so we reverse the byte order from
633 * network order (big endian) to little endian
635 rar_low = ((u32)addr[0] |
636 ((u32)addr[1] << 8) |
637 ((u32)addr[2] << 16) |
638 ((u32)addr[3] << 24));
640 rar_high = ((u32)addr[4] |
641 ((u32)addr[5] << 8) |
642 ((vind << IXGBE_RAH_VIND_SHIFT) & IXGBE_RAH_VIND_MASK));
644 if (enable_addr != 0)
645 rar_high |= IXGBE_RAH_AV;
647 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
648 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
650 return 0;
654 * ixgbe_init_rx_addrs - Initializes receive address filters.
655 * @hw: pointer to hardware structure
657 * Places the MAC address in receive address register 0 and clears the rest
658 * of the receive addresss registers. Clears the multicast table. Assumes
659 * the receiver is in reset when the routine is called.
661 static s32 ixgbe_init_rx_addrs(struct ixgbe_hw *hw)
663 u32 i;
664 u32 rar_entries = hw->mac.num_rar_entries;
667 * If the current mac address is valid, assume it is a software override
668 * to the permanent address.
669 * Otherwise, use the permanent address from the eeprom.
671 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
672 IXGBE_ERR_INVALID_MAC_ADDR) {
673 /* Get the MAC address from the RAR0 for later reference */
674 ixgbe_get_mac_addr(hw, hw->mac.addr);
676 hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
677 hw->mac.addr[0], hw->mac.addr[1],
678 hw->mac.addr[2]);
679 hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
680 hw->mac.addr[4], hw->mac.addr[5]);
681 } else {
682 /* Setup the receive address. */
683 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
684 hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
685 hw->mac.addr[0], hw->mac.addr[1],
686 hw->mac.addr[2]);
687 hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
688 hw->mac.addr[4], hw->mac.addr[5]);
690 ixgbe_set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
693 hw->addr_ctrl.rar_used_count = 1;
695 /* Zero out the other receive addresses. */
696 hw_dbg(hw, "Clearing RAR[1-15]\n");
697 for (i = 1; i < rar_entries; i++) {
698 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
699 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
702 /* Clear the MTA */
703 hw->addr_ctrl.mc_addr_in_rar_count = 0;
704 hw->addr_ctrl.mta_in_use = 0;
705 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
707 hw_dbg(hw, " Clearing MTA\n");
708 for (i = 0; i < hw->mac.mcft_size; i++)
709 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
711 return 0;
715 * ixgbe_add_uc_addr - Adds a secondary unicast address.
716 * @hw: pointer to hardware structure
717 * @addr: new address
719 * Adds it to unused receive address register or goes into promiscuous mode.
721 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr)
723 u32 rar_entries = hw->mac.num_rar_entries;
724 u32 rar;
726 hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
727 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
730 * Place this address in the RAR if there is room,
731 * else put the controller into promiscuous mode
733 if (hw->addr_ctrl.rar_used_count < rar_entries) {
734 rar = hw->addr_ctrl.rar_used_count -
735 hw->addr_ctrl.mc_addr_in_rar_count;
736 ixgbe_set_rar(hw, rar, addr, 0, IXGBE_RAH_AV);
737 hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
738 hw->addr_ctrl.rar_used_count++;
739 } else {
740 hw->addr_ctrl.overflow_promisc++;
743 hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
747 * ixgbe_update_uc_addr_list - Updates MAC list of secondary addresses
748 * @hw: pointer to hardware structure
749 * @addr_list: the list of new addresses
750 * @addr_count: number of addresses
751 * @next: iterator function to walk the address list
753 * The given list replaces any existing list. Clears the secondary addrs from
754 * receive address registers. Uses unused receive address registers for the
755 * first secondary addresses, and falls back to promiscuous mode as needed.
757 * Drivers using secondary unicast addresses must set user_set_promisc when
758 * manually putting the device into promiscuous mode.
760 s32 ixgbe_update_uc_addr_list(struct ixgbe_hw *hw, u8 *addr_list,
761 u32 addr_count, ixgbe_mc_addr_itr next)
763 u8 *addr;
764 u32 i;
765 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
766 u32 uc_addr_in_use;
767 u32 fctrl;
768 u32 vmdq;
771 * Clear accounting of old secondary address list,
772 * don't count RAR[0]
774 uc_addr_in_use = hw->addr_ctrl.rar_used_count -
775 hw->addr_ctrl.mc_addr_in_rar_count - 1;
776 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
777 hw->addr_ctrl.overflow_promisc = 0;
779 /* Zero out the other receive addresses */
780 hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use);
781 for (i = 1; i <= uc_addr_in_use; i++) {
782 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
783 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
786 /* Add the new addresses */
787 for (i = 0; i < addr_count; i++) {
788 hw_dbg(hw, " Adding the secondary addresses:\n");
789 addr = next(hw, &addr_list, &vmdq);
790 ixgbe_add_uc_addr(hw, addr);
793 if (hw->addr_ctrl.overflow_promisc) {
794 /* enable promisc if not already in overflow or set by user */
795 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
796 hw_dbg(hw, " Entering address overflow promisc mode\n");
797 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
798 fctrl |= IXGBE_FCTRL_UPE;
799 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
801 } else {
802 /* only disable if set by overflow, not by user */
803 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
804 hw_dbg(hw, " Leaving address overflow promisc mode\n");
805 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
806 fctrl &= ~IXGBE_FCTRL_UPE;
807 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
811 hw_dbg(hw, "ixgbe_update_uc_addr_list Complete\n");
812 return 0;
816 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
817 * @hw: pointer to hardware structure
818 * @mc_addr: the multicast address
820 * Extracts the 12 bits, from a multicast address, to determine which
821 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
822 * incoming rx multicast addresses, to determine the bit-vector to check in
823 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
824 * by the MO field of the MCSTCTRL. The MO field is set during initalization
825 * to mc_filter_type.
827 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
829 u32 vector = 0;
831 switch (hw->mac.mc_filter_type) {
832 case 0: /* use bits [47:36] of the address */
833 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
834 break;
835 case 1: /* use bits [46:35] of the address */
836 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
837 break;
838 case 2: /* use bits [45:34] of the address */
839 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
840 break;
841 case 3: /* use bits [43:32] of the address */
842 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
843 break;
844 default: /* Invalid mc_filter_type */
845 hw_dbg(hw, "MC filter type param set incorrectly\n");
846 break;
849 /* vector can only be 12-bits or boundary will be exceeded */
850 vector &= 0xFFF;
851 return vector;
855 * ixgbe_set_mta - Set bit-vector in multicast table
856 * @hw: pointer to hardware structure
857 * @hash_value: Multicast address hash value
859 * Sets the bit-vector in the multicast table.
861 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
863 u32 vector;
864 u32 vector_bit;
865 u32 vector_reg;
866 u32 mta_reg;
868 hw->addr_ctrl.mta_in_use++;
870 vector = ixgbe_mta_vector(hw, mc_addr);
871 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
874 * The MTA is a register array of 128 32-bit registers. It is treated
875 * like an array of 4096 bits. We want to set bit
876 * BitArray[vector_value]. So we figure out what register the bit is
877 * in, read it, OR in the new bit, then write back the new value. The
878 * register is determined by the upper 7 bits of the vector value and
879 * the bit within that register are determined by the lower 5 bits of
880 * the value.
882 vector_reg = (vector >> 5) & 0x7F;
883 vector_bit = vector & 0x1F;
884 mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
885 mta_reg |= (1 << vector_bit);
886 IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
890 * ixgbe_add_mc_addr - Adds a multicast address.
891 * @hw: pointer to hardware structure
892 * @mc_addr: new multicast address
894 * Adds it to unused receive address register or to the multicast table.
896 static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr)
898 u32 rar_entries = hw->mac.num_rar_entries;
900 hw_dbg(hw, " MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n",
901 mc_addr[0], mc_addr[1], mc_addr[2],
902 mc_addr[3], mc_addr[4], mc_addr[5]);
905 * Place this multicast address in the RAR if there is room,
906 * else put it in the MTA
908 if (hw->addr_ctrl.rar_used_count < rar_entries) {
909 ixgbe_set_rar(hw, hw->addr_ctrl.rar_used_count,
910 mc_addr, 0, IXGBE_RAH_AV);
911 hw_dbg(hw, "Added a multicast address to RAR[%d]\n",
912 hw->addr_ctrl.rar_used_count);
913 hw->addr_ctrl.rar_used_count++;
914 hw->addr_ctrl.mc_addr_in_rar_count++;
915 } else {
916 ixgbe_set_mta(hw, mc_addr);
919 hw_dbg(hw, "ixgbe_add_mc_addr Complete\n");
923 * ixgbe_update_mc_addr_list - Updates MAC list of multicast addresses
924 * @hw: pointer to hardware structure
925 * @mc_addr_list: the list of new multicast addresses
926 * @mc_addr_count: number of addresses
927 * @next: iterator function to walk the multicast address list
929 * The given list replaces any existing list. Clears the MC addrs from receive
930 * address registers and the multicast table. Uses unsed receive address
931 * registers for the first multicast addresses, and hashes the rest into the
932 * multicast table.
934 s32 ixgbe_update_mc_addr_list(struct ixgbe_hw *hw, u8 *mc_addr_list,
935 u32 mc_addr_count, ixgbe_mc_addr_itr next)
937 u32 i;
938 u32 rar_entries = hw->mac.num_rar_entries;
939 u32 vmdq;
942 * Set the new number of MC addresses that we are being requested to
943 * use.
945 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
946 hw->addr_ctrl.rar_used_count -= hw->addr_ctrl.mc_addr_in_rar_count;
947 hw->addr_ctrl.mc_addr_in_rar_count = 0;
948 hw->addr_ctrl.mta_in_use = 0;
950 /* Zero out the other receive addresses. */
951 hw_dbg(hw, "Clearing RAR[1-15]\n");
952 for (i = hw->addr_ctrl.rar_used_count; i < rar_entries; i++) {
953 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
954 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
957 /* Clear the MTA */
958 hw_dbg(hw, " Clearing MTA\n");
959 for (i = 0; i < hw->mac.mcft_size; i++)
960 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
962 /* Add the new addresses */
963 for (i = 0; i < mc_addr_count; i++) {
964 hw_dbg(hw, " Adding the multicast addresses:\n");
965 ixgbe_add_mc_addr(hw, next(hw, &mc_addr_list, &vmdq));
968 /* Enable mta */
969 if (hw->addr_ctrl.mta_in_use > 0)
970 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
971 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
973 hw_dbg(hw, "ixgbe_update_mc_addr_list Complete\n");
974 return 0;
978 * ixgbe_clear_vfta - Clear VLAN filter table
979 * @hw: pointer to hardware structure
981 * Clears the VLAN filer table, and the VMDq index associated with the filter
983 static s32 ixgbe_clear_vfta(struct ixgbe_hw *hw)
985 u32 offset;
986 u32 vlanbyte;
988 for (offset = 0; offset < hw->mac.vft_size; offset++)
989 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
991 for (vlanbyte = 0; vlanbyte < 4; vlanbyte++)
992 for (offset = 0; offset < hw->mac.vft_size; offset++)
993 IXGBE_WRITE_REG(hw, IXGBE_VFTAVIND(vlanbyte, offset),
996 return 0;
1000 * ixgbe_set_vfta - Set VLAN filter table
1001 * @hw: pointer to hardware structure
1002 * @vlan: VLAN id to write to VLAN filter
1003 * @vind: VMDq output index that maps queue to VLAN id in VFTA
1004 * @vlan_on: boolean flag to turn on/off VLAN in VFTA
1006 * Turn on/off specified VLAN in the VLAN filter table.
1008 s32 ixgbe_set_vfta(struct ixgbe_hw *hw, u32 vlan, u32 vind,
1009 bool vlan_on)
1011 u32 VftaIndex;
1012 u32 BitOffset;
1013 u32 VftaReg;
1014 u32 VftaByte;
1016 /* Determine 32-bit word position in array */
1017 VftaIndex = (vlan >> 5) & 0x7F; /* upper seven bits */
1019 /* Determine the location of the (VMD) queue index */
1020 VftaByte = ((vlan >> 3) & 0x03); /* bits (4:3) indicating byte array */
1021 BitOffset = (vlan & 0x7) << 2; /* lower 3 bits indicate nibble */
1023 /* Set the nibble for VMD queue index */
1024 VftaReg = IXGBE_READ_REG(hw, IXGBE_VFTAVIND(VftaByte, VftaIndex));
1025 VftaReg &= (~(0x0F << BitOffset));
1026 VftaReg |= (vind << BitOffset);
1027 IXGBE_WRITE_REG(hw, IXGBE_VFTAVIND(VftaByte, VftaIndex), VftaReg);
1029 /* Determine the location of the bit for this VLAN id */
1030 BitOffset = vlan & 0x1F; /* lower five bits */
1032 VftaReg = IXGBE_READ_REG(hw, IXGBE_VFTA(VftaIndex));
1033 if (vlan_on)
1034 /* Turn on this VLAN id */
1035 VftaReg |= (1 << BitOffset);
1036 else
1037 /* Turn off this VLAN id */
1038 VftaReg &= ~(1 << BitOffset);
1039 IXGBE_WRITE_REG(hw, IXGBE_VFTA(VftaIndex), VftaReg);
1041 return 0;
1045 * ixgbe_setup_fc - Configure flow control settings
1046 * @hw: pointer to hardware structure
1047 * @packetbuf_num: packet buffer number (0-7)
1049 * Configures the flow control settings based on SW configuration.
1050 * This function is used for 802.3x flow control configuration only.
1052 s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
1054 u32 frctl_reg;
1055 u32 rmcs_reg;
1057 if (packetbuf_num < 0 || packetbuf_num > 7)
1058 hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
1059 "is 0-7\n", packetbuf_num);
1061 frctl_reg = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1062 frctl_reg &= ~(IXGBE_FCTRL_RFCE | IXGBE_FCTRL_RPFCE);
1064 rmcs_reg = IXGBE_READ_REG(hw, IXGBE_RMCS);
1065 rmcs_reg &= ~(IXGBE_RMCS_TFCE_PRIORITY | IXGBE_RMCS_TFCE_802_3X);
1068 * 10 gig parts do not have a word in the EEPROM to determine the
1069 * default flow control setting, so we explicitly set it to full.
1071 if (hw->fc.type == ixgbe_fc_default)
1072 hw->fc.type = ixgbe_fc_full;
1075 * We want to save off the original Flow Control configuration just in
1076 * case we get disconnected and then reconnected into a different hub
1077 * or switch with different Flow Control capabilities.
1079 hw->fc.type = hw->fc.original_type;
1082 * The possible values of the "flow_control" parameter are:
1083 * 0: Flow control is completely disabled
1084 * 1: Rx flow control is enabled (we can receive pause frames but not
1085 * send pause frames).
1086 * 2: Tx flow control is enabled (we can send pause frames but we do not
1087 * support receiving pause frames)
1088 * 3: Both Rx and TX flow control (symmetric) are enabled.
1089 * other: Invalid.
1091 switch (hw->fc.type) {
1092 case ixgbe_fc_none:
1093 break;
1094 case ixgbe_fc_rx_pause:
1096 * RX Flow control is enabled,
1097 * and TX Flow control is disabled.
1099 frctl_reg |= IXGBE_FCTRL_RFCE;
1100 break;
1101 case ixgbe_fc_tx_pause:
1103 * TX Flow control is enabled, and RX Flow control is disabled,
1104 * by a software over-ride.
1106 rmcs_reg |= IXGBE_RMCS_TFCE_802_3X;
1107 break;
1108 case ixgbe_fc_full:
1110 * Flow control (both RX and TX) is enabled by a software
1111 * over-ride.
1113 frctl_reg |= IXGBE_FCTRL_RFCE;
1114 rmcs_reg |= IXGBE_RMCS_TFCE_802_3X;
1115 break;
1116 default:
1117 /* We should never get here. The value should be 0-3. */
1118 hw_dbg(hw, "Flow control param set incorrectly\n");
1119 break;
1122 /* Enable 802.3x based flow control settings. */
1123 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, frctl_reg);
1124 IXGBE_WRITE_REG(hw, IXGBE_RMCS, rmcs_reg);
1127 * Check for invalid software configuration, zeros are completely
1128 * invalid for all parameters used past this point, and if we enable
1129 * flow control with zero water marks, we blast flow control packets.
1131 if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
1132 hw_dbg(hw, "Flow control structure initialized incorrectly\n");
1133 return IXGBE_ERR_INVALID_LINK_SETTINGS;
1137 * We need to set up the Receive Threshold high and low water
1138 * marks as well as (optionally) enabling the transmission of
1139 * XON frames.
1141 if (hw->fc.type & ixgbe_fc_tx_pause) {
1142 if (hw->fc.send_xon) {
1143 IXGBE_WRITE_REG(hw, IXGBE_FCRTL(packetbuf_num),
1144 (hw->fc.low_water | IXGBE_FCRTL_XONE));
1145 } else {
1146 IXGBE_WRITE_REG(hw, IXGBE_FCRTL(packetbuf_num),
1147 hw->fc.low_water);
1149 IXGBE_WRITE_REG(hw, IXGBE_FCRTH(packetbuf_num),
1150 (hw->fc.high_water)|IXGBE_FCRTH_FCEN);
1153 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(0), hw->fc.pause_time);
1154 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
1156 return 0;
1160 * ixgbe_disable_pcie_master - Disable PCI-express master access
1161 * @hw: pointer to hardware structure
1163 * Disables PCI-Express master access and verifies there are no pending
1164 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1165 * bit hasn't caused the master requests to be disabled, else 0
1166 * is returned signifying master requests disabled.
1168 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
1170 u32 ctrl;
1171 s32 i;
1172 s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
1174 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
1175 ctrl |= IXGBE_CTRL_GIO_DIS;
1176 IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl);
1178 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
1179 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
1180 status = 0;
1181 break;
1183 udelay(100);
1186 return status;
1191 * ixgbe_acquire_swfw_sync - Aquire SWFW semaphore
1192 * @hw: pointer to hardware structure
1193 * @mask: Mask to specify wich semaphore to acquire
1195 * Aquires the SWFW semaphore throught the GSSR register for the specified
1196 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1198 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1200 u32 gssr;
1201 u32 swmask = mask;
1202 u32 fwmask = mask << 5;
1203 s32 timeout = 200;
1205 while (timeout) {
1206 if (ixgbe_get_eeprom_semaphore(hw))
1207 return -IXGBE_ERR_SWFW_SYNC;
1209 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1210 if (!(gssr & (fwmask | swmask)))
1211 break;
1214 * Firmware currently using resource (fwmask) or other software
1215 * thread currently using resource (swmask)
1217 ixgbe_release_eeprom_semaphore(hw);
1218 msleep(5);
1219 timeout--;
1222 if (!timeout) {
1223 hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
1224 return -IXGBE_ERR_SWFW_SYNC;
1227 gssr |= swmask;
1228 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1230 ixgbe_release_eeprom_semaphore(hw);
1231 return 0;
1235 * ixgbe_release_swfw_sync - Release SWFW semaphore
1236 * @hw: pointer to hardware structure
1237 * @mask: Mask to specify wich semaphore to release
1239 * Releases the SWFW semaphore throught the GSSR register for the specified
1240 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1242 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1244 u32 gssr;
1245 u32 swmask = mask;
1247 ixgbe_get_eeprom_semaphore(hw);
1249 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1250 gssr &= ~swmask;
1251 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1253 ixgbe_release_eeprom_semaphore(hw);
1257 * ixgbe_read_analog_reg8 - Reads 8 bit Atlas analog register
1258 * @hw: pointer to hardware structure
1259 * @reg: analog register to read
1260 * @val: read value
1262 * Performs write operation to analog register specified.
1264 s32 ixgbe_read_analog_reg8(struct ixgbe_hw *hw, u32 reg, u8 *val)
1266 u32 atlas_ctl;
1268 IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL,
1269 IXGBE_ATLASCTL_WRITE_CMD | (reg << 8));
1270 IXGBE_WRITE_FLUSH(hw);
1271 udelay(10);
1272 atlas_ctl = IXGBE_READ_REG(hw, IXGBE_ATLASCTL);
1273 *val = (u8)atlas_ctl;
1275 return 0;
1279 * ixgbe_write_analog_reg8 - Writes 8 bit Atlas analog register
1280 * @hw: pointer to hardware structure
1281 * @reg: atlas register to write
1282 * @val: value to write
1284 * Performs write operation to Atlas analog register specified.
1286 s32 ixgbe_write_analog_reg8(struct ixgbe_hw *hw, u32 reg, u8 val)
1288 u32 atlas_ctl;
1290 atlas_ctl = (reg << 8) | val;
1291 IXGBE_WRITE_REG(hw, IXGBE_ATLASCTL, atlas_ctl);
1292 IXGBE_WRITE_FLUSH(hw);
1293 udelay(10);
1295 return 0;