eCryptfs: Copy lower directory inode times and size on link
[linux/fpc-iii.git] / fs / logfs / inode.c
blob33ec1aeaeec4f9d614a75140042753d441558f1a
1 /*
2 * fs/logfs/inode.c - inode handling code
4 * As should be obvious for Linux kernel code, license is GPLv2
6 * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
7 */
8 #include "logfs.h"
9 #include <linux/writeback.h>
10 #include <linux/backing-dev.h>
13 * How soon to reuse old inode numbers? LogFS doesn't store deleted inodes
14 * on the medium. It therefore also lacks a method to store the previous
15 * generation number for deleted inodes. Instead a single generation number
16 * is stored which will be used for new inodes. Being just a 32bit counter,
17 * this can obvious wrap relatively quickly. So we only reuse inodes if we
18 * know that a fair number of inodes can be created before we have to increment
19 * the generation again - effectively adding some bits to the counter.
20 * But being too aggressive here means we keep a very large and very sparse
21 * inode file, wasting space on indirect blocks.
22 * So what is a good value? Beats me. 64k seems moderately bad on both
23 * fronts, so let's use that for now...
25 * NFS sucks, as everyone already knows.
27 #define INOS_PER_WRAP (0x10000)
30 * Logfs' requirement to read inodes for garbage collection makes life a bit
31 * harder. GC may have to read inodes that are in I_FREEING state, when they
32 * are being written out - and waiting for GC to make progress, naturally.
34 * So we cannot just call iget() or some variant of it, but first have to check
35 * wether the inode in question might be in I_FREEING state. Therefore we
36 * maintain our own per-sb list of "almost deleted" inodes and check against
37 * that list first. Normally this should be at most 1-2 entries long.
39 * Also, inodes have logfs-specific reference counting on top of what the vfs
40 * does. When .destroy_inode is called, normally the reference count will drop
41 * to zero and the inode gets deleted. But if GC accessed the inode, its
42 * refcount will remain nonzero and final deletion will have to wait.
44 * As a result we have two sets of functions to get/put inodes:
45 * logfs_safe_iget/logfs_safe_iput - safe to call from GC context
46 * logfs_iget/iput - normal version
48 static struct kmem_cache *logfs_inode_cache;
50 static DEFINE_SPINLOCK(logfs_inode_lock);
52 static void logfs_inode_setops(struct inode *inode)
54 switch (inode->i_mode & S_IFMT) {
55 case S_IFDIR:
56 inode->i_op = &logfs_dir_iops;
57 inode->i_fop = &logfs_dir_fops;
58 inode->i_mapping->a_ops = &logfs_reg_aops;
59 break;
60 case S_IFREG:
61 inode->i_op = &logfs_reg_iops;
62 inode->i_fop = &logfs_reg_fops;
63 inode->i_mapping->a_ops = &logfs_reg_aops;
64 break;
65 case S_IFLNK:
66 inode->i_op = &logfs_symlink_iops;
67 inode->i_mapping->a_ops = &logfs_reg_aops;
68 break;
69 case S_IFSOCK: /* fall through */
70 case S_IFBLK: /* fall through */
71 case S_IFCHR: /* fall through */
72 case S_IFIFO:
73 init_special_inode(inode, inode->i_mode, inode->i_rdev);
74 break;
75 default:
76 BUG();
80 static struct inode *__logfs_iget(struct super_block *sb, ino_t ino)
82 struct inode *inode = iget_locked(sb, ino);
83 int err;
85 if (!inode)
86 return ERR_PTR(-ENOMEM);
87 if (!(inode->i_state & I_NEW))
88 return inode;
90 err = logfs_read_inode(inode);
91 if (err || inode->i_nlink == 0) {
92 /* inode->i_nlink == 0 can be true when called from
93 * block validator */
94 /* set i_nlink to 0 to prevent caching */
95 inode->i_nlink = 0;
96 logfs_inode(inode)->li_flags |= LOGFS_IF_ZOMBIE;
97 iget_failed(inode);
98 if (!err)
99 err = -ENOENT;
100 return ERR_PTR(err);
103 logfs_inode_setops(inode);
104 unlock_new_inode(inode);
105 return inode;
108 struct inode *logfs_iget(struct super_block *sb, ino_t ino)
110 BUG_ON(ino == LOGFS_INO_MASTER);
111 BUG_ON(ino == LOGFS_INO_SEGFILE);
112 return __logfs_iget(sb, ino);
116 * is_cached is set to 1 if we hand out a cached inode, 0 otherwise.
117 * this allows logfs_iput to do the right thing later
119 struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *is_cached)
121 struct logfs_super *super = logfs_super(sb);
122 struct logfs_inode *li;
124 if (ino == LOGFS_INO_MASTER)
125 return super->s_master_inode;
126 if (ino == LOGFS_INO_SEGFILE)
127 return super->s_segfile_inode;
129 spin_lock(&logfs_inode_lock);
130 list_for_each_entry(li, &super->s_freeing_list, li_freeing_list)
131 if (li->vfs_inode.i_ino == ino) {
132 li->li_refcount++;
133 spin_unlock(&logfs_inode_lock);
134 *is_cached = 1;
135 return &li->vfs_inode;
137 spin_unlock(&logfs_inode_lock);
139 *is_cached = 0;
140 return __logfs_iget(sb, ino);
143 static void __logfs_destroy_inode(struct inode *inode)
145 struct logfs_inode *li = logfs_inode(inode);
147 BUG_ON(li->li_block);
148 list_del(&li->li_freeing_list);
149 kmem_cache_free(logfs_inode_cache, li);
152 static void logfs_destroy_inode(struct inode *inode)
154 struct logfs_inode *li = logfs_inode(inode);
156 BUG_ON(list_empty(&li->li_freeing_list));
157 spin_lock(&logfs_inode_lock);
158 li->li_refcount--;
159 if (li->li_refcount == 0)
160 __logfs_destroy_inode(inode);
161 spin_unlock(&logfs_inode_lock);
164 void logfs_safe_iput(struct inode *inode, int is_cached)
166 if (inode->i_ino == LOGFS_INO_MASTER)
167 return;
168 if (inode->i_ino == LOGFS_INO_SEGFILE)
169 return;
171 if (is_cached) {
172 logfs_destroy_inode(inode);
173 return;
176 iput(inode);
179 static void logfs_init_inode(struct super_block *sb, struct inode *inode)
181 struct logfs_inode *li = logfs_inode(inode);
182 int i;
184 li->li_flags = 0;
185 li->li_height = 0;
186 li->li_used_bytes = 0;
187 li->li_block = NULL;
188 inode->i_uid = 0;
189 inode->i_gid = 0;
190 inode->i_size = 0;
191 inode->i_blocks = 0;
192 inode->i_ctime = CURRENT_TIME;
193 inode->i_mtime = CURRENT_TIME;
194 inode->i_nlink = 1;
195 INIT_LIST_HEAD(&li->li_freeing_list);
197 for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
198 li->li_data[i] = 0;
200 return;
203 static struct inode *logfs_alloc_inode(struct super_block *sb)
205 struct logfs_inode *li;
207 li = kmem_cache_alloc(logfs_inode_cache, GFP_NOFS);
208 if (!li)
209 return NULL;
210 logfs_init_inode(sb, &li->vfs_inode);
211 return &li->vfs_inode;
215 * In logfs inodes are written to an inode file. The inode file, like any
216 * other file, is managed with a inode. The inode file's inode, aka master
217 * inode, requires special handling in several respects. First, it cannot be
218 * written to the inode file, so it is stored in the journal instead.
220 * Secondly, this inode cannot be written back and destroyed before all other
221 * inodes have been written. The ordering is important. Linux' VFS is happily
222 * unaware of the ordering constraint and would ordinarily destroy the master
223 * inode at umount time while other inodes are still in use and dirty. Not
224 * good.
226 * So logfs makes sure the master inode is not written until all other inodes
227 * have been destroyed. Sadly, this method has another side-effect. The VFS
228 * will notice one remaining inode and print a frightening warning message.
229 * Worse, it is impossible to judge whether such a warning was caused by the
230 * master inode or any other inodes have leaked as well.
232 * Our attempt of solving this is with logfs_new_meta_inode() below. Its
233 * purpose is to create a new inode that will not trigger the warning if such
234 * an inode is still in use. An ugly hack, no doubt. Suggections for
235 * improvement are welcome.
237 struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino)
239 struct inode *inode;
241 inode = logfs_alloc_inode(sb);
242 if (!inode)
243 return ERR_PTR(-ENOMEM);
245 inode->i_mode = S_IFREG;
246 inode->i_ino = ino;
247 inode->i_sb = sb;
249 /* This is a blatant copy of alloc_inode code. We'd need alloc_inode
250 * to be nonstatic, alas. */
252 struct address_space * const mapping = &inode->i_data;
254 mapping->a_ops = &logfs_reg_aops;
255 mapping->host = inode;
256 mapping->flags = 0;
257 mapping_set_gfp_mask(mapping, GFP_NOFS);
258 mapping->assoc_mapping = NULL;
259 mapping->backing_dev_info = &default_backing_dev_info;
260 inode->i_mapping = mapping;
261 inode->i_nlink = 1;
264 return inode;
267 struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino)
269 struct inode *inode;
270 int err;
272 inode = logfs_new_meta_inode(sb, ino);
273 if (IS_ERR(inode))
274 return inode;
276 err = logfs_read_inode(inode);
277 if (err) {
278 destroy_meta_inode(inode);
279 return ERR_PTR(err);
281 logfs_inode_setops(inode);
282 return inode;
285 static int logfs_write_inode(struct inode *inode, struct writeback_control *wbc)
287 int ret;
288 long flags = WF_LOCK;
290 /* Can only happen if creat() failed. Safe to skip. */
291 if (logfs_inode(inode)->li_flags & LOGFS_IF_STILLBORN)
292 return 0;
294 ret = __logfs_write_inode(inode, flags);
295 LOGFS_BUG_ON(ret, inode->i_sb);
296 return ret;
299 void destroy_meta_inode(struct inode *inode)
301 if (inode) {
302 if (inode->i_data.nrpages)
303 truncate_inode_pages(&inode->i_data, 0);
304 logfs_clear_inode(inode);
305 kmem_cache_free(logfs_inode_cache, logfs_inode(inode));
309 /* called with inode_lock held */
310 static void logfs_drop_inode(struct inode *inode)
312 struct logfs_super *super = logfs_super(inode->i_sb);
313 struct logfs_inode *li = logfs_inode(inode);
315 spin_lock(&logfs_inode_lock);
316 list_move(&li->li_freeing_list, &super->s_freeing_list);
317 spin_unlock(&logfs_inode_lock);
318 generic_drop_inode(inode);
321 static void logfs_set_ino_generation(struct super_block *sb,
322 struct inode *inode)
324 struct logfs_super *super = logfs_super(sb);
325 u64 ino;
327 mutex_lock(&super->s_journal_mutex);
328 ino = logfs_seek_hole(super->s_master_inode, super->s_last_ino);
329 super->s_last_ino = ino;
330 super->s_inos_till_wrap--;
331 if (super->s_inos_till_wrap < 0) {
332 super->s_last_ino = LOGFS_RESERVED_INOS;
333 super->s_generation++;
334 super->s_inos_till_wrap = INOS_PER_WRAP;
336 inode->i_ino = ino;
337 inode->i_generation = super->s_generation;
338 mutex_unlock(&super->s_journal_mutex);
341 struct inode *logfs_new_inode(struct inode *dir, int mode)
343 struct super_block *sb = dir->i_sb;
344 struct inode *inode;
346 inode = new_inode(sb);
347 if (!inode)
348 return ERR_PTR(-ENOMEM);
350 logfs_init_inode(sb, inode);
352 /* inherit parent flags */
353 logfs_inode(inode)->li_flags |=
354 logfs_inode(dir)->li_flags & LOGFS_FL_INHERITED;
356 inode->i_mode = mode;
357 logfs_set_ino_generation(sb, inode);
359 inode->i_uid = current_fsuid();
360 inode->i_gid = current_fsgid();
361 if (dir->i_mode & S_ISGID) {
362 inode->i_gid = dir->i_gid;
363 if (S_ISDIR(mode))
364 inode->i_mode |= S_ISGID;
367 logfs_inode_setops(inode);
368 insert_inode_hash(inode);
370 return inode;
373 static void logfs_init_once(void *_li)
375 struct logfs_inode *li = _li;
376 int i;
378 li->li_flags = 0;
379 li->li_used_bytes = 0;
380 li->li_refcount = 1;
381 for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
382 li->li_data[i] = 0;
383 inode_init_once(&li->vfs_inode);
386 static int logfs_sync_fs(struct super_block *sb, int wait)
388 /* FIXME: write anchor */
389 logfs_super(sb)->s_devops->sync(sb);
390 return 0;
393 const struct super_operations logfs_super_operations = {
394 .alloc_inode = logfs_alloc_inode,
395 .clear_inode = logfs_clear_inode,
396 .delete_inode = logfs_delete_inode,
397 .destroy_inode = logfs_destroy_inode,
398 .drop_inode = logfs_drop_inode,
399 .write_inode = logfs_write_inode,
400 .statfs = logfs_statfs,
401 .sync_fs = logfs_sync_fs,
404 int logfs_init_inode_cache(void)
406 logfs_inode_cache = kmem_cache_create("logfs_inode_cache",
407 sizeof(struct logfs_inode), 0, SLAB_RECLAIM_ACCOUNT,
408 logfs_init_once);
409 if (!logfs_inode_cache)
410 return -ENOMEM;
411 return 0;
414 void logfs_destroy_inode_cache(void)
416 kmem_cache_destroy(logfs_inode_cache);