2 * fs/ext4/extents_status.c
4 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6 * Allison Henderson <achender@linux.vnet.ibm.com>
7 * Hugh Dickins <hughd@google.com>
8 * Zheng Liu <wenqing.lz@taobao.com>
10 * Ext4 extents status tree core functions.
12 #include <linux/list_sort.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
17 #include <trace/events/ext4.h>
20 * According to previous discussion in Ext4 Developer Workshop, we
21 * will introduce a new structure called io tree to track all extent
22 * status in order to solve some problems that we have met
23 * (e.g. Reservation space warning), and provide extent-level locking.
24 * Delay extent tree is the first step to achieve this goal. It is
25 * original built by Yongqiang Yang. At that time it is called delay
26 * extent tree, whose goal is only track delayed extents in memory to
27 * simplify the implementation of fiemap and bigalloc, and introduce
28 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
29 * delay extent tree at the first commit. But for better understand
30 * what it does, it has been rename to extent status tree.
33 * Currently the first step has been done. All delayed extents are
34 * tracked in the tree. It maintains the delayed extent when a delayed
35 * allocation is issued, and the delayed extent is written out or
36 * invalidated. Therefore the implementation of fiemap and bigalloc
37 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39 * The following comment describes the implemenmtation of extent
40 * status tree and future works.
43 * In this step all extent status are tracked by extent status tree.
44 * Thus, we can first try to lookup a block mapping in this tree before
45 * finding it in extent tree. Hence, single extent cache can be removed
46 * because extent status tree can do a better job. Extents in status
47 * tree are loaded on-demand. Therefore, the extent status tree may not
48 * contain all of the extents in a file. Meanwhile we define a shrinker
49 * to reclaim memory from extent status tree because fragmented extent
50 * tree will make status tree cost too much memory. written/unwritten/-
51 * hole extents in the tree will be reclaimed by this shrinker when we
52 * are under high memory pressure. Delayed extents will not be
53 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
57 * Extent status tree implementation for ext4.
60 * ==========================================================================
61 * Extent status tree tracks all extent status.
63 * 1. Why we need to implement extent status tree?
65 * Without extent status tree, ext4 identifies a delayed extent by looking
66 * up page cache, this has several deficiencies - complicated, buggy,
67 * and inefficient code.
69 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
70 * block or a range of blocks are belonged to a delayed extent.
72 * Let us have a look at how they do without extent status tree.
74 * FIEMAP looks up page cache to identify delayed allocations from holes.
77 * SEEK_HOLE/DATA has the same problem as FIEMAP.
80 * bigalloc looks up page cache to figure out if a block is
81 * already under delayed allocation or not to determine whether
82 * quota reserving is needed for the cluster.
85 * Writeout looks up whole page cache to see if a buffer is
86 * mapped, If there are not very many delayed buffers, then it is
89 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
90 * bigalloc and writeout can figure out if a block or a range of
91 * blocks is under delayed allocation(belonged to a delayed extent) or
92 * not by searching the extent tree.
95 * ==========================================================================
96 * 2. Ext4 extent status tree impelmentation
99 * A extent is a range of blocks which are contiguous logically and
100 * physically. Unlike extent in extent tree, this extent in ext4 is
101 * a in-memory struct, there is no corresponding on-disk data. There
102 * is no limit on length of extent, so an extent can contain as many
103 * blocks as they are contiguous logically and physically.
105 * -- extent status tree
106 * Every inode has an extent status tree and all allocation blocks
107 * are added to the tree with different status. The extent in the
108 * tree are ordered by logical block no.
110 * -- operations on a extent status tree
111 * There are three important operations on a delayed extent tree: find
112 * next extent, adding a extent(a range of blocks) and removing a extent.
114 * -- race on a extent status tree
115 * Extent status tree is protected by inode->i_es_lock.
117 * -- memory consumption
118 * Fragmented extent tree will make extent status tree cost too much
119 * memory. Hence, we will reclaim written/unwritten/hole extents from
120 * the tree under a heavy memory pressure.
123 * ==========================================================================
124 * 3. Performance analysis
127 * 1. There is a cache extent for write access, so if writes are
128 * not very random, adding space operaions are in O(1) time.
131 * 2. Code is much simpler, more readable, more maintainable and
135 * ==========================================================================
138 * -- Refactor delayed space reservation
140 * -- Extent-level locking
143 static struct kmem_cache
*ext4_es_cachep
;
145 static int __es_insert_extent(struct inode
*inode
, struct extent_status
*newes
);
146 static int __es_remove_extent(struct inode
*inode
, ext4_lblk_t lblk
,
148 static int es_reclaim_extents(struct ext4_inode_info
*ei
, int *nr_to_scan
);
149 static int __es_shrink(struct ext4_sb_info
*sbi
, int nr_to_scan
,
150 struct ext4_inode_info
*locked_ei
);
152 int __init
ext4_init_es(void)
154 ext4_es_cachep
= kmem_cache_create("ext4_extent_status",
155 sizeof(struct extent_status
),
156 0, (SLAB_RECLAIM_ACCOUNT
), NULL
);
157 if (ext4_es_cachep
== NULL
)
162 void ext4_exit_es(void)
165 kmem_cache_destroy(ext4_es_cachep
);
168 void ext4_es_init_tree(struct ext4_es_tree
*tree
)
170 tree
->root
= RB_ROOT
;
171 tree
->cache_es
= NULL
;
175 static void ext4_es_print_tree(struct inode
*inode
)
177 struct ext4_es_tree
*tree
;
178 struct rb_node
*node
;
180 printk(KERN_DEBUG
"status extents for inode %lu:", inode
->i_ino
);
181 tree
= &EXT4_I(inode
)->i_es_tree
;
182 node
= rb_first(&tree
->root
);
184 struct extent_status
*es
;
185 es
= rb_entry(node
, struct extent_status
, rb_node
);
186 printk(KERN_DEBUG
" [%u/%u) %llu %x",
187 es
->es_lblk
, es
->es_len
,
188 ext4_es_pblock(es
), ext4_es_status(es
));
189 node
= rb_next(node
);
191 printk(KERN_DEBUG
"\n");
194 #define ext4_es_print_tree(inode)
197 static inline ext4_lblk_t
ext4_es_end(struct extent_status
*es
)
199 BUG_ON(es
->es_lblk
+ es
->es_len
< es
->es_lblk
);
200 return es
->es_lblk
+ es
->es_len
- 1;
204 * search through the tree for an delayed extent with a given offset. If
205 * it can't be found, try to find next extent.
207 static struct extent_status
*__es_tree_search(struct rb_root
*root
,
210 struct rb_node
*node
= root
->rb_node
;
211 struct extent_status
*es
= NULL
;
214 es
= rb_entry(node
, struct extent_status
, rb_node
);
215 if (lblk
< es
->es_lblk
)
216 node
= node
->rb_left
;
217 else if (lblk
> ext4_es_end(es
))
218 node
= node
->rb_right
;
223 if (es
&& lblk
< es
->es_lblk
)
226 if (es
&& lblk
> ext4_es_end(es
)) {
227 node
= rb_next(&es
->rb_node
);
228 return node
? rb_entry(node
, struct extent_status
, rb_node
) :
236 * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
237 * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
239 * @inode: the inode which owns delayed extents
240 * @lblk: the offset where we start to search
241 * @end: the offset where we stop to search
242 * @es: delayed extent that we found
244 void ext4_es_find_delayed_extent_range(struct inode
*inode
,
245 ext4_lblk_t lblk
, ext4_lblk_t end
,
246 struct extent_status
*es
)
248 struct ext4_es_tree
*tree
= NULL
;
249 struct extent_status
*es1
= NULL
;
250 struct rb_node
*node
;
254 trace_ext4_es_find_delayed_extent_range_enter(inode
, lblk
);
256 read_lock(&EXT4_I(inode
)->i_es_lock
);
257 tree
= &EXT4_I(inode
)->i_es_tree
;
259 /* find extent in cache firstly */
260 es
->es_lblk
= es
->es_len
= es
->es_pblk
= 0;
261 if (tree
->cache_es
) {
262 es1
= tree
->cache_es
;
263 if (in_range(lblk
, es1
->es_lblk
, es1
->es_len
)) {
264 es_debug("%u cached by [%u/%u) %llu %x\n",
265 lblk
, es1
->es_lblk
, es1
->es_len
,
266 ext4_es_pblock(es1
), ext4_es_status(es1
));
271 es1
= __es_tree_search(&tree
->root
, lblk
);
274 if (es1
&& !ext4_es_is_delayed(es1
)) {
275 while ((node
= rb_next(&es1
->rb_node
)) != NULL
) {
276 es1
= rb_entry(node
, struct extent_status
, rb_node
);
277 if (es1
->es_lblk
> end
) {
281 if (ext4_es_is_delayed(es1
))
286 if (es1
&& ext4_es_is_delayed(es1
)) {
287 tree
->cache_es
= es1
;
288 es
->es_lblk
= es1
->es_lblk
;
289 es
->es_len
= es1
->es_len
;
290 es
->es_pblk
= es1
->es_pblk
;
293 read_unlock(&EXT4_I(inode
)->i_es_lock
);
295 trace_ext4_es_find_delayed_extent_range_exit(inode
, es
);
298 static void ext4_es_list_add(struct inode
*inode
)
300 struct ext4_inode_info
*ei
= EXT4_I(inode
);
301 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
303 if (!list_empty(&ei
->i_es_list
))
306 spin_lock(&sbi
->s_es_lock
);
307 if (list_empty(&ei
->i_es_list
)) {
308 list_add_tail(&ei
->i_es_list
, &sbi
->s_es_list
);
309 sbi
->s_es_nr_inode
++;
311 spin_unlock(&sbi
->s_es_lock
);
314 static void ext4_es_list_del(struct inode
*inode
)
316 struct ext4_inode_info
*ei
= EXT4_I(inode
);
317 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
319 spin_lock(&sbi
->s_es_lock
);
320 if (!list_empty(&ei
->i_es_list
)) {
321 list_del_init(&ei
->i_es_list
);
322 sbi
->s_es_nr_inode
--;
323 WARN_ON_ONCE(sbi
->s_es_nr_inode
< 0);
325 spin_unlock(&sbi
->s_es_lock
);
328 static struct extent_status
*
329 ext4_es_alloc_extent(struct inode
*inode
, ext4_lblk_t lblk
, ext4_lblk_t len
,
332 struct extent_status
*es
;
333 es
= kmem_cache_alloc(ext4_es_cachep
, GFP_ATOMIC
);
341 * We don't count delayed extent because we never try to reclaim them
343 if (!ext4_es_is_delayed(es
)) {
344 if (!EXT4_I(inode
)->i_es_shk_nr
++)
345 ext4_es_list_add(inode
);
346 percpu_counter_inc(&EXT4_SB(inode
->i_sb
)->
347 s_es_stats
.es_stats_shk_cnt
);
350 EXT4_I(inode
)->i_es_all_nr
++;
351 percpu_counter_inc(&EXT4_SB(inode
->i_sb
)->s_es_stats
.es_stats_all_cnt
);
356 static void ext4_es_free_extent(struct inode
*inode
, struct extent_status
*es
)
358 EXT4_I(inode
)->i_es_all_nr
--;
359 percpu_counter_dec(&EXT4_SB(inode
->i_sb
)->s_es_stats
.es_stats_all_cnt
);
361 /* Decrease the shrink counter when this es is not delayed */
362 if (!ext4_es_is_delayed(es
)) {
363 BUG_ON(EXT4_I(inode
)->i_es_shk_nr
== 0);
364 if (!--EXT4_I(inode
)->i_es_shk_nr
)
365 ext4_es_list_del(inode
);
366 percpu_counter_dec(&EXT4_SB(inode
->i_sb
)->
367 s_es_stats
.es_stats_shk_cnt
);
370 kmem_cache_free(ext4_es_cachep
, es
);
374 * Check whether or not two extents can be merged
376 * - logical block number is contiguous
377 * - physical block number is contiguous
380 static int ext4_es_can_be_merged(struct extent_status
*es1
,
381 struct extent_status
*es2
)
383 if (ext4_es_type(es1
) != ext4_es_type(es2
))
386 if (((__u64
) es1
->es_len
) + es2
->es_len
> EXT_MAX_BLOCKS
) {
387 pr_warn("ES assertion failed when merging extents. "
388 "The sum of lengths of es1 (%d) and es2 (%d) "
389 "is bigger than allowed file size (%d)\n",
390 es1
->es_len
, es2
->es_len
, EXT_MAX_BLOCKS
);
395 if (((__u64
) es1
->es_lblk
) + es1
->es_len
!= es2
->es_lblk
)
398 if ((ext4_es_is_written(es1
) || ext4_es_is_unwritten(es1
)) &&
399 (ext4_es_pblock(es1
) + es1
->es_len
== ext4_es_pblock(es2
)))
402 if (ext4_es_is_hole(es1
))
405 /* we need to check delayed extent is without unwritten status */
406 if (ext4_es_is_delayed(es1
) && !ext4_es_is_unwritten(es1
))
412 static struct extent_status
*
413 ext4_es_try_to_merge_left(struct inode
*inode
, struct extent_status
*es
)
415 struct ext4_es_tree
*tree
= &EXT4_I(inode
)->i_es_tree
;
416 struct extent_status
*es1
;
417 struct rb_node
*node
;
419 node
= rb_prev(&es
->rb_node
);
423 es1
= rb_entry(node
, struct extent_status
, rb_node
);
424 if (ext4_es_can_be_merged(es1
, es
)) {
425 es1
->es_len
+= es
->es_len
;
426 if (ext4_es_is_referenced(es
))
427 ext4_es_set_referenced(es1
);
428 rb_erase(&es
->rb_node
, &tree
->root
);
429 ext4_es_free_extent(inode
, es
);
436 static struct extent_status
*
437 ext4_es_try_to_merge_right(struct inode
*inode
, struct extent_status
*es
)
439 struct ext4_es_tree
*tree
= &EXT4_I(inode
)->i_es_tree
;
440 struct extent_status
*es1
;
441 struct rb_node
*node
;
443 node
= rb_next(&es
->rb_node
);
447 es1
= rb_entry(node
, struct extent_status
, rb_node
);
448 if (ext4_es_can_be_merged(es
, es1
)) {
449 es
->es_len
+= es1
->es_len
;
450 if (ext4_es_is_referenced(es1
))
451 ext4_es_set_referenced(es
);
452 rb_erase(node
, &tree
->root
);
453 ext4_es_free_extent(inode
, es1
);
459 #ifdef ES_AGGRESSIVE_TEST
460 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */
462 static void ext4_es_insert_extent_ext_check(struct inode
*inode
,
463 struct extent_status
*es
)
465 struct ext4_ext_path
*path
= NULL
;
466 struct ext4_extent
*ex
;
467 ext4_lblk_t ee_block
;
468 ext4_fsblk_t ee_start
;
469 unsigned short ee_len
;
470 int depth
, ee_status
, es_status
;
472 path
= ext4_find_extent(inode
, es
->es_lblk
, NULL
, EXT4_EX_NOCACHE
);
476 depth
= ext_depth(inode
);
477 ex
= path
[depth
].p_ext
;
481 ee_block
= le32_to_cpu(ex
->ee_block
);
482 ee_start
= ext4_ext_pblock(ex
);
483 ee_len
= ext4_ext_get_actual_len(ex
);
485 ee_status
= ext4_ext_is_unwritten(ex
) ? 1 : 0;
486 es_status
= ext4_es_is_unwritten(es
) ? 1 : 0;
489 * Make sure ex and es are not overlap when we try to insert
490 * a delayed/hole extent.
492 if (!ext4_es_is_written(es
) && !ext4_es_is_unwritten(es
)) {
493 if (in_range(es
->es_lblk
, ee_block
, ee_len
)) {
494 pr_warn("ES insert assertion failed for "
495 "inode: %lu we can find an extent "
496 "at block [%d/%d/%llu/%c], but we "
497 "want to add a delayed/hole extent "
499 inode
->i_ino
, ee_block
, ee_len
,
500 ee_start
, ee_status
? 'u' : 'w',
501 es
->es_lblk
, es
->es_len
,
502 ext4_es_pblock(es
), ext4_es_status(es
));
508 * We don't check ee_block == es->es_lblk, etc. because es
509 * might be a part of whole extent, vice versa.
511 if (es
->es_lblk
< ee_block
||
512 ext4_es_pblock(es
) != ee_start
+ es
->es_lblk
- ee_block
) {
513 pr_warn("ES insert assertion failed for inode: %lu "
514 "ex_status [%d/%d/%llu/%c] != "
515 "es_status [%d/%d/%llu/%c]\n", inode
->i_ino
,
516 ee_block
, ee_len
, ee_start
,
517 ee_status
? 'u' : 'w', es
->es_lblk
, es
->es_len
,
518 ext4_es_pblock(es
), es_status
? 'u' : 'w');
522 if (ee_status
^ es_status
) {
523 pr_warn("ES insert assertion failed for inode: %lu "
524 "ex_status [%d/%d/%llu/%c] != "
525 "es_status [%d/%d/%llu/%c]\n", inode
->i_ino
,
526 ee_block
, ee_len
, ee_start
,
527 ee_status
? 'u' : 'w', es
->es_lblk
, es
->es_len
,
528 ext4_es_pblock(es
), es_status
? 'u' : 'w');
532 * We can't find an extent on disk. So we need to make sure
533 * that we don't want to add an written/unwritten extent.
535 if (!ext4_es_is_delayed(es
) && !ext4_es_is_hole(es
)) {
536 pr_warn("ES insert assertion failed for inode: %lu "
537 "can't find an extent at block %d but we want "
538 "to add a written/unwritten extent "
539 "[%d/%d/%llu/%x]\n", inode
->i_ino
,
540 es
->es_lblk
, es
->es_lblk
, es
->es_len
,
541 ext4_es_pblock(es
), ext4_es_status(es
));
545 ext4_ext_drop_refs(path
);
549 static void ext4_es_insert_extent_ind_check(struct inode
*inode
,
550 struct extent_status
*es
)
552 struct ext4_map_blocks map
;
556 * Here we call ext4_ind_map_blocks to lookup a block mapping because
557 * 'Indirect' structure is defined in indirect.c. So we couldn't
558 * access direct/indirect tree from outside. It is too dirty to define
559 * this function in indirect.c file.
562 map
.m_lblk
= es
->es_lblk
;
563 map
.m_len
= es
->es_len
;
565 retval
= ext4_ind_map_blocks(NULL
, inode
, &map
, 0);
567 if (ext4_es_is_delayed(es
) || ext4_es_is_hole(es
)) {
569 * We want to add a delayed/hole extent but this
570 * block has been allocated.
572 pr_warn("ES insert assertion failed for inode: %lu "
573 "We can find blocks but we want to add a "
574 "delayed/hole extent [%d/%d/%llu/%x]\n",
575 inode
->i_ino
, es
->es_lblk
, es
->es_len
,
576 ext4_es_pblock(es
), ext4_es_status(es
));
578 } else if (ext4_es_is_written(es
)) {
579 if (retval
!= es
->es_len
) {
580 pr_warn("ES insert assertion failed for "
581 "inode: %lu retval %d != es_len %d\n",
582 inode
->i_ino
, retval
, es
->es_len
);
585 if (map
.m_pblk
!= ext4_es_pblock(es
)) {
586 pr_warn("ES insert assertion failed for "
587 "inode: %lu m_pblk %llu != "
589 inode
->i_ino
, map
.m_pblk
,
595 * We don't need to check unwritten extent because
596 * indirect-based file doesn't have it.
600 } else if (retval
== 0) {
601 if (ext4_es_is_written(es
)) {
602 pr_warn("ES insert assertion failed for inode: %lu "
603 "We can't find the block but we want to add "
604 "a written extent [%d/%d/%llu/%x]\n",
605 inode
->i_ino
, es
->es_lblk
, es
->es_len
,
606 ext4_es_pblock(es
), ext4_es_status(es
));
612 static inline void ext4_es_insert_extent_check(struct inode
*inode
,
613 struct extent_status
*es
)
616 * We don't need to worry about the race condition because
617 * caller takes i_data_sem locking.
619 BUG_ON(!rwsem_is_locked(&EXT4_I(inode
)->i_data_sem
));
620 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
621 ext4_es_insert_extent_ext_check(inode
, es
);
623 ext4_es_insert_extent_ind_check(inode
, es
);
626 static inline void ext4_es_insert_extent_check(struct inode
*inode
,
627 struct extent_status
*es
)
632 static int __es_insert_extent(struct inode
*inode
, struct extent_status
*newes
)
634 struct ext4_es_tree
*tree
= &EXT4_I(inode
)->i_es_tree
;
635 struct rb_node
**p
= &tree
->root
.rb_node
;
636 struct rb_node
*parent
= NULL
;
637 struct extent_status
*es
;
641 es
= rb_entry(parent
, struct extent_status
, rb_node
);
643 if (newes
->es_lblk
< es
->es_lblk
) {
644 if (ext4_es_can_be_merged(newes
, es
)) {
646 * Here we can modify es_lblk directly
647 * because it isn't overlapped.
649 es
->es_lblk
= newes
->es_lblk
;
650 es
->es_len
+= newes
->es_len
;
651 if (ext4_es_is_written(es
) ||
652 ext4_es_is_unwritten(es
))
653 ext4_es_store_pblock(es
,
655 es
= ext4_es_try_to_merge_left(inode
, es
);
659 } else if (newes
->es_lblk
> ext4_es_end(es
)) {
660 if (ext4_es_can_be_merged(es
, newes
)) {
661 es
->es_len
+= newes
->es_len
;
662 es
= ext4_es_try_to_merge_right(inode
, es
);
672 es
= ext4_es_alloc_extent(inode
, newes
->es_lblk
, newes
->es_len
,
676 rb_link_node(&es
->rb_node
, parent
, p
);
677 rb_insert_color(&es
->rb_node
, &tree
->root
);
685 * ext4_es_insert_extent() adds information to an inode's extent
688 * Return 0 on success, error code on failure.
690 int ext4_es_insert_extent(struct inode
*inode
, ext4_lblk_t lblk
,
691 ext4_lblk_t len
, ext4_fsblk_t pblk
,
694 struct extent_status newes
;
695 ext4_lblk_t end
= lblk
+ len
- 1;
698 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
699 lblk
, len
, pblk
, status
, inode
->i_ino
);
706 if ((status
& EXTENT_STATUS_DELAYED
) &&
707 (status
& EXTENT_STATUS_WRITTEN
)) {
708 ext4_warning(inode
->i_sb
, "Inserting extent [%u/%u] as "
709 " delayed and written which can potentially "
710 " cause data loss.", lblk
, len
);
714 newes
.es_lblk
= lblk
;
716 ext4_es_store_pblock_status(&newes
, pblk
, status
);
717 trace_ext4_es_insert_extent(inode
, &newes
);
719 ext4_es_insert_extent_check(inode
, &newes
);
721 write_lock(&EXT4_I(inode
)->i_es_lock
);
722 err
= __es_remove_extent(inode
, lblk
, end
);
726 err
= __es_insert_extent(inode
, &newes
);
727 if (err
== -ENOMEM
&& __es_shrink(EXT4_SB(inode
->i_sb
),
730 if (err
== -ENOMEM
&& !ext4_es_is_delayed(&newes
))
734 write_unlock(&EXT4_I(inode
)->i_es_lock
);
736 ext4_es_print_tree(inode
);
742 * ext4_es_cache_extent() inserts information into the extent status
743 * tree if and only if there isn't information about the range in
746 void ext4_es_cache_extent(struct inode
*inode
, ext4_lblk_t lblk
,
747 ext4_lblk_t len
, ext4_fsblk_t pblk
,
750 struct extent_status
*es
;
751 struct extent_status newes
;
752 ext4_lblk_t end
= lblk
+ len
- 1;
754 newes
.es_lblk
= lblk
;
756 ext4_es_store_pblock_status(&newes
, pblk
, status
);
757 trace_ext4_es_cache_extent(inode
, &newes
);
764 write_lock(&EXT4_I(inode
)->i_es_lock
);
766 es
= __es_tree_search(&EXT4_I(inode
)->i_es_tree
.root
, lblk
);
767 if (!es
|| es
->es_lblk
> end
)
768 __es_insert_extent(inode
, &newes
);
769 write_unlock(&EXT4_I(inode
)->i_es_lock
);
773 * ext4_es_lookup_extent() looks up an extent in extent status tree.
775 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
777 * Return: 1 on found, 0 on not
779 int ext4_es_lookup_extent(struct inode
*inode
, ext4_lblk_t lblk
,
780 struct extent_status
*es
)
782 struct ext4_es_tree
*tree
;
783 struct ext4_es_stats
*stats
;
784 struct extent_status
*es1
= NULL
;
785 struct rb_node
*node
;
788 trace_ext4_es_lookup_extent_enter(inode
, lblk
);
789 es_debug("lookup extent in block %u\n", lblk
);
791 tree
= &EXT4_I(inode
)->i_es_tree
;
792 read_lock(&EXT4_I(inode
)->i_es_lock
);
794 /* find extent in cache firstly */
795 es
->es_lblk
= es
->es_len
= es
->es_pblk
= 0;
796 if (tree
->cache_es
) {
797 es1
= tree
->cache_es
;
798 if (in_range(lblk
, es1
->es_lblk
, es1
->es_len
)) {
799 es_debug("%u cached by [%u/%u)\n",
800 lblk
, es1
->es_lblk
, es1
->es_len
);
806 node
= tree
->root
.rb_node
;
808 es1
= rb_entry(node
, struct extent_status
, rb_node
);
809 if (lblk
< es1
->es_lblk
)
810 node
= node
->rb_left
;
811 else if (lblk
> ext4_es_end(es1
))
812 node
= node
->rb_right
;
820 stats
= &EXT4_SB(inode
->i_sb
)->s_es_stats
;
823 es
->es_lblk
= es1
->es_lblk
;
824 es
->es_len
= es1
->es_len
;
825 es
->es_pblk
= es1
->es_pblk
;
826 if (!ext4_es_is_referenced(es1
))
827 ext4_es_set_referenced(es1
);
828 stats
->es_stats_cache_hits
++;
830 stats
->es_stats_cache_misses
++;
833 read_unlock(&EXT4_I(inode
)->i_es_lock
);
835 trace_ext4_es_lookup_extent_exit(inode
, es
, found
);
839 static int __es_remove_extent(struct inode
*inode
, ext4_lblk_t lblk
,
842 struct ext4_es_tree
*tree
= &EXT4_I(inode
)->i_es_tree
;
843 struct rb_node
*node
;
844 struct extent_status
*es
;
845 struct extent_status orig_es
;
846 ext4_lblk_t len1
, len2
;
852 es
= __es_tree_search(&tree
->root
, lblk
);
855 if (es
->es_lblk
> end
)
858 /* Simply invalidate cache_es. */
859 tree
->cache_es
= NULL
;
861 orig_es
.es_lblk
= es
->es_lblk
;
862 orig_es
.es_len
= es
->es_len
;
863 orig_es
.es_pblk
= es
->es_pblk
;
865 len1
= lblk
> es
->es_lblk
? lblk
- es
->es_lblk
: 0;
866 len2
= ext4_es_end(es
) > end
? ext4_es_end(es
) - end
: 0;
871 struct extent_status newes
;
873 newes
.es_lblk
= end
+ 1;
875 block
= 0x7FDEADBEEFULL
;
876 if (ext4_es_is_written(&orig_es
) ||
877 ext4_es_is_unwritten(&orig_es
))
878 block
= ext4_es_pblock(&orig_es
) +
879 orig_es
.es_len
- len2
;
880 ext4_es_store_pblock_status(&newes
, block
,
881 ext4_es_status(&orig_es
));
882 err
= __es_insert_extent(inode
, &newes
);
884 es
->es_lblk
= orig_es
.es_lblk
;
885 es
->es_len
= orig_es
.es_len
;
886 if ((err
== -ENOMEM
) &&
887 __es_shrink(EXT4_SB(inode
->i_sb
),
893 es
->es_lblk
= end
+ 1;
895 if (ext4_es_is_written(es
) ||
896 ext4_es_is_unwritten(es
)) {
897 block
= orig_es
.es_pblk
+ orig_es
.es_len
- len2
;
898 ext4_es_store_pblock(es
, block
);
905 node
= rb_next(&es
->rb_node
);
907 es
= rb_entry(node
, struct extent_status
, rb_node
);
912 while (es
&& ext4_es_end(es
) <= end
) {
913 node
= rb_next(&es
->rb_node
);
914 rb_erase(&es
->rb_node
, &tree
->root
);
915 ext4_es_free_extent(inode
, es
);
920 es
= rb_entry(node
, struct extent_status
, rb_node
);
923 if (es
&& es
->es_lblk
< end
+ 1) {
924 ext4_lblk_t orig_len
= es
->es_len
;
926 len1
= ext4_es_end(es
) - end
;
927 es
->es_lblk
= end
+ 1;
929 if (ext4_es_is_written(es
) || ext4_es_is_unwritten(es
)) {
930 block
= es
->es_pblk
+ orig_len
- len1
;
931 ext4_es_store_pblock(es
, block
);
940 * ext4_es_remove_extent() removes a space from a extent status tree.
942 * Return 0 on success, error code on failure.
944 int ext4_es_remove_extent(struct inode
*inode
, ext4_lblk_t lblk
,
950 trace_ext4_es_remove_extent(inode
, lblk
, len
);
951 es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
952 lblk
, len
, inode
->i_ino
);
957 end
= lblk
+ len
- 1;
961 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
962 * so that we are sure __es_shrink() is done with the inode before it
965 write_lock(&EXT4_I(inode
)->i_es_lock
);
966 err
= __es_remove_extent(inode
, lblk
, end
);
967 write_unlock(&EXT4_I(inode
)->i_es_lock
);
968 ext4_es_print_tree(inode
);
972 static int __es_shrink(struct ext4_sb_info
*sbi
, int nr_to_scan
,
973 struct ext4_inode_info
*locked_ei
)
975 struct ext4_inode_info
*ei
;
976 struct ext4_es_stats
*es_stats
;
981 int retried
= 0, nr_skipped
= 0;
983 es_stats
= &sbi
->s_es_stats
;
984 start_time
= ktime_get();
987 spin_lock(&sbi
->s_es_lock
);
988 nr_to_walk
= sbi
->s_es_nr_inode
;
989 while (nr_to_walk
-- > 0) {
990 if (list_empty(&sbi
->s_es_list
)) {
991 spin_unlock(&sbi
->s_es_lock
);
994 ei
= list_first_entry(&sbi
->s_es_list
, struct ext4_inode_info
,
996 /* Move the inode to the tail */
997 list_move_tail(&ei
->i_es_list
, &sbi
->s_es_list
);
1000 * Normally we try hard to avoid shrinking precached inodes,
1001 * but we will as a last resort.
1003 if (!retried
&& ext4_test_inode_state(&ei
->vfs_inode
,
1004 EXT4_STATE_EXT_PRECACHED
)) {
1009 if (ei
== locked_ei
|| !write_trylock(&ei
->i_es_lock
)) {
1014 * Now we hold i_es_lock which protects us from inode reclaim
1015 * freeing inode under us
1017 spin_unlock(&sbi
->s_es_lock
);
1019 nr_shrunk
+= es_reclaim_extents(ei
, &nr_to_scan
);
1020 write_unlock(&ei
->i_es_lock
);
1022 if (nr_to_scan
<= 0)
1024 spin_lock(&sbi
->s_es_lock
);
1026 spin_unlock(&sbi
->s_es_lock
);
1029 * If we skipped any inodes, and we weren't able to make any
1030 * forward progress, try again to scan precached inodes.
1032 if ((nr_shrunk
== 0) && nr_skipped
&& !retried
) {
1037 if (locked_ei
&& nr_shrunk
== 0)
1038 nr_shrunk
= es_reclaim_extents(locked_ei
, &nr_to_scan
);
1041 scan_time
= ktime_to_ns(ktime_sub(ktime_get(), start_time
));
1042 if (likely(es_stats
->es_stats_scan_time
))
1043 es_stats
->es_stats_scan_time
= (scan_time
+
1044 es_stats
->es_stats_scan_time
*3) / 4;
1046 es_stats
->es_stats_scan_time
= scan_time
;
1047 if (scan_time
> es_stats
->es_stats_max_scan_time
)
1048 es_stats
->es_stats_max_scan_time
= scan_time
;
1049 if (likely(es_stats
->es_stats_shrunk
))
1050 es_stats
->es_stats_shrunk
= (nr_shrunk
+
1051 es_stats
->es_stats_shrunk
*3) / 4;
1053 es_stats
->es_stats_shrunk
= nr_shrunk
;
1055 trace_ext4_es_shrink(sbi
->s_sb
, nr_shrunk
, scan_time
,
1056 nr_skipped
, retried
);
1060 static unsigned long ext4_es_count(struct shrinker
*shrink
,
1061 struct shrink_control
*sc
)
1064 struct ext4_sb_info
*sbi
;
1066 sbi
= container_of(shrink
, struct ext4_sb_info
, s_es_shrinker
);
1067 nr
= percpu_counter_read_positive(&sbi
->s_es_stats
.es_stats_shk_cnt
);
1068 trace_ext4_es_shrink_count(sbi
->s_sb
, sc
->nr_to_scan
, nr
);
1072 static unsigned long ext4_es_scan(struct shrinker
*shrink
,
1073 struct shrink_control
*sc
)
1075 struct ext4_sb_info
*sbi
= container_of(shrink
,
1076 struct ext4_sb_info
, s_es_shrinker
);
1077 int nr_to_scan
= sc
->nr_to_scan
;
1080 ret
= percpu_counter_read_positive(&sbi
->s_es_stats
.es_stats_shk_cnt
);
1081 trace_ext4_es_shrink_scan_enter(sbi
->s_sb
, nr_to_scan
, ret
);
1086 nr_shrunk
= __es_shrink(sbi
, nr_to_scan
, NULL
);
1088 trace_ext4_es_shrink_scan_exit(sbi
->s_sb
, nr_shrunk
, ret
);
1092 int ext4_seq_es_shrinker_info_show(struct seq_file
*seq
, void *v
)
1094 struct ext4_sb_info
*sbi
= EXT4_SB((struct super_block
*) seq
->private);
1095 struct ext4_es_stats
*es_stats
= &sbi
->s_es_stats
;
1096 struct ext4_inode_info
*ei
, *max
= NULL
;
1097 unsigned int inode_cnt
= 0;
1099 if (v
!= SEQ_START_TOKEN
)
1102 /* here we just find an inode that has the max nr. of objects */
1103 spin_lock(&sbi
->s_es_lock
);
1104 list_for_each_entry(ei
, &sbi
->s_es_list
, i_es_list
) {
1106 if (max
&& max
->i_es_all_nr
< ei
->i_es_all_nr
)
1111 spin_unlock(&sbi
->s_es_lock
);
1113 seq_printf(seq
, "stats:\n %lld objects\n %lld reclaimable objects\n",
1114 percpu_counter_sum_positive(&es_stats
->es_stats_all_cnt
),
1115 percpu_counter_sum_positive(&es_stats
->es_stats_shk_cnt
));
1116 seq_printf(seq
, " %lu/%lu cache hits/misses\n",
1117 es_stats
->es_stats_cache_hits
,
1118 es_stats
->es_stats_cache_misses
);
1120 seq_printf(seq
, " %d inodes on list\n", inode_cnt
);
1122 seq_printf(seq
, "average:\n %llu us scan time\n",
1123 div_u64(es_stats
->es_stats_scan_time
, 1000));
1124 seq_printf(seq
, " %lu shrunk objects\n", es_stats
->es_stats_shrunk
);
1127 "maximum:\n %lu inode (%u objects, %u reclaimable)\n"
1128 " %llu us max scan time\n",
1129 max
->vfs_inode
.i_ino
, max
->i_es_all_nr
, max
->i_es_shk_nr
,
1130 div_u64(es_stats
->es_stats_max_scan_time
, 1000));
1135 int ext4_es_register_shrinker(struct ext4_sb_info
*sbi
)
1139 /* Make sure we have enough bits for physical block number */
1140 BUILD_BUG_ON(ES_SHIFT
< 48);
1141 INIT_LIST_HEAD(&sbi
->s_es_list
);
1142 sbi
->s_es_nr_inode
= 0;
1143 spin_lock_init(&sbi
->s_es_lock
);
1144 sbi
->s_es_stats
.es_stats_shrunk
= 0;
1145 sbi
->s_es_stats
.es_stats_cache_hits
= 0;
1146 sbi
->s_es_stats
.es_stats_cache_misses
= 0;
1147 sbi
->s_es_stats
.es_stats_scan_time
= 0;
1148 sbi
->s_es_stats
.es_stats_max_scan_time
= 0;
1149 err
= percpu_counter_init(&sbi
->s_es_stats
.es_stats_all_cnt
, 0, GFP_KERNEL
);
1152 err
= percpu_counter_init(&sbi
->s_es_stats
.es_stats_shk_cnt
, 0, GFP_KERNEL
);
1156 sbi
->s_es_shrinker
.scan_objects
= ext4_es_scan
;
1157 sbi
->s_es_shrinker
.count_objects
= ext4_es_count
;
1158 sbi
->s_es_shrinker
.seeks
= DEFAULT_SEEKS
;
1159 err
= register_shrinker(&sbi
->s_es_shrinker
);
1166 percpu_counter_destroy(&sbi
->s_es_stats
.es_stats_shk_cnt
);
1168 percpu_counter_destroy(&sbi
->s_es_stats
.es_stats_all_cnt
);
1172 void ext4_es_unregister_shrinker(struct ext4_sb_info
*sbi
)
1174 percpu_counter_destroy(&sbi
->s_es_stats
.es_stats_all_cnt
);
1175 percpu_counter_destroy(&sbi
->s_es_stats
.es_stats_shk_cnt
);
1176 unregister_shrinker(&sbi
->s_es_shrinker
);
1180 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1181 * most *nr_to_scan extents, update *nr_to_scan accordingly.
1183 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1184 * Increment *nr_shrunk by the number of reclaimed extents. Also update
1185 * ei->i_es_shrink_lblk to where we should continue scanning.
1187 static int es_do_reclaim_extents(struct ext4_inode_info
*ei
, ext4_lblk_t end
,
1188 int *nr_to_scan
, int *nr_shrunk
)
1190 struct inode
*inode
= &ei
->vfs_inode
;
1191 struct ext4_es_tree
*tree
= &ei
->i_es_tree
;
1192 struct extent_status
*es
;
1193 struct rb_node
*node
;
1195 es
= __es_tree_search(&tree
->root
, ei
->i_es_shrink_lblk
);
1198 node
= &es
->rb_node
;
1199 while (*nr_to_scan
> 0) {
1200 if (es
->es_lblk
> end
) {
1201 ei
->i_es_shrink_lblk
= end
+ 1;
1206 node
= rb_next(&es
->rb_node
);
1208 * We can't reclaim delayed extent from status tree because
1209 * fiemap, bigallic, and seek_data/hole need to use it.
1211 if (ext4_es_is_delayed(es
))
1213 if (ext4_es_is_referenced(es
)) {
1214 ext4_es_clear_referenced(es
);
1218 rb_erase(&es
->rb_node
, &tree
->root
);
1219 ext4_es_free_extent(inode
, es
);
1224 es
= rb_entry(node
, struct extent_status
, rb_node
);
1226 ei
->i_es_shrink_lblk
= es
->es_lblk
;
1229 ei
->i_es_shrink_lblk
= 0;
1233 static int es_reclaim_extents(struct ext4_inode_info
*ei
, int *nr_to_scan
)
1235 struct inode
*inode
= &ei
->vfs_inode
;
1237 ext4_lblk_t start
= ei
->i_es_shrink_lblk
;
1238 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1239 DEFAULT_RATELIMIT_BURST
);
1241 if (ei
->i_es_shk_nr
== 0)
1244 if (ext4_test_inode_state(inode
, EXT4_STATE_EXT_PRECACHED
) &&
1246 ext4_warning(inode
->i_sb
, "forced shrink of precached extents");
1248 if (!es_do_reclaim_extents(ei
, EXT_MAX_BLOCKS
, nr_to_scan
, &nr_shrunk
) &&
1250 es_do_reclaim_extents(ei
, start
- 1, nr_to_scan
, &nr_shrunk
);
1252 ei
->i_es_tree
.cache_es
= NULL
;