2 * mm/readahead.c - address_space-level file readahead.
4 * Copyright (C) 2002, Linus Torvalds
6 * 09Apr2002 Andrew Morton
10 #include <linux/kernel.h>
11 #include <linux/gfp.h>
12 #include <linux/export.h>
13 #include <linux/blkdev.h>
14 #include <linux/backing-dev.h>
15 #include <linux/task_io_accounting_ops.h>
16 #include <linux/pagevec.h>
17 #include <linux/pagemap.h>
18 #include <linux/syscalls.h>
19 #include <linux/file.h>
20 #include <linux/mm_inline.h>
25 * Initialise a struct file's readahead state. Assumes that the caller has
29 file_ra_state_init(struct file_ra_state
*ra
, struct address_space
*mapping
)
31 ra
->ra_pages
= inode_to_bdi(mapping
->host
)->ra_pages
;
34 EXPORT_SYMBOL_GPL(file_ra_state_init
);
37 * see if a page needs releasing upon read_cache_pages() failure
38 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
39 * before calling, such as the NFS fs marking pages that are cached locally
40 * on disk, thus we need to give the fs a chance to clean up in the event of
43 static void read_cache_pages_invalidate_page(struct address_space
*mapping
,
46 if (page_has_private(page
)) {
47 if (!trylock_page(page
))
49 page
->mapping
= mapping
;
50 do_invalidatepage(page
, 0, PAGE_SIZE
);
58 * release a list of pages, invalidating them first if need be
60 static void read_cache_pages_invalidate_pages(struct address_space
*mapping
,
61 struct list_head
*pages
)
65 while (!list_empty(pages
)) {
66 victim
= lru_to_page(pages
);
67 list_del(&victim
->lru
);
68 read_cache_pages_invalidate_page(mapping
, victim
);
73 * read_cache_pages - populate an address space with some pages & start reads against them
74 * @mapping: the address_space
75 * @pages: The address of a list_head which contains the target pages. These
76 * pages have their ->index populated and are otherwise uninitialised.
77 * @filler: callback routine for filling a single page.
78 * @data: private data for the callback routine.
80 * Hides the details of the LRU cache etc from the filesystems.
82 int read_cache_pages(struct address_space
*mapping
, struct list_head
*pages
,
83 int (*filler
)(void *, struct page
*), void *data
)
88 while (!list_empty(pages
)) {
89 page
= lru_to_page(pages
);
91 if (add_to_page_cache_lru(page
, mapping
, page
->index
,
92 mapping_gfp_constraint(mapping
, GFP_KERNEL
))) {
93 read_cache_pages_invalidate_page(mapping
, page
);
98 ret
= filler(data
, page
);
100 read_cache_pages_invalidate_pages(mapping
, pages
);
103 task_io_account_read(PAGE_SIZE
);
108 EXPORT_SYMBOL(read_cache_pages
);
110 static int read_pages(struct address_space
*mapping
, struct file
*filp
,
111 struct list_head
*pages
, unsigned nr_pages
)
113 struct blk_plug plug
;
117 blk_start_plug(&plug
);
119 if (mapping
->a_ops
->readpages
) {
120 ret
= mapping
->a_ops
->readpages(filp
, mapping
, pages
, nr_pages
);
121 /* Clean up the remaining pages */
122 put_pages_list(pages
);
126 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
127 struct page
*page
= lru_to_page(pages
);
128 list_del(&page
->lru
);
129 if (!add_to_page_cache_lru(page
, mapping
, page
->index
,
130 mapping_gfp_constraint(mapping
, GFP_KERNEL
))) {
131 mapping
->a_ops
->readpage(filp
, page
);
138 blk_finish_plug(&plug
);
144 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all
145 * the pages first, then submits them all for I/O. This avoids the very bad
146 * behaviour which would occur if page allocations are causing VM writeback.
147 * We really don't want to intermingle reads and writes like that.
149 * Returns the number of pages requested, or the maximum amount of I/O allowed.
151 int __do_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
152 pgoff_t offset
, unsigned long nr_to_read
,
153 unsigned long lookahead_size
)
155 struct inode
*inode
= mapping
->host
;
157 unsigned long end_index
; /* The last page we want to read */
158 LIST_HEAD(page_pool
);
161 loff_t isize
= i_size_read(inode
);
166 end_index
= ((isize
- 1) >> PAGE_SHIFT
);
169 * Preallocate as many pages as we will need.
171 for (page_idx
= 0; page_idx
< nr_to_read
; page_idx
++) {
172 pgoff_t page_offset
= offset
+ page_idx
;
174 if (page_offset
> end_index
)
178 page
= radix_tree_lookup(&mapping
->page_tree
, page_offset
);
180 if (page
&& !radix_tree_exceptional_entry(page
))
183 page
= page_cache_alloc_readahead(mapping
);
186 page
->index
= page_offset
;
187 list_add(&page
->lru
, &page_pool
);
188 if (page_idx
== nr_to_read
- lookahead_size
)
189 SetPageReadahead(page
);
194 * Now start the IO. We ignore I/O errors - if the page is not
195 * uptodate then the caller will launch readpage again, and
196 * will then handle the error.
199 read_pages(mapping
, filp
, &page_pool
, ret
);
200 BUG_ON(!list_empty(&page_pool
));
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
209 int force_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
210 pgoff_t offset
, unsigned long nr_to_read
)
212 if (unlikely(!mapping
->a_ops
->readpage
&& !mapping
->a_ops
->readpages
))
215 nr_to_read
= min(nr_to_read
, inode_to_bdi(mapping
->host
)->ra_pages
);
219 unsigned long this_chunk
= (2 * 1024 * 1024) / PAGE_SIZE
;
221 if (this_chunk
> nr_to_read
)
222 this_chunk
= nr_to_read
;
223 err
= __do_page_cache_readahead(mapping
, filp
,
224 offset
, this_chunk
, 0);
228 offset
+= this_chunk
;
229 nr_to_read
-= this_chunk
;
235 * Set the initial window size, round to next power of 2 and square
236 * for small size, x 4 for medium, and x 2 for large
237 * for 128k (32 page) max ra
238 * 1-8 page = 32k initial, > 8 page = 128k initial
240 static unsigned long get_init_ra_size(unsigned long size
, unsigned long max
)
242 unsigned long newsize
= roundup_pow_of_two(size
);
244 if (newsize
<= max
/ 32)
245 newsize
= newsize
* 4;
246 else if (newsize
<= max
/ 4)
247 newsize
= newsize
* 2;
255 * Get the previous window size, ramp it up, and
256 * return it as the new window size.
258 static unsigned long get_next_ra_size(struct file_ra_state
*ra
,
261 unsigned long cur
= ra
->size
;
262 unsigned long newsize
;
269 return min(newsize
, max
);
273 * On-demand readahead design.
275 * The fields in struct file_ra_state represent the most-recently-executed
278 * |<----- async_size ---------|
279 * |------------------- size -------------------->|
280 * |==================#===========================|
281 * ^start ^page marked with PG_readahead
283 * To overlap application thinking time and disk I/O time, we do
284 * `readahead pipelining': Do not wait until the application consumed all
285 * readahead pages and stalled on the missing page at readahead_index;
286 * Instead, submit an asynchronous readahead I/O as soon as there are
287 * only async_size pages left in the readahead window. Normally async_size
288 * will be equal to size, for maximum pipelining.
290 * In interleaved sequential reads, concurrent streams on the same fd can
291 * be invalidating each other's readahead state. So we flag the new readahead
292 * page at (start+size-async_size) with PG_readahead, and use it as readahead
293 * indicator. The flag won't be set on already cached pages, to avoid the
294 * readahead-for-nothing fuss, saving pointless page cache lookups.
296 * prev_pos tracks the last visited byte in the _previous_ read request.
297 * It should be maintained by the caller, and will be used for detecting
298 * small random reads. Note that the readahead algorithm checks loosely
299 * for sequential patterns. Hence interleaved reads might be served as
302 * There is a special-case: if the first page which the application tries to
303 * read happens to be the first page of the file, it is assumed that a linear
304 * read is about to happen and the window is immediately set to the initial size
305 * based on I/O request size and the max_readahead.
307 * The code ramps up the readahead size aggressively at first, but slow down as
308 * it approaches max_readhead.
312 * Count contiguously cached pages from @offset-1 to @offset-@max,
313 * this count is a conservative estimation of
314 * - length of the sequential read sequence, or
315 * - thrashing threshold in memory tight systems
317 static pgoff_t
count_history_pages(struct address_space
*mapping
,
318 pgoff_t offset
, unsigned long max
)
323 head
= page_cache_prev_hole(mapping
, offset
- 1, max
);
326 return offset
- 1 - head
;
330 * page cache context based read-ahead
332 static int try_context_readahead(struct address_space
*mapping
,
333 struct file_ra_state
*ra
,
335 unsigned long req_size
,
340 size
= count_history_pages(mapping
, offset
, max
);
343 * not enough history pages:
344 * it could be a random read
346 if (size
<= req_size
)
350 * starts from beginning of file:
351 * it is a strong indication of long-run stream (or whole-file-read)
357 ra
->size
= min(size
+ req_size
, max
);
364 * A minimal readahead algorithm for trivial sequential/random reads.
367 ondemand_readahead(struct address_space
*mapping
,
368 struct file_ra_state
*ra
, struct file
*filp
,
369 bool hit_readahead_marker
, pgoff_t offset
,
370 unsigned long req_size
)
372 unsigned long max
= ra
->ra_pages
;
379 goto initial_readahead
;
382 * It's the expected callback offset, assume sequential access.
383 * Ramp up sizes, and push forward the readahead window.
385 if ((offset
== (ra
->start
+ ra
->size
- ra
->async_size
) ||
386 offset
== (ra
->start
+ ra
->size
))) {
387 ra
->start
+= ra
->size
;
388 ra
->size
= get_next_ra_size(ra
, max
);
389 ra
->async_size
= ra
->size
;
394 * Hit a marked page without valid readahead state.
395 * E.g. interleaved reads.
396 * Query the pagecache for async_size, which normally equals to
397 * readahead size. Ramp it up and use it as the new readahead size.
399 if (hit_readahead_marker
) {
403 start
= page_cache_next_hole(mapping
, offset
+ 1, max
);
406 if (!start
|| start
- offset
> max
)
410 ra
->size
= start
- offset
; /* old async_size */
411 ra
->size
+= req_size
;
412 ra
->size
= get_next_ra_size(ra
, max
);
413 ra
->async_size
= ra
->size
;
421 goto initial_readahead
;
424 * sequential cache miss
425 * trivial case: (offset - prev_offset) == 1
426 * unaligned reads: (offset - prev_offset) == 0
428 prev_offset
= (unsigned long long)ra
->prev_pos
>> PAGE_SHIFT
;
429 if (offset
- prev_offset
<= 1UL)
430 goto initial_readahead
;
433 * Query the page cache and look for the traces(cached history pages)
434 * that a sequential stream would leave behind.
436 if (try_context_readahead(mapping
, ra
, offset
, req_size
, max
))
440 * standalone, small random read
441 * Read as is, and do not pollute the readahead state.
443 return __do_page_cache_readahead(mapping
, filp
, offset
, req_size
, 0);
447 ra
->size
= get_init_ra_size(req_size
, max
);
448 ra
->async_size
= ra
->size
> req_size
? ra
->size
- req_size
: ra
->size
;
452 * Will this read hit the readahead marker made by itself?
453 * If so, trigger the readahead marker hit now, and merge
454 * the resulted next readahead window into the current one.
456 if (offset
== ra
->start
&& ra
->size
== ra
->async_size
) {
457 ra
->async_size
= get_next_ra_size(ra
, max
);
458 ra
->size
+= ra
->async_size
;
461 return ra_submit(ra
, mapping
, filp
);
465 * page_cache_sync_readahead - generic file readahead
466 * @mapping: address_space which holds the pagecache and I/O vectors
467 * @ra: file_ra_state which holds the readahead state
468 * @filp: passed on to ->readpage() and ->readpages()
469 * @offset: start offset into @mapping, in pagecache page-sized units
470 * @req_size: hint: total size of the read which the caller is performing in
473 * page_cache_sync_readahead() should be called when a cache miss happened:
474 * it will submit the read. The readahead logic may decide to piggyback more
475 * pages onto the read request if access patterns suggest it will improve
478 void page_cache_sync_readahead(struct address_space
*mapping
,
479 struct file_ra_state
*ra
, struct file
*filp
,
480 pgoff_t offset
, unsigned long req_size
)
487 if (filp
&& (filp
->f_mode
& FMODE_RANDOM
)) {
488 force_page_cache_readahead(mapping
, filp
, offset
, req_size
);
493 ondemand_readahead(mapping
, ra
, filp
, false, offset
, req_size
);
495 EXPORT_SYMBOL_GPL(page_cache_sync_readahead
);
498 * page_cache_async_readahead - file readahead for marked pages
499 * @mapping: address_space which holds the pagecache and I/O vectors
500 * @ra: file_ra_state which holds the readahead state
501 * @filp: passed on to ->readpage() and ->readpages()
502 * @page: the page at @offset which has the PG_readahead flag set
503 * @offset: start offset into @mapping, in pagecache page-sized units
504 * @req_size: hint: total size of the read which the caller is performing in
507 * page_cache_async_readahead() should be called when a page is used which
508 * has the PG_readahead flag; this is a marker to suggest that the application
509 * has used up enough of the readahead window that we should start pulling in
513 page_cache_async_readahead(struct address_space
*mapping
,
514 struct file_ra_state
*ra
, struct file
*filp
,
515 struct page
*page
, pgoff_t offset
,
516 unsigned long req_size
)
523 * Same bit is used for PG_readahead and PG_reclaim.
525 if (PageWriteback(page
))
528 ClearPageReadahead(page
);
531 * Defer asynchronous read-ahead on IO congestion.
533 if (inode_read_congested(mapping
->host
))
537 ondemand_readahead(mapping
, ra
, filp
, true, offset
, req_size
);
539 EXPORT_SYMBOL_GPL(page_cache_async_readahead
);
542 do_readahead(struct address_space
*mapping
, struct file
*filp
,
543 pgoff_t index
, unsigned long nr
)
545 if (!mapping
|| !mapping
->a_ops
)
548 return force_page_cache_readahead(mapping
, filp
, index
, nr
);
551 SYSCALL_DEFINE3(readahead
, int, fd
, loff_t
, offset
, size_t, count
)
559 if (f
.file
->f_mode
& FMODE_READ
) {
560 struct address_space
*mapping
= f
.file
->f_mapping
;
561 pgoff_t start
= offset
>> PAGE_SHIFT
;
562 pgoff_t end
= (offset
+ count
- 1) >> PAGE_SHIFT
;
563 unsigned long len
= end
- start
+ 1;
564 ret
= do_readahead(mapping
, f
.file
, start
, len
);