4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly
= 100000;
36 static unsigned int m_hash_mask __read_mostly
;
37 static unsigned int m_hash_shift __read_mostly
;
38 static unsigned int mp_hash_mask __read_mostly
;
39 static unsigned int mp_hash_shift __read_mostly
;
41 static __initdata
unsigned long mhash_entries
;
42 static int __init
set_mhash_entries(char *str
)
46 mhash_entries
= simple_strtoul(str
, &str
, 0);
49 __setup("mhash_entries=", set_mhash_entries
);
51 static __initdata
unsigned long mphash_entries
;
52 static int __init
set_mphash_entries(char *str
)
56 mphash_entries
= simple_strtoul(str
, &str
, 0);
59 __setup("mphash_entries=", set_mphash_entries
);
62 static DEFINE_IDA(mnt_id_ida
);
63 static DEFINE_IDA(mnt_group_ida
);
64 static DEFINE_SPINLOCK(mnt_id_lock
);
65 static int mnt_id_start
= 0;
66 static int mnt_group_start
= 1;
68 static struct hlist_head
*mount_hashtable __read_mostly
;
69 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
70 static struct kmem_cache
*mnt_cache __read_mostly
;
71 static DECLARE_RWSEM(namespace_sem
);
74 struct kobject
*fs_kobj
;
75 EXPORT_SYMBOL_GPL(fs_kobj
);
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
87 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
89 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
90 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
91 tmp
= tmp
+ (tmp
>> m_hash_shift
);
92 return &mount_hashtable
[tmp
& m_hash_mask
];
95 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
97 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
98 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
99 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
102 static int mnt_alloc_id(struct mount
*mnt
)
107 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
108 spin_lock(&mnt_id_lock
);
109 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
111 mnt_id_start
= mnt
->mnt_id
+ 1;
112 spin_unlock(&mnt_id_lock
);
119 static void mnt_free_id(struct mount
*mnt
)
121 int id
= mnt
->mnt_id
;
122 spin_lock(&mnt_id_lock
);
123 ida_remove(&mnt_id_ida
, id
);
124 if (mnt_id_start
> id
)
126 spin_unlock(&mnt_id_lock
);
130 * Allocate a new peer group ID
132 * mnt_group_ida is protected by namespace_sem
134 static int mnt_alloc_group_id(struct mount
*mnt
)
138 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
141 res
= ida_get_new_above(&mnt_group_ida
,
145 mnt_group_start
= mnt
->mnt_group_id
+ 1;
151 * Release a peer group ID
153 void mnt_release_group_id(struct mount
*mnt
)
155 int id
= mnt
->mnt_group_id
;
156 ida_remove(&mnt_group_ida
, id
);
157 if (mnt_group_start
> id
)
158 mnt_group_start
= id
;
159 mnt
->mnt_group_id
= 0;
163 * vfsmount lock must be held for read
165 static inline void mnt_add_count(struct mount
*mnt
, int n
)
168 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
177 * vfsmount lock must be held for write
179 unsigned int mnt_get_count(struct mount
*mnt
)
182 unsigned int count
= 0;
185 for_each_possible_cpu(cpu
) {
186 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
191 return mnt
->mnt_count
;
195 static void drop_mountpoint(struct fs_pin
*p
)
197 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
198 dput(m
->mnt_ex_mountpoint
);
203 static struct mount
*alloc_vfsmnt(const char *name
)
205 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
209 err
= mnt_alloc_id(mnt
);
214 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
215 if (!mnt
->mnt_devname
)
220 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
222 goto out_free_devname
;
224 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
227 mnt
->mnt_writers
= 0;
230 INIT_HLIST_NODE(&mnt
->mnt_hash
);
231 INIT_LIST_HEAD(&mnt
->mnt_child
);
232 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
233 INIT_LIST_HEAD(&mnt
->mnt_list
);
234 INIT_LIST_HEAD(&mnt
->mnt_expire
);
235 INIT_LIST_HEAD(&mnt
->mnt_share
);
236 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
237 INIT_LIST_HEAD(&mnt
->mnt_slave
);
238 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
239 #ifdef CONFIG_FSNOTIFY
240 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
242 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
248 kfree_const(mnt
->mnt_devname
);
253 kmem_cache_free(mnt_cache
, mnt
);
258 * Most r/o checks on a fs are for operations that take
259 * discrete amounts of time, like a write() or unlink().
260 * We must keep track of when those operations start
261 * (for permission checks) and when they end, so that
262 * we can determine when writes are able to occur to
266 * __mnt_is_readonly: check whether a mount is read-only
267 * @mnt: the mount to check for its write status
269 * This shouldn't be used directly ouside of the VFS.
270 * It does not guarantee that the filesystem will stay
271 * r/w, just that it is right *now*. This can not and
272 * should not be used in place of IS_RDONLY(inode).
273 * mnt_want/drop_write() will _keep_ the filesystem
276 int __mnt_is_readonly(struct vfsmount
*mnt
)
278 if (mnt
->mnt_flags
& MNT_READONLY
)
280 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
284 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
286 static inline void mnt_inc_writers(struct mount
*mnt
)
289 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
295 static inline void mnt_dec_writers(struct mount
*mnt
)
298 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
304 static unsigned int mnt_get_writers(struct mount
*mnt
)
307 unsigned int count
= 0;
310 for_each_possible_cpu(cpu
) {
311 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
316 return mnt
->mnt_writers
;
320 static int mnt_is_readonly(struct vfsmount
*mnt
)
322 if (mnt
->mnt_sb
->s_readonly_remount
)
324 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
326 return __mnt_is_readonly(mnt
);
330 * Most r/o & frozen checks on a fs are for operations that take discrete
331 * amounts of time, like a write() or unlink(). We must keep track of when
332 * those operations start (for permission checks) and when they end, so that we
333 * can determine when writes are able to occur to a filesystem.
336 * __mnt_want_write - get write access to a mount without freeze protection
337 * @m: the mount on which to take a write
339 * This tells the low-level filesystem that a write is about to be performed to
340 * it, and makes sure that writes are allowed (mnt it read-write) before
341 * returning success. This operation does not protect against filesystem being
342 * frozen. When the write operation is finished, __mnt_drop_write() must be
343 * called. This is effectively a refcount.
345 int __mnt_want_write(struct vfsmount
*m
)
347 struct mount
*mnt
= real_mount(m
);
351 mnt_inc_writers(mnt
);
353 * The store to mnt_inc_writers must be visible before we pass
354 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
355 * incremented count after it has set MNT_WRITE_HOLD.
358 while (ACCESS_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
361 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
362 * be set to match its requirements. So we must not load that until
363 * MNT_WRITE_HOLD is cleared.
366 if (mnt_is_readonly(m
)) {
367 mnt_dec_writers(mnt
);
376 * mnt_want_write - get write access to a mount
377 * @m: the mount on which to take a write
379 * This tells the low-level filesystem that a write is about to be performed to
380 * it, and makes sure that writes are allowed (mount is read-write, filesystem
381 * is not frozen) before returning success. When the write operation is
382 * finished, mnt_drop_write() must be called. This is effectively a refcount.
384 int mnt_want_write(struct vfsmount
*m
)
388 sb_start_write(m
->mnt_sb
);
389 ret
= __mnt_want_write(m
);
391 sb_end_write(m
->mnt_sb
);
394 EXPORT_SYMBOL_GPL(mnt_want_write
);
397 * mnt_clone_write - get write access to a mount
398 * @mnt: the mount on which to take a write
400 * This is effectively like mnt_want_write, except
401 * it must only be used to take an extra write reference
402 * on a mountpoint that we already know has a write reference
403 * on it. This allows some optimisation.
405 * After finished, mnt_drop_write must be called as usual to
406 * drop the reference.
408 int mnt_clone_write(struct vfsmount
*mnt
)
410 /* superblock may be r/o */
411 if (__mnt_is_readonly(mnt
))
414 mnt_inc_writers(real_mount(mnt
));
418 EXPORT_SYMBOL_GPL(mnt_clone_write
);
421 * __mnt_want_write_file - get write access to a file's mount
422 * @file: the file who's mount on which to take a write
424 * This is like __mnt_want_write, but it takes a file and can
425 * do some optimisations if the file is open for write already
427 int __mnt_want_write_file(struct file
*file
)
429 if (!(file
->f_mode
& FMODE_WRITER
))
430 return __mnt_want_write(file
->f_path
.mnt
);
432 return mnt_clone_write(file
->f_path
.mnt
);
436 * mnt_want_write_file - get write access to a file's mount
437 * @file: the file who's mount on which to take a write
439 * This is like mnt_want_write, but it takes a file and can
440 * do some optimisations if the file is open for write already
442 int mnt_want_write_file(struct file
*file
)
446 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
447 ret
= __mnt_want_write_file(file
);
449 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
452 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
455 * __mnt_drop_write - give up write access to a mount
456 * @mnt: the mount on which to give up write access
458 * Tells the low-level filesystem that we are done
459 * performing writes to it. Must be matched with
460 * __mnt_want_write() call above.
462 void __mnt_drop_write(struct vfsmount
*mnt
)
465 mnt_dec_writers(real_mount(mnt
));
470 * mnt_drop_write - give up write access to a mount
471 * @mnt: the mount on which to give up write access
473 * Tells the low-level filesystem that we are done performing writes to it and
474 * also allows filesystem to be frozen again. Must be matched with
475 * mnt_want_write() call above.
477 void mnt_drop_write(struct vfsmount
*mnt
)
479 __mnt_drop_write(mnt
);
480 sb_end_write(mnt
->mnt_sb
);
482 EXPORT_SYMBOL_GPL(mnt_drop_write
);
484 void __mnt_drop_write_file(struct file
*file
)
486 __mnt_drop_write(file
->f_path
.mnt
);
489 void mnt_drop_write_file(struct file
*file
)
491 mnt_drop_write(file
->f_path
.mnt
);
493 EXPORT_SYMBOL(mnt_drop_write_file
);
495 static int mnt_make_readonly(struct mount
*mnt
)
500 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
502 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
503 * should be visible before we do.
508 * With writers on hold, if this value is zero, then there are
509 * definitely no active writers (although held writers may subsequently
510 * increment the count, they'll have to wait, and decrement it after
511 * seeing MNT_READONLY).
513 * It is OK to have counter incremented on one CPU and decremented on
514 * another: the sum will add up correctly. The danger would be when we
515 * sum up each counter, if we read a counter before it is incremented,
516 * but then read another CPU's count which it has been subsequently
517 * decremented from -- we would see more decrements than we should.
518 * MNT_WRITE_HOLD protects against this scenario, because
519 * mnt_want_write first increments count, then smp_mb, then spins on
520 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
521 * we're counting up here.
523 if (mnt_get_writers(mnt
) > 0)
526 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
528 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
529 * that become unheld will see MNT_READONLY.
532 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
537 static void __mnt_unmake_readonly(struct mount
*mnt
)
540 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
544 int sb_prepare_remount_readonly(struct super_block
*sb
)
549 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
550 if (atomic_long_read(&sb
->s_remove_count
))
554 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
555 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
556 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
558 if (mnt_get_writers(mnt
) > 0) {
564 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
568 sb
->s_readonly_remount
= 1;
571 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
572 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
573 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
580 static void free_vfsmnt(struct mount
*mnt
)
582 kfree_const(mnt
->mnt_devname
);
584 free_percpu(mnt
->mnt_pcp
);
586 kmem_cache_free(mnt_cache
, mnt
);
589 static void delayed_free_vfsmnt(struct rcu_head
*head
)
591 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
594 /* call under rcu_read_lock */
595 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
598 if (read_seqretry(&mount_lock
, seq
))
602 mnt
= real_mount(bastard
);
603 mnt_add_count(mnt
, 1);
604 if (likely(!read_seqretry(&mount_lock
, seq
)))
606 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
607 mnt_add_count(mnt
, -1);
613 /* call under rcu_read_lock */
614 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
616 int res
= __legitimize_mnt(bastard
, seq
);
619 if (unlikely(res
< 0)) {
628 * find the first mount at @dentry on vfsmount @mnt.
629 * call under rcu_read_lock()
631 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
633 struct hlist_head
*head
= m_hash(mnt
, dentry
);
636 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
637 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
643 * lookup_mnt - Return the first child mount mounted at path
645 * "First" means first mounted chronologically. If you create the
648 * mount /dev/sda1 /mnt
649 * mount /dev/sda2 /mnt
650 * mount /dev/sda3 /mnt
652 * Then lookup_mnt() on the base /mnt dentry in the root mount will
653 * return successively the root dentry and vfsmount of /dev/sda1, then
654 * /dev/sda2, then /dev/sda3, then NULL.
656 * lookup_mnt takes a reference to the found vfsmount.
658 struct vfsmount
*lookup_mnt(const struct path
*path
)
660 struct mount
*child_mnt
;
666 seq
= read_seqbegin(&mount_lock
);
667 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
668 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
669 } while (!legitimize_mnt(m
, seq
));
675 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
676 * current mount namespace.
678 * The common case is dentries are not mountpoints at all and that
679 * test is handled inline. For the slow case when we are actually
680 * dealing with a mountpoint of some kind, walk through all of the
681 * mounts in the current mount namespace and test to see if the dentry
684 * The mount_hashtable is not usable in the context because we
685 * need to identify all mounts that may be in the current mount
686 * namespace not just a mount that happens to have some specified
689 bool __is_local_mountpoint(struct dentry
*dentry
)
691 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
693 bool is_covered
= false;
695 if (!d_mountpoint(dentry
))
698 down_read(&namespace_sem
);
699 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
700 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
704 up_read(&namespace_sem
);
709 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
711 struct hlist_head
*chain
= mp_hash(dentry
);
712 struct mountpoint
*mp
;
714 hlist_for_each_entry(mp
, chain
, m_hash
) {
715 if (mp
->m_dentry
== dentry
) {
716 /* might be worth a WARN_ON() */
717 if (d_unlinked(dentry
))
718 return ERR_PTR(-ENOENT
);
726 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
728 struct mountpoint
*mp
, *new = NULL
;
731 if (d_mountpoint(dentry
)) {
733 read_seqlock_excl(&mount_lock
);
734 mp
= lookup_mountpoint(dentry
);
735 read_sequnlock_excl(&mount_lock
);
741 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
743 return ERR_PTR(-ENOMEM
);
746 /* Exactly one processes may set d_mounted */
747 ret
= d_set_mounted(dentry
);
749 /* Someone else set d_mounted? */
753 /* The dentry is not available as a mountpoint? */
758 /* Add the new mountpoint to the hash table */
759 read_seqlock_excl(&mount_lock
);
760 new->m_dentry
= dentry
;
762 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
763 INIT_HLIST_HEAD(&new->m_list
);
764 read_sequnlock_excl(&mount_lock
);
773 static void put_mountpoint(struct mountpoint
*mp
)
775 if (!--mp
->m_count
) {
776 struct dentry
*dentry
= mp
->m_dentry
;
777 BUG_ON(!hlist_empty(&mp
->m_list
));
778 spin_lock(&dentry
->d_lock
);
779 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
780 spin_unlock(&dentry
->d_lock
);
781 hlist_del(&mp
->m_hash
);
786 static inline int check_mnt(struct mount
*mnt
)
788 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
792 * vfsmount lock must be held for write
794 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
798 wake_up_interruptible(&ns
->poll
);
803 * vfsmount lock must be held for write
805 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
807 if (ns
&& ns
->event
!= event
) {
809 wake_up_interruptible(&ns
->poll
);
814 * vfsmount lock must be held for write
816 static void unhash_mnt(struct mount
*mnt
)
818 mnt
->mnt_parent
= mnt
;
819 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
820 list_del_init(&mnt
->mnt_child
);
821 hlist_del_init_rcu(&mnt
->mnt_hash
);
822 hlist_del_init(&mnt
->mnt_mp_list
);
823 put_mountpoint(mnt
->mnt_mp
);
828 * vfsmount lock must be held for write
830 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
832 old_path
->dentry
= mnt
->mnt_mountpoint
;
833 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
838 * vfsmount lock must be held for write
840 static void umount_mnt(struct mount
*mnt
)
842 /* old mountpoint will be dropped when we can do that */
843 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
848 * vfsmount lock must be held for write
850 void mnt_set_mountpoint(struct mount
*mnt
,
851 struct mountpoint
*mp
,
852 struct mount
*child_mnt
)
855 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
856 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
857 child_mnt
->mnt_parent
= mnt
;
858 child_mnt
->mnt_mp
= mp
;
859 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
862 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
864 hlist_add_head_rcu(&mnt
->mnt_hash
,
865 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
866 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
870 * vfsmount lock must be held for write
872 static void attach_mnt(struct mount
*mnt
,
873 struct mount
*parent
,
874 struct mountpoint
*mp
)
876 mnt_set_mountpoint(parent
, mp
, mnt
);
877 __attach_mnt(mnt
, parent
);
880 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
882 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
883 struct dentry
*old_mountpoint
= mnt
->mnt_mountpoint
;
884 struct mount
*old_parent
= mnt
->mnt_parent
;
886 list_del_init(&mnt
->mnt_child
);
887 hlist_del_init(&mnt
->mnt_mp_list
);
888 hlist_del_init_rcu(&mnt
->mnt_hash
);
890 attach_mnt(mnt
, parent
, mp
);
892 put_mountpoint(old_mp
);
895 * Safely avoid even the suggestion this code might sleep or
896 * lock the mount hash by taking advantage of the knowledge that
897 * mnt_change_mountpoint will not release the final reference
900 * During mounting, the mount passed in as the parent mount will
901 * continue to use the old mountpoint and during unmounting, the
902 * old mountpoint will continue to exist until namespace_unlock,
903 * which happens well after mnt_change_mountpoint.
905 spin_lock(&old_mountpoint
->d_lock
);
906 old_mountpoint
->d_lockref
.count
--;
907 spin_unlock(&old_mountpoint
->d_lock
);
909 mnt_add_count(old_parent
, -1);
913 * vfsmount lock must be held for write
915 static void commit_tree(struct mount
*mnt
)
917 struct mount
*parent
= mnt
->mnt_parent
;
920 struct mnt_namespace
*n
= parent
->mnt_ns
;
922 BUG_ON(parent
== mnt
);
924 list_add_tail(&head
, &mnt
->mnt_list
);
925 list_for_each_entry(m
, &head
, mnt_list
)
928 list_splice(&head
, n
->list
.prev
);
930 n
->mounts
+= n
->pending_mounts
;
931 n
->pending_mounts
= 0;
933 __attach_mnt(mnt
, parent
);
934 touch_mnt_namespace(n
);
937 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
939 struct list_head
*next
= p
->mnt_mounts
.next
;
940 if (next
== &p
->mnt_mounts
) {
944 next
= p
->mnt_child
.next
;
945 if (next
!= &p
->mnt_parent
->mnt_mounts
)
950 return list_entry(next
, struct mount
, mnt_child
);
953 static struct mount
*skip_mnt_tree(struct mount
*p
)
955 struct list_head
*prev
= p
->mnt_mounts
.prev
;
956 while (prev
!= &p
->mnt_mounts
) {
957 p
= list_entry(prev
, struct mount
, mnt_child
);
958 prev
= p
->mnt_mounts
.prev
;
964 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
970 return ERR_PTR(-ENODEV
);
972 mnt
= alloc_vfsmnt(name
);
974 return ERR_PTR(-ENOMEM
);
976 if (flags
& MS_KERNMOUNT
)
977 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
979 root
= mount_fs(type
, flags
, name
, data
);
983 return ERR_CAST(root
);
986 mnt
->mnt
.mnt_root
= root
;
987 mnt
->mnt
.mnt_sb
= root
->d_sb
;
988 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
989 mnt
->mnt_parent
= mnt
;
991 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
995 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
998 vfs_submount(const struct dentry
*mountpoint
, struct file_system_type
*type
,
999 const char *name
, void *data
)
1001 /* Until it is worked out how to pass the user namespace
1002 * through from the parent mount to the submount don't support
1003 * unprivileged mounts with submounts.
1005 if (mountpoint
->d_sb
->s_user_ns
!= &init_user_ns
)
1006 return ERR_PTR(-EPERM
);
1008 return vfs_kern_mount(type
, MS_SUBMOUNT
, name
, data
);
1010 EXPORT_SYMBOL_GPL(vfs_submount
);
1012 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
1015 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1019 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1021 return ERR_PTR(-ENOMEM
);
1023 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1024 mnt
->mnt_group_id
= 0; /* not a peer of original */
1026 mnt
->mnt_group_id
= old
->mnt_group_id
;
1028 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1029 err
= mnt_alloc_group_id(mnt
);
1034 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
& ~(MNT_WRITE_HOLD
|MNT_MARKED
);
1035 /* Don't allow unprivileged users to change mount flags */
1036 if (flag
& CL_UNPRIVILEGED
) {
1037 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
1039 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
1040 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
1042 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
1043 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
1045 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
1046 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
1048 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
1049 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1052 /* Don't allow unprivileged users to reveal what is under a mount */
1053 if ((flag
& CL_UNPRIVILEGED
) &&
1054 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1055 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1057 atomic_inc(&sb
->s_active
);
1058 mnt
->mnt
.mnt_sb
= sb
;
1059 mnt
->mnt
.mnt_root
= dget(root
);
1060 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1061 mnt
->mnt_parent
= mnt
;
1063 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1064 unlock_mount_hash();
1066 if ((flag
& CL_SLAVE
) ||
1067 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1068 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1069 mnt
->mnt_master
= old
;
1070 CLEAR_MNT_SHARED(mnt
);
1071 } else if (!(flag
& CL_PRIVATE
)) {
1072 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1073 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1074 if (IS_MNT_SLAVE(old
))
1075 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1076 mnt
->mnt_master
= old
->mnt_master
;
1078 CLEAR_MNT_SHARED(mnt
);
1080 if (flag
& CL_MAKE_SHARED
)
1081 set_mnt_shared(mnt
);
1083 /* stick the duplicate mount on the same expiry list
1084 * as the original if that was on one */
1085 if (flag
& CL_EXPIRE
) {
1086 if (!list_empty(&old
->mnt_expire
))
1087 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1095 return ERR_PTR(err
);
1098 static void cleanup_mnt(struct mount
*mnt
)
1101 * This probably indicates that somebody messed
1102 * up a mnt_want/drop_write() pair. If this
1103 * happens, the filesystem was probably unable
1104 * to make r/w->r/o transitions.
1107 * The locking used to deal with mnt_count decrement provides barriers,
1108 * so mnt_get_writers() below is safe.
1110 WARN_ON(mnt_get_writers(mnt
));
1111 if (unlikely(mnt
->mnt_pins
.first
))
1113 fsnotify_vfsmount_delete(&mnt
->mnt
);
1114 dput(mnt
->mnt
.mnt_root
);
1115 deactivate_super(mnt
->mnt
.mnt_sb
);
1117 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1120 static void __cleanup_mnt(struct rcu_head
*head
)
1122 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1125 static LLIST_HEAD(delayed_mntput_list
);
1126 static void delayed_mntput(struct work_struct
*unused
)
1128 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1129 struct llist_node
*next
;
1131 for (; node
; node
= next
) {
1132 next
= llist_next(node
);
1133 cleanup_mnt(llist_entry(node
, struct mount
, mnt_llist
));
1136 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1138 static void mntput_no_expire(struct mount
*mnt
)
1141 mnt_add_count(mnt
, -1);
1142 if (likely(mnt
->mnt_ns
)) { /* shouldn't be the last one */
1147 if (mnt_get_count(mnt
)) {
1149 unlock_mount_hash();
1152 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1154 unlock_mount_hash();
1157 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1160 list_del(&mnt
->mnt_instance
);
1162 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1163 struct mount
*p
, *tmp
;
1164 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1168 unlock_mount_hash();
1170 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1171 struct task_struct
*task
= current
;
1172 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1173 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1174 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1177 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1178 schedule_delayed_work(&delayed_mntput_work
, 1);
1184 void mntput(struct vfsmount
*mnt
)
1187 struct mount
*m
= real_mount(mnt
);
1188 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1189 if (unlikely(m
->mnt_expiry_mark
))
1190 m
->mnt_expiry_mark
= 0;
1191 mntput_no_expire(m
);
1194 EXPORT_SYMBOL(mntput
);
1196 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1199 mnt_add_count(real_mount(mnt
), 1);
1202 EXPORT_SYMBOL(mntget
);
1204 /* path_is_mountpoint() - Check if path is a mount in the current
1207 * d_mountpoint() can only be used reliably to establish if a dentry is
1208 * not mounted in any namespace and that common case is handled inline.
1209 * d_mountpoint() isn't aware of the possibility there may be multiple
1210 * mounts using a given dentry in a different namespace. This function
1211 * checks if the passed in path is a mountpoint rather than the dentry
1214 bool path_is_mountpoint(const struct path
*path
)
1219 if (!d_mountpoint(path
->dentry
))
1224 seq
= read_seqbegin(&mount_lock
);
1225 res
= __path_is_mountpoint(path
);
1226 } while (read_seqretry(&mount_lock
, seq
));
1231 EXPORT_SYMBOL(path_is_mountpoint
);
1233 struct vfsmount
*mnt_clone_internal(const struct path
*path
)
1236 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1239 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1243 static inline void mangle(struct seq_file
*m
, const char *s
)
1245 seq_escape(m
, s
, " \t\n\\");
1249 * Simple .show_options callback for filesystems which don't want to
1250 * implement more complex mount option showing.
1252 * See also save_mount_options().
1254 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
1256 const char *options
;
1259 options
= rcu_dereference(root
->d_sb
->s_options
);
1261 if (options
!= NULL
&& options
[0]) {
1269 EXPORT_SYMBOL(generic_show_options
);
1272 * If filesystem uses generic_show_options(), this function should be
1273 * called from the fill_super() callback.
1275 * The .remount_fs callback usually needs to be handled in a special
1276 * way, to make sure, that previous options are not overwritten if the
1279 * Also note, that if the filesystem's .remount_fs function doesn't
1280 * reset all options to their default value, but changes only newly
1281 * given options, then the displayed options will not reflect reality
1284 void save_mount_options(struct super_block
*sb
, char *options
)
1286 BUG_ON(sb
->s_options
);
1287 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
1289 EXPORT_SYMBOL(save_mount_options
);
1291 void replace_mount_options(struct super_block
*sb
, char *options
)
1293 char *old
= sb
->s_options
;
1294 rcu_assign_pointer(sb
->s_options
, options
);
1300 EXPORT_SYMBOL(replace_mount_options
);
1302 #ifdef CONFIG_PROC_FS
1303 /* iterator; we want it to have access to namespace_sem, thus here... */
1304 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1306 struct proc_mounts
*p
= m
->private;
1308 down_read(&namespace_sem
);
1309 if (p
->cached_event
== p
->ns
->event
) {
1310 void *v
= p
->cached_mount
;
1311 if (*pos
== p
->cached_index
)
1313 if (*pos
== p
->cached_index
+ 1) {
1314 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1315 return p
->cached_mount
= v
;
1319 p
->cached_event
= p
->ns
->event
;
1320 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1321 p
->cached_index
= *pos
;
1322 return p
->cached_mount
;
1325 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1327 struct proc_mounts
*p
= m
->private;
1329 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1330 p
->cached_index
= *pos
;
1331 return p
->cached_mount
;
1334 static void m_stop(struct seq_file
*m
, void *v
)
1336 up_read(&namespace_sem
);
1339 static int m_show(struct seq_file
*m
, void *v
)
1341 struct proc_mounts
*p
= m
->private;
1342 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1343 return p
->show(m
, &r
->mnt
);
1346 const struct seq_operations mounts_op
= {
1352 #endif /* CONFIG_PROC_FS */
1355 * may_umount_tree - check if a mount tree is busy
1356 * @mnt: root of mount tree
1358 * This is called to check if a tree of mounts has any
1359 * open files, pwds, chroots or sub mounts that are
1362 int may_umount_tree(struct vfsmount
*m
)
1364 struct mount
*mnt
= real_mount(m
);
1365 int actual_refs
= 0;
1366 int minimum_refs
= 0;
1370 /* write lock needed for mnt_get_count */
1372 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1373 actual_refs
+= mnt_get_count(p
);
1376 unlock_mount_hash();
1378 if (actual_refs
> minimum_refs
)
1384 EXPORT_SYMBOL(may_umount_tree
);
1387 * may_umount - check if a mount point is busy
1388 * @mnt: root of mount
1390 * This is called to check if a mount point has any
1391 * open files, pwds, chroots or sub mounts. If the
1392 * mount has sub mounts this will return busy
1393 * regardless of whether the sub mounts are busy.
1395 * Doesn't take quota and stuff into account. IOW, in some cases it will
1396 * give false negatives. The main reason why it's here is that we need
1397 * a non-destructive way to look for easily umountable filesystems.
1399 int may_umount(struct vfsmount
*mnt
)
1402 down_read(&namespace_sem
);
1404 if (propagate_mount_busy(real_mount(mnt
), 2))
1406 unlock_mount_hash();
1407 up_read(&namespace_sem
);
1411 EXPORT_SYMBOL(may_umount
);
1413 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1415 static void namespace_unlock(void)
1417 struct hlist_head head
;
1419 hlist_move_list(&unmounted
, &head
);
1421 up_write(&namespace_sem
);
1423 if (likely(hlist_empty(&head
)))
1428 group_pin_kill(&head
);
1431 static inline void namespace_lock(void)
1433 down_write(&namespace_sem
);
1436 enum umount_tree_flags
{
1438 UMOUNT_PROPAGATE
= 2,
1439 UMOUNT_CONNECTED
= 4,
1442 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1444 /* Leaving mounts connected is only valid for lazy umounts */
1445 if (how
& UMOUNT_SYNC
)
1448 /* A mount without a parent has nothing to be connected to */
1449 if (!mnt_has_parent(mnt
))
1452 /* Because the reference counting rules change when mounts are
1453 * unmounted and connected, umounted mounts may not be
1454 * connected to mounted mounts.
1456 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1459 /* Has it been requested that the mount remain connected? */
1460 if (how
& UMOUNT_CONNECTED
)
1463 /* Is the mount locked such that it needs to remain connected? */
1464 if (IS_MNT_LOCKED(mnt
))
1467 /* By default disconnect the mount */
1472 * mount_lock must be held
1473 * namespace_sem must be held for write
1475 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1477 LIST_HEAD(tmp_list
);
1480 if (how
& UMOUNT_PROPAGATE
)
1481 propagate_mount_unlock(mnt
);
1483 /* Gather the mounts to umount */
1484 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1485 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1486 list_move(&p
->mnt_list
, &tmp_list
);
1489 /* Hide the mounts from mnt_mounts */
1490 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1491 list_del_init(&p
->mnt_child
);
1494 /* Add propogated mounts to the tmp_list */
1495 if (how
& UMOUNT_PROPAGATE
)
1496 propagate_umount(&tmp_list
);
1498 while (!list_empty(&tmp_list
)) {
1499 struct mnt_namespace
*ns
;
1501 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1502 list_del_init(&p
->mnt_expire
);
1503 list_del_init(&p
->mnt_list
);
1507 __touch_mnt_namespace(ns
);
1510 if (how
& UMOUNT_SYNC
)
1511 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1513 disconnect
= disconnect_mount(p
, how
);
1515 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1516 disconnect
? &unmounted
: NULL
);
1517 if (mnt_has_parent(p
)) {
1518 mnt_add_count(p
->mnt_parent
, -1);
1520 /* Don't forget about p */
1521 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1526 change_mnt_propagation(p
, MS_PRIVATE
);
1530 static void shrink_submounts(struct mount
*mnt
);
1532 static int do_umount(struct mount
*mnt
, int flags
)
1534 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1537 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1542 * Allow userspace to request a mountpoint be expired rather than
1543 * unmounting unconditionally. Unmount only happens if:
1544 * (1) the mark is already set (the mark is cleared by mntput())
1545 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1547 if (flags
& MNT_EXPIRE
) {
1548 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1549 flags
& (MNT_FORCE
| MNT_DETACH
))
1553 * probably don't strictly need the lock here if we examined
1554 * all race cases, but it's a slowpath.
1557 if (mnt_get_count(mnt
) != 2) {
1558 unlock_mount_hash();
1561 unlock_mount_hash();
1563 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1568 * If we may have to abort operations to get out of this
1569 * mount, and they will themselves hold resources we must
1570 * allow the fs to do things. In the Unix tradition of
1571 * 'Gee thats tricky lets do it in userspace' the umount_begin
1572 * might fail to complete on the first run through as other tasks
1573 * must return, and the like. Thats for the mount program to worry
1574 * about for the moment.
1577 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1578 sb
->s_op
->umount_begin(sb
);
1582 * No sense to grab the lock for this test, but test itself looks
1583 * somewhat bogus. Suggestions for better replacement?
1584 * Ho-hum... In principle, we might treat that as umount + switch
1585 * to rootfs. GC would eventually take care of the old vfsmount.
1586 * Actually it makes sense, especially if rootfs would contain a
1587 * /reboot - static binary that would close all descriptors and
1588 * call reboot(9). Then init(8) could umount root and exec /reboot.
1590 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1592 * Special case for "unmounting" root ...
1593 * we just try to remount it readonly.
1595 if (!capable(CAP_SYS_ADMIN
))
1597 down_write(&sb
->s_umount
);
1598 if (!(sb
->s_flags
& MS_RDONLY
))
1599 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1600 up_write(&sb
->s_umount
);
1608 if (flags
& MNT_DETACH
) {
1609 if (!list_empty(&mnt
->mnt_list
))
1610 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1613 shrink_submounts(mnt
);
1615 if (!propagate_mount_busy(mnt
, 2)) {
1616 if (!list_empty(&mnt
->mnt_list
))
1617 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1621 unlock_mount_hash();
1627 * __detach_mounts - lazily unmount all mounts on the specified dentry
1629 * During unlink, rmdir, and d_drop it is possible to loose the path
1630 * to an existing mountpoint, and wind up leaking the mount.
1631 * detach_mounts allows lazily unmounting those mounts instead of
1634 * The caller may hold dentry->d_inode->i_mutex.
1636 void __detach_mounts(struct dentry
*dentry
)
1638 struct mountpoint
*mp
;
1643 mp
= lookup_mountpoint(dentry
);
1644 if (IS_ERR_OR_NULL(mp
))
1648 while (!hlist_empty(&mp
->m_list
)) {
1649 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1650 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1651 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1654 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1658 unlock_mount_hash();
1663 * Is the caller allowed to modify his namespace?
1665 static inline bool may_mount(void)
1667 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1670 static inline bool may_mandlock(void)
1672 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1675 return capable(CAP_SYS_ADMIN
);
1679 * Now umount can handle mount points as well as block devices.
1680 * This is important for filesystems which use unnamed block devices.
1682 * We now support a flag for forced unmount like the other 'big iron'
1683 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1686 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1691 int lookup_flags
= 0;
1693 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1699 if (!(flags
& UMOUNT_NOFOLLOW
))
1700 lookup_flags
|= LOOKUP_FOLLOW
;
1702 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1705 mnt
= real_mount(path
.mnt
);
1707 if (path
.dentry
!= path
.mnt
->mnt_root
)
1709 if (!check_mnt(mnt
))
1711 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1714 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1717 retval
= do_umount(mnt
, flags
);
1719 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1721 mntput_no_expire(mnt
);
1726 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1729 * The 2.0 compatible umount. No flags.
1731 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1733 return sys_umount(name
, 0);
1738 static bool is_mnt_ns_file(struct dentry
*dentry
)
1740 /* Is this a proxy for a mount namespace? */
1741 return dentry
->d_op
== &ns_dentry_operations
&&
1742 dentry
->d_fsdata
== &mntns_operations
;
1745 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1747 return container_of(ns
, struct mnt_namespace
, ns
);
1750 static bool mnt_ns_loop(struct dentry
*dentry
)
1752 /* Could bind mounting the mount namespace inode cause a
1753 * mount namespace loop?
1755 struct mnt_namespace
*mnt_ns
;
1756 if (!is_mnt_ns_file(dentry
))
1759 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1760 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1763 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1766 struct mount
*res
, *p
, *q
, *r
, *parent
;
1768 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1769 return ERR_PTR(-EINVAL
);
1771 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1772 return ERR_PTR(-EINVAL
);
1774 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1778 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1781 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1783 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1786 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1787 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1788 IS_MNT_UNBINDABLE(s
)) {
1789 s
= skip_mnt_tree(s
);
1792 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1793 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1794 s
= skip_mnt_tree(s
);
1797 while (p
!= s
->mnt_parent
) {
1803 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1807 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1808 attach_mnt(q
, parent
, p
->mnt_mp
);
1809 unlock_mount_hash();
1816 umount_tree(res
, UMOUNT_SYNC
);
1817 unlock_mount_hash();
1822 /* Caller should check returned pointer for errors */
1824 struct vfsmount
*collect_mounts(const struct path
*path
)
1828 if (!check_mnt(real_mount(path
->mnt
)))
1829 tree
= ERR_PTR(-EINVAL
);
1831 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1832 CL_COPY_ALL
| CL_PRIVATE
);
1835 return ERR_CAST(tree
);
1839 void drop_collected_mounts(struct vfsmount
*mnt
)
1843 umount_tree(real_mount(mnt
), UMOUNT_SYNC
);
1844 unlock_mount_hash();
1849 * clone_private_mount - create a private clone of a path
1851 * This creates a new vfsmount, which will be the clone of @path. The new will
1852 * not be attached anywhere in the namespace and will be private (i.e. changes
1853 * to the originating mount won't be propagated into this).
1855 * Release with mntput().
1857 struct vfsmount
*clone_private_mount(const struct path
*path
)
1859 struct mount
*old_mnt
= real_mount(path
->mnt
);
1860 struct mount
*new_mnt
;
1862 if (IS_MNT_UNBINDABLE(old_mnt
))
1863 return ERR_PTR(-EINVAL
);
1865 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1866 if (IS_ERR(new_mnt
))
1867 return ERR_CAST(new_mnt
);
1869 return &new_mnt
->mnt
;
1871 EXPORT_SYMBOL_GPL(clone_private_mount
);
1873 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1874 struct vfsmount
*root
)
1877 int res
= f(root
, arg
);
1880 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1881 res
= f(&mnt
->mnt
, arg
);
1888 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1892 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1893 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1894 mnt_release_group_id(p
);
1898 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1902 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1903 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1904 int err
= mnt_alloc_group_id(p
);
1906 cleanup_group_ids(mnt
, p
);
1915 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1917 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1918 unsigned int mounts
= 0, old
, pending
, sum
;
1921 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1925 pending
= ns
->pending_mounts
;
1926 sum
= old
+ pending
;
1930 (mounts
> (max
- sum
)))
1933 ns
->pending_mounts
= pending
+ mounts
;
1938 * @source_mnt : mount tree to be attached
1939 * @nd : place the mount tree @source_mnt is attached
1940 * @parent_nd : if non-null, detach the source_mnt from its parent and
1941 * store the parent mount and mountpoint dentry.
1942 * (done when source_mnt is moved)
1944 * NOTE: in the table below explains the semantics when a source mount
1945 * of a given type is attached to a destination mount of a given type.
1946 * ---------------------------------------------------------------------------
1947 * | BIND MOUNT OPERATION |
1948 * |**************************************************************************
1949 * | source-->| shared | private | slave | unbindable |
1953 * |**************************************************************************
1954 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1956 * |non-shared| shared (+) | private | slave (*) | invalid |
1957 * ***************************************************************************
1958 * A bind operation clones the source mount and mounts the clone on the
1959 * destination mount.
1961 * (++) the cloned mount is propagated to all the mounts in the propagation
1962 * tree of the destination mount and the cloned mount is added to
1963 * the peer group of the source mount.
1964 * (+) the cloned mount is created under the destination mount and is marked
1965 * as shared. The cloned mount is added to the peer group of the source
1967 * (+++) the mount is propagated to all the mounts in the propagation tree
1968 * of the destination mount and the cloned mount is made slave
1969 * of the same master as that of the source mount. The cloned mount
1970 * is marked as 'shared and slave'.
1971 * (*) the cloned mount is made a slave of the same master as that of the
1974 * ---------------------------------------------------------------------------
1975 * | MOVE MOUNT OPERATION |
1976 * |**************************************************************************
1977 * | source-->| shared | private | slave | unbindable |
1981 * |**************************************************************************
1982 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1984 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1985 * ***************************************************************************
1987 * (+) the mount is moved to the destination. And is then propagated to
1988 * all the mounts in the propagation tree of the destination mount.
1989 * (+*) the mount is moved to the destination.
1990 * (+++) the mount is moved to the destination and is then propagated to
1991 * all the mounts belonging to the destination mount's propagation tree.
1992 * the mount is marked as 'shared and slave'.
1993 * (*) the mount continues to be a slave at the new location.
1995 * if the source mount is a tree, the operations explained above is
1996 * applied to each mount in the tree.
1997 * Must be called without spinlocks held, since this function can sleep
2000 static int attach_recursive_mnt(struct mount
*source_mnt
,
2001 struct mount
*dest_mnt
,
2002 struct mountpoint
*dest_mp
,
2003 struct path
*parent_path
)
2005 HLIST_HEAD(tree_list
);
2006 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
2007 struct mountpoint
*smp
;
2008 struct mount
*child
, *p
;
2009 struct hlist_node
*n
;
2012 /* Preallocate a mountpoint in case the new mounts need
2013 * to be tucked under other mounts.
2015 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
2017 return PTR_ERR(smp
);
2019 /* Is there space to add these mounts to the mount namespace? */
2021 err
= count_mounts(ns
, source_mnt
);
2026 if (IS_MNT_SHARED(dest_mnt
)) {
2027 err
= invent_group_ids(source_mnt
, true);
2030 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
2033 goto out_cleanup_ids
;
2034 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
2040 detach_mnt(source_mnt
, parent_path
);
2041 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
2042 touch_mnt_namespace(source_mnt
->mnt_ns
);
2044 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
2045 commit_tree(source_mnt
);
2048 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
2050 hlist_del_init(&child
->mnt_hash
);
2051 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
2052 child
->mnt_mountpoint
);
2054 mnt_change_mountpoint(child
, smp
, q
);
2057 put_mountpoint(smp
);
2058 unlock_mount_hash();
2063 while (!hlist_empty(&tree_list
)) {
2064 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2065 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2066 umount_tree(child
, UMOUNT_SYNC
);
2068 unlock_mount_hash();
2069 cleanup_group_ids(source_mnt
, NULL
);
2071 ns
->pending_mounts
= 0;
2073 read_seqlock_excl(&mount_lock
);
2074 put_mountpoint(smp
);
2075 read_sequnlock_excl(&mount_lock
);
2080 static struct mountpoint
*lock_mount(struct path
*path
)
2082 struct vfsmount
*mnt
;
2083 struct dentry
*dentry
= path
->dentry
;
2085 inode_lock(dentry
->d_inode
);
2086 if (unlikely(cant_mount(dentry
))) {
2087 inode_unlock(dentry
->d_inode
);
2088 return ERR_PTR(-ENOENT
);
2091 mnt
= lookup_mnt(path
);
2093 struct mountpoint
*mp
= get_mountpoint(dentry
);
2096 inode_unlock(dentry
->d_inode
);
2102 inode_unlock(path
->dentry
->d_inode
);
2105 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2109 static void unlock_mount(struct mountpoint
*where
)
2111 struct dentry
*dentry
= where
->m_dentry
;
2113 read_seqlock_excl(&mount_lock
);
2114 put_mountpoint(where
);
2115 read_sequnlock_excl(&mount_lock
);
2118 inode_unlock(dentry
->d_inode
);
2121 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2123 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
2126 if (d_is_dir(mp
->m_dentry
) !=
2127 d_is_dir(mnt
->mnt
.mnt_root
))
2130 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2134 * Sanity check the flags to change_mnt_propagation.
2137 static int flags_to_propagation_type(int flags
)
2139 int type
= flags
& ~(MS_REC
| MS_SILENT
);
2141 /* Fail if any non-propagation flags are set */
2142 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2144 /* Only one propagation flag should be set */
2145 if (!is_power_of_2(type
))
2151 * recursively change the type of the mountpoint.
2153 static int do_change_type(struct path
*path
, int flag
)
2156 struct mount
*mnt
= real_mount(path
->mnt
);
2157 int recurse
= flag
& MS_REC
;
2161 if (path
->dentry
!= path
->mnt
->mnt_root
)
2164 type
= flags_to_propagation_type(flag
);
2169 if (type
== MS_SHARED
) {
2170 err
= invent_group_ids(mnt
, recurse
);
2176 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2177 change_mnt_propagation(m
, type
);
2178 unlock_mount_hash();
2185 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2187 struct mount
*child
;
2188 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2189 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2192 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2199 * do loopback mount.
2201 static int do_loopback(struct path
*path
, const char *old_name
,
2204 struct path old_path
;
2205 struct mount
*mnt
= NULL
, *old
, *parent
;
2206 struct mountpoint
*mp
;
2208 if (!old_name
|| !*old_name
)
2210 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2215 if (mnt_ns_loop(old_path
.dentry
))
2218 mp
= lock_mount(path
);
2223 old
= real_mount(old_path
.mnt
);
2224 parent
= real_mount(path
->mnt
);
2227 if (IS_MNT_UNBINDABLE(old
))
2230 if (!check_mnt(parent
))
2233 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2236 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2240 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2242 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2249 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2251 err
= graft_tree(mnt
, parent
, mp
);
2254 umount_tree(mnt
, UMOUNT_SYNC
);
2255 unlock_mount_hash();
2260 path_put(&old_path
);
2264 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2267 int readonly_request
= 0;
2269 if (ms_flags
& MS_RDONLY
)
2270 readonly_request
= 1;
2271 if (readonly_request
== __mnt_is_readonly(mnt
))
2274 if (readonly_request
)
2275 error
= mnt_make_readonly(real_mount(mnt
));
2277 __mnt_unmake_readonly(real_mount(mnt
));
2282 * change filesystem flags. dir should be a physical root of filesystem.
2283 * If you've mounted a non-root directory somewhere and want to do remount
2284 * on it - tough luck.
2286 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
2290 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2291 struct mount
*mnt
= real_mount(path
->mnt
);
2293 if (!check_mnt(mnt
))
2296 if (path
->dentry
!= path
->mnt
->mnt_root
)
2299 /* Don't allow changing of locked mnt flags.
2301 * No locks need to be held here while testing the various
2302 * MNT_LOCK flags because those flags can never be cleared
2303 * once they are set.
2305 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2306 !(mnt_flags
& MNT_READONLY
)) {
2309 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2310 !(mnt_flags
& MNT_NODEV
)) {
2313 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2314 !(mnt_flags
& MNT_NOSUID
)) {
2317 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2318 !(mnt_flags
& MNT_NOEXEC
)) {
2321 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2322 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2326 err
= security_sb_remount(sb
, data
);
2330 down_write(&sb
->s_umount
);
2331 if (flags
& MS_BIND
)
2332 err
= change_mount_flags(path
->mnt
, flags
);
2333 else if (!capable(CAP_SYS_ADMIN
))
2336 err
= do_remount_sb(sb
, flags
, data
, 0);
2339 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2340 mnt
->mnt
.mnt_flags
= mnt_flags
;
2341 touch_mnt_namespace(mnt
->mnt_ns
);
2342 unlock_mount_hash();
2344 up_write(&sb
->s_umount
);
2348 static inline int tree_contains_unbindable(struct mount
*mnt
)
2351 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2352 if (IS_MNT_UNBINDABLE(p
))
2358 static int do_move_mount(struct path
*path
, const char *old_name
)
2360 struct path old_path
, parent_path
;
2363 struct mountpoint
*mp
;
2365 if (!old_name
|| !*old_name
)
2367 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2371 mp
= lock_mount(path
);
2376 old
= real_mount(old_path
.mnt
);
2377 p
= real_mount(path
->mnt
);
2380 if (!check_mnt(p
) || !check_mnt(old
))
2383 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2387 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2390 if (!mnt_has_parent(old
))
2393 if (d_is_dir(path
->dentry
) !=
2394 d_is_dir(old_path
.dentry
))
2397 * Don't move a mount residing in a shared parent.
2399 if (IS_MNT_SHARED(old
->mnt_parent
))
2402 * Don't move a mount tree containing unbindable mounts to a destination
2403 * mount which is shared.
2405 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2408 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2412 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2416 /* if the mount is moved, it should no longer be expire
2418 list_del_init(&old
->mnt_expire
);
2423 path_put(&parent_path
);
2424 path_put(&old_path
);
2428 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2431 const char *subtype
= strchr(fstype
, '.');
2440 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2442 if (!mnt
->mnt_sb
->s_subtype
)
2448 return ERR_PTR(err
);
2452 * add a mount into a namespace's mount tree
2454 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2456 struct mountpoint
*mp
;
2457 struct mount
*parent
;
2460 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2462 mp
= lock_mount(path
);
2466 parent
= real_mount(path
->mnt
);
2468 if (unlikely(!check_mnt(parent
))) {
2469 /* that's acceptable only for automounts done in private ns */
2470 if (!(mnt_flags
& MNT_SHRINKABLE
))
2472 /* ... and for those we'd better have mountpoint still alive */
2473 if (!parent
->mnt_ns
)
2477 /* Refuse the same filesystem on the same mount point */
2479 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2480 path
->mnt
->mnt_root
== path
->dentry
)
2484 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2487 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2488 err
= graft_tree(newmnt
, parent
, mp
);
2495 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
);
2498 * create a new mount for userspace and request it to be added into the
2501 static int do_new_mount(struct path
*path
, const char *fstype
, int flags
,
2502 int mnt_flags
, const char *name
, void *data
)
2504 struct file_system_type
*type
;
2505 struct vfsmount
*mnt
;
2511 type
= get_fs_type(fstype
);
2515 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
2516 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2517 !mnt
->mnt_sb
->s_subtype
)
2518 mnt
= fs_set_subtype(mnt
, fstype
);
2520 put_filesystem(type
);
2522 return PTR_ERR(mnt
);
2524 if (mount_too_revealing(mnt
, &mnt_flags
)) {
2529 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2535 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2537 struct mount
*mnt
= real_mount(m
);
2539 /* The new mount record should have at least 2 refs to prevent it being
2540 * expired before we get a chance to add it
2542 BUG_ON(mnt_get_count(mnt
) < 2);
2544 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2545 m
->mnt_root
== path
->dentry
) {
2550 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2554 /* remove m from any expiration list it may be on */
2555 if (!list_empty(&mnt
->mnt_expire
)) {
2557 list_del_init(&mnt
->mnt_expire
);
2566 * mnt_set_expiry - Put a mount on an expiration list
2567 * @mnt: The mount to list.
2568 * @expiry_list: The list to add the mount to.
2570 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2574 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2578 EXPORT_SYMBOL(mnt_set_expiry
);
2581 * process a list of expirable mountpoints with the intent of discarding any
2582 * mountpoints that aren't in use and haven't been touched since last we came
2585 void mark_mounts_for_expiry(struct list_head
*mounts
)
2587 struct mount
*mnt
, *next
;
2588 LIST_HEAD(graveyard
);
2590 if (list_empty(mounts
))
2596 /* extract from the expiration list every vfsmount that matches the
2597 * following criteria:
2598 * - only referenced by its parent vfsmount
2599 * - still marked for expiry (marked on the last call here; marks are
2600 * cleared by mntput())
2602 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2603 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2604 propagate_mount_busy(mnt
, 1))
2606 list_move(&mnt
->mnt_expire
, &graveyard
);
2608 while (!list_empty(&graveyard
)) {
2609 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2610 touch_mnt_namespace(mnt
->mnt_ns
);
2611 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2613 unlock_mount_hash();
2617 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2620 * Ripoff of 'select_parent()'
2622 * search the list of submounts for a given mountpoint, and move any
2623 * shrinkable submounts to the 'graveyard' list.
2625 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2627 struct mount
*this_parent
= parent
;
2628 struct list_head
*next
;
2632 next
= this_parent
->mnt_mounts
.next
;
2634 while (next
!= &this_parent
->mnt_mounts
) {
2635 struct list_head
*tmp
= next
;
2636 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2639 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2642 * Descend a level if the d_mounts list is non-empty.
2644 if (!list_empty(&mnt
->mnt_mounts
)) {
2649 if (!propagate_mount_busy(mnt
, 1)) {
2650 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2655 * All done at this level ... ascend and resume the search
2657 if (this_parent
!= parent
) {
2658 next
= this_parent
->mnt_child
.next
;
2659 this_parent
= this_parent
->mnt_parent
;
2666 * process a list of expirable mountpoints with the intent of discarding any
2667 * submounts of a specific parent mountpoint
2669 * mount_lock must be held for write
2671 static void shrink_submounts(struct mount
*mnt
)
2673 LIST_HEAD(graveyard
);
2676 /* extract submounts of 'mountpoint' from the expiration list */
2677 while (select_submounts(mnt
, &graveyard
)) {
2678 while (!list_empty(&graveyard
)) {
2679 m
= list_first_entry(&graveyard
, struct mount
,
2681 touch_mnt_namespace(m
->mnt_ns
);
2682 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2688 * Some copy_from_user() implementations do not return the exact number of
2689 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2690 * Note that this function differs from copy_from_user() in that it will oops
2691 * on bad values of `to', rather than returning a short copy.
2693 static long exact_copy_from_user(void *to
, const void __user
* from
,
2697 const char __user
*f
= from
;
2700 if (!access_ok(VERIFY_READ
, from
, n
))
2704 if (__get_user(c
, f
)) {
2715 void *copy_mount_options(const void __user
* data
)
2724 copy
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2726 return ERR_PTR(-ENOMEM
);
2728 /* We only care that *some* data at the address the user
2729 * gave us is valid. Just in case, we'll zero
2730 * the remainder of the page.
2732 /* copy_from_user cannot cross TASK_SIZE ! */
2733 size
= TASK_SIZE
- (unsigned long)data
;
2734 if (size
> PAGE_SIZE
)
2737 i
= size
- exact_copy_from_user(copy
, data
, size
);
2740 return ERR_PTR(-EFAULT
);
2743 memset(copy
+ i
, 0, PAGE_SIZE
- i
);
2747 char *copy_mount_string(const void __user
*data
)
2749 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2753 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2754 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2756 * data is a (void *) that can point to any structure up to
2757 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2758 * information (or be NULL).
2760 * Pre-0.97 versions of mount() didn't have a flags word.
2761 * When the flags word was introduced its top half was required
2762 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2763 * Therefore, if this magic number is present, it carries no information
2764 * and must be discarded.
2766 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2767 const char *type_page
, unsigned long flags
, void *data_page
)
2774 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2775 flags
&= ~MS_MGC_MSK
;
2777 /* Basic sanity checks */
2779 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2781 /* ... and get the mountpoint */
2782 retval
= user_path(dir_name
, &path
);
2786 retval
= security_sb_mount(dev_name
, &path
,
2787 type_page
, flags
, data_page
);
2788 if (!retval
&& !may_mount())
2790 if (!retval
&& (flags
& MS_MANDLOCK
) && !may_mandlock())
2795 /* Default to relatime unless overriden */
2796 if (!(flags
& MS_NOATIME
))
2797 mnt_flags
|= MNT_RELATIME
;
2799 /* Separate the per-mountpoint flags */
2800 if (flags
& MS_NOSUID
)
2801 mnt_flags
|= MNT_NOSUID
;
2802 if (flags
& MS_NODEV
)
2803 mnt_flags
|= MNT_NODEV
;
2804 if (flags
& MS_NOEXEC
)
2805 mnt_flags
|= MNT_NOEXEC
;
2806 if (flags
& MS_NOATIME
)
2807 mnt_flags
|= MNT_NOATIME
;
2808 if (flags
& MS_NODIRATIME
)
2809 mnt_flags
|= MNT_NODIRATIME
;
2810 if (flags
& MS_STRICTATIME
)
2811 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2812 if (flags
& MS_RDONLY
)
2813 mnt_flags
|= MNT_READONLY
;
2815 /* The default atime for remount is preservation */
2816 if ((flags
& MS_REMOUNT
) &&
2817 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2818 MS_STRICTATIME
)) == 0)) {
2819 mnt_flags
&= ~MNT_ATIME_MASK
;
2820 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2823 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2824 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2825 MS_STRICTATIME
| MS_NOREMOTELOCK
| MS_SUBMOUNT
);
2827 if (flags
& MS_REMOUNT
)
2828 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2830 else if (flags
& MS_BIND
)
2831 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2832 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2833 retval
= do_change_type(&path
, flags
);
2834 else if (flags
& MS_MOVE
)
2835 retval
= do_move_mount(&path
, dev_name
);
2837 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2838 dev_name
, data_page
);
2844 static struct ucounts
*inc_mnt_namespaces(struct user_namespace
*ns
)
2846 return inc_ucount(ns
, current_euid(), UCOUNT_MNT_NAMESPACES
);
2849 static void dec_mnt_namespaces(struct ucounts
*ucounts
)
2851 dec_ucount(ucounts
, UCOUNT_MNT_NAMESPACES
);
2854 static void free_mnt_ns(struct mnt_namespace
*ns
)
2856 ns_free_inum(&ns
->ns
);
2857 dec_mnt_namespaces(ns
->ucounts
);
2858 put_user_ns(ns
->user_ns
);
2863 * Assign a sequence number so we can detect when we attempt to bind
2864 * mount a reference to an older mount namespace into the current
2865 * mount namespace, preventing reference counting loops. A 64bit
2866 * number incrementing at 10Ghz will take 12,427 years to wrap which
2867 * is effectively never, so we can ignore the possibility.
2869 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2871 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2873 struct mnt_namespace
*new_ns
;
2874 struct ucounts
*ucounts
;
2877 ucounts
= inc_mnt_namespaces(user_ns
);
2879 return ERR_PTR(-ENOSPC
);
2881 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2883 dec_mnt_namespaces(ucounts
);
2884 return ERR_PTR(-ENOMEM
);
2886 ret
= ns_alloc_inum(&new_ns
->ns
);
2889 dec_mnt_namespaces(ucounts
);
2890 return ERR_PTR(ret
);
2892 new_ns
->ns
.ops
= &mntns_operations
;
2893 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2894 atomic_set(&new_ns
->count
, 1);
2895 new_ns
->root
= NULL
;
2896 INIT_LIST_HEAD(&new_ns
->list
);
2897 init_waitqueue_head(&new_ns
->poll
);
2899 new_ns
->user_ns
= get_user_ns(user_ns
);
2900 new_ns
->ucounts
= ucounts
;
2902 new_ns
->pending_mounts
= 0;
2907 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2908 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2910 struct mnt_namespace
*new_ns
;
2911 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2912 struct mount
*p
, *q
;
2919 if (likely(!(flags
& CLONE_NEWNS
))) {
2926 new_ns
= alloc_mnt_ns(user_ns
);
2931 /* First pass: copy the tree topology */
2932 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2933 if (user_ns
!= ns
->user_ns
)
2934 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2935 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2938 free_mnt_ns(new_ns
);
2939 return ERR_CAST(new);
2942 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2945 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2946 * as belonging to new namespace. We have already acquired a private
2947 * fs_struct, so tsk->fs->lock is not needed.
2955 if (&p
->mnt
== new_fs
->root
.mnt
) {
2956 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2959 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2960 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2964 p
= next_mnt(p
, old
);
2965 q
= next_mnt(q
, new);
2968 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2969 p
= next_mnt(p
, old
);
2982 * create_mnt_ns - creates a private namespace and adds a root filesystem
2983 * @mnt: pointer to the new root filesystem mountpoint
2985 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2987 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2988 if (!IS_ERR(new_ns
)) {
2989 struct mount
*mnt
= real_mount(m
);
2990 mnt
->mnt_ns
= new_ns
;
2993 list_add(&mnt
->mnt_list
, &new_ns
->list
);
3000 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
3002 struct mnt_namespace
*ns
;
3003 struct super_block
*s
;
3007 ns
= create_mnt_ns(mnt
);
3009 return ERR_CAST(ns
);
3011 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
3012 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
3017 return ERR_PTR(err
);
3019 /* trade a vfsmount reference for active sb one */
3020 s
= path
.mnt
->mnt_sb
;
3021 atomic_inc(&s
->s_active
);
3023 /* lock the sucker */
3024 down_write(&s
->s_umount
);
3025 /* ... and return the root of (sub)tree on it */
3028 EXPORT_SYMBOL(mount_subtree
);
3030 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
3031 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
3038 kernel_type
= copy_mount_string(type
);
3039 ret
= PTR_ERR(kernel_type
);
3040 if (IS_ERR(kernel_type
))
3043 kernel_dev
= copy_mount_string(dev_name
);
3044 ret
= PTR_ERR(kernel_dev
);
3045 if (IS_ERR(kernel_dev
))
3048 options
= copy_mount_options(data
);
3049 ret
= PTR_ERR(options
);
3050 if (IS_ERR(options
))
3053 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
, options
);
3065 * Return true if path is reachable from root
3067 * namespace_sem or mount_lock is held
3069 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3070 const struct path
*root
)
3072 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3073 dentry
= mnt
->mnt_mountpoint
;
3074 mnt
= mnt
->mnt_parent
;
3076 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3079 bool path_is_under(const struct path
*path1
, const struct path
*path2
)
3082 read_seqlock_excl(&mount_lock
);
3083 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3084 read_sequnlock_excl(&mount_lock
);
3087 EXPORT_SYMBOL(path_is_under
);
3090 * pivot_root Semantics:
3091 * Moves the root file system of the current process to the directory put_old,
3092 * makes new_root as the new root file system of the current process, and sets
3093 * root/cwd of all processes which had them on the current root to new_root.
3096 * The new_root and put_old must be directories, and must not be on the
3097 * same file system as the current process root. The put_old must be
3098 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3099 * pointed to by put_old must yield the same directory as new_root. No other
3100 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3102 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3103 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3104 * in this situation.
3107 * - we don't move root/cwd if they are not at the root (reason: if something
3108 * cared enough to change them, it's probably wrong to force them elsewhere)
3109 * - it's okay to pick a root that isn't the root of a file system, e.g.
3110 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3111 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3114 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3115 const char __user
*, put_old
)
3117 struct path
new, old
, parent_path
, root_parent
, root
;
3118 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3119 struct mountpoint
*old_mp
, *root_mp
;
3125 error
= user_path_dir(new_root
, &new);
3129 error
= user_path_dir(put_old
, &old
);
3133 error
= security_sb_pivotroot(&old
, &new);
3137 get_fs_root(current
->fs
, &root
);
3138 old_mp
= lock_mount(&old
);
3139 error
= PTR_ERR(old_mp
);
3144 new_mnt
= real_mount(new.mnt
);
3145 root_mnt
= real_mount(root
.mnt
);
3146 old_mnt
= real_mount(old
.mnt
);
3147 if (IS_MNT_SHARED(old_mnt
) ||
3148 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3149 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3151 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3153 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3156 if (d_unlinked(new.dentry
))
3159 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3160 goto out4
; /* loop, on the same file system */
3162 if (root
.mnt
->mnt_root
!= root
.dentry
)
3163 goto out4
; /* not a mountpoint */
3164 if (!mnt_has_parent(root_mnt
))
3165 goto out4
; /* not attached */
3166 root_mp
= root_mnt
->mnt_mp
;
3167 if (new.mnt
->mnt_root
!= new.dentry
)
3168 goto out4
; /* not a mountpoint */
3169 if (!mnt_has_parent(new_mnt
))
3170 goto out4
; /* not attached */
3171 /* make sure we can reach put_old from new_root */
3172 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3174 /* make certain new is below the root */
3175 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3177 root_mp
->m_count
++; /* pin it so it won't go away */
3179 detach_mnt(new_mnt
, &parent_path
);
3180 detach_mnt(root_mnt
, &root_parent
);
3181 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3182 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3183 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3185 /* mount old root on put_old */
3186 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3187 /* mount new_root on / */
3188 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3189 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3190 /* A moved mount should not expire automatically */
3191 list_del_init(&new_mnt
->mnt_expire
);
3192 put_mountpoint(root_mp
);
3193 unlock_mount_hash();
3194 chroot_fs_refs(&root
, &new);
3197 unlock_mount(old_mp
);
3199 path_put(&root_parent
);
3200 path_put(&parent_path
);
3212 static void __init
init_mount_tree(void)
3214 struct vfsmount
*mnt
;
3215 struct mnt_namespace
*ns
;
3217 struct file_system_type
*type
;
3219 type
= get_fs_type("rootfs");
3221 panic("Can't find rootfs type");
3222 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3223 put_filesystem(type
);
3225 panic("Can't create rootfs");
3227 ns
= create_mnt_ns(mnt
);
3229 panic("Can't allocate initial namespace");
3231 init_task
.nsproxy
->mnt_ns
= ns
;
3235 root
.dentry
= mnt
->mnt_root
;
3236 mnt
->mnt_flags
|= MNT_LOCKED
;
3238 set_fs_pwd(current
->fs
, &root
);
3239 set_fs_root(current
->fs
, &root
);
3242 void __init
mnt_init(void)
3247 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3248 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3250 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3251 sizeof(struct hlist_head
),
3254 &m_hash_shift
, &m_hash_mask
, 0, 0);
3255 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3256 sizeof(struct hlist_head
),
3259 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3261 if (!mount_hashtable
|| !mountpoint_hashtable
)
3262 panic("Failed to allocate mount hash table\n");
3264 for (u
= 0; u
<= m_hash_mask
; u
++)
3265 INIT_HLIST_HEAD(&mount_hashtable
[u
]);
3266 for (u
= 0; u
<= mp_hash_mask
; u
++)
3267 INIT_HLIST_HEAD(&mountpoint_hashtable
[u
]);
3273 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3275 fs_kobj
= kobject_create_and_add("fs", NULL
);
3277 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3282 void put_mnt_ns(struct mnt_namespace
*ns
)
3284 if (!atomic_dec_and_test(&ns
->count
))
3286 drop_collected_mounts(&ns
->root
->mnt
);
3290 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3292 struct vfsmount
*mnt
;
3293 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
3296 * it is a longterm mount, don't release mnt until
3297 * we unmount before file sys is unregistered
3299 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3303 EXPORT_SYMBOL_GPL(kern_mount_data
);
3305 void kern_unmount(struct vfsmount
*mnt
)
3307 /* release long term mount so mount point can be released */
3308 if (!IS_ERR_OR_NULL(mnt
)) {
3309 real_mount(mnt
)->mnt_ns
= NULL
;
3310 synchronize_rcu(); /* yecchhh... */
3314 EXPORT_SYMBOL(kern_unmount
);
3316 bool our_mnt(struct vfsmount
*mnt
)
3318 return check_mnt(real_mount(mnt
));
3321 bool current_chrooted(void)
3323 /* Does the current process have a non-standard root */
3324 struct path ns_root
;
3325 struct path fs_root
;
3328 /* Find the namespace root */
3329 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3330 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3332 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3335 get_fs_root(current
->fs
, &fs_root
);
3337 chrooted
= !path_equal(&fs_root
, &ns_root
);
3345 static bool mnt_already_visible(struct mnt_namespace
*ns
, struct vfsmount
*new,
3348 int new_flags
= *new_mnt_flags
;
3350 bool visible
= false;
3352 down_read(&namespace_sem
);
3353 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3354 struct mount
*child
;
3357 if (mnt
->mnt
.mnt_sb
->s_type
!= new->mnt_sb
->s_type
)
3360 /* This mount is not fully visible if it's root directory
3361 * is not the root directory of the filesystem.
3363 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3366 /* A local view of the mount flags */
3367 mnt_flags
= mnt
->mnt
.mnt_flags
;
3369 /* Don't miss readonly hidden in the superblock flags */
3370 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_RDONLY
)
3371 mnt_flags
|= MNT_LOCK_READONLY
;
3373 /* Verify the mount flags are equal to or more permissive
3374 * than the proposed new mount.
3376 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3377 !(new_flags
& MNT_READONLY
))
3379 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3380 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3383 /* This mount is not fully visible if there are any
3384 * locked child mounts that cover anything except for
3385 * empty directories.
3387 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3388 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3389 /* Only worry about locked mounts */
3390 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3392 /* Is the directory permanetly empty? */
3393 if (!is_empty_dir_inode(inode
))
3396 /* Preserve the locked attributes */
3397 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3404 up_read(&namespace_sem
);
3408 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
)
3410 const unsigned long required_iflags
= SB_I_NOEXEC
| SB_I_NODEV
;
3411 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3412 unsigned long s_iflags
;
3414 if (ns
->user_ns
== &init_user_ns
)
3417 /* Can this filesystem be too revealing? */
3418 s_iflags
= mnt
->mnt_sb
->s_iflags
;
3419 if (!(s_iflags
& SB_I_USERNS_VISIBLE
))
3422 if ((s_iflags
& required_iflags
) != required_iflags
) {
3423 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3428 return !mnt_already_visible(ns
, mnt
, new_mnt_flags
);
3431 bool mnt_may_suid(struct vfsmount
*mnt
)
3434 * Foreign mounts (accessed via fchdir or through /proc
3435 * symlinks) are always treated as if they are nosuid. This
3436 * prevents namespaces from trusting potentially unsafe
3437 * suid/sgid bits, file caps, or security labels that originate
3438 * in other namespaces.
3440 return !(mnt
->mnt_flags
& MNT_NOSUID
) && check_mnt(real_mount(mnt
)) &&
3441 current_in_userns(mnt
->mnt_sb
->s_user_ns
);
3444 static struct ns_common
*mntns_get(struct task_struct
*task
)
3446 struct ns_common
*ns
= NULL
;
3447 struct nsproxy
*nsproxy
;
3450 nsproxy
= task
->nsproxy
;
3452 ns
= &nsproxy
->mnt_ns
->ns
;
3453 get_mnt_ns(to_mnt_ns(ns
));
3460 static void mntns_put(struct ns_common
*ns
)
3462 put_mnt_ns(to_mnt_ns(ns
));
3465 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3467 struct fs_struct
*fs
= current
->fs
;
3468 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
);
3471 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3472 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3473 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3480 put_mnt_ns(nsproxy
->mnt_ns
);
3481 nsproxy
->mnt_ns
= mnt_ns
;
3484 root
.mnt
= &mnt_ns
->root
->mnt
;
3485 root
.dentry
= mnt_ns
->root
->mnt
.mnt_root
;
3487 while(d_mountpoint(root
.dentry
) && follow_down_one(&root
))
3490 /* Update the pwd and root */
3491 set_fs_pwd(fs
, &root
);
3492 set_fs_root(fs
, &root
);
3498 static struct user_namespace
*mntns_owner(struct ns_common
*ns
)
3500 return to_mnt_ns(ns
)->user_ns
;
3503 const struct proc_ns_operations mntns_operations
= {
3505 .type
= CLONE_NEWNS
,
3508 .install
= mntns_install
,
3509 .owner
= mntns_owner
,