1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/bootmem.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/mm_types.h>
21 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
22 #include <asm/traps.h> /* dotraplinkage, ... */
23 #include <asm/pgalloc.h> /* pgd_*(), ... */
24 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
25 #include <asm/vsyscall.h> /* emulate_vsyscall */
26 #include <asm/vm86.h> /* struct vm86 */
27 #include <asm/mmu_context.h> /* vma_pkey() */
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/exceptions.h>
33 * Returns 0 if mmiotrace is disabled, or if the fault is not
34 * handled by mmiotrace:
36 static nokprobe_inline
int
37 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
39 if (unlikely(is_kmmio_active()))
40 if (kmmio_handler(regs
, addr
) == 1)
45 static nokprobe_inline
int kprobes_fault(struct pt_regs
*regs
)
49 /* kprobe_running() needs smp_processor_id() */
50 if (kprobes_built_in() && !user_mode(regs
)) {
52 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
65 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
66 * Check that here and ignore it.
70 * Sometimes the CPU reports invalid exceptions on prefetch.
71 * Check that here and ignore it.
73 * Opcode checker based on code by Richard Brunner.
76 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
77 unsigned char opcode
, int *prefetch
)
79 unsigned char instr_hi
= opcode
& 0xf0;
80 unsigned char instr_lo
= opcode
& 0x0f;
86 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
87 * In X86_64 long mode, the CPU will signal invalid
88 * opcode if some of these prefixes are present so
89 * X86_64 will never get here anyway
91 return ((instr_lo
& 7) == 0x6);
95 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
96 * Need to figure out under what instruction mode the
97 * instruction was issued. Could check the LDT for lm,
98 * but for now it's good enough to assume that long
99 * mode only uses well known segments or kernel.
101 return (!user_mode(regs
) || user_64bit_mode(regs
));
104 /* 0x64 thru 0x67 are valid prefixes in all modes. */
105 return (instr_lo
& 0xC) == 0x4;
107 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
108 return !instr_lo
|| (instr_lo
>>1) == 1;
110 /* Prefetch instruction is 0x0F0D or 0x0F18 */
111 if (probe_kernel_address(instr
, opcode
))
114 *prefetch
= (instr_lo
== 0xF) &&
115 (opcode
== 0x0D || opcode
== 0x18);
123 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
125 unsigned char *max_instr
;
126 unsigned char *instr
;
130 * If it was a exec (instruction fetch) fault on NX page, then
131 * do not ignore the fault:
133 if (error_code
& X86_PF_INSTR
)
136 instr
= (void *)convert_ip_to_linear(current
, regs
);
137 max_instr
= instr
+ 15;
139 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE_MAX
)
142 while (instr
< max_instr
) {
143 unsigned char opcode
;
145 if (probe_kernel_address(instr
, opcode
))
150 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
157 * A protection key fault means that the PKRU value did not allow
158 * access to some PTE. Userspace can figure out what PKRU was
159 * from the XSAVE state, and this function fills out a field in
160 * siginfo so userspace can discover which protection key was set
163 * If we get here, we know that the hardware signaled a X86_PF_PK
164 * fault and that there was a VMA once we got in the fault
165 * handler. It does *not* guarantee that the VMA we find here
166 * was the one that we faulted on.
168 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
169 * 2. T1 : set PKRU to deny access to pkey=4, touches page
171 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
172 * 5. T1 : enters fault handler, takes mmap_sem, etc...
173 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
174 * faulted on a pte with its pkey=4.
176 static void fill_sig_info_pkey(int si_signo
, int si_code
, siginfo_t
*info
,
179 /* This is effectively an #ifdef */
180 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
183 /* Fault not from Protection Keys: nothing to do */
184 if ((si_code
!= SEGV_PKUERR
) || (si_signo
!= SIGSEGV
))
187 * force_sig_info_fault() is called from a number of
188 * contexts, some of which have a VMA and some of which
189 * do not. The X86_PF_PK handing happens after we have a
190 * valid VMA, so we should never reach this without a
194 WARN_ONCE(1, "PKU fault with no VMA passed in");
199 * si_pkey should be thought of as a strong hint, but not
200 * absolutely guranteed to be 100% accurate because of
201 * the race explained above.
203 info
->si_pkey
= *pkey
;
207 force_sig_info_fault(int si_signo
, int si_code
, unsigned long address
,
208 struct task_struct
*tsk
, u32
*pkey
, int fault
)
213 clear_siginfo(&info
);
214 info
.si_signo
= si_signo
;
216 info
.si_code
= si_code
;
217 info
.si_addr
= (void __user
*)address
;
218 if (fault
& VM_FAULT_HWPOISON_LARGE
)
219 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
220 if (fault
& VM_FAULT_HWPOISON
)
222 info
.si_addr_lsb
= lsb
;
224 fill_sig_info_pkey(si_signo
, si_code
, &info
, pkey
);
226 force_sig_info(si_signo
, &info
, tsk
);
229 DEFINE_SPINLOCK(pgd_lock
);
233 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
235 unsigned index
= pgd_index(address
);
242 pgd_k
= init_mm
.pgd
+ index
;
244 if (!pgd_present(*pgd_k
))
248 * set_pgd(pgd, *pgd_k); here would be useless on PAE
249 * and redundant with the set_pmd() on non-PAE. As would
252 p4d
= p4d_offset(pgd
, address
);
253 p4d_k
= p4d_offset(pgd_k
, address
);
254 if (!p4d_present(*p4d_k
))
257 pud
= pud_offset(p4d
, address
);
258 pud_k
= pud_offset(p4d_k
, address
);
259 if (!pud_present(*pud_k
))
262 pmd
= pmd_offset(pud
, address
);
263 pmd_k
= pmd_offset(pud_k
, address
);
264 if (!pmd_present(*pmd_k
))
267 if (!pmd_present(*pmd
))
268 set_pmd(pmd
, *pmd_k
);
270 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
275 void vmalloc_sync_all(void)
277 unsigned long address
;
279 if (SHARED_KERNEL_PMD
)
282 for (address
= VMALLOC_START
& PMD_MASK
;
283 address
>= TASK_SIZE_MAX
&& address
< FIXADDR_TOP
;
284 address
+= PMD_SIZE
) {
287 spin_lock(&pgd_lock
);
288 list_for_each_entry(page
, &pgd_list
, lru
) {
289 spinlock_t
*pgt_lock
;
292 /* the pgt_lock only for Xen */
293 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
296 ret
= vmalloc_sync_one(page_address(page
), address
);
297 spin_unlock(pgt_lock
);
302 spin_unlock(&pgd_lock
);
309 * Handle a fault on the vmalloc or module mapping area
311 static noinline
int vmalloc_fault(unsigned long address
)
313 unsigned long pgd_paddr
;
317 /* Make sure we are in vmalloc area: */
318 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
322 * Synchronize this task's top level page-table
323 * with the 'reference' page table.
325 * Do _not_ use "current" here. We might be inside
326 * an interrupt in the middle of a task switch..
328 pgd_paddr
= read_cr3_pa();
329 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
333 if (pmd_large(*pmd_k
))
336 pte_k
= pte_offset_kernel(pmd_k
, address
);
337 if (!pte_present(*pte_k
))
342 NOKPROBE_SYMBOL(vmalloc_fault
);
345 * Did it hit the DOS screen memory VA from vm86 mode?
348 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
349 struct task_struct
*tsk
)
354 if (!v8086_mode(regs
) || !tsk
->thread
.vm86
)
357 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
359 tsk
->thread
.vm86
->screen_bitmap
|= 1 << bit
;
363 static bool low_pfn(unsigned long pfn
)
365 return pfn
< max_low_pfn
;
368 static void dump_pagetable(unsigned long address
)
370 pgd_t
*base
= __va(read_cr3_pa());
371 pgd_t
*pgd
= &base
[pgd_index(address
)];
377 #ifdef CONFIG_X86_PAE
378 pr_info("*pdpt = %016Lx ", pgd_val(*pgd
));
379 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
381 #define pr_pde pr_cont
383 #define pr_pde pr_info
385 p4d
= p4d_offset(pgd
, address
);
386 pud
= pud_offset(p4d
, address
);
387 pmd
= pmd_offset(pud
, address
);
388 pr_pde("*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
392 * We must not directly access the pte in the highpte
393 * case if the page table is located in highmem.
394 * And let's rather not kmap-atomic the pte, just in case
395 * it's allocated already:
397 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
400 pte
= pte_offset_kernel(pmd
, address
);
401 pr_cont("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
406 #else /* CONFIG_X86_64: */
408 void vmalloc_sync_all(void)
410 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
);
416 * Handle a fault on the vmalloc area
418 static noinline
int vmalloc_fault(unsigned long address
)
426 /* Make sure we are in vmalloc area: */
427 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
430 WARN_ON_ONCE(in_nmi());
433 * Copy kernel mappings over when needed. This can also
434 * happen within a race in page table update. In the later
437 pgd
= (pgd_t
*)__va(read_cr3_pa()) + pgd_index(address
);
438 pgd_k
= pgd_offset_k(address
);
439 if (pgd_none(*pgd_k
))
442 if (pgtable_l5_enabled()) {
443 if (pgd_none(*pgd
)) {
444 set_pgd(pgd
, *pgd_k
);
445 arch_flush_lazy_mmu_mode();
447 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_k
));
451 /* With 4-level paging, copying happens on the p4d level. */
452 p4d
= p4d_offset(pgd
, address
);
453 p4d_k
= p4d_offset(pgd_k
, address
);
454 if (p4d_none(*p4d_k
))
457 if (p4d_none(*p4d
) && !pgtable_l5_enabled()) {
458 set_p4d(p4d
, *p4d_k
);
459 arch_flush_lazy_mmu_mode();
461 BUG_ON(p4d_pfn(*p4d
) != p4d_pfn(*p4d_k
));
464 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS
< 4);
466 pud
= pud_offset(p4d
, address
);
473 pmd
= pmd_offset(pud
, address
);
480 pte
= pte_offset_kernel(pmd
, address
);
481 if (!pte_present(*pte
))
486 NOKPROBE_SYMBOL(vmalloc_fault
);
488 #ifdef CONFIG_CPU_SUP_AMD
489 static const char errata93_warning
[] =
491 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
492 "******* Working around it, but it may cause SEGVs or burn power.\n"
493 "******* Please consider a BIOS update.\n"
494 "******* Disabling USB legacy in the BIOS may also help.\n";
498 * No vm86 mode in 64-bit mode:
501 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
502 struct task_struct
*tsk
)
506 static int bad_address(void *p
)
510 return probe_kernel_address((unsigned long *)p
, dummy
);
513 static void dump_pagetable(unsigned long address
)
515 pgd_t
*base
= __va(read_cr3_pa());
516 pgd_t
*pgd
= base
+ pgd_index(address
);
522 if (bad_address(pgd
))
525 pr_info("PGD %lx ", pgd_val(*pgd
));
527 if (!pgd_present(*pgd
))
530 p4d
= p4d_offset(pgd
, address
);
531 if (bad_address(p4d
))
534 pr_cont("P4D %lx ", p4d_val(*p4d
));
535 if (!p4d_present(*p4d
) || p4d_large(*p4d
))
538 pud
= pud_offset(p4d
, address
);
539 if (bad_address(pud
))
542 pr_cont("PUD %lx ", pud_val(*pud
));
543 if (!pud_present(*pud
) || pud_large(*pud
))
546 pmd
= pmd_offset(pud
, address
);
547 if (bad_address(pmd
))
550 pr_cont("PMD %lx ", pmd_val(*pmd
));
551 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
554 pte
= pte_offset_kernel(pmd
, address
);
555 if (bad_address(pte
))
558 pr_cont("PTE %lx", pte_val(*pte
));
566 #endif /* CONFIG_X86_64 */
569 * Workaround for K8 erratum #93 & buggy BIOS.
571 * BIOS SMM functions are required to use a specific workaround
572 * to avoid corruption of the 64bit RIP register on C stepping K8.
574 * A lot of BIOS that didn't get tested properly miss this.
576 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
577 * Try to work around it here.
579 * Note we only handle faults in kernel here.
580 * Does nothing on 32-bit.
582 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
584 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
585 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
586 || boot_cpu_data
.x86
!= 0xf)
589 if (address
!= regs
->ip
)
592 if ((address
>> 32) != 0)
595 address
|= 0xffffffffUL
<< 32;
596 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
597 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
598 printk_once(errata93_warning
);
607 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
608 * to illegal addresses >4GB.
610 * We catch this in the page fault handler because these addresses
611 * are not reachable. Just detect this case and return. Any code
612 * segment in LDT is compatibility mode.
614 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
617 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
623 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
625 #ifdef CONFIG_X86_F00F_BUG
629 * Pentium F0 0F C7 C8 bug workaround:
631 if (boot_cpu_has_bug(X86_BUG_F00F
)) {
632 nr
= (address
- idt_descr
.address
) >> 3;
635 do_invalid_op(regs
, 0);
644 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
645 unsigned long address
)
647 if (!oops_may_print())
650 if (error_code
& X86_PF_INSTR
) {
655 pgd
= __va(read_cr3_pa());
656 pgd
+= pgd_index(address
);
658 pte
= lookup_address_in_pgd(pgd
, address
, &level
);
660 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
661 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
662 from_kuid(&init_user_ns
, current_uid()));
663 if (pte
&& pte_present(*pte
) && pte_exec(*pte
) &&
664 (pgd_flags(*pgd
) & _PAGE_USER
) &&
665 (__read_cr4() & X86_CR4_SMEP
))
666 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
667 from_kuid(&init_user_ns
, current_uid()));
670 pr_alert("BUG: unable to handle kernel %s at %px\n",
671 address
< PAGE_SIZE
? "NULL pointer dereference" : "paging request",
674 dump_pagetable(address
);
678 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
679 unsigned long address
)
681 struct task_struct
*tsk
;
685 flags
= oops_begin();
689 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
691 dump_pagetable(address
);
693 tsk
->thread
.cr2
= address
;
694 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
695 tsk
->thread
.error_code
= error_code
;
697 if (__die("Bad pagetable", regs
, error_code
))
700 oops_end(flags
, regs
, sig
);
704 no_context(struct pt_regs
*regs
, unsigned long error_code
,
705 unsigned long address
, int signal
, int si_code
)
707 struct task_struct
*tsk
= current
;
711 /* Are we prepared to handle this kernel fault? */
712 if (fixup_exception(regs
, X86_TRAP_PF
)) {
714 * Any interrupt that takes a fault gets the fixup. This makes
715 * the below recursive fault logic only apply to a faults from
722 * Per the above we're !in_interrupt(), aka. task context.
724 * In this case we need to make sure we're not recursively
725 * faulting through the emulate_vsyscall() logic.
727 if (current
->thread
.sig_on_uaccess_err
&& signal
) {
728 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
729 tsk
->thread
.error_code
= error_code
| X86_PF_USER
;
730 tsk
->thread
.cr2
= address
;
732 /* XXX: hwpoison faults will set the wrong code. */
733 force_sig_info_fault(signal
, si_code
, address
,
738 * Barring that, we can do the fixup and be happy.
743 #ifdef CONFIG_VMAP_STACK
745 * Stack overflow? During boot, we can fault near the initial
746 * stack in the direct map, but that's not an overflow -- check
747 * that we're in vmalloc space to avoid this.
749 if (is_vmalloc_addr((void *)address
) &&
750 (((unsigned long)tsk
->stack
- 1 - address
< PAGE_SIZE
) ||
751 address
- ((unsigned long)tsk
->stack
+ THREAD_SIZE
) < PAGE_SIZE
)) {
752 unsigned long stack
= this_cpu_read(orig_ist
.ist
[DOUBLEFAULT_STACK
]) - sizeof(void *);
754 * We're likely to be running with very little stack space
755 * left. It's plausible that we'd hit this condition but
756 * double-fault even before we get this far, in which case
757 * we're fine: the double-fault handler will deal with it.
759 * We don't want to make it all the way into the oops code
760 * and then double-fault, though, because we're likely to
761 * break the console driver and lose most of the stack dump.
763 asm volatile ("movq %[stack], %%rsp\n\t"
764 "call handle_stack_overflow\n\t"
766 : ASM_CALL_CONSTRAINT
767 : "D" ("kernel stack overflow (page fault)"),
768 "S" (regs
), "d" (address
),
769 [stack
] "rm" (stack
));
777 * Valid to do another page fault here, because if this fault
778 * had been triggered by is_prefetch fixup_exception would have
783 * Hall of shame of CPU/BIOS bugs.
785 if (is_prefetch(regs
, error_code
, address
))
788 if (is_errata93(regs
, address
))
792 * Oops. The kernel tried to access some bad page. We'll have to
793 * terminate things with extreme prejudice:
795 flags
= oops_begin();
797 show_fault_oops(regs
, error_code
, address
);
799 if (task_stack_end_corrupted(tsk
))
800 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
802 tsk
->thread
.cr2
= address
;
803 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
804 tsk
->thread
.error_code
= error_code
;
807 if (__die("Oops", regs
, error_code
))
810 /* Executive summary in case the body of the oops scrolled away */
811 printk(KERN_DEFAULT
"CR2: %016lx\n", address
);
813 oops_end(flags
, regs
, sig
);
817 * Print out info about fatal segfaults, if the show_unhandled_signals
821 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
822 unsigned long address
, struct task_struct
*tsk
)
824 const char *loglvl
= task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
;
826 if (!unhandled_signal(tsk
, SIGSEGV
))
829 if (!printk_ratelimit())
832 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
833 loglvl
, tsk
->comm
, task_pid_nr(tsk
), address
,
834 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
836 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
838 printk(KERN_CONT
"\n");
840 show_opcodes(regs
, loglvl
);
844 * The (legacy) vsyscall page is the long page in the kernel portion
845 * of the address space that has user-accessible permissions.
847 static bool is_vsyscall_vaddr(unsigned long vaddr
)
849 return unlikely((vaddr
& PAGE_MASK
) == VSYSCALL_ADDR
);
853 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
854 unsigned long address
, u32
*pkey
, int si_code
)
856 struct task_struct
*tsk
= current
;
858 /* User mode accesses just cause a SIGSEGV */
859 if (error_code
& X86_PF_USER
) {
861 * It's possible to have interrupts off here:
866 * Valid to do another page fault here because this one came
869 if (is_prefetch(regs
, error_code
, address
))
872 if (is_errata100(regs
, address
))
876 * To avoid leaking information about the kernel page table
877 * layout, pretend that user-mode accesses to kernel addresses
878 * are always protection faults.
880 if (address
>= TASK_SIZE_MAX
)
881 error_code
|= X86_PF_PROT
;
883 if (likely(show_unhandled_signals
))
884 show_signal_msg(regs
, error_code
, address
, tsk
);
886 tsk
->thread
.cr2
= address
;
887 tsk
->thread
.error_code
= error_code
;
888 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
890 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
, pkey
, 0);
895 if (is_f00f_bug(regs
, address
))
898 no_context(regs
, error_code
, address
, SIGSEGV
, si_code
);
902 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
903 unsigned long address
, u32
*pkey
)
905 __bad_area_nosemaphore(regs
, error_code
, address
, pkey
, SEGV_MAPERR
);
909 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
910 unsigned long address
, struct vm_area_struct
*vma
, int si_code
)
912 struct mm_struct
*mm
= current
->mm
;
916 pkey
= vma_pkey(vma
);
919 * Something tried to access memory that isn't in our memory map..
920 * Fix it, but check if it's kernel or user first..
922 up_read(&mm
->mmap_sem
);
924 __bad_area_nosemaphore(regs
, error_code
, address
,
925 (vma
) ? &pkey
: NULL
, si_code
);
929 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
931 __bad_area(regs
, error_code
, address
, NULL
, SEGV_MAPERR
);
934 static inline bool bad_area_access_from_pkeys(unsigned long error_code
,
935 struct vm_area_struct
*vma
)
937 /* This code is always called on the current mm */
938 bool foreign
= false;
940 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
942 if (error_code
& X86_PF_PK
)
944 /* this checks permission keys on the VMA: */
945 if (!arch_vma_access_permitted(vma
, (error_code
& X86_PF_WRITE
),
946 (error_code
& X86_PF_INSTR
), foreign
))
952 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
953 unsigned long address
, struct vm_area_struct
*vma
)
956 * This OSPKE check is not strictly necessary at runtime.
957 * But, doing it this way allows compiler optimizations
958 * if pkeys are compiled out.
960 if (bad_area_access_from_pkeys(error_code
, vma
))
961 __bad_area(regs
, error_code
, address
, vma
, SEGV_PKUERR
);
963 __bad_area(regs
, error_code
, address
, vma
, SEGV_ACCERR
);
966 /* Handle faults in the kernel portion of the address space */
968 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
969 u32
*pkey
, unsigned int fault
)
971 struct task_struct
*tsk
= current
;
972 int code
= BUS_ADRERR
;
974 /* Kernel mode? Handle exceptions or die: */
975 if (!(error_code
& X86_PF_USER
)) {
976 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
980 /* User-space => ok to do another page fault: */
981 if (is_prefetch(regs
, error_code
, address
))
984 tsk
->thread
.cr2
= address
;
985 tsk
->thread
.error_code
= error_code
;
986 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
988 #ifdef CONFIG_MEMORY_FAILURE
989 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
991 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
992 tsk
->comm
, tsk
->pid
, address
);
993 code
= BUS_MCEERR_AR
;
996 force_sig_info_fault(SIGBUS
, code
, address
, tsk
, pkey
, fault
);
1000 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
1001 unsigned long address
, u32
*pkey
, vm_fault_t fault
)
1003 if (fatal_signal_pending(current
) && !(error_code
& X86_PF_USER
)) {
1004 no_context(regs
, error_code
, address
, 0, 0);
1008 if (fault
& VM_FAULT_OOM
) {
1009 /* Kernel mode? Handle exceptions or die: */
1010 if (!(error_code
& X86_PF_USER
)) {
1011 no_context(regs
, error_code
, address
,
1012 SIGSEGV
, SEGV_MAPERR
);
1017 * We ran out of memory, call the OOM killer, and return the
1018 * userspace (which will retry the fault, or kill us if we got
1021 pagefault_out_of_memory();
1023 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
1024 VM_FAULT_HWPOISON_LARGE
))
1025 do_sigbus(regs
, error_code
, address
, pkey
, fault
);
1026 else if (fault
& VM_FAULT_SIGSEGV
)
1027 bad_area_nosemaphore(regs
, error_code
, address
, pkey
);
1033 static int spurious_kernel_fault_check(unsigned long error_code
, pte_t
*pte
)
1035 if ((error_code
& X86_PF_WRITE
) && !pte_write(*pte
))
1038 if ((error_code
& X86_PF_INSTR
) && !pte_exec(*pte
))
1041 * Note: We do not do lazy flushing on protection key
1042 * changes, so no spurious fault will ever set X86_PF_PK.
1044 if ((error_code
& X86_PF_PK
))
1051 * Handle a spurious fault caused by a stale TLB entry.
1053 * This allows us to lazily refresh the TLB when increasing the
1054 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1055 * eagerly is very expensive since that implies doing a full
1056 * cross-processor TLB flush, even if no stale TLB entries exist
1057 * on other processors.
1059 * Spurious faults may only occur if the TLB contains an entry with
1060 * fewer permission than the page table entry. Non-present (P = 0)
1061 * and reserved bit (R = 1) faults are never spurious.
1063 * There are no security implications to leaving a stale TLB when
1064 * increasing the permissions on a page.
1066 * Returns non-zero if a spurious fault was handled, zero otherwise.
1068 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1069 * (Optional Invalidation).
1072 spurious_kernel_fault(unsigned long error_code
, unsigned long address
)
1082 * Only writes to RO or instruction fetches from NX may cause
1085 * These could be from user or supervisor accesses but the TLB
1086 * is only lazily flushed after a kernel mapping protection
1087 * change, so user accesses are not expected to cause spurious
1090 if (error_code
!= (X86_PF_WRITE
| X86_PF_PROT
) &&
1091 error_code
!= (X86_PF_INSTR
| X86_PF_PROT
))
1094 pgd
= init_mm
.pgd
+ pgd_index(address
);
1095 if (!pgd_present(*pgd
))
1098 p4d
= p4d_offset(pgd
, address
);
1099 if (!p4d_present(*p4d
))
1102 if (p4d_large(*p4d
))
1103 return spurious_kernel_fault_check(error_code
, (pte_t
*) p4d
);
1105 pud
= pud_offset(p4d
, address
);
1106 if (!pud_present(*pud
))
1109 if (pud_large(*pud
))
1110 return spurious_kernel_fault_check(error_code
, (pte_t
*) pud
);
1112 pmd
= pmd_offset(pud
, address
);
1113 if (!pmd_present(*pmd
))
1116 if (pmd_large(*pmd
))
1117 return spurious_kernel_fault_check(error_code
, (pte_t
*) pmd
);
1119 pte
= pte_offset_kernel(pmd
, address
);
1120 if (!pte_present(*pte
))
1123 ret
= spurious_kernel_fault_check(error_code
, pte
);
1128 * Make sure we have permissions in PMD.
1129 * If not, then there's a bug in the page tables:
1131 ret
= spurious_kernel_fault_check(error_code
, (pte_t
*) pmd
);
1132 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
1136 NOKPROBE_SYMBOL(spurious_kernel_fault
);
1138 int show_unhandled_signals
= 1;
1141 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
1143 /* This is only called for the current mm, so: */
1144 bool foreign
= false;
1147 * Read or write was blocked by protection keys. This is
1148 * always an unconditional error and can never result in
1149 * a follow-up action to resolve the fault, like a COW.
1151 if (error_code
& X86_PF_PK
)
1155 * Make sure to check the VMA so that we do not perform
1156 * faults just to hit a X86_PF_PK as soon as we fill in a
1159 if (!arch_vma_access_permitted(vma
, (error_code
& X86_PF_WRITE
),
1160 (error_code
& X86_PF_INSTR
), foreign
))
1163 if (error_code
& X86_PF_WRITE
) {
1164 /* write, present and write, not present: */
1165 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
1170 /* read, present: */
1171 if (unlikely(error_code
& X86_PF_PROT
))
1174 /* read, not present: */
1175 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
1181 static int fault_in_kernel_space(unsigned long address
)
1184 * On 64-bit systems, the vsyscall page is at an address above
1185 * TASK_SIZE_MAX, but is not considered part of the kernel
1188 if (IS_ENABLED(CONFIG_X86_64
) && is_vsyscall_vaddr(address
))
1191 return address
>= TASK_SIZE_MAX
;
1194 static inline bool smap_violation(int error_code
, struct pt_regs
*regs
)
1196 if (!IS_ENABLED(CONFIG_X86_SMAP
))
1199 if (!static_cpu_has(X86_FEATURE_SMAP
))
1202 if (error_code
& X86_PF_USER
)
1205 if (!user_mode(regs
) && (regs
->flags
& X86_EFLAGS_AC
))
1212 * Called for all faults where 'address' is part of the kernel address
1213 * space. Might get called for faults that originate from *code* that
1214 * ran in userspace or the kernel.
1217 do_kern_addr_fault(struct pt_regs
*regs
, unsigned long hw_error_code
,
1218 unsigned long address
)
1221 * We can fault-in kernel-space virtual memory on-demand. The
1222 * 'reference' page table is init_mm.pgd.
1224 * NOTE! We MUST NOT take any locks for this case. We may
1225 * be in an interrupt or a critical region, and should
1226 * only copy the information from the master page table,
1229 * Before doing this on-demand faulting, ensure that the
1230 * fault is not any of the following:
1231 * 1. A fault on a PTE with a reserved bit set.
1232 * 2. A fault caused by a user-mode access. (Do not demand-
1233 * fault kernel memory due to user-mode accesses).
1234 * 3. A fault caused by a page-level protection violation.
1235 * (A demand fault would be on a non-present page which
1236 * would have X86_PF_PROT==0).
1238 if (!(hw_error_code
& (X86_PF_RSVD
| X86_PF_USER
| X86_PF_PROT
))) {
1239 if (vmalloc_fault(address
) >= 0)
1243 /* Was the fault spurious, caused by lazy TLB invalidation? */
1244 if (spurious_kernel_fault(hw_error_code
, address
))
1247 /* kprobes don't want to hook the spurious faults: */
1248 if (kprobes_fault(regs
))
1252 * Note, despite being a "bad area", there are quite a few
1253 * acceptable reasons to get here, such as erratum fixups
1254 * and handling kernel code that can fault, like get_user().
1256 * Don't take the mm semaphore here. If we fixup a prefetch
1257 * fault we could otherwise deadlock:
1259 bad_area_nosemaphore(regs
, hw_error_code
, address
, NULL
);
1261 NOKPROBE_SYMBOL(do_kern_addr_fault
);
1263 /* Handle faults in the user portion of the address space */
1265 void do_user_addr_fault(struct pt_regs
*regs
,
1266 unsigned long hw_error_code
,
1267 unsigned long address
)
1269 unsigned long sw_error_code
;
1270 struct vm_area_struct
*vma
;
1271 struct task_struct
*tsk
;
1272 struct mm_struct
*mm
;
1273 vm_fault_t fault
, major
= 0;
1274 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1280 /* kprobes don't want to hook the spurious faults: */
1281 if (unlikely(kprobes_fault(regs
)))
1285 * Reserved bits are never expected to be set on
1286 * entries in the user portion of the page tables.
1288 if (unlikely(hw_error_code
& X86_PF_RSVD
))
1289 pgtable_bad(regs
, hw_error_code
, address
);
1292 * Check for invalid kernel (supervisor) access to user
1293 * pages in the user address space.
1295 if (unlikely(smap_violation(hw_error_code
, regs
))) {
1296 bad_area_nosemaphore(regs
, hw_error_code
, address
, NULL
);
1301 * If we're in an interrupt, have no user context or are running
1302 * in a region with pagefaults disabled then we must not take the fault
1304 if (unlikely(faulthandler_disabled() || !mm
)) {
1305 bad_area_nosemaphore(regs
, hw_error_code
, address
, NULL
);
1310 * hw_error_code is literally the "page fault error code" passed to
1311 * the kernel directly from the hardware. But, we will shortly be
1312 * modifying it in software, so give it a new name.
1314 sw_error_code
= hw_error_code
;
1317 * It's safe to allow irq's after cr2 has been saved and the
1318 * vmalloc fault has been handled.
1320 * User-mode registers count as a user access even for any
1321 * potential system fault or CPU buglet:
1323 if (user_mode(regs
)) {
1326 * Up to this point, X86_PF_USER set in hw_error_code
1327 * indicated a user-mode access. But, after this,
1328 * X86_PF_USER in sw_error_code will indicate either
1329 * that, *or* an implicit kernel(supervisor)-mode access
1330 * which originated from user mode.
1332 if (!(hw_error_code
& X86_PF_USER
)) {
1334 * The CPU was in user mode, but the CPU says
1335 * the fault was not a user-mode access.
1336 * Must be an implicit kernel-mode access,
1337 * which we do not expect to happen in the
1338 * user address space.
1340 pr_warn_once("kernel-mode error from user-mode: %lx\n",
1343 sw_error_code
|= X86_PF_USER
;
1345 flags
|= FAULT_FLAG_USER
;
1347 if (regs
->flags
& X86_EFLAGS_IF
)
1351 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
1353 if (sw_error_code
& X86_PF_WRITE
)
1354 flags
|= FAULT_FLAG_WRITE
;
1355 if (sw_error_code
& X86_PF_INSTR
)
1356 flags
|= FAULT_FLAG_INSTRUCTION
;
1358 #ifdef CONFIG_X86_64
1360 * Instruction fetch faults in the vsyscall page might need
1361 * emulation. The vsyscall page is at a high address
1362 * (>PAGE_OFFSET), but is considered to be part of the user
1365 * The vsyscall page does not have a "real" VMA, so do this
1366 * emulation before we go searching for VMAs.
1368 if ((sw_error_code
& X86_PF_INSTR
) && is_vsyscall_vaddr(address
)) {
1369 if (emulate_vsyscall(regs
, address
))
1375 * Kernel-mode access to the user address space should only occur
1376 * on well-defined single instructions listed in the exception
1377 * tables. But, an erroneous kernel fault occurring outside one of
1378 * those areas which also holds mmap_sem might deadlock attempting
1379 * to validate the fault against the address space.
1381 * Only do the expensive exception table search when we might be at
1382 * risk of a deadlock. This happens if we
1383 * 1. Failed to acquire mmap_sem, and
1384 * 2. The access did not originate in userspace. Note: either the
1385 * hardware or earlier page fault code may set X86_PF_USER
1388 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1389 if (!(sw_error_code
& X86_PF_USER
) &&
1390 !search_exception_tables(regs
->ip
)) {
1392 * Fault from code in kernel from
1393 * which we do not expect faults.
1395 bad_area_nosemaphore(regs
, sw_error_code
, address
, NULL
);
1399 down_read(&mm
->mmap_sem
);
1402 * The above down_read_trylock() might have succeeded in
1403 * which case we'll have missed the might_sleep() from
1409 vma
= find_vma(mm
, address
);
1410 if (unlikely(!vma
)) {
1411 bad_area(regs
, sw_error_code
, address
);
1414 if (likely(vma
->vm_start
<= address
))
1416 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1417 bad_area(regs
, sw_error_code
, address
);
1420 if (sw_error_code
& X86_PF_USER
) {
1422 * Accessing the stack below %sp is always a bug.
1423 * The large cushion allows instructions like enter
1424 * and pusha to work. ("enter $65535, $31" pushes
1425 * 32 pointers and then decrements %sp by 65535.)
1427 if (unlikely(address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)) {
1428 bad_area(regs
, sw_error_code
, address
);
1432 if (unlikely(expand_stack(vma
, address
))) {
1433 bad_area(regs
, sw_error_code
, address
);
1438 * Ok, we have a good vm_area for this memory access, so
1439 * we can handle it..
1442 if (unlikely(access_error(sw_error_code
, vma
))) {
1443 bad_area_access_error(regs
, sw_error_code
, address
, vma
);
1448 * If for any reason at all we couldn't handle the fault,
1449 * make sure we exit gracefully rather than endlessly redo
1450 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1451 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1453 * Note that handle_userfault() may also release and reacquire mmap_sem
1454 * (and not return with VM_FAULT_RETRY), when returning to userland to
1455 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1456 * (potentially after handling any pending signal during the return to
1457 * userland). The return to userland is identified whenever
1458 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1459 * Thus we have to be careful about not touching vma after handling the
1460 * fault, so we read the pkey beforehand.
1462 pkey
= vma_pkey(vma
);
1463 fault
= handle_mm_fault(vma
, address
, flags
);
1464 major
|= fault
& VM_FAULT_MAJOR
;
1467 * If we need to retry the mmap_sem has already been released,
1468 * and if there is a fatal signal pending there is no guarantee
1469 * that we made any progress. Handle this case first.
1471 if (unlikely(fault
& VM_FAULT_RETRY
)) {
1472 /* Retry at most once */
1473 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1474 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1475 flags
|= FAULT_FLAG_TRIED
;
1476 if (!fatal_signal_pending(tsk
))
1480 /* User mode? Just return to handle the fatal exception */
1481 if (flags
& FAULT_FLAG_USER
)
1484 /* Not returning to user mode? Handle exceptions or die: */
1485 no_context(regs
, sw_error_code
, address
, SIGBUS
, BUS_ADRERR
);
1489 up_read(&mm
->mmap_sem
);
1490 if (unlikely(fault
& VM_FAULT_ERROR
)) {
1491 mm_fault_error(regs
, sw_error_code
, address
, &pkey
, fault
);
1496 * Major/minor page fault accounting. If any of the events
1497 * returned VM_FAULT_MAJOR, we account it as a major fault.
1501 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
1504 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
1507 check_v8086_mode(regs
, address
, tsk
);
1509 NOKPROBE_SYMBOL(do_user_addr_fault
);
1512 * This routine handles page faults. It determines the address,
1513 * and the problem, and then passes it off to one of the appropriate
1516 static noinline
void
1517 __do_page_fault(struct pt_regs
*regs
, unsigned long hw_error_code
,
1518 unsigned long address
)
1520 prefetchw(¤t
->mm
->mmap_sem
);
1522 if (unlikely(kmmio_fault(regs
, address
)))
1525 /* Was the fault on kernel-controlled part of the address space? */
1526 if (unlikely(fault_in_kernel_space(address
)))
1527 do_kern_addr_fault(regs
, hw_error_code
, address
);
1529 do_user_addr_fault(regs
, hw_error_code
, address
);
1531 NOKPROBE_SYMBOL(__do_page_fault
);
1533 static nokprobe_inline
void
1534 trace_page_fault_entries(unsigned long address
, struct pt_regs
*regs
,
1535 unsigned long error_code
)
1537 if (user_mode(regs
))
1538 trace_page_fault_user(address
, regs
, error_code
);
1540 trace_page_fault_kernel(address
, regs
, error_code
);
1544 * We must have this function blacklisted from kprobes, tagged with notrace
1545 * and call read_cr2() before calling anything else. To avoid calling any
1546 * kind of tracing machinery before we've observed the CR2 value.
1548 * exception_{enter,exit}() contains all sorts of tracepoints.
1550 dotraplinkage
void notrace
1551 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
1553 unsigned long address
= read_cr2(); /* Get the faulting address */
1554 enum ctx_state prev_state
;
1556 prev_state
= exception_enter();
1557 if (trace_pagefault_enabled())
1558 trace_page_fault_entries(address
, regs
, error_code
);
1560 __do_page_fault(regs
, error_code
, address
);
1561 exception_exit(prev_state
);
1563 NOKPROBE_SYMBOL(do_page_fault
);