3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
51 * - the task that performs a successful semop() scans the list of all
52 * sleeping tasks and completes any pending operations that can be fulfilled.
53 * Semaphores are actively given to waiting tasks (necessary for FIFO).
54 * (see update_queue())
55 * - To improve the scalability, the actual wake-up calls are performed after
56 * dropping all locks. (see wake_up_sem_queue_prepare(),
57 * wake_up_sem_queue_do())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - The synchronizations between wake-ups due to a timeout/signal and a
63 * wake-up due to a completed semaphore operation is achieved by using an
64 * intermediate state (IN_WAKEUP).
65 * - UNDO values are stored in an array (one per process and per
66 * semaphore array, lazily allocated). For backwards compatibility, multiple
67 * modes for the UNDO variables are supported (per process, per thread)
68 * (see copy_semundo, CLONE_SYSVSEM)
69 * - There are two lists of the pending operations: a per-array list
70 * and per-semaphore list (stored in the array). This allows to achieve FIFO
71 * ordering without always scanning all pending operations.
72 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
89 #include <linux/uaccess.h>
92 /* One semaphore structure for each semaphore in the system. */
94 int semval
; /* current value */
96 * PID of the process that last modified the semaphore. For
97 * Linux, specifically these are:
99 * - semctl, via SETVAL and SETALL.
100 * - at task exit when performing undo adjustments (see exit_sem).
103 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
104 struct list_head pending_alter
; /* pending single-sop operations */
105 /* that alter the semaphore */
106 struct list_head pending_const
; /* pending single-sop operations */
107 /* that do not alter the semaphore*/
108 time_t sem_otime
; /* candidate for sem_otime */
109 } ____cacheline_aligned_in_smp
;
111 /* One queue for each sleeping process in the system. */
113 struct list_head list
; /* queue of pending operations */
114 struct task_struct
*sleeper
; /* this process */
115 struct sem_undo
*undo
; /* undo structure */
116 int pid
; /* process id of requesting process */
117 int status
; /* completion status of operation */
118 struct sembuf
*sops
; /* array of pending operations */
119 struct sembuf
*blocking
; /* the operation that blocked */
120 int nsops
; /* number of operations */
121 int alter
; /* does *sops alter the array? */
124 /* Each task has a list of undo requests. They are executed automatically
125 * when the process exits.
128 struct list_head list_proc
; /* per-process list: *
129 * all undos from one process
131 struct rcu_head rcu
; /* rcu struct for sem_undo */
132 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
133 struct list_head list_id
; /* per semaphore array list:
134 * all undos for one array */
135 int semid
; /* semaphore set identifier */
136 short *semadj
; /* array of adjustments */
137 /* one per semaphore */
140 /* sem_undo_list controls shared access to the list of sem_undo structures
141 * that may be shared among all a CLONE_SYSVSEM task group.
143 struct sem_undo_list
{
146 struct list_head list_proc
;
150 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
152 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
154 static int newary(struct ipc_namespace
*, struct ipc_params
*);
155 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
156 #ifdef CONFIG_PROC_FS
157 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
160 #define SEMMSL_FAST 256 /* 512 bytes on stack */
161 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
165 * a) global sem_lock() for read/write
167 * sem_array.complex_count,
168 * sem_array.complex_mode
169 * sem_array.pending{_alter,_const},
172 * b) global or semaphore sem_lock() for read/write:
173 * sem_array.sem_base[i].pending_{const,alter}:
174 * sem_array.complex_mode (for read)
177 * sem_undo_list.list_proc:
178 * * undo_list->lock for write
182 #define sc_semmsl sem_ctls[0]
183 #define sc_semmns sem_ctls[1]
184 #define sc_semopm sem_ctls[2]
185 #define sc_semmni sem_ctls[3]
187 void sem_init_ns(struct ipc_namespace
*ns
)
189 ns
->sc_semmsl
= SEMMSL
;
190 ns
->sc_semmns
= SEMMNS
;
191 ns
->sc_semopm
= SEMOPM
;
192 ns
->sc_semmni
= SEMMNI
;
194 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
198 void sem_exit_ns(struct ipc_namespace
*ns
)
200 free_ipcs(ns
, &sem_ids(ns
), freeary
);
201 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
205 void __init
sem_init(void)
207 sem_init_ns(&init_ipc_ns
);
208 ipc_init_proc_interface("sysvipc/sem",
209 " key semid perms nsems uid gid cuid cgid otime ctime\n",
210 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
214 * unmerge_queues - unmerge queues, if possible.
215 * @sma: semaphore array
217 * The function unmerges the wait queues if complex_count is 0.
218 * It must be called prior to dropping the global semaphore array lock.
220 static void unmerge_queues(struct sem_array
*sma
)
222 struct sem_queue
*q
, *tq
;
224 /* complex operations still around? */
225 if (sma
->complex_count
)
228 * We will switch back to simple mode.
229 * Move all pending operation back into the per-semaphore
232 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
234 curr
= &sma
->sem_base
[q
->sops
[0].sem_num
];
236 list_add_tail(&q
->list
, &curr
->pending_alter
);
238 INIT_LIST_HEAD(&sma
->pending_alter
);
242 * merge_queues - merge single semop queues into global queue
243 * @sma: semaphore array
245 * This function merges all per-semaphore queues into the global queue.
246 * It is necessary to achieve FIFO ordering for the pending single-sop
247 * operations when a multi-semop operation must sleep.
248 * Only the alter operations must be moved, the const operations can stay.
250 static void merge_queues(struct sem_array
*sma
)
253 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
254 struct sem
*sem
= sma
->sem_base
+ i
;
256 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
260 static void sem_rcu_free(struct rcu_head
*head
)
262 struct ipc_rcu
*p
= container_of(head
, struct ipc_rcu
, rcu
);
263 struct sem_array
*sma
= ipc_rcu_to_struct(p
);
265 security_sem_free(sma
);
270 * Enter the mode suitable for non-simple operations:
271 * Caller must own sem_perm.lock.
273 static void complexmode_enter(struct sem_array
*sma
)
278 if (sma
->complex_mode
) {
279 /* We are already in complex_mode. Nothing to do */
283 /* We need a full barrier after seting complex_mode:
284 * The write to complex_mode must be visible
285 * before we read the first sem->lock spinlock state.
287 smp_store_mb(sma
->complex_mode
, true);
289 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
290 sem
= sma
->sem_base
+ i
;
291 spin_unlock_wait(&sem
->lock
);
294 * spin_unlock_wait() is not a memory barriers, it is only a
295 * control barrier. The code must pair with spin_unlock(&sem->lock),
296 * thus just the control barrier is insufficient.
298 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
304 * Try to leave the mode that disallows simple operations:
305 * Caller must own sem_perm.lock.
307 static void complexmode_tryleave(struct sem_array
*sma
)
309 if (sma
->complex_count
) {
310 /* Complex ops are sleeping.
311 * We must stay in complex mode
316 * Immediately after setting complex_mode to false,
317 * a simple op can start. Thus: all memory writes
318 * performed by the current operation must be visible
319 * before we set complex_mode to false.
321 smp_store_release(&sma
->complex_mode
, false);
324 #define SEM_GLOBAL_LOCK (-1)
326 * If the request contains only one semaphore operation, and there are
327 * no complex transactions pending, lock only the semaphore involved.
328 * Otherwise, lock the entire semaphore array, since we either have
329 * multiple semaphores in our own semops, or we need to look at
330 * semaphores from other pending complex operations.
332 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
338 /* Complex operation - acquire a full lock */
339 ipc_lock_object(&sma
->sem_perm
);
341 /* Prevent parallel simple ops */
342 complexmode_enter(sma
);
343 return SEM_GLOBAL_LOCK
;
347 * Only one semaphore affected - try to optimize locking.
348 * Optimized locking is possible if no complex operation
349 * is either enqueued or processed right now.
351 * Both facts are tracked by complex_mode.
353 sem
= sma
->sem_base
+ sops
->sem_num
;
356 * Initial check for complex_mode. Just an optimization,
357 * no locking, no memory barrier.
359 if (!sma
->complex_mode
) {
361 * It appears that no complex operation is around.
362 * Acquire the per-semaphore lock.
364 spin_lock(&sem
->lock
);
368 * ("powerpc: Add smp_mb() to arch_spin_is_locked()"):
369 * A full barrier is required: the write of sem->lock
370 * must be visible before the read is executed
374 if (!smp_load_acquire(&sma
->complex_mode
)) {
375 /* fast path successful! */
376 return sops
->sem_num
;
378 spin_unlock(&sem
->lock
);
381 /* slow path: acquire the full lock */
382 ipc_lock_object(&sma
->sem_perm
);
384 if (sma
->complex_count
== 0) {
386 * There is no complex operation, thus we can switch
387 * back to the fast path.
389 spin_lock(&sem
->lock
);
390 ipc_unlock_object(&sma
->sem_perm
);
391 return sops
->sem_num
;
393 /* Not a false alarm, thus complete the sequence for a
396 complexmode_enter(sma
);
397 return SEM_GLOBAL_LOCK
;
401 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
403 if (locknum
== SEM_GLOBAL_LOCK
) {
405 complexmode_tryleave(sma
);
406 ipc_unlock_object(&sma
->sem_perm
);
408 struct sem
*sem
= sma
->sem_base
+ locknum
;
409 spin_unlock(&sem
->lock
);
414 * sem_lock_(check_) routines are called in the paths where the rwsem
417 * The caller holds the RCU read lock.
419 static inline struct sem_array
*sem_obtain_lock(struct ipc_namespace
*ns
,
420 int id
, struct sembuf
*sops
, int nsops
, int *locknum
)
422 struct kern_ipc_perm
*ipcp
;
423 struct sem_array
*sma
;
425 ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
427 return ERR_CAST(ipcp
);
429 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
430 *locknum
= sem_lock(sma
, sops
, nsops
);
432 /* ipc_rmid() may have already freed the ID while sem_lock
433 * was spinning: verify that the structure is still valid
435 if (ipc_valid_object(ipcp
))
436 return container_of(ipcp
, struct sem_array
, sem_perm
);
438 sem_unlock(sma
, *locknum
);
439 return ERR_PTR(-EINVAL
);
442 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
444 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
447 return ERR_CAST(ipcp
);
449 return container_of(ipcp
, struct sem_array
, sem_perm
);
452 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
455 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
458 return ERR_CAST(ipcp
);
460 return container_of(ipcp
, struct sem_array
, sem_perm
);
463 static inline void sem_lock_and_putref(struct sem_array
*sma
)
465 sem_lock(sma
, NULL
, -1);
466 ipc_rcu_putref(sma
, sem_rcu_free
);
469 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
471 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
475 * Lockless wakeup algorithm:
476 * Without the check/retry algorithm a lockless wakeup is possible:
477 * - queue.status is initialized to -EINTR before blocking.
478 * - wakeup is performed by
479 * * unlinking the queue entry from the pending list
480 * * setting queue.status to IN_WAKEUP
481 * This is the notification for the blocked thread that a
482 * result value is imminent.
483 * * call wake_up_process
484 * * set queue.status to the final value.
485 * - the previously blocked thread checks queue.status:
486 * * if it's IN_WAKEUP, then it must wait until the value changes
487 * * if it's not -EINTR, then the operation was completed by
488 * update_queue. semtimedop can return queue.status without
489 * performing any operation on the sem array.
490 * * otherwise it must acquire the spinlock and check what's up.
492 * The two-stage algorithm is necessary to protect against the following
494 * - if queue.status is set after wake_up_process, then the woken up idle
495 * thread could race forward and try (and fail) to acquire sma->lock
496 * before update_queue had a chance to set queue.status
497 * - if queue.status is written before wake_up_process and if the
498 * blocked process is woken up by a signal between writing
499 * queue.status and the wake_up_process, then the woken up
500 * process could return from semtimedop and die by calling
501 * sys_exit before wake_up_process is called. Then wake_up_process
502 * will oops, because the task structure is already invalid.
503 * (yes, this happened on s390 with sysv msg).
509 * newary - Create a new semaphore set
511 * @params: ptr to the structure that contains key, semflg and nsems
513 * Called with sem_ids.rwsem held (as a writer)
515 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
519 struct sem_array
*sma
;
521 key_t key
= params
->key
;
522 int nsems
= params
->u
.nsems
;
523 int semflg
= params
->flg
;
528 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
531 size
= sizeof(*sma
) + nsems
* sizeof(struct sem
);
532 sma
= ipc_rcu_alloc(size
);
536 memset(sma
, 0, size
);
538 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
539 sma
->sem_perm
.key
= key
;
541 sma
->sem_perm
.security
= NULL
;
542 retval
= security_sem_alloc(sma
);
544 ipc_rcu_putref(sma
, ipc_rcu_free
);
548 sma
->sem_base
= (struct sem
*) &sma
[1];
550 for (i
= 0; i
< nsems
; i
++) {
551 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_alter
);
552 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_const
);
553 spin_lock_init(&sma
->sem_base
[i
].lock
);
556 sma
->complex_count
= 0;
557 sma
->complex_mode
= true; /* dropped by sem_unlock below */
558 INIT_LIST_HEAD(&sma
->pending_alter
);
559 INIT_LIST_HEAD(&sma
->pending_const
);
560 INIT_LIST_HEAD(&sma
->list_id
);
561 sma
->sem_nsems
= nsems
;
562 sma
->sem_ctime
= get_seconds();
564 id
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
566 ipc_rcu_putref(sma
, sem_rcu_free
);
569 ns
->used_sems
+= nsems
;
574 return sma
->sem_perm
.id
;
579 * Called with sem_ids.rwsem and ipcp locked.
581 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
583 struct sem_array
*sma
;
585 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
586 return security_sem_associate(sma
, semflg
);
590 * Called with sem_ids.rwsem and ipcp locked.
592 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
593 struct ipc_params
*params
)
595 struct sem_array
*sma
;
597 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
598 if (params
->u
.nsems
> sma
->sem_nsems
)
604 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
606 struct ipc_namespace
*ns
;
607 static const struct ipc_ops sem_ops
= {
609 .associate
= sem_security
,
610 .more_checks
= sem_more_checks
,
612 struct ipc_params sem_params
;
614 ns
= current
->nsproxy
->ipc_ns
;
616 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
619 sem_params
.key
= key
;
620 sem_params
.flg
= semflg
;
621 sem_params
.u
.nsems
= nsems
;
623 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
627 * perform_atomic_semop - Perform (if possible) a semaphore operation
628 * @sma: semaphore array
629 * @q: struct sem_queue that describes the operation
631 * Returns 0 if the operation was possible.
632 * Returns 1 if the operation is impossible, the caller must sleep.
633 * Negative values are error codes.
635 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
637 int result
, sem_op
, nsops
, pid
;
647 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
648 curr
= sma
->sem_base
+ sop
->sem_num
;
649 sem_op
= sop
->sem_op
;
650 result
= curr
->semval
;
652 if (!sem_op
&& result
)
661 if (sop
->sem_flg
& SEM_UNDO
) {
662 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
663 /* Exceeding the undo range is an error. */
664 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
666 un
->semadj
[sop
->sem_num
] = undo
;
669 curr
->semval
= result
;
674 while (sop
>= sops
) {
675 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
688 if (sop
->sem_flg
& IPC_NOWAIT
)
695 while (sop
>= sops
) {
696 sem_op
= sop
->sem_op
;
697 sma
->sem_base
[sop
->sem_num
].semval
-= sem_op
;
698 if (sop
->sem_flg
& SEM_UNDO
)
699 un
->semadj
[sop
->sem_num
] += sem_op
;
706 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
707 * @q: queue entry that must be signaled
708 * @error: Error value for the signal
710 * Prepare the wake-up of the queue entry q.
712 static void wake_up_sem_queue_prepare(struct list_head
*pt
,
713 struct sem_queue
*q
, int error
)
715 if (list_empty(pt
)) {
717 * Hold preempt off so that we don't get preempted and have the
718 * wakee busy-wait until we're scheduled back on.
722 q
->status
= IN_WAKEUP
;
725 list_add_tail(&q
->list
, pt
);
729 * wake_up_sem_queue_do - do the actual wake-up
730 * @pt: list of tasks to be woken up
732 * Do the actual wake-up.
733 * The function is called without any locks held, thus the semaphore array
734 * could be destroyed already and the tasks can disappear as soon as the
735 * status is set to the actual return code.
737 static void wake_up_sem_queue_do(struct list_head
*pt
)
739 struct sem_queue
*q
, *t
;
742 did_something
= !list_empty(pt
);
743 list_for_each_entry_safe(q
, t
, pt
, list
) {
744 wake_up_process(q
->sleeper
);
745 /* q can disappear immediately after writing q->status. */
753 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
757 sma
->complex_count
--;
760 /** check_restart(sma, q)
761 * @sma: semaphore array
762 * @q: the operation that just completed
764 * update_queue is O(N^2) when it restarts scanning the whole queue of
765 * waiting operations. Therefore this function checks if the restart is
766 * really necessary. It is called after a previously waiting operation
767 * modified the array.
768 * Note that wait-for-zero operations are handled without restart.
770 static int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
772 /* pending complex alter operations are too difficult to analyse */
773 if (!list_empty(&sma
->pending_alter
))
776 /* we were a sleeping complex operation. Too difficult */
780 /* It is impossible that someone waits for the new value:
781 * - complex operations always restart.
782 * - wait-for-zero are handled seperately.
783 * - q is a previously sleeping simple operation that
784 * altered the array. It must be a decrement, because
785 * simple increments never sleep.
786 * - If there are older (higher priority) decrements
787 * in the queue, then they have observed the original
788 * semval value and couldn't proceed. The operation
789 * decremented to value - thus they won't proceed either.
795 * wake_const_ops - wake up non-alter tasks
796 * @sma: semaphore array.
797 * @semnum: semaphore that was modified.
798 * @pt: list head for the tasks that must be woken up.
800 * wake_const_ops must be called after a semaphore in a semaphore array
801 * was set to 0. If complex const operations are pending, wake_const_ops must
802 * be called with semnum = -1, as well as with the number of each modified
804 * The tasks that must be woken up are added to @pt. The return code
805 * is stored in q->pid.
806 * The function returns 1 if at least one operation was completed successfully.
808 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
809 struct list_head
*pt
)
812 struct list_head
*walk
;
813 struct list_head
*pending_list
;
814 int semop_completed
= 0;
817 pending_list
= &sma
->pending_const
;
819 pending_list
= &sma
->sem_base
[semnum
].pending_const
;
821 walk
= pending_list
->next
;
822 while (walk
!= pending_list
) {
825 q
= container_of(walk
, struct sem_queue
, list
);
828 error
= perform_atomic_semop(sma
, q
);
831 /* operation completed, remove from queue & wakeup */
833 unlink_queue(sma
, q
);
835 wake_up_sem_queue_prepare(pt
, q
, error
);
840 return semop_completed
;
844 * do_smart_wakeup_zero - wakeup all wait for zero tasks
845 * @sma: semaphore array
846 * @sops: operations that were performed
847 * @nsops: number of operations
848 * @pt: list head of the tasks that must be woken up.
850 * Checks all required queue for wait-for-zero operations, based
851 * on the actual changes that were performed on the semaphore array.
852 * The function returns 1 if at least one operation was completed successfully.
854 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
855 int nsops
, struct list_head
*pt
)
858 int semop_completed
= 0;
861 /* first: the per-semaphore queues, if known */
863 for (i
= 0; i
< nsops
; i
++) {
864 int num
= sops
[i
].sem_num
;
866 if (sma
->sem_base
[num
].semval
== 0) {
868 semop_completed
|= wake_const_ops(sma
, num
, pt
);
873 * No sops means modified semaphores not known.
874 * Assume all were changed.
876 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
877 if (sma
->sem_base
[i
].semval
== 0) {
879 semop_completed
|= wake_const_ops(sma
, i
, pt
);
884 * If one of the modified semaphores got 0,
885 * then check the global queue, too.
888 semop_completed
|= wake_const_ops(sma
, -1, pt
);
890 return semop_completed
;
895 * update_queue - look for tasks that can be completed.
896 * @sma: semaphore array.
897 * @semnum: semaphore that was modified.
898 * @pt: list head for the tasks that must be woken up.
900 * update_queue must be called after a semaphore in a semaphore array
901 * was modified. If multiple semaphores were modified, update_queue must
902 * be called with semnum = -1, as well as with the number of each modified
904 * The tasks that must be woken up are added to @pt. The return code
905 * is stored in q->pid.
906 * The function internally checks if const operations can now succeed.
908 * The function return 1 if at least one semop was completed successfully.
910 static int update_queue(struct sem_array
*sma
, int semnum
, struct list_head
*pt
)
913 struct list_head
*walk
;
914 struct list_head
*pending_list
;
915 int semop_completed
= 0;
918 pending_list
= &sma
->pending_alter
;
920 pending_list
= &sma
->sem_base
[semnum
].pending_alter
;
923 walk
= pending_list
->next
;
924 while (walk
!= pending_list
) {
927 q
= container_of(walk
, struct sem_queue
, list
);
930 /* If we are scanning the single sop, per-semaphore list of
931 * one semaphore and that semaphore is 0, then it is not
932 * necessary to scan further: simple increments
933 * that affect only one entry succeed immediately and cannot
934 * be in the per semaphore pending queue, and decrements
935 * cannot be successful if the value is already 0.
937 if (semnum
!= -1 && sma
->sem_base
[semnum
].semval
== 0)
940 error
= perform_atomic_semop(sma
, q
);
942 /* Does q->sleeper still need to sleep? */
946 unlink_queue(sma
, q
);
952 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, pt
);
953 restart
= check_restart(sma
, q
);
956 wake_up_sem_queue_prepare(pt
, q
, error
);
960 return semop_completed
;
964 * set_semotime - set sem_otime
965 * @sma: semaphore array
966 * @sops: operations that modified the array, may be NULL
968 * sem_otime is replicated to avoid cache line trashing.
969 * This function sets one instance to the current time.
971 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
974 sma
->sem_base
[0].sem_otime
= get_seconds();
976 sma
->sem_base
[sops
[0].sem_num
].sem_otime
=
982 * do_smart_update - optimized update_queue
983 * @sma: semaphore array
984 * @sops: operations that were performed
985 * @nsops: number of operations
986 * @otime: force setting otime
987 * @pt: list head of the tasks that must be woken up.
989 * do_smart_update() does the required calls to update_queue and wakeup_zero,
990 * based on the actual changes that were performed on the semaphore array.
991 * Note that the function does not do the actual wake-up: the caller is
992 * responsible for calling wake_up_sem_queue_do(@pt).
993 * It is safe to perform this call after dropping all locks.
995 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
996 int otime
, struct list_head
*pt
)
1000 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, pt
);
1002 if (!list_empty(&sma
->pending_alter
)) {
1003 /* semaphore array uses the global queue - just process it. */
1004 otime
|= update_queue(sma
, -1, pt
);
1008 * No sops, thus the modified semaphores are not
1011 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1012 otime
|= update_queue(sma
, i
, pt
);
1015 * Check the semaphores that were increased:
1016 * - No complex ops, thus all sleeping ops are
1018 * - if we decreased the value, then any sleeping
1019 * semaphore ops wont be able to run: If the
1020 * previous value was too small, then the new
1021 * value will be too small, too.
1023 for (i
= 0; i
< nsops
; i
++) {
1024 if (sops
[i
].sem_op
> 0) {
1025 otime
|= update_queue(sma
,
1026 sops
[i
].sem_num
, pt
);
1032 set_semotime(sma
, sops
);
1036 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1038 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1041 struct sembuf
*sop
= q
->blocking
;
1044 * Linux always (since 0.99.10) reported a task as sleeping on all
1045 * semaphores. This violates SUS, therefore it was changed to the
1046 * standard compliant behavior.
1047 * Give the administrators a chance to notice that an application
1048 * might misbehave because it relies on the Linux behavior.
1050 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1051 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1052 current
->comm
, task_pid_nr(current
));
1054 if (sop
->sem_num
!= semnum
)
1057 if (count_zero
&& sop
->sem_op
== 0)
1059 if (!count_zero
&& sop
->sem_op
< 0)
1065 /* The following counts are associated to each semaphore:
1066 * semncnt number of tasks waiting on semval being nonzero
1067 * semzcnt number of tasks waiting on semval being zero
1069 * Per definition, a task waits only on the semaphore of the first semop
1070 * that cannot proceed, even if additional operation would block, too.
1072 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1075 struct list_head
*l
;
1076 struct sem_queue
*q
;
1080 /* First: check the simple operations. They are easy to evaluate */
1082 l
= &sma
->sem_base
[semnum
].pending_const
;
1084 l
= &sma
->sem_base
[semnum
].pending_alter
;
1086 list_for_each_entry(q
, l
, list
) {
1087 /* all task on a per-semaphore list sleep on exactly
1093 /* Then: check the complex operations. */
1094 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1095 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1098 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1099 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1105 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1106 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1107 * remains locked on exit.
1109 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1111 struct sem_undo
*un
, *tu
;
1112 struct sem_queue
*q
, *tq
;
1113 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1114 struct list_head tasks
;
1117 /* Free the existing undo structures for this semaphore set. */
1118 ipc_assert_locked_object(&sma
->sem_perm
);
1119 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1120 list_del(&un
->list_id
);
1121 spin_lock(&un
->ulp
->lock
);
1123 list_del_rcu(&un
->list_proc
);
1124 spin_unlock(&un
->ulp
->lock
);
1128 /* Wake up all pending processes and let them fail with EIDRM. */
1129 INIT_LIST_HEAD(&tasks
);
1130 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1131 unlink_queue(sma
, q
);
1132 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1135 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1136 unlink_queue(sma
, q
);
1137 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1139 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1140 struct sem
*sem
= sma
->sem_base
+ i
;
1141 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1142 unlink_queue(sma
, q
);
1143 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1145 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1146 unlink_queue(sma
, q
);
1147 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1151 /* Remove the semaphore set from the IDR */
1153 sem_unlock(sma
, -1);
1156 wake_up_sem_queue_do(&tasks
);
1157 ns
->used_sems
-= sma
->sem_nsems
;
1158 ipc_rcu_putref(sma
, sem_rcu_free
);
1161 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1165 return copy_to_user(buf
, in
, sizeof(*in
));
1168 struct semid_ds out
;
1170 memset(&out
, 0, sizeof(out
));
1172 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1174 out
.sem_otime
= in
->sem_otime
;
1175 out
.sem_ctime
= in
->sem_ctime
;
1176 out
.sem_nsems
= in
->sem_nsems
;
1178 return copy_to_user(buf
, &out
, sizeof(out
));
1185 static time_t get_semotime(struct sem_array
*sma
)
1190 res
= sma
->sem_base
[0].sem_otime
;
1191 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1192 time_t to
= sma
->sem_base
[i
].sem_otime
;
1200 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
,
1201 int cmd
, int version
, void __user
*p
)
1204 struct sem_array
*sma
;
1210 struct seminfo seminfo
;
1213 err
= security_sem_semctl(NULL
, cmd
);
1217 memset(&seminfo
, 0, sizeof(seminfo
));
1218 seminfo
.semmni
= ns
->sc_semmni
;
1219 seminfo
.semmns
= ns
->sc_semmns
;
1220 seminfo
.semmsl
= ns
->sc_semmsl
;
1221 seminfo
.semopm
= ns
->sc_semopm
;
1222 seminfo
.semvmx
= SEMVMX
;
1223 seminfo
.semmnu
= SEMMNU
;
1224 seminfo
.semmap
= SEMMAP
;
1225 seminfo
.semume
= SEMUME
;
1226 down_read(&sem_ids(ns
).rwsem
);
1227 if (cmd
== SEM_INFO
) {
1228 seminfo
.semusz
= sem_ids(ns
).in_use
;
1229 seminfo
.semaem
= ns
->used_sems
;
1231 seminfo
.semusz
= SEMUSZ
;
1232 seminfo
.semaem
= SEMAEM
;
1234 max_id
= ipc_get_maxid(&sem_ids(ns
));
1235 up_read(&sem_ids(ns
).rwsem
);
1236 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1238 return (max_id
< 0) ? 0 : max_id
;
1243 struct semid64_ds tbuf
;
1246 memset(&tbuf
, 0, sizeof(tbuf
));
1249 if (cmd
== SEM_STAT
) {
1250 sma
= sem_obtain_object(ns
, semid
);
1255 id
= sma
->sem_perm
.id
;
1257 sma
= sem_obtain_object_check(ns
, semid
);
1265 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1268 err
= security_sem_semctl(sma
, cmd
);
1272 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
1273 tbuf
.sem_otime
= get_semotime(sma
);
1274 tbuf
.sem_ctime
= sma
->sem_ctime
;
1275 tbuf
.sem_nsems
= sma
->sem_nsems
;
1277 if (copy_semid_to_user(p
, &tbuf
, version
))
1289 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1292 struct sem_undo
*un
;
1293 struct sem_array
*sma
;
1296 struct list_head tasks
;
1298 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1299 /* big-endian 64bit */
1302 /* 32bit or little-endian 64bit */
1306 if (val
> SEMVMX
|| val
< 0)
1309 INIT_LIST_HEAD(&tasks
);
1312 sma
= sem_obtain_object_check(ns
, semid
);
1315 return PTR_ERR(sma
);
1318 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1324 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1329 err
= security_sem_semctl(sma
, SETVAL
);
1335 sem_lock(sma
, NULL
, -1);
1337 if (!ipc_valid_object(&sma
->sem_perm
)) {
1338 sem_unlock(sma
, -1);
1343 curr
= &sma
->sem_base
[semnum
];
1345 ipc_assert_locked_object(&sma
->sem_perm
);
1346 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1347 un
->semadj
[semnum
] = 0;
1350 curr
->sempid
= task_tgid_vnr(current
);
1351 sma
->sem_ctime
= get_seconds();
1352 /* maybe some queued-up processes were waiting for this */
1353 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1354 sem_unlock(sma
, -1);
1356 wake_up_sem_queue_do(&tasks
);
1360 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1361 int cmd
, void __user
*p
)
1363 struct sem_array
*sma
;
1366 ushort fast_sem_io
[SEMMSL_FAST
];
1367 ushort
*sem_io
= fast_sem_io
;
1368 struct list_head tasks
;
1370 INIT_LIST_HEAD(&tasks
);
1373 sma
= sem_obtain_object_check(ns
, semid
);
1376 return PTR_ERR(sma
);
1379 nsems
= sma
->sem_nsems
;
1382 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1383 goto out_rcu_wakeup
;
1385 err
= security_sem_semctl(sma
, cmd
);
1387 goto out_rcu_wakeup
;
1393 ushort __user
*array
= p
;
1396 sem_lock(sma
, NULL
, -1);
1397 if (!ipc_valid_object(&sma
->sem_perm
)) {
1401 if (nsems
> SEMMSL_FAST
) {
1402 if (!ipc_rcu_getref(sma
)) {
1406 sem_unlock(sma
, -1);
1408 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1409 if (sem_io
== NULL
) {
1410 ipc_rcu_putref(sma
, sem_rcu_free
);
1415 sem_lock_and_putref(sma
);
1416 if (!ipc_valid_object(&sma
->sem_perm
)) {
1421 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1422 sem_io
[i
] = sma
->sem_base
[i
].semval
;
1423 sem_unlock(sma
, -1);
1426 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1433 struct sem_undo
*un
;
1435 if (!ipc_rcu_getref(sma
)) {
1437 goto out_rcu_wakeup
;
1441 if (nsems
> SEMMSL_FAST
) {
1442 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1443 if (sem_io
== NULL
) {
1444 ipc_rcu_putref(sma
, sem_rcu_free
);
1449 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1450 ipc_rcu_putref(sma
, sem_rcu_free
);
1455 for (i
= 0; i
< nsems
; i
++) {
1456 if (sem_io
[i
] > SEMVMX
) {
1457 ipc_rcu_putref(sma
, sem_rcu_free
);
1463 sem_lock_and_putref(sma
);
1464 if (!ipc_valid_object(&sma
->sem_perm
)) {
1469 for (i
= 0; i
< nsems
; i
++) {
1470 sma
->sem_base
[i
].semval
= sem_io
[i
];
1471 sma
->sem_base
[i
].sempid
= task_tgid_vnr(current
);
1474 ipc_assert_locked_object(&sma
->sem_perm
);
1475 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1476 for (i
= 0; i
< nsems
; i
++)
1479 sma
->sem_ctime
= get_seconds();
1480 /* maybe some queued-up processes were waiting for this */
1481 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1485 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1488 if (semnum
< 0 || semnum
>= nsems
)
1489 goto out_rcu_wakeup
;
1491 sem_lock(sma
, NULL
, -1);
1492 if (!ipc_valid_object(&sma
->sem_perm
)) {
1496 curr
= &sma
->sem_base
[semnum
];
1506 err
= count_semcnt(sma
, semnum
, 0);
1509 err
= count_semcnt(sma
, semnum
, 1);
1514 sem_unlock(sma
, -1);
1517 wake_up_sem_queue_do(&tasks
);
1519 if (sem_io
!= fast_sem_io
)
1524 static inline unsigned long
1525 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1529 if (copy_from_user(out
, buf
, sizeof(*out
)))
1534 struct semid_ds tbuf_old
;
1536 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1539 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1540 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1541 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1551 * This function handles some semctl commands which require the rwsem
1552 * to be held in write mode.
1553 * NOTE: no locks must be held, the rwsem is taken inside this function.
1555 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1556 int cmd
, int version
, void __user
*p
)
1558 struct sem_array
*sma
;
1560 struct semid64_ds semid64
;
1561 struct kern_ipc_perm
*ipcp
;
1563 if (cmd
== IPC_SET
) {
1564 if (copy_semid_from_user(&semid64
, p
, version
))
1568 down_write(&sem_ids(ns
).rwsem
);
1571 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1572 &semid64
.sem_perm
, 0);
1574 err
= PTR_ERR(ipcp
);
1578 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1580 err
= security_sem_semctl(sma
, cmd
);
1586 sem_lock(sma
, NULL
, -1);
1587 /* freeary unlocks the ipc object and rcu */
1591 sem_lock(sma
, NULL
, -1);
1592 err
= ipc_update_perm(&semid64
.sem_perm
, ipcp
);
1595 sma
->sem_ctime
= get_seconds();
1603 sem_unlock(sma
, -1);
1607 up_write(&sem_ids(ns
).rwsem
);
1611 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1614 struct ipc_namespace
*ns
;
1615 void __user
*p
= (void __user
*)arg
;
1620 version
= ipc_parse_version(&cmd
);
1621 ns
= current
->nsproxy
->ipc_ns
;
1628 return semctl_nolock(ns
, semid
, cmd
, version
, p
);
1635 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1637 return semctl_setval(ns
, semid
, semnum
, arg
);
1640 return semctl_down(ns
, semid
, cmd
, version
, p
);
1646 /* If the task doesn't already have a undo_list, then allocate one
1647 * here. We guarantee there is only one thread using this undo list,
1648 * and current is THE ONE
1650 * If this allocation and assignment succeeds, but later
1651 * portions of this code fail, there is no need to free the sem_undo_list.
1652 * Just let it stay associated with the task, and it'll be freed later
1655 * This can block, so callers must hold no locks.
1657 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1659 struct sem_undo_list
*undo_list
;
1661 undo_list
= current
->sysvsem
.undo_list
;
1663 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1664 if (undo_list
== NULL
)
1666 spin_lock_init(&undo_list
->lock
);
1667 atomic_set(&undo_list
->refcnt
, 1);
1668 INIT_LIST_HEAD(&undo_list
->list_proc
);
1670 current
->sysvsem
.undo_list
= undo_list
;
1672 *undo_listp
= undo_list
;
1676 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1678 struct sem_undo
*un
;
1680 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1681 if (un
->semid
== semid
)
1687 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1689 struct sem_undo
*un
;
1691 assert_spin_locked(&ulp
->lock
);
1693 un
= __lookup_undo(ulp
, semid
);
1695 list_del_rcu(&un
->list_proc
);
1696 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1702 * find_alloc_undo - lookup (and if not present create) undo array
1704 * @semid: semaphore array id
1706 * The function looks up (and if not present creates) the undo structure.
1707 * The size of the undo structure depends on the size of the semaphore
1708 * array, thus the alloc path is not that straightforward.
1709 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1710 * performs a rcu_read_lock().
1712 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1714 struct sem_array
*sma
;
1715 struct sem_undo_list
*ulp
;
1716 struct sem_undo
*un
, *new;
1719 error
= get_undo_list(&ulp
);
1721 return ERR_PTR(error
);
1724 spin_lock(&ulp
->lock
);
1725 un
= lookup_undo(ulp
, semid
);
1726 spin_unlock(&ulp
->lock
);
1727 if (likely(un
!= NULL
))
1730 /* no undo structure around - allocate one. */
1731 /* step 1: figure out the size of the semaphore array */
1732 sma
= sem_obtain_object_check(ns
, semid
);
1735 return ERR_CAST(sma
);
1738 nsems
= sma
->sem_nsems
;
1739 if (!ipc_rcu_getref(sma
)) {
1741 un
= ERR_PTR(-EIDRM
);
1746 /* step 2: allocate new undo structure */
1747 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1749 ipc_rcu_putref(sma
, sem_rcu_free
);
1750 return ERR_PTR(-ENOMEM
);
1753 /* step 3: Acquire the lock on semaphore array */
1755 sem_lock_and_putref(sma
);
1756 if (!ipc_valid_object(&sma
->sem_perm
)) {
1757 sem_unlock(sma
, -1);
1760 un
= ERR_PTR(-EIDRM
);
1763 spin_lock(&ulp
->lock
);
1766 * step 4: check for races: did someone else allocate the undo struct?
1768 un
= lookup_undo(ulp
, semid
);
1773 /* step 5: initialize & link new undo structure */
1774 new->semadj
= (short *) &new[1];
1777 assert_spin_locked(&ulp
->lock
);
1778 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1779 ipc_assert_locked_object(&sma
->sem_perm
);
1780 list_add(&new->list_id
, &sma
->list_id
);
1784 spin_unlock(&ulp
->lock
);
1785 sem_unlock(sma
, -1);
1792 * get_queue_result - retrieve the result code from sem_queue
1793 * @q: Pointer to queue structure
1795 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1796 * q->status, then we must loop until the value is replaced with the final
1797 * value: This may happen if a task is woken up by an unrelated event (e.g.
1798 * signal) and in parallel the task is woken up by another task because it got
1799 * the requested semaphores.
1801 * The function can be called with or without holding the semaphore spinlock.
1803 static int get_queue_result(struct sem_queue
*q
)
1808 while (unlikely(error
== IN_WAKEUP
)) {
1816 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
1817 unsigned, nsops
, const struct timespec __user
*, timeout
)
1819 int error
= -EINVAL
;
1820 struct sem_array
*sma
;
1821 struct sembuf fast_sops
[SEMOPM_FAST
];
1822 struct sembuf
*sops
= fast_sops
, *sop
;
1823 struct sem_undo
*un
;
1824 int undos
= 0, alter
= 0, max
, locknum
;
1825 struct sem_queue queue
;
1826 unsigned long jiffies_left
= 0;
1827 struct ipc_namespace
*ns
;
1828 struct list_head tasks
;
1830 ns
= current
->nsproxy
->ipc_ns
;
1832 if (nsops
< 1 || semid
< 0)
1834 if (nsops
> ns
->sc_semopm
)
1836 if (nsops
> SEMOPM_FAST
) {
1837 sops
= kmalloc(sizeof(*sops
)*nsops
, GFP_KERNEL
);
1841 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
1846 struct timespec _timeout
;
1847 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1851 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1852 _timeout
.tv_nsec
>= 1000000000L) {
1856 jiffies_left
= timespec_to_jiffies(&_timeout
);
1859 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1860 if (sop
->sem_num
>= max
)
1862 if (sop
->sem_flg
& SEM_UNDO
)
1864 if (sop
->sem_op
!= 0)
1868 INIT_LIST_HEAD(&tasks
);
1871 /* On success, find_alloc_undo takes the rcu_read_lock */
1872 un
= find_alloc_undo(ns
, semid
);
1874 error
= PTR_ERR(un
);
1882 sma
= sem_obtain_object_check(ns
, semid
);
1885 error
= PTR_ERR(sma
);
1890 if (max
>= sma
->sem_nsems
)
1891 goto out_rcu_wakeup
;
1894 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
))
1895 goto out_rcu_wakeup
;
1897 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1899 goto out_rcu_wakeup
;
1902 locknum
= sem_lock(sma
, sops
, nsops
);
1904 * We eventually might perform the following check in a lockless
1905 * fashion, considering ipc_valid_object() locking constraints.
1906 * If nsops == 1 and there is no contention for sem_perm.lock, then
1907 * only a per-semaphore lock is held and it's OK to proceed with the
1908 * check below. More details on the fine grained locking scheme
1909 * entangled here and why it's RMID race safe on comments at sem_lock()
1911 if (!ipc_valid_object(&sma
->sem_perm
))
1912 goto out_unlock_free
;
1914 * semid identifiers are not unique - find_alloc_undo may have
1915 * allocated an undo structure, it was invalidated by an RMID
1916 * and now a new array with received the same id. Check and fail.
1917 * This case can be detected checking un->semid. The existence of
1918 * "un" itself is guaranteed by rcu.
1920 if (un
&& un
->semid
== -1)
1921 goto out_unlock_free
;
1924 queue
.nsops
= nsops
;
1926 queue
.pid
= task_tgid_vnr(current
);
1927 queue
.alter
= alter
;
1929 error
= perform_atomic_semop(sma
, &queue
);
1931 /* If the operation was successful, then do
1932 * the required updates.
1935 do_smart_update(sma
, sops
, nsops
, 1, &tasks
);
1937 set_semotime(sma
, sops
);
1940 goto out_unlock_free
;
1942 /* We need to sleep on this operation, so we put the current
1943 * task into the pending queue and go to sleep.
1948 curr
= &sma
->sem_base
[sops
->sem_num
];
1951 if (sma
->complex_count
) {
1952 list_add_tail(&queue
.list
,
1953 &sma
->pending_alter
);
1956 list_add_tail(&queue
.list
,
1957 &curr
->pending_alter
);
1960 list_add_tail(&queue
.list
, &curr
->pending_const
);
1963 if (!sma
->complex_count
)
1967 list_add_tail(&queue
.list
, &sma
->pending_alter
);
1969 list_add_tail(&queue
.list
, &sma
->pending_const
);
1971 sma
->complex_count
++;
1974 queue
.status
= -EINTR
;
1975 queue
.sleeper
= current
;
1978 __set_current_state(TASK_INTERRUPTIBLE
);
1979 sem_unlock(sma
, locknum
);
1983 jiffies_left
= schedule_timeout(jiffies_left
);
1987 error
= get_queue_result(&queue
);
1989 if (error
!= -EINTR
) {
1990 /* fast path: update_queue already obtained all requested
1992 * Perform a smp_mb(): User space could assume that semop()
1993 * is a memory barrier: Without the mb(), the cpu could
1994 * speculatively read in user space stale data that was
1995 * overwritten by the previous owner of the semaphore.
2003 sma
= sem_obtain_lock(ns
, semid
, sops
, nsops
, &locknum
);
2006 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
2008 error
= get_queue_result(&queue
);
2011 * Array removed? If yes, leave without sem_unlock().
2020 * If queue.status != -EINTR we are woken up by another process.
2021 * Leave without unlink_queue(), but with sem_unlock().
2023 if (error
!= -EINTR
)
2024 goto out_unlock_free
;
2027 * If an interrupt occurred we have to clean up the queue
2029 if (timeout
&& jiffies_left
== 0)
2033 * If the wakeup was spurious, just retry
2035 if (error
== -EINTR
&& !signal_pending(current
))
2038 unlink_queue(sma
, &queue
);
2041 sem_unlock(sma
, locknum
);
2044 wake_up_sem_queue_do(&tasks
);
2046 if (sops
!= fast_sops
)
2051 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2054 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
2057 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2058 * parent and child tasks.
2061 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2063 struct sem_undo_list
*undo_list
;
2066 if (clone_flags
& CLONE_SYSVSEM
) {
2067 error
= get_undo_list(&undo_list
);
2070 atomic_inc(&undo_list
->refcnt
);
2071 tsk
->sysvsem
.undo_list
= undo_list
;
2073 tsk
->sysvsem
.undo_list
= NULL
;
2079 * add semadj values to semaphores, free undo structures.
2080 * undo structures are not freed when semaphore arrays are destroyed
2081 * so some of them may be out of date.
2082 * IMPLEMENTATION NOTE: There is some confusion over whether the
2083 * set of adjustments that needs to be done should be done in an atomic
2084 * manner or not. That is, if we are attempting to decrement the semval
2085 * should we queue up and wait until we can do so legally?
2086 * The original implementation attempted to do this (queue and wait).
2087 * The current implementation does not do so. The POSIX standard
2088 * and SVID should be consulted to determine what behavior is mandated.
2090 void exit_sem(struct task_struct
*tsk
)
2092 struct sem_undo_list
*ulp
;
2094 ulp
= tsk
->sysvsem
.undo_list
;
2097 tsk
->sysvsem
.undo_list
= NULL
;
2099 if (!atomic_dec_and_test(&ulp
->refcnt
))
2103 struct sem_array
*sma
;
2104 struct sem_undo
*un
;
2105 struct list_head tasks
;
2111 un
= list_entry_rcu(ulp
->list_proc
.next
,
2112 struct sem_undo
, list_proc
);
2113 if (&un
->list_proc
== &ulp
->list_proc
) {
2115 * We must wait for freeary() before freeing this ulp,
2116 * in case we raced with last sem_undo. There is a small
2117 * possibility where we exit while freeary() didn't
2118 * finish unlocking sem_undo_list.
2120 spin_unlock_wait(&ulp
->lock
);
2124 spin_lock(&ulp
->lock
);
2126 spin_unlock(&ulp
->lock
);
2128 /* exit_sem raced with IPC_RMID, nothing to do */
2134 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2135 /* exit_sem raced with IPC_RMID, nothing to do */
2141 sem_lock(sma
, NULL
, -1);
2142 /* exit_sem raced with IPC_RMID, nothing to do */
2143 if (!ipc_valid_object(&sma
->sem_perm
)) {
2144 sem_unlock(sma
, -1);
2148 un
= __lookup_undo(ulp
, semid
);
2150 /* exit_sem raced with IPC_RMID+semget() that created
2151 * exactly the same semid. Nothing to do.
2153 sem_unlock(sma
, -1);
2158 /* remove un from the linked lists */
2159 ipc_assert_locked_object(&sma
->sem_perm
);
2160 list_del(&un
->list_id
);
2162 /* we are the last process using this ulp, acquiring ulp->lock
2163 * isn't required. Besides that, we are also protected against
2164 * IPC_RMID as we hold sma->sem_perm lock now
2166 list_del_rcu(&un
->list_proc
);
2168 /* perform adjustments registered in un */
2169 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2170 struct sem
*semaphore
= &sma
->sem_base
[i
];
2171 if (un
->semadj
[i
]) {
2172 semaphore
->semval
+= un
->semadj
[i
];
2174 * Range checks of the new semaphore value,
2175 * not defined by sus:
2176 * - Some unices ignore the undo entirely
2177 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2178 * - some cap the value (e.g. FreeBSD caps
2179 * at 0, but doesn't enforce SEMVMX)
2181 * Linux caps the semaphore value, both at 0
2184 * Manfred <manfred@colorfullife.com>
2186 if (semaphore
->semval
< 0)
2187 semaphore
->semval
= 0;
2188 if (semaphore
->semval
> SEMVMX
)
2189 semaphore
->semval
= SEMVMX
;
2190 semaphore
->sempid
= task_tgid_vnr(current
);
2193 /* maybe some queued-up processes were waiting for this */
2194 INIT_LIST_HEAD(&tasks
);
2195 do_smart_update(sma
, NULL
, 0, 1, &tasks
);
2196 sem_unlock(sma
, -1);
2198 wake_up_sem_queue_do(&tasks
);
2205 #ifdef CONFIG_PROC_FS
2206 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2208 struct user_namespace
*user_ns
= seq_user_ns(s
);
2209 struct sem_array
*sma
= it
;
2213 * The proc interface isn't aware of sem_lock(), it calls
2214 * ipc_lock_object() directly (in sysvipc_find_ipc).
2215 * In order to stay compatible with sem_lock(), we must
2216 * enter / leave complex_mode.
2218 complexmode_enter(sma
);
2220 sem_otime
= get_semotime(sma
);
2223 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2228 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2229 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2230 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2231 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),
2235 complexmode_tryleave(sma
);