x86/mm/vsyscall: Consider vsyscall page part of user address space
[linux/fpc-iii.git] / arch / x86 / mm / fault.c
blob7e0fa7e24168d9a5c1d79cdcbba5cfe4cb58c4dc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/bootmem.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/mm_types.h>
21 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
22 #include <asm/traps.h> /* dotraplinkage, ... */
23 #include <asm/pgalloc.h> /* pgd_*(), ... */
24 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
25 #include <asm/vsyscall.h> /* emulate_vsyscall */
26 #include <asm/vm86.h> /* struct vm86 */
27 #include <asm/mmu_context.h> /* vma_pkey() */
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/exceptions.h>
33 * Returns 0 if mmiotrace is disabled, or if the fault is not
34 * handled by mmiotrace:
36 static nokprobe_inline int
37 kmmio_fault(struct pt_regs *regs, unsigned long addr)
39 if (unlikely(is_kmmio_active()))
40 if (kmmio_handler(regs, addr) == 1)
41 return -1;
42 return 0;
45 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
47 int ret = 0;
49 /* kprobe_running() needs smp_processor_id() */
50 if (kprobes_built_in() && !user_mode(regs)) {
51 preempt_disable();
52 if (kprobe_running() && kprobe_fault_handler(regs, 14))
53 ret = 1;
54 preempt_enable();
57 return ret;
61 * Prefetch quirks:
63 * 32-bit mode:
65 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
66 * Check that here and ignore it.
68 * 64-bit mode:
70 * Sometimes the CPU reports invalid exceptions on prefetch.
71 * Check that here and ignore it.
73 * Opcode checker based on code by Richard Brunner.
75 static inline int
76 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
77 unsigned char opcode, int *prefetch)
79 unsigned char instr_hi = opcode & 0xf0;
80 unsigned char instr_lo = opcode & 0x0f;
82 switch (instr_hi) {
83 case 0x20:
84 case 0x30:
86 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
87 * In X86_64 long mode, the CPU will signal invalid
88 * opcode if some of these prefixes are present so
89 * X86_64 will never get here anyway
91 return ((instr_lo & 7) == 0x6);
92 #ifdef CONFIG_X86_64
93 case 0x40:
95 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
96 * Need to figure out under what instruction mode the
97 * instruction was issued. Could check the LDT for lm,
98 * but for now it's good enough to assume that long
99 * mode only uses well known segments or kernel.
101 return (!user_mode(regs) || user_64bit_mode(regs));
102 #endif
103 case 0x60:
104 /* 0x64 thru 0x67 are valid prefixes in all modes. */
105 return (instr_lo & 0xC) == 0x4;
106 case 0xF0:
107 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
108 return !instr_lo || (instr_lo>>1) == 1;
109 case 0x00:
110 /* Prefetch instruction is 0x0F0D or 0x0F18 */
111 if (probe_kernel_address(instr, opcode))
112 return 0;
114 *prefetch = (instr_lo == 0xF) &&
115 (opcode == 0x0D || opcode == 0x18);
116 return 0;
117 default:
118 return 0;
122 static int
123 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
125 unsigned char *max_instr;
126 unsigned char *instr;
127 int prefetch = 0;
130 * If it was a exec (instruction fetch) fault on NX page, then
131 * do not ignore the fault:
133 if (error_code & X86_PF_INSTR)
134 return 0;
136 instr = (void *)convert_ip_to_linear(current, regs);
137 max_instr = instr + 15;
139 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
140 return 0;
142 while (instr < max_instr) {
143 unsigned char opcode;
145 if (probe_kernel_address(instr, opcode))
146 break;
148 instr++;
150 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
151 break;
153 return prefetch;
157 * A protection key fault means that the PKRU value did not allow
158 * access to some PTE. Userspace can figure out what PKRU was
159 * from the XSAVE state, and this function fills out a field in
160 * siginfo so userspace can discover which protection key was set
161 * on the PTE.
163 * If we get here, we know that the hardware signaled a X86_PF_PK
164 * fault and that there was a VMA once we got in the fault
165 * handler. It does *not* guarantee that the VMA we find here
166 * was the one that we faulted on.
168 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
169 * 2. T1 : set PKRU to deny access to pkey=4, touches page
170 * 3. T1 : faults...
171 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
172 * 5. T1 : enters fault handler, takes mmap_sem, etc...
173 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
174 * faulted on a pte with its pkey=4.
176 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
177 u32 *pkey)
179 /* This is effectively an #ifdef */
180 if (!boot_cpu_has(X86_FEATURE_OSPKE))
181 return;
183 /* Fault not from Protection Keys: nothing to do */
184 if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
185 return;
187 * force_sig_info_fault() is called from a number of
188 * contexts, some of which have a VMA and some of which
189 * do not. The X86_PF_PK handing happens after we have a
190 * valid VMA, so we should never reach this without a
191 * valid VMA.
193 if (!pkey) {
194 WARN_ONCE(1, "PKU fault with no VMA passed in");
195 info->si_pkey = 0;
196 return;
199 * si_pkey should be thought of as a strong hint, but not
200 * absolutely guranteed to be 100% accurate because of
201 * the race explained above.
203 info->si_pkey = *pkey;
206 static void
207 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
208 struct task_struct *tsk, u32 *pkey, int fault)
210 unsigned lsb = 0;
211 siginfo_t info;
213 clear_siginfo(&info);
214 info.si_signo = si_signo;
215 info.si_errno = 0;
216 info.si_code = si_code;
217 info.si_addr = (void __user *)address;
218 if (fault & VM_FAULT_HWPOISON_LARGE)
219 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
220 if (fault & VM_FAULT_HWPOISON)
221 lsb = PAGE_SHIFT;
222 info.si_addr_lsb = lsb;
224 fill_sig_info_pkey(si_signo, si_code, &info, pkey);
226 force_sig_info(si_signo, &info, tsk);
229 DEFINE_SPINLOCK(pgd_lock);
230 LIST_HEAD(pgd_list);
232 #ifdef CONFIG_X86_32
233 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
235 unsigned index = pgd_index(address);
236 pgd_t *pgd_k;
237 p4d_t *p4d, *p4d_k;
238 pud_t *pud, *pud_k;
239 pmd_t *pmd, *pmd_k;
241 pgd += index;
242 pgd_k = init_mm.pgd + index;
244 if (!pgd_present(*pgd_k))
245 return NULL;
248 * set_pgd(pgd, *pgd_k); here would be useless on PAE
249 * and redundant with the set_pmd() on non-PAE. As would
250 * set_p4d/set_pud.
252 p4d = p4d_offset(pgd, address);
253 p4d_k = p4d_offset(pgd_k, address);
254 if (!p4d_present(*p4d_k))
255 return NULL;
257 pud = pud_offset(p4d, address);
258 pud_k = pud_offset(p4d_k, address);
259 if (!pud_present(*pud_k))
260 return NULL;
262 pmd = pmd_offset(pud, address);
263 pmd_k = pmd_offset(pud_k, address);
264 if (!pmd_present(*pmd_k))
265 return NULL;
267 if (!pmd_present(*pmd))
268 set_pmd(pmd, *pmd_k);
269 else
270 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
272 return pmd_k;
275 void vmalloc_sync_all(void)
277 unsigned long address;
279 if (SHARED_KERNEL_PMD)
280 return;
282 for (address = VMALLOC_START & PMD_MASK;
283 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
284 address += PMD_SIZE) {
285 struct page *page;
287 spin_lock(&pgd_lock);
288 list_for_each_entry(page, &pgd_list, lru) {
289 spinlock_t *pgt_lock;
290 pmd_t *ret;
292 /* the pgt_lock only for Xen */
293 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
295 spin_lock(pgt_lock);
296 ret = vmalloc_sync_one(page_address(page), address);
297 spin_unlock(pgt_lock);
299 if (!ret)
300 break;
302 spin_unlock(&pgd_lock);
307 * 32-bit:
309 * Handle a fault on the vmalloc or module mapping area
311 static noinline int vmalloc_fault(unsigned long address)
313 unsigned long pgd_paddr;
314 pmd_t *pmd_k;
315 pte_t *pte_k;
317 /* Make sure we are in vmalloc area: */
318 if (!(address >= VMALLOC_START && address < VMALLOC_END))
319 return -1;
322 * Synchronize this task's top level page-table
323 * with the 'reference' page table.
325 * Do _not_ use "current" here. We might be inside
326 * an interrupt in the middle of a task switch..
328 pgd_paddr = read_cr3_pa();
329 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
330 if (!pmd_k)
331 return -1;
333 if (pmd_large(*pmd_k))
334 return 0;
336 pte_k = pte_offset_kernel(pmd_k, address);
337 if (!pte_present(*pte_k))
338 return -1;
340 return 0;
342 NOKPROBE_SYMBOL(vmalloc_fault);
345 * Did it hit the DOS screen memory VA from vm86 mode?
347 static inline void
348 check_v8086_mode(struct pt_regs *regs, unsigned long address,
349 struct task_struct *tsk)
351 #ifdef CONFIG_VM86
352 unsigned long bit;
354 if (!v8086_mode(regs) || !tsk->thread.vm86)
355 return;
357 bit = (address - 0xA0000) >> PAGE_SHIFT;
358 if (bit < 32)
359 tsk->thread.vm86->screen_bitmap |= 1 << bit;
360 #endif
363 static bool low_pfn(unsigned long pfn)
365 return pfn < max_low_pfn;
368 static void dump_pagetable(unsigned long address)
370 pgd_t *base = __va(read_cr3_pa());
371 pgd_t *pgd = &base[pgd_index(address)];
372 p4d_t *p4d;
373 pud_t *pud;
374 pmd_t *pmd;
375 pte_t *pte;
377 #ifdef CONFIG_X86_PAE
378 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
379 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
380 goto out;
381 #define pr_pde pr_cont
382 #else
383 #define pr_pde pr_info
384 #endif
385 p4d = p4d_offset(pgd, address);
386 pud = pud_offset(p4d, address);
387 pmd = pmd_offset(pud, address);
388 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
389 #undef pr_pde
392 * We must not directly access the pte in the highpte
393 * case if the page table is located in highmem.
394 * And let's rather not kmap-atomic the pte, just in case
395 * it's allocated already:
397 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
398 goto out;
400 pte = pte_offset_kernel(pmd, address);
401 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
402 out:
403 pr_cont("\n");
406 #else /* CONFIG_X86_64: */
408 void vmalloc_sync_all(void)
410 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
414 * 64-bit:
416 * Handle a fault on the vmalloc area
418 static noinline int vmalloc_fault(unsigned long address)
420 pgd_t *pgd, *pgd_k;
421 p4d_t *p4d, *p4d_k;
422 pud_t *pud;
423 pmd_t *pmd;
424 pte_t *pte;
426 /* Make sure we are in vmalloc area: */
427 if (!(address >= VMALLOC_START && address < VMALLOC_END))
428 return -1;
430 WARN_ON_ONCE(in_nmi());
433 * Copy kernel mappings over when needed. This can also
434 * happen within a race in page table update. In the later
435 * case just flush:
437 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
438 pgd_k = pgd_offset_k(address);
439 if (pgd_none(*pgd_k))
440 return -1;
442 if (pgtable_l5_enabled()) {
443 if (pgd_none(*pgd)) {
444 set_pgd(pgd, *pgd_k);
445 arch_flush_lazy_mmu_mode();
446 } else {
447 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
451 /* With 4-level paging, copying happens on the p4d level. */
452 p4d = p4d_offset(pgd, address);
453 p4d_k = p4d_offset(pgd_k, address);
454 if (p4d_none(*p4d_k))
455 return -1;
457 if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
458 set_p4d(p4d, *p4d_k);
459 arch_flush_lazy_mmu_mode();
460 } else {
461 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
464 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
466 pud = pud_offset(p4d, address);
467 if (pud_none(*pud))
468 return -1;
470 if (pud_large(*pud))
471 return 0;
473 pmd = pmd_offset(pud, address);
474 if (pmd_none(*pmd))
475 return -1;
477 if (pmd_large(*pmd))
478 return 0;
480 pte = pte_offset_kernel(pmd, address);
481 if (!pte_present(*pte))
482 return -1;
484 return 0;
486 NOKPROBE_SYMBOL(vmalloc_fault);
488 #ifdef CONFIG_CPU_SUP_AMD
489 static const char errata93_warning[] =
490 KERN_ERR
491 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
492 "******* Working around it, but it may cause SEGVs or burn power.\n"
493 "******* Please consider a BIOS update.\n"
494 "******* Disabling USB legacy in the BIOS may also help.\n";
495 #endif
498 * No vm86 mode in 64-bit mode:
500 static inline void
501 check_v8086_mode(struct pt_regs *regs, unsigned long address,
502 struct task_struct *tsk)
506 static int bad_address(void *p)
508 unsigned long dummy;
510 return probe_kernel_address((unsigned long *)p, dummy);
513 static void dump_pagetable(unsigned long address)
515 pgd_t *base = __va(read_cr3_pa());
516 pgd_t *pgd = base + pgd_index(address);
517 p4d_t *p4d;
518 pud_t *pud;
519 pmd_t *pmd;
520 pte_t *pte;
522 if (bad_address(pgd))
523 goto bad;
525 pr_info("PGD %lx ", pgd_val(*pgd));
527 if (!pgd_present(*pgd))
528 goto out;
530 p4d = p4d_offset(pgd, address);
531 if (bad_address(p4d))
532 goto bad;
534 pr_cont("P4D %lx ", p4d_val(*p4d));
535 if (!p4d_present(*p4d) || p4d_large(*p4d))
536 goto out;
538 pud = pud_offset(p4d, address);
539 if (bad_address(pud))
540 goto bad;
542 pr_cont("PUD %lx ", pud_val(*pud));
543 if (!pud_present(*pud) || pud_large(*pud))
544 goto out;
546 pmd = pmd_offset(pud, address);
547 if (bad_address(pmd))
548 goto bad;
550 pr_cont("PMD %lx ", pmd_val(*pmd));
551 if (!pmd_present(*pmd) || pmd_large(*pmd))
552 goto out;
554 pte = pte_offset_kernel(pmd, address);
555 if (bad_address(pte))
556 goto bad;
558 pr_cont("PTE %lx", pte_val(*pte));
559 out:
560 pr_cont("\n");
561 return;
562 bad:
563 pr_info("BAD\n");
566 #endif /* CONFIG_X86_64 */
569 * Workaround for K8 erratum #93 & buggy BIOS.
571 * BIOS SMM functions are required to use a specific workaround
572 * to avoid corruption of the 64bit RIP register on C stepping K8.
574 * A lot of BIOS that didn't get tested properly miss this.
576 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
577 * Try to work around it here.
579 * Note we only handle faults in kernel here.
580 * Does nothing on 32-bit.
582 static int is_errata93(struct pt_regs *regs, unsigned long address)
584 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
585 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
586 || boot_cpu_data.x86 != 0xf)
587 return 0;
589 if (address != regs->ip)
590 return 0;
592 if ((address >> 32) != 0)
593 return 0;
595 address |= 0xffffffffUL << 32;
596 if ((address >= (u64)_stext && address <= (u64)_etext) ||
597 (address >= MODULES_VADDR && address <= MODULES_END)) {
598 printk_once(errata93_warning);
599 regs->ip = address;
600 return 1;
602 #endif
603 return 0;
607 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
608 * to illegal addresses >4GB.
610 * We catch this in the page fault handler because these addresses
611 * are not reachable. Just detect this case and return. Any code
612 * segment in LDT is compatibility mode.
614 static int is_errata100(struct pt_regs *regs, unsigned long address)
616 #ifdef CONFIG_X86_64
617 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
618 return 1;
619 #endif
620 return 0;
623 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
625 #ifdef CONFIG_X86_F00F_BUG
626 unsigned long nr;
629 * Pentium F0 0F C7 C8 bug workaround:
631 if (boot_cpu_has_bug(X86_BUG_F00F)) {
632 nr = (address - idt_descr.address) >> 3;
634 if (nr == 6) {
635 do_invalid_op(regs, 0);
636 return 1;
639 #endif
640 return 0;
643 static void
644 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
645 unsigned long address)
647 if (!oops_may_print())
648 return;
650 if (error_code & X86_PF_INSTR) {
651 unsigned int level;
652 pgd_t *pgd;
653 pte_t *pte;
655 pgd = __va(read_cr3_pa());
656 pgd += pgd_index(address);
658 pte = lookup_address_in_pgd(pgd, address, &level);
660 if (pte && pte_present(*pte) && !pte_exec(*pte))
661 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
662 from_kuid(&init_user_ns, current_uid()));
663 if (pte && pte_present(*pte) && pte_exec(*pte) &&
664 (pgd_flags(*pgd) & _PAGE_USER) &&
665 (__read_cr4() & X86_CR4_SMEP))
666 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
667 from_kuid(&init_user_ns, current_uid()));
670 pr_alert("BUG: unable to handle kernel %s at %px\n",
671 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
672 (void *)address);
674 dump_pagetable(address);
677 static noinline void
678 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
679 unsigned long address)
681 struct task_struct *tsk;
682 unsigned long flags;
683 int sig;
685 flags = oops_begin();
686 tsk = current;
687 sig = SIGKILL;
689 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
690 tsk->comm, address);
691 dump_pagetable(address);
693 tsk->thread.cr2 = address;
694 tsk->thread.trap_nr = X86_TRAP_PF;
695 tsk->thread.error_code = error_code;
697 if (__die("Bad pagetable", regs, error_code))
698 sig = 0;
700 oops_end(flags, regs, sig);
703 static noinline void
704 no_context(struct pt_regs *regs, unsigned long error_code,
705 unsigned long address, int signal, int si_code)
707 struct task_struct *tsk = current;
708 unsigned long flags;
709 int sig;
711 /* Are we prepared to handle this kernel fault? */
712 if (fixup_exception(regs, X86_TRAP_PF)) {
714 * Any interrupt that takes a fault gets the fixup. This makes
715 * the below recursive fault logic only apply to a faults from
716 * task context.
718 if (in_interrupt())
719 return;
722 * Per the above we're !in_interrupt(), aka. task context.
724 * In this case we need to make sure we're not recursively
725 * faulting through the emulate_vsyscall() logic.
727 if (current->thread.sig_on_uaccess_err && signal) {
728 tsk->thread.trap_nr = X86_TRAP_PF;
729 tsk->thread.error_code = error_code | X86_PF_USER;
730 tsk->thread.cr2 = address;
732 /* XXX: hwpoison faults will set the wrong code. */
733 force_sig_info_fault(signal, si_code, address,
734 tsk, NULL, 0);
738 * Barring that, we can do the fixup and be happy.
740 return;
743 #ifdef CONFIG_VMAP_STACK
745 * Stack overflow? During boot, we can fault near the initial
746 * stack in the direct map, but that's not an overflow -- check
747 * that we're in vmalloc space to avoid this.
749 if (is_vmalloc_addr((void *)address) &&
750 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
751 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
752 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
754 * We're likely to be running with very little stack space
755 * left. It's plausible that we'd hit this condition but
756 * double-fault even before we get this far, in which case
757 * we're fine: the double-fault handler will deal with it.
759 * We don't want to make it all the way into the oops code
760 * and then double-fault, though, because we're likely to
761 * break the console driver and lose most of the stack dump.
763 asm volatile ("movq %[stack], %%rsp\n\t"
764 "call handle_stack_overflow\n\t"
765 "1: jmp 1b"
766 : ASM_CALL_CONSTRAINT
767 : "D" ("kernel stack overflow (page fault)"),
768 "S" (regs), "d" (address),
769 [stack] "rm" (stack));
770 unreachable();
772 #endif
775 * 32-bit:
777 * Valid to do another page fault here, because if this fault
778 * had been triggered by is_prefetch fixup_exception would have
779 * handled it.
781 * 64-bit:
783 * Hall of shame of CPU/BIOS bugs.
785 if (is_prefetch(regs, error_code, address))
786 return;
788 if (is_errata93(regs, address))
789 return;
792 * Oops. The kernel tried to access some bad page. We'll have to
793 * terminate things with extreme prejudice:
795 flags = oops_begin();
797 show_fault_oops(regs, error_code, address);
799 if (task_stack_end_corrupted(tsk))
800 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
802 tsk->thread.cr2 = address;
803 tsk->thread.trap_nr = X86_TRAP_PF;
804 tsk->thread.error_code = error_code;
806 sig = SIGKILL;
807 if (__die("Oops", regs, error_code))
808 sig = 0;
810 /* Executive summary in case the body of the oops scrolled away */
811 printk(KERN_DEFAULT "CR2: %016lx\n", address);
813 oops_end(flags, regs, sig);
817 * Print out info about fatal segfaults, if the show_unhandled_signals
818 * sysctl is set:
820 static inline void
821 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
822 unsigned long address, struct task_struct *tsk)
824 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
826 if (!unhandled_signal(tsk, SIGSEGV))
827 return;
829 if (!printk_ratelimit())
830 return;
832 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
833 loglvl, tsk->comm, task_pid_nr(tsk), address,
834 (void *)regs->ip, (void *)regs->sp, error_code);
836 print_vma_addr(KERN_CONT " in ", regs->ip);
838 printk(KERN_CONT "\n");
840 show_opcodes(regs, loglvl);
844 * The (legacy) vsyscall page is the long page in the kernel portion
845 * of the address space that has user-accessible permissions.
847 static bool is_vsyscall_vaddr(unsigned long vaddr)
849 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
852 static void
853 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
854 unsigned long address, u32 *pkey, int si_code)
856 struct task_struct *tsk = current;
858 /* User mode accesses just cause a SIGSEGV */
859 if (error_code & X86_PF_USER) {
861 * It's possible to have interrupts off here:
863 local_irq_enable();
866 * Valid to do another page fault here because this one came
867 * from user space:
869 if (is_prefetch(regs, error_code, address))
870 return;
872 if (is_errata100(regs, address))
873 return;
876 * To avoid leaking information about the kernel page table
877 * layout, pretend that user-mode accesses to kernel addresses
878 * are always protection faults.
880 if (address >= TASK_SIZE_MAX)
881 error_code |= X86_PF_PROT;
883 if (likely(show_unhandled_signals))
884 show_signal_msg(regs, error_code, address, tsk);
886 tsk->thread.cr2 = address;
887 tsk->thread.error_code = error_code;
888 tsk->thread.trap_nr = X86_TRAP_PF;
890 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
892 return;
895 if (is_f00f_bug(regs, address))
896 return;
898 no_context(regs, error_code, address, SIGSEGV, si_code);
901 static noinline void
902 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
903 unsigned long address, u32 *pkey)
905 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
908 static void
909 __bad_area(struct pt_regs *regs, unsigned long error_code,
910 unsigned long address, struct vm_area_struct *vma, int si_code)
912 struct mm_struct *mm = current->mm;
913 u32 pkey;
915 if (vma)
916 pkey = vma_pkey(vma);
919 * Something tried to access memory that isn't in our memory map..
920 * Fix it, but check if it's kernel or user first..
922 up_read(&mm->mmap_sem);
924 __bad_area_nosemaphore(regs, error_code, address,
925 (vma) ? &pkey : NULL, si_code);
928 static noinline void
929 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
931 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
934 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
935 struct vm_area_struct *vma)
937 /* This code is always called on the current mm */
938 bool foreign = false;
940 if (!boot_cpu_has(X86_FEATURE_OSPKE))
941 return false;
942 if (error_code & X86_PF_PK)
943 return true;
944 /* this checks permission keys on the VMA: */
945 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
946 (error_code & X86_PF_INSTR), foreign))
947 return true;
948 return false;
951 static noinline void
952 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
953 unsigned long address, struct vm_area_struct *vma)
956 * This OSPKE check is not strictly necessary at runtime.
957 * But, doing it this way allows compiler optimizations
958 * if pkeys are compiled out.
960 if (bad_area_access_from_pkeys(error_code, vma))
961 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
962 else
963 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
966 /* Handle faults in the kernel portion of the address space */
967 static void
968 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
969 u32 *pkey, unsigned int fault)
971 struct task_struct *tsk = current;
972 int code = BUS_ADRERR;
974 /* Kernel mode? Handle exceptions or die: */
975 if (!(error_code & X86_PF_USER)) {
976 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
977 return;
980 /* User-space => ok to do another page fault: */
981 if (is_prefetch(regs, error_code, address))
982 return;
984 tsk->thread.cr2 = address;
985 tsk->thread.error_code = error_code;
986 tsk->thread.trap_nr = X86_TRAP_PF;
988 #ifdef CONFIG_MEMORY_FAILURE
989 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
990 printk(KERN_ERR
991 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
992 tsk->comm, tsk->pid, address);
993 code = BUS_MCEERR_AR;
995 #endif
996 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
999 static noinline void
1000 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1001 unsigned long address, u32 *pkey, vm_fault_t fault)
1003 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1004 no_context(regs, error_code, address, 0, 0);
1005 return;
1008 if (fault & VM_FAULT_OOM) {
1009 /* Kernel mode? Handle exceptions or die: */
1010 if (!(error_code & X86_PF_USER)) {
1011 no_context(regs, error_code, address,
1012 SIGSEGV, SEGV_MAPERR);
1013 return;
1017 * We ran out of memory, call the OOM killer, and return the
1018 * userspace (which will retry the fault, or kill us if we got
1019 * oom-killed):
1021 pagefault_out_of_memory();
1022 } else {
1023 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1024 VM_FAULT_HWPOISON_LARGE))
1025 do_sigbus(regs, error_code, address, pkey, fault);
1026 else if (fault & VM_FAULT_SIGSEGV)
1027 bad_area_nosemaphore(regs, error_code, address, pkey);
1028 else
1029 BUG();
1033 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1035 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1036 return 0;
1038 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1039 return 0;
1041 * Note: We do not do lazy flushing on protection key
1042 * changes, so no spurious fault will ever set X86_PF_PK.
1044 if ((error_code & X86_PF_PK))
1045 return 1;
1047 return 1;
1051 * Handle a spurious fault caused by a stale TLB entry.
1053 * This allows us to lazily refresh the TLB when increasing the
1054 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1055 * eagerly is very expensive since that implies doing a full
1056 * cross-processor TLB flush, even if no stale TLB entries exist
1057 * on other processors.
1059 * Spurious faults may only occur if the TLB contains an entry with
1060 * fewer permission than the page table entry. Non-present (P = 0)
1061 * and reserved bit (R = 1) faults are never spurious.
1063 * There are no security implications to leaving a stale TLB when
1064 * increasing the permissions on a page.
1066 * Returns non-zero if a spurious fault was handled, zero otherwise.
1068 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1069 * (Optional Invalidation).
1071 static noinline int
1072 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1074 pgd_t *pgd;
1075 p4d_t *p4d;
1076 pud_t *pud;
1077 pmd_t *pmd;
1078 pte_t *pte;
1079 int ret;
1082 * Only writes to RO or instruction fetches from NX may cause
1083 * spurious faults.
1085 * These could be from user or supervisor accesses but the TLB
1086 * is only lazily flushed after a kernel mapping protection
1087 * change, so user accesses are not expected to cause spurious
1088 * faults.
1090 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1091 error_code != (X86_PF_INSTR | X86_PF_PROT))
1092 return 0;
1094 pgd = init_mm.pgd + pgd_index(address);
1095 if (!pgd_present(*pgd))
1096 return 0;
1098 p4d = p4d_offset(pgd, address);
1099 if (!p4d_present(*p4d))
1100 return 0;
1102 if (p4d_large(*p4d))
1103 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1105 pud = pud_offset(p4d, address);
1106 if (!pud_present(*pud))
1107 return 0;
1109 if (pud_large(*pud))
1110 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1112 pmd = pmd_offset(pud, address);
1113 if (!pmd_present(*pmd))
1114 return 0;
1116 if (pmd_large(*pmd))
1117 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1119 pte = pte_offset_kernel(pmd, address);
1120 if (!pte_present(*pte))
1121 return 0;
1123 ret = spurious_kernel_fault_check(error_code, pte);
1124 if (!ret)
1125 return 0;
1128 * Make sure we have permissions in PMD.
1129 * If not, then there's a bug in the page tables:
1131 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1132 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1134 return ret;
1136 NOKPROBE_SYMBOL(spurious_kernel_fault);
1138 int show_unhandled_signals = 1;
1140 static inline int
1141 access_error(unsigned long error_code, struct vm_area_struct *vma)
1143 /* This is only called for the current mm, so: */
1144 bool foreign = false;
1147 * Read or write was blocked by protection keys. This is
1148 * always an unconditional error and can never result in
1149 * a follow-up action to resolve the fault, like a COW.
1151 if (error_code & X86_PF_PK)
1152 return 1;
1155 * Make sure to check the VMA so that we do not perform
1156 * faults just to hit a X86_PF_PK as soon as we fill in a
1157 * page.
1159 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1160 (error_code & X86_PF_INSTR), foreign))
1161 return 1;
1163 if (error_code & X86_PF_WRITE) {
1164 /* write, present and write, not present: */
1165 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1166 return 1;
1167 return 0;
1170 /* read, present: */
1171 if (unlikely(error_code & X86_PF_PROT))
1172 return 1;
1174 /* read, not present: */
1175 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1176 return 1;
1178 return 0;
1181 static int fault_in_kernel_space(unsigned long address)
1184 * On 64-bit systems, the vsyscall page is at an address above
1185 * TASK_SIZE_MAX, but is not considered part of the kernel
1186 * address space.
1188 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1189 return false;
1191 return address >= TASK_SIZE_MAX;
1194 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1196 if (!IS_ENABLED(CONFIG_X86_SMAP))
1197 return false;
1199 if (!static_cpu_has(X86_FEATURE_SMAP))
1200 return false;
1202 if (error_code & X86_PF_USER)
1203 return false;
1205 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1206 return false;
1208 return true;
1212 * Called for all faults where 'address' is part of the kernel address
1213 * space. Might get called for faults that originate from *code* that
1214 * ran in userspace or the kernel.
1216 static void
1217 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1218 unsigned long address)
1221 * We can fault-in kernel-space virtual memory on-demand. The
1222 * 'reference' page table is init_mm.pgd.
1224 * NOTE! We MUST NOT take any locks for this case. We may
1225 * be in an interrupt or a critical region, and should
1226 * only copy the information from the master page table,
1227 * nothing more.
1229 * Before doing this on-demand faulting, ensure that the
1230 * fault is not any of the following:
1231 * 1. A fault on a PTE with a reserved bit set.
1232 * 2. A fault caused by a user-mode access. (Do not demand-
1233 * fault kernel memory due to user-mode accesses).
1234 * 3. A fault caused by a page-level protection violation.
1235 * (A demand fault would be on a non-present page which
1236 * would have X86_PF_PROT==0).
1238 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1239 if (vmalloc_fault(address) >= 0)
1240 return;
1243 /* Was the fault spurious, caused by lazy TLB invalidation? */
1244 if (spurious_kernel_fault(hw_error_code, address))
1245 return;
1247 /* kprobes don't want to hook the spurious faults: */
1248 if (kprobes_fault(regs))
1249 return;
1252 * Note, despite being a "bad area", there are quite a few
1253 * acceptable reasons to get here, such as erratum fixups
1254 * and handling kernel code that can fault, like get_user().
1256 * Don't take the mm semaphore here. If we fixup a prefetch
1257 * fault we could otherwise deadlock:
1259 bad_area_nosemaphore(regs, hw_error_code, address, NULL);
1261 NOKPROBE_SYMBOL(do_kern_addr_fault);
1263 /* Handle faults in the user portion of the address space */
1264 static inline
1265 void do_user_addr_fault(struct pt_regs *regs,
1266 unsigned long hw_error_code,
1267 unsigned long address)
1269 unsigned long sw_error_code;
1270 struct vm_area_struct *vma;
1271 struct task_struct *tsk;
1272 struct mm_struct *mm;
1273 vm_fault_t fault, major = 0;
1274 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1275 u32 pkey;
1277 tsk = current;
1278 mm = tsk->mm;
1280 /* kprobes don't want to hook the spurious faults: */
1281 if (unlikely(kprobes_fault(regs)))
1282 return;
1285 * Reserved bits are never expected to be set on
1286 * entries in the user portion of the page tables.
1288 if (unlikely(hw_error_code & X86_PF_RSVD))
1289 pgtable_bad(regs, hw_error_code, address);
1292 * Check for invalid kernel (supervisor) access to user
1293 * pages in the user address space.
1295 if (unlikely(smap_violation(hw_error_code, regs))) {
1296 bad_area_nosemaphore(regs, hw_error_code, address, NULL);
1297 return;
1301 * If we're in an interrupt, have no user context or are running
1302 * in a region with pagefaults disabled then we must not take the fault
1304 if (unlikely(faulthandler_disabled() || !mm)) {
1305 bad_area_nosemaphore(regs, hw_error_code, address, NULL);
1306 return;
1310 * hw_error_code is literally the "page fault error code" passed to
1311 * the kernel directly from the hardware. But, we will shortly be
1312 * modifying it in software, so give it a new name.
1314 sw_error_code = hw_error_code;
1317 * It's safe to allow irq's after cr2 has been saved and the
1318 * vmalloc fault has been handled.
1320 * User-mode registers count as a user access even for any
1321 * potential system fault or CPU buglet:
1323 if (user_mode(regs)) {
1324 local_irq_enable();
1326 * Up to this point, X86_PF_USER set in hw_error_code
1327 * indicated a user-mode access. But, after this,
1328 * X86_PF_USER in sw_error_code will indicate either
1329 * that, *or* an implicit kernel(supervisor)-mode access
1330 * which originated from user mode.
1332 if (!(hw_error_code & X86_PF_USER)) {
1334 * The CPU was in user mode, but the CPU says
1335 * the fault was not a user-mode access.
1336 * Must be an implicit kernel-mode access,
1337 * which we do not expect to happen in the
1338 * user address space.
1340 pr_warn_once("kernel-mode error from user-mode: %lx\n",
1341 hw_error_code);
1343 sw_error_code |= X86_PF_USER;
1345 flags |= FAULT_FLAG_USER;
1346 } else {
1347 if (regs->flags & X86_EFLAGS_IF)
1348 local_irq_enable();
1351 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1353 if (sw_error_code & X86_PF_WRITE)
1354 flags |= FAULT_FLAG_WRITE;
1355 if (sw_error_code & X86_PF_INSTR)
1356 flags |= FAULT_FLAG_INSTRUCTION;
1358 #ifdef CONFIG_X86_64
1360 * Instruction fetch faults in the vsyscall page might need
1361 * emulation. The vsyscall page is at a high address
1362 * (>PAGE_OFFSET), but is considered to be part of the user
1363 * address space.
1365 * The vsyscall page does not have a "real" VMA, so do this
1366 * emulation before we go searching for VMAs.
1368 if ((sw_error_code & X86_PF_INSTR) && is_vsyscall_vaddr(address)) {
1369 if (emulate_vsyscall(regs, address))
1370 return;
1372 #endif
1375 * Kernel-mode access to the user address space should only occur
1376 * on well-defined single instructions listed in the exception
1377 * tables. But, an erroneous kernel fault occurring outside one of
1378 * those areas which also holds mmap_sem might deadlock attempting
1379 * to validate the fault against the address space.
1381 * Only do the expensive exception table search when we might be at
1382 * risk of a deadlock. This happens if we
1383 * 1. Failed to acquire mmap_sem, and
1384 * 2. The access did not originate in userspace. Note: either the
1385 * hardware or earlier page fault code may set X86_PF_USER
1386 * in sw_error_code.
1388 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1389 if (!(sw_error_code & X86_PF_USER) &&
1390 !search_exception_tables(regs->ip)) {
1392 * Fault from code in kernel from
1393 * which we do not expect faults.
1395 bad_area_nosemaphore(regs, sw_error_code, address, NULL);
1396 return;
1398 retry:
1399 down_read(&mm->mmap_sem);
1400 } else {
1402 * The above down_read_trylock() might have succeeded in
1403 * which case we'll have missed the might_sleep() from
1404 * down_read():
1406 might_sleep();
1409 vma = find_vma(mm, address);
1410 if (unlikely(!vma)) {
1411 bad_area(regs, sw_error_code, address);
1412 return;
1414 if (likely(vma->vm_start <= address))
1415 goto good_area;
1416 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1417 bad_area(regs, sw_error_code, address);
1418 return;
1420 if (sw_error_code & X86_PF_USER) {
1422 * Accessing the stack below %sp is always a bug.
1423 * The large cushion allows instructions like enter
1424 * and pusha to work. ("enter $65535, $31" pushes
1425 * 32 pointers and then decrements %sp by 65535.)
1427 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1428 bad_area(regs, sw_error_code, address);
1429 return;
1432 if (unlikely(expand_stack(vma, address))) {
1433 bad_area(regs, sw_error_code, address);
1434 return;
1438 * Ok, we have a good vm_area for this memory access, so
1439 * we can handle it..
1441 good_area:
1442 if (unlikely(access_error(sw_error_code, vma))) {
1443 bad_area_access_error(regs, sw_error_code, address, vma);
1444 return;
1448 * If for any reason at all we couldn't handle the fault,
1449 * make sure we exit gracefully rather than endlessly redo
1450 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1451 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1453 * Note that handle_userfault() may also release and reacquire mmap_sem
1454 * (and not return with VM_FAULT_RETRY), when returning to userland to
1455 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1456 * (potentially after handling any pending signal during the return to
1457 * userland). The return to userland is identified whenever
1458 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1459 * Thus we have to be careful about not touching vma after handling the
1460 * fault, so we read the pkey beforehand.
1462 pkey = vma_pkey(vma);
1463 fault = handle_mm_fault(vma, address, flags);
1464 major |= fault & VM_FAULT_MAJOR;
1467 * If we need to retry the mmap_sem has already been released,
1468 * and if there is a fatal signal pending there is no guarantee
1469 * that we made any progress. Handle this case first.
1471 if (unlikely(fault & VM_FAULT_RETRY)) {
1472 /* Retry at most once */
1473 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1474 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1475 flags |= FAULT_FLAG_TRIED;
1476 if (!fatal_signal_pending(tsk))
1477 goto retry;
1480 /* User mode? Just return to handle the fatal exception */
1481 if (flags & FAULT_FLAG_USER)
1482 return;
1484 /* Not returning to user mode? Handle exceptions or die: */
1485 no_context(regs, sw_error_code, address, SIGBUS, BUS_ADRERR);
1486 return;
1489 up_read(&mm->mmap_sem);
1490 if (unlikely(fault & VM_FAULT_ERROR)) {
1491 mm_fault_error(regs, sw_error_code, address, &pkey, fault);
1492 return;
1496 * Major/minor page fault accounting. If any of the events
1497 * returned VM_FAULT_MAJOR, we account it as a major fault.
1499 if (major) {
1500 tsk->maj_flt++;
1501 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1502 } else {
1503 tsk->min_flt++;
1504 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1507 check_v8086_mode(regs, address, tsk);
1509 NOKPROBE_SYMBOL(do_user_addr_fault);
1512 * This routine handles page faults. It determines the address,
1513 * and the problem, and then passes it off to one of the appropriate
1514 * routines.
1516 static noinline void
1517 __do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
1518 unsigned long address)
1520 prefetchw(&current->mm->mmap_sem);
1522 if (unlikely(kmmio_fault(regs, address)))
1523 return;
1525 /* Was the fault on kernel-controlled part of the address space? */
1526 if (unlikely(fault_in_kernel_space(address)))
1527 do_kern_addr_fault(regs, hw_error_code, address);
1528 else
1529 do_user_addr_fault(regs, hw_error_code, address);
1531 NOKPROBE_SYMBOL(__do_page_fault);
1533 static nokprobe_inline void
1534 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1535 unsigned long error_code)
1537 if (user_mode(regs))
1538 trace_page_fault_user(address, regs, error_code);
1539 else
1540 trace_page_fault_kernel(address, regs, error_code);
1544 * We must have this function blacklisted from kprobes, tagged with notrace
1545 * and call read_cr2() before calling anything else. To avoid calling any
1546 * kind of tracing machinery before we've observed the CR2 value.
1548 * exception_{enter,exit}() contains all sorts of tracepoints.
1550 dotraplinkage void notrace
1551 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1553 unsigned long address = read_cr2(); /* Get the faulting address */
1554 enum ctx_state prev_state;
1556 prev_state = exception_enter();
1557 if (trace_pagefault_enabled())
1558 trace_page_fault_entries(address, regs, error_code);
1560 __do_page_fault(regs, error_code, address);
1561 exception_exit(prev_state);
1563 NOKPROBE_SYMBOL(do_page_fault);