2 * Resizable, Scalable, Concurrent Hash Table
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
30 #define HASH_DEFAULT_SIZE 64UL
31 #define HASH_MIN_SIZE 4U
32 #define BUCKET_LOCKS_PER_CPU 128UL
34 static u32
head_hashfn(struct rhashtable
*ht
,
35 const struct bucket_table
*tbl
,
36 const struct rhash_head
*he
)
38 return rht_head_hashfn(ht
, tbl
, he
, ht
->p
);
41 #ifdef CONFIG_PROVE_LOCKING
42 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
44 int lockdep_rht_mutex_is_held(struct rhashtable
*ht
)
46 return (debug_locks
) ? lockdep_is_held(&ht
->mutex
) : 1;
48 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held
);
50 int lockdep_rht_bucket_is_held(const struct bucket_table
*tbl
, u32 hash
)
52 spinlock_t
*lock
= rht_bucket_lock(tbl
, hash
);
54 return (debug_locks
) ? lockdep_is_held(lock
) : 1;
56 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held
);
58 #define ASSERT_RHT_MUTEX(HT)
62 static int alloc_bucket_locks(struct rhashtable
*ht
, struct bucket_table
*tbl
,
66 #if defined(CONFIG_PROVE_LOCKING)
67 unsigned int nr_pcpus
= 2;
69 unsigned int nr_pcpus
= num_possible_cpus();
72 nr_pcpus
= min_t(unsigned int, nr_pcpus
, 32UL);
73 size
= roundup_pow_of_two(nr_pcpus
* ht
->p
.locks_mul
);
75 /* Never allocate more than 0.5 locks per bucket */
76 size
= min_t(unsigned int, size
, tbl
->size
>> 1);
78 if (sizeof(spinlock_t
) != 0) {
80 if (size
* sizeof(spinlock_t
) > PAGE_SIZE
&&
82 tbl
->locks
= vmalloc(size
* sizeof(spinlock_t
));
85 tbl
->locks
= kmalloc_array(size
, sizeof(spinlock_t
),
89 for (i
= 0; i
< size
; i
++)
90 spin_lock_init(&tbl
->locks
[i
]);
92 tbl
->locks_mask
= size
- 1;
97 static void bucket_table_free(const struct bucket_table
*tbl
)
105 static void bucket_table_free_rcu(struct rcu_head
*head
)
107 bucket_table_free(container_of(head
, struct bucket_table
, rcu
));
110 static struct bucket_table
*bucket_table_alloc(struct rhashtable
*ht
,
114 struct bucket_table
*tbl
= NULL
;
118 size
= sizeof(*tbl
) + nbuckets
* sizeof(tbl
->buckets
[0]);
119 if (size
<= (PAGE_SIZE
<< PAGE_ALLOC_COSTLY_ORDER
) ||
121 tbl
= kzalloc(size
, gfp
| __GFP_NOWARN
| __GFP_NORETRY
);
122 if (tbl
== NULL
&& gfp
== GFP_KERNEL
)
127 tbl
->size
= nbuckets
;
129 if (alloc_bucket_locks(ht
, tbl
, gfp
) < 0) {
130 bucket_table_free(tbl
);
134 INIT_LIST_HEAD(&tbl
->walkers
);
136 get_random_bytes(&tbl
->hash_rnd
, sizeof(tbl
->hash_rnd
));
138 for (i
= 0; i
< nbuckets
; i
++)
139 INIT_RHT_NULLS_HEAD(tbl
->buckets
[i
], ht
, i
);
144 static struct bucket_table
*rhashtable_last_table(struct rhashtable
*ht
,
145 struct bucket_table
*tbl
)
147 struct bucket_table
*new_tbl
;
151 tbl
= rht_dereference_rcu(tbl
->future_tbl
, ht
);
157 static int rhashtable_rehash_one(struct rhashtable
*ht
, unsigned int old_hash
)
159 struct bucket_table
*old_tbl
= rht_dereference(ht
->tbl
, ht
);
160 struct bucket_table
*new_tbl
= rhashtable_last_table(ht
,
161 rht_dereference_rcu(old_tbl
->future_tbl
, ht
));
162 struct rhash_head __rcu
**pprev
= &old_tbl
->buckets
[old_hash
];
164 struct rhash_head
*head
, *next
, *entry
;
165 spinlock_t
*new_bucket_lock
;
166 unsigned int new_hash
;
168 rht_for_each(entry
, old_tbl
, old_hash
) {
170 next
= rht_dereference_bucket(entry
->next
, old_tbl
, old_hash
);
172 if (rht_is_a_nulls(next
))
175 pprev
= &entry
->next
;
181 new_hash
= head_hashfn(ht
, new_tbl
, entry
);
183 new_bucket_lock
= rht_bucket_lock(new_tbl
, new_hash
);
185 spin_lock_nested(new_bucket_lock
, SINGLE_DEPTH_NESTING
);
186 head
= rht_dereference_bucket(new_tbl
->buckets
[new_hash
],
189 if (rht_is_a_nulls(head
))
190 INIT_RHT_NULLS_HEAD(entry
->next
, ht
, new_hash
);
192 RCU_INIT_POINTER(entry
->next
, head
);
194 rcu_assign_pointer(new_tbl
->buckets
[new_hash
], entry
);
195 spin_unlock(new_bucket_lock
);
197 rcu_assign_pointer(*pprev
, next
);
203 static void rhashtable_rehash_chain(struct rhashtable
*ht
,
204 unsigned int old_hash
)
206 struct bucket_table
*old_tbl
= rht_dereference(ht
->tbl
, ht
);
207 spinlock_t
*old_bucket_lock
;
209 old_bucket_lock
= rht_bucket_lock(old_tbl
, old_hash
);
211 spin_lock_bh(old_bucket_lock
);
212 while (!rhashtable_rehash_one(ht
, old_hash
))
215 spin_unlock_bh(old_bucket_lock
);
218 static int rhashtable_rehash_attach(struct rhashtable
*ht
,
219 struct bucket_table
*old_tbl
,
220 struct bucket_table
*new_tbl
)
222 /* Protect future_tbl using the first bucket lock. */
223 spin_lock_bh(old_tbl
->locks
);
225 /* Did somebody beat us to it? */
226 if (rcu_access_pointer(old_tbl
->future_tbl
)) {
227 spin_unlock_bh(old_tbl
->locks
);
231 /* Make insertions go into the new, empty table right away. Deletions
232 * and lookups will be attempted in both tables until we synchronize.
234 rcu_assign_pointer(old_tbl
->future_tbl
, new_tbl
);
236 /* Ensure the new table is visible to readers. */
239 spin_unlock_bh(old_tbl
->locks
);
244 static int rhashtable_rehash_table(struct rhashtable
*ht
)
246 struct bucket_table
*old_tbl
= rht_dereference(ht
->tbl
, ht
);
247 struct bucket_table
*new_tbl
;
248 struct rhashtable_walker
*walker
;
249 unsigned int old_hash
;
251 new_tbl
= rht_dereference(old_tbl
->future_tbl
, ht
);
255 for (old_hash
= 0; old_hash
< old_tbl
->size
; old_hash
++)
256 rhashtable_rehash_chain(ht
, old_hash
);
258 /* Publish the new table pointer. */
259 rcu_assign_pointer(ht
->tbl
, new_tbl
);
261 spin_lock(&ht
->lock
);
262 list_for_each_entry(walker
, &old_tbl
->walkers
, list
)
264 spin_unlock(&ht
->lock
);
266 /* Wait for readers. All new readers will see the new
267 * table, and thus no references to the old table will
270 call_rcu(&old_tbl
->rcu
, bucket_table_free_rcu
);
272 return rht_dereference(new_tbl
->future_tbl
, ht
) ? -EAGAIN
: 0;
276 * rhashtable_expand - Expand hash table while allowing concurrent lookups
277 * @ht: the hash table to expand
279 * A secondary bucket array is allocated and the hash entries are migrated.
281 * This function may only be called in a context where it is safe to call
282 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
284 * The caller must ensure that no concurrent resizing occurs by holding
287 * It is valid to have concurrent insertions and deletions protected by per
288 * bucket locks or concurrent RCU protected lookups and traversals.
290 static int rhashtable_expand(struct rhashtable
*ht
)
292 struct bucket_table
*new_tbl
, *old_tbl
= rht_dereference(ht
->tbl
, ht
);
295 ASSERT_RHT_MUTEX(ht
);
297 old_tbl
= rhashtable_last_table(ht
, old_tbl
);
299 new_tbl
= bucket_table_alloc(ht
, old_tbl
->size
* 2, GFP_KERNEL
);
303 err
= rhashtable_rehash_attach(ht
, old_tbl
, new_tbl
);
305 bucket_table_free(new_tbl
);
311 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
312 * @ht: the hash table to shrink
314 * This function shrinks the hash table to fit, i.e., the smallest
315 * size would not cause it to expand right away automatically.
317 * The caller must ensure that no concurrent resizing occurs by holding
320 * The caller must ensure that no concurrent table mutations take place.
321 * It is however valid to have concurrent lookups if they are RCU protected.
323 * It is valid to have concurrent insertions and deletions protected by per
324 * bucket locks or concurrent RCU protected lookups and traversals.
326 static int rhashtable_shrink(struct rhashtable
*ht
)
328 struct bucket_table
*new_tbl
, *old_tbl
= rht_dereference(ht
->tbl
, ht
);
332 ASSERT_RHT_MUTEX(ht
);
334 size
= roundup_pow_of_two(atomic_read(&ht
->nelems
) * 3 / 2);
335 if (size
< ht
->p
.min_size
)
336 size
= ht
->p
.min_size
;
338 if (old_tbl
->size
<= size
)
341 if (rht_dereference(old_tbl
->future_tbl
, ht
))
344 new_tbl
= bucket_table_alloc(ht
, size
, GFP_KERNEL
);
348 err
= rhashtable_rehash_attach(ht
, old_tbl
, new_tbl
);
350 bucket_table_free(new_tbl
);
355 static void rht_deferred_worker(struct work_struct
*work
)
357 struct rhashtable
*ht
;
358 struct bucket_table
*tbl
;
361 ht
= container_of(work
, struct rhashtable
, run_work
);
362 mutex_lock(&ht
->mutex
);
364 tbl
= rht_dereference(ht
->tbl
, ht
);
365 tbl
= rhashtable_last_table(ht
, tbl
);
367 if (rht_grow_above_75(ht
, tbl
))
368 rhashtable_expand(ht
);
369 else if (ht
->p
.automatic_shrinking
&& rht_shrink_below_30(ht
, tbl
))
370 rhashtable_shrink(ht
);
372 err
= rhashtable_rehash_table(ht
);
374 mutex_unlock(&ht
->mutex
);
377 schedule_work(&ht
->run_work
);
380 static bool rhashtable_check_elasticity(struct rhashtable
*ht
,
381 struct bucket_table
*tbl
,
384 unsigned int elasticity
= ht
->elasticity
;
385 struct rhash_head
*head
;
387 rht_for_each(head
, tbl
, hash
)
394 int rhashtable_insert_rehash(struct rhashtable
*ht
)
396 struct bucket_table
*old_tbl
;
397 struct bucket_table
*new_tbl
;
398 struct bucket_table
*tbl
;
402 old_tbl
= rht_dereference_rcu(ht
->tbl
, ht
);
403 tbl
= rhashtable_last_table(ht
, old_tbl
);
407 if (rht_grow_above_75(ht
, tbl
))
409 /* Do not schedule more than one rehash */
410 else if (old_tbl
!= tbl
)
413 new_tbl
= bucket_table_alloc(ht
, size
, GFP_ATOMIC
);
414 if (new_tbl
== NULL
) {
415 /* Schedule async resize/rehash to try allocation
416 * non-atomic context.
418 schedule_work(&ht
->run_work
);
422 err
= rhashtable_rehash_attach(ht
, tbl
, new_tbl
);
424 bucket_table_free(new_tbl
);
428 schedule_work(&ht
->run_work
);
432 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash
);
434 int rhashtable_insert_slow(struct rhashtable
*ht
, const void *key
,
435 struct rhash_head
*obj
,
436 struct bucket_table
*tbl
)
438 struct rhash_head
*head
;
442 tbl
= rhashtable_last_table(ht
, tbl
);
443 hash
= head_hashfn(ht
, tbl
, obj
);
444 spin_lock_nested(rht_bucket_lock(tbl
, hash
), SINGLE_DEPTH_NESTING
);
447 if (key
&& rhashtable_lookup_fast(ht
, key
, ht
->p
))
451 if (unlikely(rht_grow_above_max(ht
, tbl
)))
455 if (rhashtable_check_elasticity(ht
, tbl
, hash
) ||
456 rht_grow_above_100(ht
, tbl
))
461 head
= rht_dereference_bucket(tbl
->buckets
[hash
], tbl
, hash
);
463 RCU_INIT_POINTER(obj
->next
, head
);
465 rcu_assign_pointer(tbl
->buckets
[hash
], obj
);
467 atomic_inc(&ht
->nelems
);
470 spin_unlock(rht_bucket_lock(tbl
, hash
));
474 EXPORT_SYMBOL_GPL(rhashtable_insert_slow
);
477 * rhashtable_walk_init - Initialise an iterator
478 * @ht: Table to walk over
479 * @iter: Hash table Iterator
481 * This function prepares a hash table walk.
483 * Note that if you restart a walk after rhashtable_walk_stop you
484 * may see the same object twice. Also, you may miss objects if
485 * there are removals in between rhashtable_walk_stop and the next
486 * call to rhashtable_walk_start.
488 * For a completely stable walk you should construct your own data
489 * structure outside the hash table.
491 * This function may sleep so you must not call it from interrupt
492 * context or with spin locks held.
494 * You must call rhashtable_walk_exit if this function returns
497 int rhashtable_walk_init(struct rhashtable
*ht
, struct rhashtable_iter
*iter
)
504 iter
->walker
= kmalloc(sizeof(*iter
->walker
), GFP_KERNEL
);
508 mutex_lock(&ht
->mutex
);
509 iter
->walker
->tbl
= rht_dereference(ht
->tbl
, ht
);
510 list_add(&iter
->walker
->list
, &iter
->walker
->tbl
->walkers
);
511 mutex_unlock(&ht
->mutex
);
515 EXPORT_SYMBOL_GPL(rhashtable_walk_init
);
518 * rhashtable_walk_exit - Free an iterator
519 * @iter: Hash table Iterator
521 * This function frees resources allocated by rhashtable_walk_init.
523 void rhashtable_walk_exit(struct rhashtable_iter
*iter
)
525 mutex_lock(&iter
->ht
->mutex
);
526 if (iter
->walker
->tbl
)
527 list_del(&iter
->walker
->list
);
528 mutex_unlock(&iter
->ht
->mutex
);
531 EXPORT_SYMBOL_GPL(rhashtable_walk_exit
);
534 * rhashtable_walk_start - Start a hash table walk
535 * @iter: Hash table iterator
537 * Start a hash table walk. Note that we take the RCU lock in all
538 * cases including when we return an error. So you must always call
539 * rhashtable_walk_stop to clean up.
541 * Returns zero if successful.
543 * Returns -EAGAIN if resize event occured. Note that the iterator
544 * will rewind back to the beginning and you may use it immediately
545 * by calling rhashtable_walk_next.
547 int rhashtable_walk_start(struct rhashtable_iter
*iter
)
550 struct rhashtable
*ht
= iter
->ht
;
552 mutex_lock(&ht
->mutex
);
554 if (iter
->walker
->tbl
)
555 list_del(&iter
->walker
->list
);
559 mutex_unlock(&ht
->mutex
);
561 if (!iter
->walker
->tbl
) {
562 iter
->walker
->tbl
= rht_dereference_rcu(ht
->tbl
, ht
);
568 EXPORT_SYMBOL_GPL(rhashtable_walk_start
);
571 * rhashtable_walk_next - Return the next object and advance the iterator
572 * @iter: Hash table iterator
574 * Note that you must call rhashtable_walk_stop when you are finished
577 * Returns the next object or NULL when the end of the table is reached.
579 * Returns -EAGAIN if resize event occured. Note that the iterator
580 * will rewind back to the beginning and you may continue to use it.
582 void *rhashtable_walk_next(struct rhashtable_iter
*iter
)
584 struct bucket_table
*tbl
= iter
->walker
->tbl
;
585 struct rhashtable
*ht
= iter
->ht
;
586 struct rhash_head
*p
= iter
->p
;
589 p
= rht_dereference_bucket_rcu(p
->next
, tbl
, iter
->slot
);
593 for (; iter
->slot
< tbl
->size
; iter
->slot
++) {
594 int skip
= iter
->skip
;
596 rht_for_each_rcu(p
, tbl
, iter
->slot
) {
603 if (!rht_is_a_nulls(p
)) {
606 return rht_obj(ht
, p
);
612 /* Ensure we see any new tables. */
615 iter
->walker
->tbl
= rht_dereference_rcu(tbl
->future_tbl
, ht
);
616 if (iter
->walker
->tbl
) {
619 return ERR_PTR(-EAGAIN
);
626 EXPORT_SYMBOL_GPL(rhashtable_walk_next
);
629 * rhashtable_walk_stop - Finish a hash table walk
630 * @iter: Hash table iterator
632 * Finish a hash table walk.
634 void rhashtable_walk_stop(struct rhashtable_iter
*iter
)
637 struct rhashtable
*ht
;
638 struct bucket_table
*tbl
= iter
->walker
->tbl
;
645 spin_lock(&ht
->lock
);
646 if (tbl
->rehash
< tbl
->size
)
647 list_add(&iter
->walker
->list
, &tbl
->walkers
);
649 iter
->walker
->tbl
= NULL
;
650 spin_unlock(&ht
->lock
);
657 EXPORT_SYMBOL_GPL(rhashtable_walk_stop
);
659 static size_t rounded_hashtable_size(const struct rhashtable_params
*params
)
661 return max(roundup_pow_of_two(params
->nelem_hint
* 4 / 3),
662 (unsigned long)params
->min_size
);
665 static u32
rhashtable_jhash2(const void *key
, u32 length
, u32 seed
)
667 return jhash2(key
, length
, seed
);
671 * rhashtable_init - initialize a new hash table
672 * @ht: hash table to be initialized
673 * @params: configuration parameters
675 * Initializes a new hash table based on the provided configuration
676 * parameters. A table can be configured either with a variable or
679 * Configuration Example 1: Fixed length keys
683 * struct rhash_head node;
686 * struct rhashtable_params params = {
687 * .head_offset = offsetof(struct test_obj, node),
688 * .key_offset = offsetof(struct test_obj, key),
689 * .key_len = sizeof(int),
691 * .nulls_base = (1U << RHT_BASE_SHIFT),
694 * Configuration Example 2: Variable length keys
697 * struct rhash_head node;
700 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
702 * struct test_obj *obj = data;
704 * return [... hash ...];
707 * struct rhashtable_params params = {
708 * .head_offset = offsetof(struct test_obj, node),
710 * .obj_hashfn = my_hash_fn,
713 int rhashtable_init(struct rhashtable
*ht
,
714 const struct rhashtable_params
*params
)
716 struct bucket_table
*tbl
;
719 size
= HASH_DEFAULT_SIZE
;
721 if ((!params
->key_len
&& !params
->obj_hashfn
) ||
722 (params
->obj_hashfn
&& !params
->obj_cmpfn
))
725 if (params
->nulls_base
&& params
->nulls_base
< (1U << RHT_BASE_SHIFT
))
728 if (params
->nelem_hint
)
729 size
= rounded_hashtable_size(params
);
731 memset(ht
, 0, sizeof(*ht
));
732 mutex_init(&ht
->mutex
);
733 spin_lock_init(&ht
->lock
);
734 memcpy(&ht
->p
, params
, sizeof(*params
));
736 if (params
->min_size
)
737 ht
->p
.min_size
= roundup_pow_of_two(params
->min_size
);
739 if (params
->max_size
)
740 ht
->p
.max_size
= rounddown_pow_of_two(params
->max_size
);
742 if (params
->insecure_max_entries
)
743 ht
->p
.insecure_max_entries
=
744 rounddown_pow_of_two(params
->insecure_max_entries
);
746 ht
->p
.insecure_max_entries
= ht
->p
.max_size
* 2;
748 ht
->p
.min_size
= max(ht
->p
.min_size
, HASH_MIN_SIZE
);
750 /* The maximum (not average) chain length grows with the
751 * size of the hash table, at a rate of (log N)/(log log N).
752 * The value of 16 is selected so that even if the hash
753 * table grew to 2^32 you would not expect the maximum
754 * chain length to exceed it unless we are under attack
755 * (or extremely unlucky).
757 * As this limit is only to detect attacks, we don't need
758 * to set it to a lower value as you'd need the chain
759 * length to vastly exceed 16 to have any real effect
762 if (!params
->insecure_elasticity
)
765 if (params
->locks_mul
)
766 ht
->p
.locks_mul
= roundup_pow_of_two(params
->locks_mul
);
768 ht
->p
.locks_mul
= BUCKET_LOCKS_PER_CPU
;
770 ht
->key_len
= ht
->p
.key_len
;
771 if (!params
->hashfn
) {
772 ht
->p
.hashfn
= jhash
;
774 if (!(ht
->key_len
& (sizeof(u32
) - 1))) {
775 ht
->key_len
/= sizeof(u32
);
776 ht
->p
.hashfn
= rhashtable_jhash2
;
780 tbl
= bucket_table_alloc(ht
, size
, GFP_KERNEL
);
784 atomic_set(&ht
->nelems
, 0);
786 RCU_INIT_POINTER(ht
->tbl
, tbl
);
788 INIT_WORK(&ht
->run_work
, rht_deferred_worker
);
792 EXPORT_SYMBOL_GPL(rhashtable_init
);
795 * rhashtable_free_and_destroy - free elements and destroy hash table
796 * @ht: the hash table to destroy
797 * @free_fn: callback to release resources of element
798 * @arg: pointer passed to free_fn
800 * Stops an eventual async resize. If defined, invokes free_fn for each
801 * element to releasal resources. Please note that RCU protected
802 * readers may still be accessing the elements. Releasing of resources
803 * must occur in a compatible manner. Then frees the bucket array.
805 * This function will eventually sleep to wait for an async resize
806 * to complete. The caller is responsible that no further write operations
807 * occurs in parallel.
809 void rhashtable_free_and_destroy(struct rhashtable
*ht
,
810 void (*free_fn
)(void *ptr
, void *arg
),
813 const struct bucket_table
*tbl
;
816 cancel_work_sync(&ht
->run_work
);
818 mutex_lock(&ht
->mutex
);
819 tbl
= rht_dereference(ht
->tbl
, ht
);
821 for (i
= 0; i
< tbl
->size
; i
++) {
822 struct rhash_head
*pos
, *next
;
824 for (pos
= rht_dereference(tbl
->buckets
[i
], ht
),
825 next
= !rht_is_a_nulls(pos
) ?
826 rht_dereference(pos
->next
, ht
) : NULL
;
827 !rht_is_a_nulls(pos
);
829 next
= !rht_is_a_nulls(pos
) ?
830 rht_dereference(pos
->next
, ht
) : NULL
)
831 free_fn(rht_obj(ht
, pos
), arg
);
835 bucket_table_free(tbl
);
836 mutex_unlock(&ht
->mutex
);
838 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy
);
840 void rhashtable_destroy(struct rhashtable
*ht
)
842 return rhashtable_free_and_destroy(ht
, NULL
, NULL
);
844 EXPORT_SYMBOL_GPL(rhashtable_destroy
);