2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
58 #define ZSPAGE_MAGIC 0x58
61 * This must be power of 2 and greater than of equal to sizeof(link_free).
62 * These two conditions ensure that any 'struct link_free' itself doesn't
63 * span more than 1 page which avoids complex case of mapping 2 pages simply
64 * to restore link_free pointer values.
69 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
70 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72 #define ZS_MAX_ZSPAGE_ORDER 2
73 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
78 * Object location (<PFN>, <obj_idx>) is encoded as
79 * as single (unsigned long) handle value.
81 * Note that object index <obj_idx> starts from 0.
83 * This is made more complicated by various memory models and PAE.
86 #ifndef MAX_PHYSMEM_BITS
87 #ifdef CONFIG_HIGHMEM64G
88 #define MAX_PHYSMEM_BITS 36
89 #else /* !CONFIG_HIGHMEM64G */
91 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
94 #define MAX_PHYSMEM_BITS BITS_PER_LONG
97 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
100 * Memory for allocating for handle keeps object position by
101 * encoding <page, obj_idx> and the encoded value has a room
102 * in least bit(ie, look at obj_to_location).
103 * We use the bit to synchronize between object access by
104 * user and migration.
106 #define HANDLE_PIN_BIT 0
109 * Head in allocated object should have OBJ_ALLOCATED_TAG
110 * to identify the object was allocated or not.
111 * It's okay to add the status bit in the least bit because
112 * header keeps handle which is 4byte-aligned address so we
113 * have room for two bit at least.
115 #define OBJ_ALLOCATED_TAG 1
116 #define OBJ_TAG_BITS 1
117 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
118 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120 #define FULLNESS_BITS 2
122 #define ISOLATED_BITS 3
123 #define MAGIC_VAL_BITS 8
125 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127 #define ZS_MIN_ALLOC_SIZE \
128 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129 /* each chunk includes extra space to keep handle */
130 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
133 * On systems with 4K page size, this gives 255 size classes! There is a
135 * - Large number of size classes is potentially wasteful as free page are
136 * spread across these classes
137 * - Small number of size classes causes large internal fragmentation
138 * - Probably its better to use specific size classes (empirically
139 * determined). NOTE: all those class sizes must be set as multiple of
140 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
146 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147 ZS_SIZE_CLASS_DELTA) + 1)
149 enum fullness_group
{
167 struct zs_size_stat
{
168 unsigned long objs
[NR_ZS_STAT_TYPE
];
171 #ifdef CONFIG_ZSMALLOC_STAT
172 static struct dentry
*zs_stat_root
;
175 #ifdef CONFIG_COMPACTION
176 static struct vfsmount
*zsmalloc_mnt
;
180 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
182 * n = number of allocated objects
183 * N = total number of objects zspage can store
184 * f = fullness_threshold_frac
186 * Similarly, we assign zspage to:
187 * ZS_ALMOST_FULL when n > N / f
188 * ZS_EMPTY when n == 0
189 * ZS_FULL when n == N
191 * (see: fix_fullness_group())
193 static const int fullness_threshold_frac
= 4;
197 struct list_head fullness_list
[NR_ZS_FULLNESS
];
199 * Size of objects stored in this class. Must be multiple
204 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
205 int pages_per_zspage
;
208 struct zs_size_stat stats
;
211 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
212 static void SetPageHugeObject(struct page
*page
)
214 SetPageOwnerPriv1(page
);
217 static void ClearPageHugeObject(struct page
*page
)
219 ClearPageOwnerPriv1(page
);
222 static int PageHugeObject(struct page
*page
)
224 return PageOwnerPriv1(page
);
228 * Placed within free objects to form a singly linked list.
229 * For every zspage, zspage->freeobj gives head of this list.
231 * This must be power of 2 and less than or equal to ZS_ALIGN
237 * It's valid for non-allocated object
241 * Handle of allocated object.
243 unsigned long handle
;
250 struct size_class
*size_class
[ZS_SIZE_CLASSES
];
251 struct kmem_cache
*handle_cachep
;
252 struct kmem_cache
*zspage_cachep
;
254 atomic_long_t pages_allocated
;
256 struct zs_pool_stats stats
;
258 /* Compact classes */
259 struct shrinker shrinker
;
261 * To signify that register_shrinker() was successful
262 * and unregister_shrinker() will not Oops.
264 bool shrinker_enabled
;
265 #ifdef CONFIG_ZSMALLOC_STAT
266 struct dentry
*stat_dentry
;
268 #ifdef CONFIG_COMPACTION
270 struct work_struct free_work
;
276 unsigned int fullness
:FULLNESS_BITS
;
277 unsigned int class:CLASS_BITS
+ 1;
278 unsigned int isolated
:ISOLATED_BITS
;
279 unsigned int magic
:MAGIC_VAL_BITS
;
282 unsigned int freeobj
;
283 struct page
*first_page
;
284 struct list_head list
; /* fullness list */
285 #ifdef CONFIG_COMPACTION
290 struct mapping_area
{
291 #ifdef CONFIG_PGTABLE_MAPPING
292 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
294 char *vm_buf
; /* copy buffer for objects that span pages */
296 char *vm_addr
; /* address of kmap_atomic()'ed pages */
297 enum zs_mapmode vm_mm
; /* mapping mode */
300 #ifdef CONFIG_COMPACTION
301 static int zs_register_migration(struct zs_pool
*pool
);
302 static void zs_unregister_migration(struct zs_pool
*pool
);
303 static void migrate_lock_init(struct zspage
*zspage
);
304 static void migrate_read_lock(struct zspage
*zspage
);
305 static void migrate_read_unlock(struct zspage
*zspage
);
306 static void kick_deferred_free(struct zs_pool
*pool
);
307 static void init_deferred_free(struct zs_pool
*pool
);
308 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
310 static int zsmalloc_mount(void) { return 0; }
311 static void zsmalloc_unmount(void) {}
312 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
313 static void zs_unregister_migration(struct zs_pool
*pool
) {}
314 static void migrate_lock_init(struct zspage
*zspage
) {}
315 static void migrate_read_lock(struct zspage
*zspage
) {}
316 static void migrate_read_unlock(struct zspage
*zspage
) {}
317 static void kick_deferred_free(struct zs_pool
*pool
) {}
318 static void init_deferred_free(struct zs_pool
*pool
) {}
319 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
322 static int create_cache(struct zs_pool
*pool
)
324 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
326 if (!pool
->handle_cachep
)
329 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
331 if (!pool
->zspage_cachep
) {
332 kmem_cache_destroy(pool
->handle_cachep
);
333 pool
->handle_cachep
= NULL
;
340 static void destroy_cache(struct zs_pool
*pool
)
342 kmem_cache_destroy(pool
->handle_cachep
);
343 kmem_cache_destroy(pool
->zspage_cachep
);
346 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
348 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
349 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
352 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
354 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
357 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
359 return kmem_cache_alloc(pool
->zspage_cachep
,
360 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
363 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
365 kmem_cache_free(pool
->zspage_cachep
, zspage
);
368 static void record_obj(unsigned long handle
, unsigned long obj
)
371 * lsb of @obj represents handle lock while other bits
372 * represent object value the handle is pointing so
373 * updating shouldn't do store tearing.
375 WRITE_ONCE(*(unsigned long *)handle
, obj
);
382 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
383 const struct zpool_ops
*zpool_ops
,
387 * Ignore global gfp flags: zs_malloc() may be invoked from
388 * different contexts and its caller must provide a valid
391 return zs_create_pool(name
);
394 static void zs_zpool_destroy(void *pool
)
396 zs_destroy_pool(pool
);
399 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
400 unsigned long *handle
)
402 *handle
= zs_malloc(pool
, size
, gfp
);
403 return *handle
? 0 : -1;
405 static void zs_zpool_free(void *pool
, unsigned long handle
)
407 zs_free(pool
, handle
);
410 static int zs_zpool_shrink(void *pool
, unsigned int pages
,
411 unsigned int *reclaimed
)
416 static void *zs_zpool_map(void *pool
, unsigned long handle
,
417 enum zpool_mapmode mm
)
419 enum zs_mapmode zs_mm
;
428 case ZPOOL_MM_RW
: /* fallthru */
434 return zs_map_object(pool
, handle
, zs_mm
);
436 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
438 zs_unmap_object(pool
, handle
);
441 static u64
zs_zpool_total_size(void *pool
)
443 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
446 static struct zpool_driver zs_zpool_driver
= {
448 .owner
= THIS_MODULE
,
449 .create
= zs_zpool_create
,
450 .destroy
= zs_zpool_destroy
,
451 .malloc
= zs_zpool_malloc
,
452 .free
= zs_zpool_free
,
453 .shrink
= zs_zpool_shrink
,
455 .unmap
= zs_zpool_unmap
,
456 .total_size
= zs_zpool_total_size
,
459 MODULE_ALIAS("zpool-zsmalloc");
460 #endif /* CONFIG_ZPOOL */
462 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
463 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
465 static bool is_zspage_isolated(struct zspage
*zspage
)
467 return zspage
->isolated
;
470 static __maybe_unused
int is_first_page(struct page
*page
)
472 return PagePrivate(page
);
475 /* Protected by class->lock */
476 static inline int get_zspage_inuse(struct zspage
*zspage
)
478 return zspage
->inuse
;
481 static inline void set_zspage_inuse(struct zspage
*zspage
, int val
)
486 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
488 zspage
->inuse
+= val
;
491 static inline struct page
*get_first_page(struct zspage
*zspage
)
493 struct page
*first_page
= zspage
->first_page
;
495 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
499 static inline int get_first_obj_offset(struct page
*page
)
504 static inline void set_first_obj_offset(struct page
*page
, int offset
)
506 page
->units
= offset
;
509 static inline unsigned int get_freeobj(struct zspage
*zspage
)
511 return zspage
->freeobj
;
514 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
516 zspage
->freeobj
= obj
;
519 static void get_zspage_mapping(struct zspage
*zspage
,
520 unsigned int *class_idx
,
521 enum fullness_group
*fullness
)
523 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
525 *fullness
= zspage
->fullness
;
526 *class_idx
= zspage
->class;
529 static void set_zspage_mapping(struct zspage
*zspage
,
530 unsigned int class_idx
,
531 enum fullness_group fullness
)
533 zspage
->class = class_idx
;
534 zspage
->fullness
= fullness
;
538 * zsmalloc divides the pool into various size classes where each
539 * class maintains a list of zspages where each zspage is divided
540 * into equal sized chunks. Each allocation falls into one of these
541 * classes depending on its size. This function returns index of the
542 * size class which has chunk size big enough to hold the give size.
544 static int get_size_class_index(int size
)
548 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
549 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
550 ZS_SIZE_CLASS_DELTA
);
552 return min_t(int, ZS_SIZE_CLASSES
- 1, idx
);
555 /* type can be of enum type zs_stat_type or fullness_group */
556 static inline void zs_stat_inc(struct size_class
*class,
557 int type
, unsigned long cnt
)
559 class->stats
.objs
[type
] += cnt
;
562 /* type can be of enum type zs_stat_type or fullness_group */
563 static inline void zs_stat_dec(struct size_class
*class,
564 int type
, unsigned long cnt
)
566 class->stats
.objs
[type
] -= cnt
;
569 /* type can be of enum type zs_stat_type or fullness_group */
570 static inline unsigned long zs_stat_get(struct size_class
*class,
573 return class->stats
.objs
[type
];
576 #ifdef CONFIG_ZSMALLOC_STAT
578 static void __init
zs_stat_init(void)
580 if (!debugfs_initialized()) {
581 pr_warn("debugfs not available, stat dir not created\n");
585 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
587 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
590 static void __exit
zs_stat_exit(void)
592 debugfs_remove_recursive(zs_stat_root
);
595 static unsigned long zs_can_compact(struct size_class
*class);
597 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
600 struct zs_pool
*pool
= s
->private;
601 struct size_class
*class;
603 unsigned long class_almost_full
, class_almost_empty
;
604 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
605 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
606 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
607 unsigned long total_freeable
= 0;
609 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
610 "class", "size", "almost_full", "almost_empty",
611 "obj_allocated", "obj_used", "pages_used",
612 "pages_per_zspage", "freeable");
614 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
615 class = pool
->size_class
[i
];
617 if (class->index
!= i
)
620 spin_lock(&class->lock
);
621 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
622 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
623 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
624 obj_used
= zs_stat_get(class, OBJ_USED
);
625 freeable
= zs_can_compact(class);
626 spin_unlock(&class->lock
);
628 objs_per_zspage
= class->objs_per_zspage
;
629 pages_used
= obj_allocated
/ objs_per_zspage
*
630 class->pages_per_zspage
;
632 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
633 " %10lu %10lu %16d %8lu\n",
634 i
, class->size
, class_almost_full
, class_almost_empty
,
635 obj_allocated
, obj_used
, pages_used
,
636 class->pages_per_zspage
, freeable
);
638 total_class_almost_full
+= class_almost_full
;
639 total_class_almost_empty
+= class_almost_empty
;
640 total_objs
+= obj_allocated
;
641 total_used_objs
+= obj_used
;
642 total_pages
+= pages_used
;
643 total_freeable
+= freeable
;
647 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
648 "Total", "", total_class_almost_full
,
649 total_class_almost_empty
, total_objs
,
650 total_used_objs
, total_pages
, "", total_freeable
);
655 static int zs_stats_size_open(struct inode
*inode
, struct file
*file
)
657 return single_open(file
, zs_stats_size_show
, inode
->i_private
);
660 static const struct file_operations zs_stat_size_ops
= {
661 .open
= zs_stats_size_open
,
664 .release
= single_release
,
667 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
669 struct dentry
*entry
;
672 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
676 entry
= debugfs_create_dir(name
, zs_stat_root
);
678 pr_warn("debugfs dir <%s> creation failed\n", name
);
681 pool
->stat_dentry
= entry
;
683 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
684 pool
->stat_dentry
, pool
, &zs_stat_size_ops
);
686 pr_warn("%s: debugfs file entry <%s> creation failed\n",
688 debugfs_remove_recursive(pool
->stat_dentry
);
689 pool
->stat_dentry
= NULL
;
693 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
695 debugfs_remove_recursive(pool
->stat_dentry
);
698 #else /* CONFIG_ZSMALLOC_STAT */
699 static void __init
zs_stat_init(void)
703 static void __exit
zs_stat_exit(void)
707 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
711 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
718 * For each size class, zspages are divided into different groups
719 * depending on how "full" they are. This was done so that we could
720 * easily find empty or nearly empty zspages when we try to shrink
721 * the pool (not yet implemented). This function returns fullness
722 * status of the given page.
724 static enum fullness_group
get_fullness_group(struct size_class
*class,
725 struct zspage
*zspage
)
727 int inuse
, objs_per_zspage
;
728 enum fullness_group fg
;
730 inuse
= get_zspage_inuse(zspage
);
731 objs_per_zspage
= class->objs_per_zspage
;
735 else if (inuse
== objs_per_zspage
)
737 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
738 fg
= ZS_ALMOST_EMPTY
;
746 * Each size class maintains various freelists and zspages are assigned
747 * to one of these freelists based on the number of live objects they
748 * have. This functions inserts the given zspage into the freelist
749 * identified by <class, fullness_group>.
751 static void insert_zspage(struct size_class
*class,
752 struct zspage
*zspage
,
753 enum fullness_group fullness
)
757 zs_stat_inc(class, fullness
, 1);
758 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
759 struct zspage
, list
);
761 * We want to see more ZS_FULL pages and less almost empty/full.
762 * Put pages with higher ->inuse first.
765 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
766 list_add(&zspage
->list
, &head
->list
);
770 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
774 * This function removes the given zspage from the freelist identified
775 * by <class, fullness_group>.
777 static void remove_zspage(struct size_class
*class,
778 struct zspage
*zspage
,
779 enum fullness_group fullness
)
781 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
782 VM_BUG_ON(is_zspage_isolated(zspage
));
784 list_del_init(&zspage
->list
);
785 zs_stat_dec(class, fullness
, 1);
789 * Each size class maintains zspages in different fullness groups depending
790 * on the number of live objects they contain. When allocating or freeing
791 * objects, the fullness status of the page can change, say, from ALMOST_FULL
792 * to ALMOST_EMPTY when freeing an object. This function checks if such
793 * a status change has occurred for the given page and accordingly moves the
794 * page from the freelist of the old fullness group to that of the new
797 static enum fullness_group
fix_fullness_group(struct size_class
*class,
798 struct zspage
*zspage
)
801 enum fullness_group currfg
, newfg
;
803 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
804 newfg
= get_fullness_group(class, zspage
);
808 if (!is_zspage_isolated(zspage
)) {
809 remove_zspage(class, zspage
, currfg
);
810 insert_zspage(class, zspage
, newfg
);
813 set_zspage_mapping(zspage
, class_idx
, newfg
);
820 * We have to decide on how many pages to link together
821 * to form a zspage for each size class. This is important
822 * to reduce wastage due to unusable space left at end of
823 * each zspage which is given as:
824 * wastage = Zp % class_size
825 * usage = Zp - wastage
826 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
828 * For example, for size class of 3/8 * PAGE_SIZE, we should
829 * link together 3 PAGE_SIZE sized pages to form a zspage
830 * since then we can perfectly fit in 8 such objects.
832 static int get_pages_per_zspage(int class_size
)
834 int i
, max_usedpc
= 0;
835 /* zspage order which gives maximum used size per KB */
836 int max_usedpc_order
= 1;
838 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
842 zspage_size
= i
* PAGE_SIZE
;
843 waste
= zspage_size
% class_size
;
844 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
846 if (usedpc
> max_usedpc
) {
848 max_usedpc_order
= i
;
852 return max_usedpc_order
;
855 static struct zspage
*get_zspage(struct page
*page
)
857 struct zspage
*zspage
= (struct zspage
*)page
->private;
859 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
863 static struct page
*get_next_page(struct page
*page
)
865 if (unlikely(PageHugeObject(page
)))
868 return page
->freelist
;
872 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
873 * @page: page object resides in zspage
874 * @obj_idx: object index
876 static void obj_to_location(unsigned long obj
, struct page
**page
,
877 unsigned int *obj_idx
)
879 obj
>>= OBJ_TAG_BITS
;
880 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
881 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
885 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
886 * @page: page object resides in zspage
887 * @obj_idx: object index
889 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
893 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
894 obj
|= obj_idx
& OBJ_INDEX_MASK
;
895 obj
<<= OBJ_TAG_BITS
;
900 static unsigned long handle_to_obj(unsigned long handle
)
902 return *(unsigned long *)handle
;
905 static unsigned long obj_to_head(struct page
*page
, void *obj
)
907 if (unlikely(PageHugeObject(page
))) {
908 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
911 return *(unsigned long *)obj
;
914 static inline int testpin_tag(unsigned long handle
)
916 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
919 static inline int trypin_tag(unsigned long handle
)
921 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
924 static void pin_tag(unsigned long handle
)
926 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
929 static void unpin_tag(unsigned long handle
)
931 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
934 static void reset_page(struct page
*page
)
936 __ClearPageMovable(page
);
937 ClearPagePrivate(page
);
938 set_page_private(page
, 0);
939 page_mapcount_reset(page
);
940 ClearPageHugeObject(page
);
941 page
->freelist
= NULL
;
945 * To prevent zspage destroy during migration, zspage freeing should
946 * hold locks of all pages in the zspage.
948 void lock_zspage(struct zspage
*zspage
)
950 struct page
*page
= get_first_page(zspage
);
954 } while ((page
= get_next_page(page
)) != NULL
);
957 int trylock_zspage(struct zspage
*zspage
)
959 struct page
*cursor
, *fail
;
961 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
962 get_next_page(cursor
)) {
963 if (!trylock_page(cursor
)) {
971 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
972 get_next_page(cursor
))
978 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
979 struct zspage
*zspage
)
981 struct page
*page
, *next
;
982 enum fullness_group fg
;
983 unsigned int class_idx
;
985 get_zspage_mapping(zspage
, &class_idx
, &fg
);
987 assert_spin_locked(&class->lock
);
989 VM_BUG_ON(get_zspage_inuse(zspage
));
990 VM_BUG_ON(fg
!= ZS_EMPTY
);
992 next
= page
= get_first_page(zspage
);
994 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
995 next
= get_next_page(page
);
998 dec_zone_page_state(page
, NR_ZSPAGES
);
1001 } while (page
!= NULL
);
1003 cache_free_zspage(pool
, zspage
);
1005 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1006 atomic_long_sub(class->pages_per_zspage
,
1007 &pool
->pages_allocated
);
1010 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
1011 struct zspage
*zspage
)
1013 VM_BUG_ON(get_zspage_inuse(zspage
));
1014 VM_BUG_ON(list_empty(&zspage
->list
));
1016 if (!trylock_zspage(zspage
)) {
1017 kick_deferred_free(pool
);
1021 remove_zspage(class, zspage
, ZS_EMPTY
);
1022 __free_zspage(pool
, class, zspage
);
1025 /* Initialize a newly allocated zspage */
1026 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
1028 unsigned int freeobj
= 1;
1029 unsigned long off
= 0;
1030 struct page
*page
= get_first_page(zspage
);
1033 struct page
*next_page
;
1034 struct link_free
*link
;
1037 set_first_obj_offset(page
, off
);
1039 vaddr
= kmap_atomic(page
);
1040 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
1042 while ((off
+= class->size
) < PAGE_SIZE
) {
1043 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1044 link
+= class->size
/ sizeof(*link
);
1048 * We now come to the last (full or partial) object on this
1049 * page, which must point to the first object on the next
1052 next_page
= get_next_page(page
);
1054 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1057 * Reset OBJ_TAG_BITS bit to last link to tell
1058 * whether it's allocated object or not.
1060 link
->next
= -1 << OBJ_TAG_BITS
;
1062 kunmap_atomic(vaddr
);
1067 set_freeobj(zspage
, 0);
1070 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1071 struct page
*pages
[])
1075 struct page
*prev_page
= NULL
;
1076 int nr_pages
= class->pages_per_zspage
;
1079 * Allocate individual pages and link them together as:
1080 * 1. all pages are linked together using page->freelist
1081 * 2. each sub-page point to zspage using page->private
1083 * we set PG_private to identify the first page (i.e. no other sub-page
1084 * has this flag set).
1086 for (i
= 0; i
< nr_pages
; i
++) {
1088 set_page_private(page
, (unsigned long)zspage
);
1089 page
->freelist
= NULL
;
1091 zspage
->first_page
= page
;
1092 SetPagePrivate(page
);
1093 if (unlikely(class->objs_per_zspage
== 1 &&
1094 class->pages_per_zspage
== 1))
1095 SetPageHugeObject(page
);
1097 prev_page
->freelist
= page
;
1104 * Allocate a zspage for the given size class
1106 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1107 struct size_class
*class,
1111 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1112 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1117 memset(zspage
, 0, sizeof(struct zspage
));
1118 zspage
->magic
= ZSPAGE_MAGIC
;
1119 migrate_lock_init(zspage
);
1121 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1124 page
= alloc_page(gfp
);
1127 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1128 __free_page(pages
[i
]);
1130 cache_free_zspage(pool
, zspage
);
1134 inc_zone_page_state(page
, NR_ZSPAGES
);
1138 create_page_chain(class, zspage
, pages
);
1139 init_zspage(class, zspage
);
1144 static struct zspage
*find_get_zspage(struct size_class
*class)
1147 struct zspage
*zspage
;
1149 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1150 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1151 struct zspage
, list
);
1159 #ifdef CONFIG_PGTABLE_MAPPING
1160 static inline int __zs_cpu_up(struct mapping_area
*area
)
1163 * Make sure we don't leak memory if a cpu UP notification
1164 * and zs_init() race and both call zs_cpu_up() on the same cpu
1168 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1174 static inline void __zs_cpu_down(struct mapping_area
*area
)
1177 free_vm_area(area
->vm
);
1181 static inline void *__zs_map_object(struct mapping_area
*area
,
1182 struct page
*pages
[2], int off
, int size
)
1184 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1185 area
->vm_addr
= area
->vm
->addr
;
1186 return area
->vm_addr
+ off
;
1189 static inline void __zs_unmap_object(struct mapping_area
*area
,
1190 struct page
*pages
[2], int off
, int size
)
1192 unsigned long addr
= (unsigned long)area
->vm_addr
;
1194 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1197 #else /* CONFIG_PGTABLE_MAPPING */
1199 static inline int __zs_cpu_up(struct mapping_area
*area
)
1202 * Make sure we don't leak memory if a cpu UP notification
1203 * and zs_init() race and both call zs_cpu_up() on the same cpu
1207 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1213 static inline void __zs_cpu_down(struct mapping_area
*area
)
1215 kfree(area
->vm_buf
);
1216 area
->vm_buf
= NULL
;
1219 static void *__zs_map_object(struct mapping_area
*area
,
1220 struct page
*pages
[2], int off
, int size
)
1224 char *buf
= area
->vm_buf
;
1226 /* disable page faults to match kmap_atomic() return conditions */
1227 pagefault_disable();
1229 /* no read fastpath */
1230 if (area
->vm_mm
== ZS_MM_WO
)
1233 sizes
[0] = PAGE_SIZE
- off
;
1234 sizes
[1] = size
- sizes
[0];
1236 /* copy object to per-cpu buffer */
1237 addr
= kmap_atomic(pages
[0]);
1238 memcpy(buf
, addr
+ off
, sizes
[0]);
1239 kunmap_atomic(addr
);
1240 addr
= kmap_atomic(pages
[1]);
1241 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1242 kunmap_atomic(addr
);
1244 return area
->vm_buf
;
1247 static void __zs_unmap_object(struct mapping_area
*area
,
1248 struct page
*pages
[2], int off
, int size
)
1254 /* no write fastpath */
1255 if (area
->vm_mm
== ZS_MM_RO
)
1259 buf
= buf
+ ZS_HANDLE_SIZE
;
1260 size
-= ZS_HANDLE_SIZE
;
1261 off
+= ZS_HANDLE_SIZE
;
1263 sizes
[0] = PAGE_SIZE
- off
;
1264 sizes
[1] = size
- sizes
[0];
1266 /* copy per-cpu buffer to object */
1267 addr
= kmap_atomic(pages
[0]);
1268 memcpy(addr
+ off
, buf
, sizes
[0]);
1269 kunmap_atomic(addr
);
1270 addr
= kmap_atomic(pages
[1]);
1271 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1272 kunmap_atomic(addr
);
1275 /* enable page faults to match kunmap_atomic() return conditions */
1279 #endif /* CONFIG_PGTABLE_MAPPING */
1281 static int zs_cpu_prepare(unsigned int cpu
)
1283 struct mapping_area
*area
;
1285 area
= &per_cpu(zs_map_area
, cpu
);
1286 return __zs_cpu_up(area
);
1289 static int zs_cpu_dead(unsigned int cpu
)
1291 struct mapping_area
*area
;
1293 area
= &per_cpu(zs_map_area
, cpu
);
1294 __zs_cpu_down(area
);
1298 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1299 int objs_per_zspage
)
1301 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1302 prev
->objs_per_zspage
== objs_per_zspage
)
1308 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1310 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1313 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1315 return atomic_long_read(&pool
->pages_allocated
);
1317 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1320 * zs_map_object - get address of allocated object from handle.
1321 * @pool: pool from which the object was allocated
1322 * @handle: handle returned from zs_malloc
1324 * Before using an object allocated from zs_malloc, it must be mapped using
1325 * this function. When done with the object, it must be unmapped using
1328 * Only one object can be mapped per cpu at a time. There is no protection
1329 * against nested mappings.
1331 * This function returns with preemption and page faults disabled.
1333 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1336 struct zspage
*zspage
;
1338 unsigned long obj
, off
;
1339 unsigned int obj_idx
;
1341 unsigned int class_idx
;
1342 enum fullness_group fg
;
1343 struct size_class
*class;
1344 struct mapping_area
*area
;
1345 struct page
*pages
[2];
1349 * Because we use per-cpu mapping areas shared among the
1350 * pools/users, we can't allow mapping in interrupt context
1351 * because it can corrupt another users mappings.
1353 BUG_ON(in_interrupt());
1355 /* From now on, migration cannot move the object */
1358 obj
= handle_to_obj(handle
);
1359 obj_to_location(obj
, &page
, &obj_idx
);
1360 zspage
= get_zspage(page
);
1362 /* migration cannot move any subpage in this zspage */
1363 migrate_read_lock(zspage
);
1365 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1366 class = pool
->size_class
[class_idx
];
1367 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1369 area
= &get_cpu_var(zs_map_area
);
1371 if (off
+ class->size
<= PAGE_SIZE
) {
1372 /* this object is contained entirely within a page */
1373 area
->vm_addr
= kmap_atomic(page
);
1374 ret
= area
->vm_addr
+ off
;
1378 /* this object spans two pages */
1380 pages
[1] = get_next_page(page
);
1383 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1385 if (likely(!PageHugeObject(page
)))
1386 ret
+= ZS_HANDLE_SIZE
;
1390 EXPORT_SYMBOL_GPL(zs_map_object
);
1392 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1394 struct zspage
*zspage
;
1396 unsigned long obj
, off
;
1397 unsigned int obj_idx
;
1399 unsigned int class_idx
;
1400 enum fullness_group fg
;
1401 struct size_class
*class;
1402 struct mapping_area
*area
;
1404 obj
= handle_to_obj(handle
);
1405 obj_to_location(obj
, &page
, &obj_idx
);
1406 zspage
= get_zspage(page
);
1407 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1408 class = pool
->size_class
[class_idx
];
1409 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1411 area
= this_cpu_ptr(&zs_map_area
);
1412 if (off
+ class->size
<= PAGE_SIZE
)
1413 kunmap_atomic(area
->vm_addr
);
1415 struct page
*pages
[2];
1418 pages
[1] = get_next_page(page
);
1421 __zs_unmap_object(area
, pages
, off
, class->size
);
1423 put_cpu_var(zs_map_area
);
1425 migrate_read_unlock(zspage
);
1428 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1430 static unsigned long obj_malloc(struct size_class
*class,
1431 struct zspage
*zspage
, unsigned long handle
)
1433 int i
, nr_page
, offset
;
1435 struct link_free
*link
;
1437 struct page
*m_page
;
1438 unsigned long m_offset
;
1441 handle
|= OBJ_ALLOCATED_TAG
;
1442 obj
= get_freeobj(zspage
);
1444 offset
= obj
* class->size
;
1445 nr_page
= offset
>> PAGE_SHIFT
;
1446 m_offset
= offset
& ~PAGE_MASK
;
1447 m_page
= get_first_page(zspage
);
1449 for (i
= 0; i
< nr_page
; i
++)
1450 m_page
= get_next_page(m_page
);
1452 vaddr
= kmap_atomic(m_page
);
1453 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1454 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1455 if (likely(!PageHugeObject(m_page
)))
1456 /* record handle in the header of allocated chunk */
1457 link
->handle
= handle
;
1459 /* record handle to page->index */
1460 zspage
->first_page
->index
= handle
;
1462 kunmap_atomic(vaddr
);
1463 mod_zspage_inuse(zspage
, 1);
1464 zs_stat_inc(class, OBJ_USED
, 1);
1466 obj
= location_to_obj(m_page
, obj
);
1473 * zs_malloc - Allocate block of given size from pool.
1474 * @pool: pool to allocate from
1475 * @size: size of block to allocate
1476 * @gfp: gfp flags when allocating object
1478 * On success, handle to the allocated object is returned,
1480 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1482 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1484 unsigned long handle
, obj
;
1485 struct size_class
*class;
1486 enum fullness_group newfg
;
1487 struct zspage
*zspage
;
1489 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1492 handle
= cache_alloc_handle(pool
, gfp
);
1496 /* extra space in chunk to keep the handle */
1497 size
+= ZS_HANDLE_SIZE
;
1498 class = pool
->size_class
[get_size_class_index(size
)];
1500 spin_lock(&class->lock
);
1501 zspage
= find_get_zspage(class);
1502 if (likely(zspage
)) {
1503 obj
= obj_malloc(class, zspage
, handle
);
1504 /* Now move the zspage to another fullness group, if required */
1505 fix_fullness_group(class, zspage
);
1506 record_obj(handle
, obj
);
1507 spin_unlock(&class->lock
);
1512 spin_unlock(&class->lock
);
1514 zspage
= alloc_zspage(pool
, class, gfp
);
1516 cache_free_handle(pool
, handle
);
1520 spin_lock(&class->lock
);
1521 obj
= obj_malloc(class, zspage
, handle
);
1522 newfg
= get_fullness_group(class, zspage
);
1523 insert_zspage(class, zspage
, newfg
);
1524 set_zspage_mapping(zspage
, class->index
, newfg
);
1525 record_obj(handle
, obj
);
1526 atomic_long_add(class->pages_per_zspage
,
1527 &pool
->pages_allocated
);
1528 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1530 /* We completely set up zspage so mark them as movable */
1531 SetZsPageMovable(pool
, zspage
);
1532 spin_unlock(&class->lock
);
1536 EXPORT_SYMBOL_GPL(zs_malloc
);
1538 static void obj_free(struct size_class
*class, unsigned long obj
)
1540 struct link_free
*link
;
1541 struct zspage
*zspage
;
1542 struct page
*f_page
;
1543 unsigned long f_offset
;
1544 unsigned int f_objidx
;
1547 obj
&= ~OBJ_ALLOCATED_TAG
;
1548 obj_to_location(obj
, &f_page
, &f_objidx
);
1549 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1550 zspage
= get_zspage(f_page
);
1552 vaddr
= kmap_atomic(f_page
);
1554 /* Insert this object in containing zspage's freelist */
1555 link
= (struct link_free
*)(vaddr
+ f_offset
);
1556 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1557 kunmap_atomic(vaddr
);
1558 set_freeobj(zspage
, f_objidx
);
1559 mod_zspage_inuse(zspage
, -1);
1560 zs_stat_dec(class, OBJ_USED
, 1);
1563 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1565 struct zspage
*zspage
;
1566 struct page
*f_page
;
1568 unsigned int f_objidx
;
1570 struct size_class
*class;
1571 enum fullness_group fullness
;
1574 if (unlikely(!handle
))
1578 obj
= handle_to_obj(handle
);
1579 obj_to_location(obj
, &f_page
, &f_objidx
);
1580 zspage
= get_zspage(f_page
);
1582 migrate_read_lock(zspage
);
1584 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1585 class = pool
->size_class
[class_idx
];
1587 spin_lock(&class->lock
);
1588 obj_free(class, obj
);
1589 fullness
= fix_fullness_group(class, zspage
);
1590 if (fullness
!= ZS_EMPTY
) {
1591 migrate_read_unlock(zspage
);
1595 isolated
= is_zspage_isolated(zspage
);
1596 migrate_read_unlock(zspage
);
1597 /* If zspage is isolated, zs_page_putback will free the zspage */
1598 if (likely(!isolated
))
1599 free_zspage(pool
, class, zspage
);
1602 spin_unlock(&class->lock
);
1604 cache_free_handle(pool
, handle
);
1606 EXPORT_SYMBOL_GPL(zs_free
);
1608 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1611 struct page
*s_page
, *d_page
;
1612 unsigned int s_objidx
, d_objidx
;
1613 unsigned long s_off
, d_off
;
1614 void *s_addr
, *d_addr
;
1615 int s_size
, d_size
, size
;
1618 s_size
= d_size
= class->size
;
1620 obj_to_location(src
, &s_page
, &s_objidx
);
1621 obj_to_location(dst
, &d_page
, &d_objidx
);
1623 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1624 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1626 if (s_off
+ class->size
> PAGE_SIZE
)
1627 s_size
= PAGE_SIZE
- s_off
;
1629 if (d_off
+ class->size
> PAGE_SIZE
)
1630 d_size
= PAGE_SIZE
- d_off
;
1632 s_addr
= kmap_atomic(s_page
);
1633 d_addr
= kmap_atomic(d_page
);
1636 size
= min(s_size
, d_size
);
1637 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1640 if (written
== class->size
)
1648 if (s_off
>= PAGE_SIZE
) {
1649 kunmap_atomic(d_addr
);
1650 kunmap_atomic(s_addr
);
1651 s_page
= get_next_page(s_page
);
1652 s_addr
= kmap_atomic(s_page
);
1653 d_addr
= kmap_atomic(d_page
);
1654 s_size
= class->size
- written
;
1658 if (d_off
>= PAGE_SIZE
) {
1659 kunmap_atomic(d_addr
);
1660 d_page
= get_next_page(d_page
);
1661 d_addr
= kmap_atomic(d_page
);
1662 d_size
= class->size
- written
;
1667 kunmap_atomic(d_addr
);
1668 kunmap_atomic(s_addr
);
1672 * Find alloced object in zspage from index object and
1675 static unsigned long find_alloced_obj(struct size_class
*class,
1676 struct page
*page
, int *obj_idx
)
1680 int index
= *obj_idx
;
1681 unsigned long handle
= 0;
1682 void *addr
= kmap_atomic(page
);
1684 offset
= get_first_obj_offset(page
);
1685 offset
+= class->size
* index
;
1687 while (offset
< PAGE_SIZE
) {
1688 head
= obj_to_head(page
, addr
+ offset
);
1689 if (head
& OBJ_ALLOCATED_TAG
) {
1690 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1691 if (trypin_tag(handle
))
1696 offset
+= class->size
;
1700 kunmap_atomic(addr
);
1707 struct zs_compact_control
{
1708 /* Source spage for migration which could be a subpage of zspage */
1709 struct page
*s_page
;
1710 /* Destination page for migration which should be a first page
1712 struct page
*d_page
;
1713 /* Starting object index within @s_page which used for live object
1714 * in the subpage. */
1718 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1719 struct zs_compact_control
*cc
)
1721 unsigned long used_obj
, free_obj
;
1722 unsigned long handle
;
1723 struct page
*s_page
= cc
->s_page
;
1724 struct page
*d_page
= cc
->d_page
;
1725 int obj_idx
= cc
->obj_idx
;
1729 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1731 s_page
= get_next_page(s_page
);
1738 /* Stop if there is no more space */
1739 if (zspage_full(class, get_zspage(d_page
))) {
1745 used_obj
= handle_to_obj(handle
);
1746 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1747 zs_object_copy(class, free_obj
, used_obj
);
1750 * record_obj updates handle's value to free_obj and it will
1751 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1752 * breaks synchronization using pin_tag(e,g, zs_free) so
1753 * let's keep the lock bit.
1755 free_obj
|= BIT(HANDLE_PIN_BIT
);
1756 record_obj(handle
, free_obj
);
1758 obj_free(class, used_obj
);
1761 /* Remember last position in this iteration */
1762 cc
->s_page
= s_page
;
1763 cc
->obj_idx
= obj_idx
;
1768 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1771 struct zspage
*zspage
;
1772 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1775 fg
[0] = ZS_ALMOST_FULL
;
1776 fg
[1] = ZS_ALMOST_EMPTY
;
1779 for (i
= 0; i
< 2; i
++) {
1780 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1781 struct zspage
, list
);
1783 VM_BUG_ON(is_zspage_isolated(zspage
));
1784 remove_zspage(class, zspage
, fg
[i
]);
1793 * putback_zspage - add @zspage into right class's fullness list
1794 * @class: destination class
1795 * @zspage: target page
1797 * Return @zspage's fullness_group
1799 static enum fullness_group
putback_zspage(struct size_class
*class,
1800 struct zspage
*zspage
)
1802 enum fullness_group fullness
;
1804 VM_BUG_ON(is_zspage_isolated(zspage
));
1806 fullness
= get_fullness_group(class, zspage
);
1807 insert_zspage(class, zspage
, fullness
);
1808 set_zspage_mapping(zspage
, class->index
, fullness
);
1813 #ifdef CONFIG_COMPACTION
1814 static struct dentry
*zs_mount(struct file_system_type
*fs_type
,
1815 int flags
, const char *dev_name
, void *data
)
1817 static const struct dentry_operations ops
= {
1818 .d_dname
= simple_dname
,
1821 return mount_pseudo(fs_type
, "zsmalloc:", NULL
, &ops
, ZSMALLOC_MAGIC
);
1824 static struct file_system_type zsmalloc_fs
= {
1827 .kill_sb
= kill_anon_super
,
1830 static int zsmalloc_mount(void)
1834 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1835 if (IS_ERR(zsmalloc_mnt
))
1836 ret
= PTR_ERR(zsmalloc_mnt
);
1841 static void zsmalloc_unmount(void)
1843 kern_unmount(zsmalloc_mnt
);
1846 static void migrate_lock_init(struct zspage
*zspage
)
1848 rwlock_init(&zspage
->lock
);
1851 static void migrate_read_lock(struct zspage
*zspage
)
1853 read_lock(&zspage
->lock
);
1856 static void migrate_read_unlock(struct zspage
*zspage
)
1858 read_unlock(&zspage
->lock
);
1861 static void migrate_write_lock(struct zspage
*zspage
)
1863 write_lock(&zspage
->lock
);
1866 static void migrate_write_unlock(struct zspage
*zspage
)
1868 write_unlock(&zspage
->lock
);
1871 /* Number of isolated subpage for *page migration* in this zspage */
1872 static void inc_zspage_isolation(struct zspage
*zspage
)
1877 static void dec_zspage_isolation(struct zspage
*zspage
)
1882 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1883 struct page
*newpage
, struct page
*oldpage
)
1886 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1889 page
= get_first_page(zspage
);
1891 if (page
== oldpage
)
1892 pages
[idx
] = newpage
;
1896 } while ((page
= get_next_page(page
)) != NULL
);
1898 create_page_chain(class, zspage
, pages
);
1899 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1900 if (unlikely(PageHugeObject(oldpage
)))
1901 newpage
->index
= oldpage
->index
;
1902 __SetPageMovable(newpage
, page_mapping(oldpage
));
1905 bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1907 struct zs_pool
*pool
;
1908 struct size_class
*class;
1910 enum fullness_group fullness
;
1911 struct zspage
*zspage
;
1912 struct address_space
*mapping
;
1915 * Page is locked so zspage couldn't be destroyed. For detail, look at
1916 * lock_zspage in free_zspage.
1918 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1919 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
1921 zspage
= get_zspage(page
);
1924 * Without class lock, fullness could be stale while class_idx is okay
1925 * because class_idx is constant unless page is freed so we should get
1926 * fullness again under class lock.
1928 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1929 mapping
= page_mapping(page
);
1930 pool
= mapping
->private_data
;
1931 class = pool
->size_class
[class_idx
];
1933 spin_lock(&class->lock
);
1934 if (get_zspage_inuse(zspage
) == 0) {
1935 spin_unlock(&class->lock
);
1939 /* zspage is isolated for object migration */
1940 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1941 spin_unlock(&class->lock
);
1946 * If this is first time isolation for the zspage, isolate zspage from
1947 * size_class to prevent further object allocation from the zspage.
1949 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1950 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1951 remove_zspage(class, zspage
, fullness
);
1954 inc_zspage_isolation(zspage
);
1955 spin_unlock(&class->lock
);
1960 int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
1961 struct page
*page
, enum migrate_mode mode
)
1963 struct zs_pool
*pool
;
1964 struct size_class
*class;
1966 enum fullness_group fullness
;
1967 struct zspage
*zspage
;
1969 void *s_addr
, *d_addr
, *addr
;
1971 unsigned long handle
, head
;
1972 unsigned long old_obj
, new_obj
;
1973 unsigned int obj_idx
;
1977 * We cannot support the _NO_COPY case here, because copy needs to
1978 * happen under the zs lock, which does not work with
1979 * MIGRATE_SYNC_NO_COPY workflow.
1981 if (mode
== MIGRATE_SYNC_NO_COPY
)
1984 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1985 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
1987 zspage
= get_zspage(page
);
1989 /* Concurrent compactor cannot migrate any subpage in zspage */
1990 migrate_write_lock(zspage
);
1991 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1992 pool
= mapping
->private_data
;
1993 class = pool
->size_class
[class_idx
];
1994 offset
= get_first_obj_offset(page
);
1996 spin_lock(&class->lock
);
1997 if (!get_zspage_inuse(zspage
)) {
1999 * Set "offset" to end of the page so that every loops
2000 * skips unnecessary object scanning.
2006 s_addr
= kmap_atomic(page
);
2007 while (pos
< PAGE_SIZE
) {
2008 head
= obj_to_head(page
, s_addr
+ pos
);
2009 if (head
& OBJ_ALLOCATED_TAG
) {
2010 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2011 if (!trypin_tag(handle
))
2018 * Here, any user cannot access all objects in the zspage so let's move.
2020 d_addr
= kmap_atomic(newpage
);
2021 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2022 kunmap_atomic(d_addr
);
2024 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2025 addr
+= class->size
) {
2026 head
= obj_to_head(page
, addr
);
2027 if (head
& OBJ_ALLOCATED_TAG
) {
2028 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2029 if (!testpin_tag(handle
))
2032 old_obj
= handle_to_obj(handle
);
2033 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2034 new_obj
= (unsigned long)location_to_obj(newpage
,
2036 new_obj
|= BIT(HANDLE_PIN_BIT
);
2037 record_obj(handle
, new_obj
);
2041 replace_sub_page(class, zspage
, newpage
, page
);
2044 dec_zspage_isolation(zspage
);
2047 * Page migration is done so let's putback isolated zspage to
2048 * the list if @page is final isolated subpage in the zspage.
2050 if (!is_zspage_isolated(zspage
))
2051 putback_zspage(class, zspage
);
2057 ret
= MIGRATEPAGE_SUCCESS
;
2059 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2060 addr
+= class->size
) {
2061 head
= obj_to_head(page
, addr
);
2062 if (head
& OBJ_ALLOCATED_TAG
) {
2063 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2064 if (!testpin_tag(handle
))
2069 kunmap_atomic(s_addr
);
2070 spin_unlock(&class->lock
);
2071 migrate_write_unlock(zspage
);
2076 void zs_page_putback(struct page
*page
)
2078 struct zs_pool
*pool
;
2079 struct size_class
*class;
2081 enum fullness_group fg
;
2082 struct address_space
*mapping
;
2083 struct zspage
*zspage
;
2085 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2086 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2088 zspage
= get_zspage(page
);
2089 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2090 mapping
= page_mapping(page
);
2091 pool
= mapping
->private_data
;
2092 class = pool
->size_class
[class_idx
];
2094 spin_lock(&class->lock
);
2095 dec_zspage_isolation(zspage
);
2096 if (!is_zspage_isolated(zspage
)) {
2097 fg
= putback_zspage(class, zspage
);
2099 * Due to page_lock, we cannot free zspage immediately
2103 schedule_work(&pool
->free_work
);
2105 spin_unlock(&class->lock
);
2108 const struct address_space_operations zsmalloc_aops
= {
2109 .isolate_page
= zs_page_isolate
,
2110 .migratepage
= zs_page_migrate
,
2111 .putback_page
= zs_page_putback
,
2114 static int zs_register_migration(struct zs_pool
*pool
)
2116 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2117 if (IS_ERR(pool
->inode
)) {
2122 pool
->inode
->i_mapping
->private_data
= pool
;
2123 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2127 static void zs_unregister_migration(struct zs_pool
*pool
)
2129 flush_work(&pool
->free_work
);
2134 * Caller should hold page_lock of all pages in the zspage
2135 * In here, we cannot use zspage meta data.
2137 static void async_free_zspage(struct work_struct
*work
)
2140 struct size_class
*class;
2141 unsigned int class_idx
;
2142 enum fullness_group fullness
;
2143 struct zspage
*zspage
, *tmp
;
2144 LIST_HEAD(free_pages
);
2145 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2148 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2149 class = pool
->size_class
[i
];
2150 if (class->index
!= i
)
2153 spin_lock(&class->lock
);
2154 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2155 spin_unlock(&class->lock
);
2159 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2160 list_del(&zspage
->list
);
2161 lock_zspage(zspage
);
2163 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2164 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2165 class = pool
->size_class
[class_idx
];
2166 spin_lock(&class->lock
);
2167 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2168 spin_unlock(&class->lock
);
2172 static void kick_deferred_free(struct zs_pool
*pool
)
2174 schedule_work(&pool
->free_work
);
2177 static void init_deferred_free(struct zs_pool
*pool
)
2179 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2182 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2184 struct page
*page
= get_first_page(zspage
);
2187 WARN_ON(!trylock_page(page
));
2188 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2190 } while ((page
= get_next_page(page
)) != NULL
);
2196 * Based on the number of unused allocated objects calculate
2197 * and return the number of pages that we can free.
2199 static unsigned long zs_can_compact(struct size_class
*class)
2201 unsigned long obj_wasted
;
2202 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2203 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2205 if (obj_allocated
<= obj_used
)
2208 obj_wasted
= obj_allocated
- obj_used
;
2209 obj_wasted
/= class->objs_per_zspage
;
2211 return obj_wasted
* class->pages_per_zspage
;
2214 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2216 struct zs_compact_control cc
;
2217 struct zspage
*src_zspage
;
2218 struct zspage
*dst_zspage
= NULL
;
2220 spin_lock(&class->lock
);
2221 while ((src_zspage
= isolate_zspage(class, true))) {
2223 if (!zs_can_compact(class))
2227 cc
.s_page
= get_first_page(src_zspage
);
2229 while ((dst_zspage
= isolate_zspage(class, false))) {
2230 cc
.d_page
= get_first_page(dst_zspage
);
2232 * If there is no more space in dst_page, resched
2233 * and see if anyone had allocated another zspage.
2235 if (!migrate_zspage(pool
, class, &cc
))
2238 putback_zspage(class, dst_zspage
);
2241 /* Stop if we couldn't find slot */
2242 if (dst_zspage
== NULL
)
2245 putback_zspage(class, dst_zspage
);
2246 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2247 free_zspage(pool
, class, src_zspage
);
2248 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2250 spin_unlock(&class->lock
);
2252 spin_lock(&class->lock
);
2256 putback_zspage(class, src_zspage
);
2258 spin_unlock(&class->lock
);
2261 unsigned long zs_compact(struct zs_pool
*pool
)
2264 struct size_class
*class;
2266 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2267 class = pool
->size_class
[i
];
2270 if (class->index
!= i
)
2272 __zs_compact(pool
, class);
2275 return pool
->stats
.pages_compacted
;
2277 EXPORT_SYMBOL_GPL(zs_compact
);
2279 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2281 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2283 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2285 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2286 struct shrink_control
*sc
)
2288 unsigned long pages_freed
;
2289 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2292 pages_freed
= pool
->stats
.pages_compacted
;
2294 * Compact classes and calculate compaction delta.
2295 * Can run concurrently with a manually triggered
2296 * (by user) compaction.
2298 pages_freed
= zs_compact(pool
) - pages_freed
;
2300 return pages_freed
? pages_freed
: SHRINK_STOP
;
2303 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2304 struct shrink_control
*sc
)
2307 struct size_class
*class;
2308 unsigned long pages_to_free
= 0;
2309 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2312 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2313 class = pool
->size_class
[i
];
2316 if (class->index
!= i
)
2319 pages_to_free
+= zs_can_compact(class);
2322 return pages_to_free
;
2325 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2327 if (pool
->shrinker_enabled
) {
2328 unregister_shrinker(&pool
->shrinker
);
2329 pool
->shrinker_enabled
= false;
2333 static int zs_register_shrinker(struct zs_pool
*pool
)
2335 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2336 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2337 pool
->shrinker
.batch
= 0;
2338 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2340 return register_shrinker(&pool
->shrinker
);
2344 * zs_create_pool - Creates an allocation pool to work from.
2345 * @name: pool name to be created
2347 * This function must be called before anything when using
2348 * the zsmalloc allocator.
2350 * On success, a pointer to the newly created pool is returned,
2353 struct zs_pool
*zs_create_pool(const char *name
)
2356 struct zs_pool
*pool
;
2357 struct size_class
*prev_class
= NULL
;
2359 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2363 init_deferred_free(pool
);
2365 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2369 if (create_cache(pool
))
2373 * Iterate reversely, because, size of size_class that we want to use
2374 * for merging should be larger or equal to current size.
2376 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2378 int pages_per_zspage
;
2379 int objs_per_zspage
;
2380 struct size_class
*class;
2383 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2384 if (size
> ZS_MAX_ALLOC_SIZE
)
2385 size
= ZS_MAX_ALLOC_SIZE
;
2386 pages_per_zspage
= get_pages_per_zspage(size
);
2387 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2390 * size_class is used for normal zsmalloc operation such
2391 * as alloc/free for that size. Although it is natural that we
2392 * have one size_class for each size, there is a chance that we
2393 * can get more memory utilization if we use one size_class for
2394 * many different sizes whose size_class have same
2395 * characteristics. So, we makes size_class point to
2396 * previous size_class if possible.
2399 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2400 pool
->size_class
[i
] = prev_class
;
2405 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2411 class->pages_per_zspage
= pages_per_zspage
;
2412 class->objs_per_zspage
= objs_per_zspage
;
2413 spin_lock_init(&class->lock
);
2414 pool
->size_class
[i
] = class;
2415 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2417 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2422 /* debug only, don't abort if it fails */
2423 zs_pool_stat_create(pool
, name
);
2425 if (zs_register_migration(pool
))
2429 * Not critical, we still can use the pool
2430 * and user can trigger compaction manually.
2432 if (zs_register_shrinker(pool
) == 0)
2433 pool
->shrinker_enabled
= true;
2437 zs_destroy_pool(pool
);
2440 EXPORT_SYMBOL_GPL(zs_create_pool
);
2442 void zs_destroy_pool(struct zs_pool
*pool
)
2446 zs_unregister_shrinker(pool
);
2447 zs_unregister_migration(pool
);
2448 zs_pool_stat_destroy(pool
);
2450 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2452 struct size_class
*class = pool
->size_class
[i
];
2457 if (class->index
!= i
)
2460 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2461 if (!list_empty(&class->fullness_list
[fg
])) {
2462 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2469 destroy_cache(pool
);
2473 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2475 static int __init
zs_init(void)
2479 ret
= zsmalloc_mount();
2483 ret
= cpuhp_setup_state(CPUHP_MM_ZS_PREPARE
, "mm/zsmalloc:prepare",
2484 zs_cpu_prepare
, zs_cpu_dead
);
2489 zpool_register_driver(&zs_zpool_driver
);
2502 static void __exit
zs_exit(void)
2505 zpool_unregister_driver(&zs_zpool_driver
);
2508 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE
);
2513 module_init(zs_init
);
2514 module_exit(zs_exit
);
2516 MODULE_LICENSE("Dual BSD/GPL");
2517 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");