test_bpf: add more eBPF jump torture cases
[linux/fpc-iii.git] / lib / rhashtable.c
blobca66a0e32c8eed1457f8b55291a09fd110f57272
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
30 #define HASH_DEFAULT_SIZE 64UL
31 #define HASH_MIN_SIZE 4U
32 #define BUCKET_LOCKS_PER_CPU 128UL
34 static u32 head_hashfn(struct rhashtable *ht,
35 const struct bucket_table *tbl,
36 const struct rhash_head *he)
38 return rht_head_hashfn(ht, tbl, he, ht->p);
41 #ifdef CONFIG_PROVE_LOCKING
42 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
44 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
46 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
48 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
50 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
52 spinlock_t *lock = rht_bucket_lock(tbl, hash);
54 return (debug_locks) ? lockdep_is_held(lock) : 1;
56 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
57 #else
58 #define ASSERT_RHT_MUTEX(HT)
59 #endif
62 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
63 gfp_t gfp)
65 unsigned int i, size;
66 #if defined(CONFIG_PROVE_LOCKING)
67 unsigned int nr_pcpus = 2;
68 #else
69 unsigned int nr_pcpus = num_possible_cpus();
70 #endif
72 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
73 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
75 /* Never allocate more than 0.5 locks per bucket */
76 size = min_t(unsigned int, size, tbl->size >> 1);
78 if (sizeof(spinlock_t) != 0) {
79 #ifdef CONFIG_NUMA
80 if (size * sizeof(spinlock_t) > PAGE_SIZE &&
81 gfp == GFP_KERNEL)
82 tbl->locks = vmalloc(size * sizeof(spinlock_t));
83 else
84 #endif
85 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
86 gfp);
87 if (!tbl->locks)
88 return -ENOMEM;
89 for (i = 0; i < size; i++)
90 spin_lock_init(&tbl->locks[i]);
92 tbl->locks_mask = size - 1;
94 return 0;
97 static void bucket_table_free(const struct bucket_table *tbl)
99 if (tbl)
100 kvfree(tbl->locks);
102 kvfree(tbl);
105 static void bucket_table_free_rcu(struct rcu_head *head)
107 bucket_table_free(container_of(head, struct bucket_table, rcu));
110 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
111 size_t nbuckets,
112 gfp_t gfp)
114 struct bucket_table *tbl = NULL;
115 size_t size;
116 int i;
118 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
119 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
120 gfp != GFP_KERNEL)
121 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
122 if (tbl == NULL && gfp == GFP_KERNEL)
123 tbl = vzalloc(size);
124 if (tbl == NULL)
125 return NULL;
127 tbl->size = nbuckets;
129 if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
130 bucket_table_free(tbl);
131 return NULL;
134 INIT_LIST_HEAD(&tbl->walkers);
136 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
138 for (i = 0; i < nbuckets; i++)
139 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
141 return tbl;
144 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
145 struct bucket_table *tbl)
147 struct bucket_table *new_tbl;
149 do {
150 new_tbl = tbl;
151 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
152 } while (tbl);
154 return new_tbl;
157 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
159 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
160 struct bucket_table *new_tbl = rhashtable_last_table(ht,
161 rht_dereference_rcu(old_tbl->future_tbl, ht));
162 struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
163 int err = -ENOENT;
164 struct rhash_head *head, *next, *entry;
165 spinlock_t *new_bucket_lock;
166 unsigned int new_hash;
168 rht_for_each(entry, old_tbl, old_hash) {
169 err = 0;
170 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
172 if (rht_is_a_nulls(next))
173 break;
175 pprev = &entry->next;
178 if (err)
179 goto out;
181 new_hash = head_hashfn(ht, new_tbl, entry);
183 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
185 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
186 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
187 new_tbl, new_hash);
189 if (rht_is_a_nulls(head))
190 INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
191 else
192 RCU_INIT_POINTER(entry->next, head);
194 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
195 spin_unlock(new_bucket_lock);
197 rcu_assign_pointer(*pprev, next);
199 out:
200 return err;
203 static void rhashtable_rehash_chain(struct rhashtable *ht,
204 unsigned int old_hash)
206 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
207 spinlock_t *old_bucket_lock;
209 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
211 spin_lock_bh(old_bucket_lock);
212 while (!rhashtable_rehash_one(ht, old_hash))
214 old_tbl->rehash++;
215 spin_unlock_bh(old_bucket_lock);
218 static int rhashtable_rehash_attach(struct rhashtable *ht,
219 struct bucket_table *old_tbl,
220 struct bucket_table *new_tbl)
222 /* Protect future_tbl using the first bucket lock. */
223 spin_lock_bh(old_tbl->locks);
225 /* Did somebody beat us to it? */
226 if (rcu_access_pointer(old_tbl->future_tbl)) {
227 spin_unlock_bh(old_tbl->locks);
228 return -EEXIST;
231 /* Make insertions go into the new, empty table right away. Deletions
232 * and lookups will be attempted in both tables until we synchronize.
234 rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
236 /* Ensure the new table is visible to readers. */
237 smp_wmb();
239 spin_unlock_bh(old_tbl->locks);
241 return 0;
244 static int rhashtable_rehash_table(struct rhashtable *ht)
246 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
247 struct bucket_table *new_tbl;
248 struct rhashtable_walker *walker;
249 unsigned int old_hash;
251 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
252 if (!new_tbl)
253 return 0;
255 for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
256 rhashtable_rehash_chain(ht, old_hash);
258 /* Publish the new table pointer. */
259 rcu_assign_pointer(ht->tbl, new_tbl);
261 spin_lock(&ht->lock);
262 list_for_each_entry(walker, &old_tbl->walkers, list)
263 walker->tbl = NULL;
264 spin_unlock(&ht->lock);
266 /* Wait for readers. All new readers will see the new
267 * table, and thus no references to the old table will
268 * remain.
270 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
272 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
276 * rhashtable_expand - Expand hash table while allowing concurrent lookups
277 * @ht: the hash table to expand
279 * A secondary bucket array is allocated and the hash entries are migrated.
281 * This function may only be called in a context where it is safe to call
282 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
284 * The caller must ensure that no concurrent resizing occurs by holding
285 * ht->mutex.
287 * It is valid to have concurrent insertions and deletions protected by per
288 * bucket locks or concurrent RCU protected lookups and traversals.
290 static int rhashtable_expand(struct rhashtable *ht)
292 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
293 int err;
295 ASSERT_RHT_MUTEX(ht);
297 old_tbl = rhashtable_last_table(ht, old_tbl);
299 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
300 if (new_tbl == NULL)
301 return -ENOMEM;
303 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
304 if (err)
305 bucket_table_free(new_tbl);
307 return err;
311 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
312 * @ht: the hash table to shrink
314 * This function shrinks the hash table to fit, i.e., the smallest
315 * size would not cause it to expand right away automatically.
317 * The caller must ensure that no concurrent resizing occurs by holding
318 * ht->mutex.
320 * The caller must ensure that no concurrent table mutations take place.
321 * It is however valid to have concurrent lookups if they are RCU protected.
323 * It is valid to have concurrent insertions and deletions protected by per
324 * bucket locks or concurrent RCU protected lookups and traversals.
326 static int rhashtable_shrink(struct rhashtable *ht)
328 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
329 unsigned int size;
330 int err;
332 ASSERT_RHT_MUTEX(ht);
334 size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
335 if (size < ht->p.min_size)
336 size = ht->p.min_size;
338 if (old_tbl->size <= size)
339 return 0;
341 if (rht_dereference(old_tbl->future_tbl, ht))
342 return -EEXIST;
344 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
345 if (new_tbl == NULL)
346 return -ENOMEM;
348 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
349 if (err)
350 bucket_table_free(new_tbl);
352 return err;
355 static void rht_deferred_worker(struct work_struct *work)
357 struct rhashtable *ht;
358 struct bucket_table *tbl;
359 int err = 0;
361 ht = container_of(work, struct rhashtable, run_work);
362 mutex_lock(&ht->mutex);
364 tbl = rht_dereference(ht->tbl, ht);
365 tbl = rhashtable_last_table(ht, tbl);
367 if (rht_grow_above_75(ht, tbl))
368 rhashtable_expand(ht);
369 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
370 rhashtable_shrink(ht);
372 err = rhashtable_rehash_table(ht);
374 mutex_unlock(&ht->mutex);
376 if (err)
377 schedule_work(&ht->run_work);
380 static bool rhashtable_check_elasticity(struct rhashtable *ht,
381 struct bucket_table *tbl,
382 unsigned int hash)
384 unsigned int elasticity = ht->elasticity;
385 struct rhash_head *head;
387 rht_for_each(head, tbl, hash)
388 if (!--elasticity)
389 return true;
391 return false;
394 int rhashtable_insert_rehash(struct rhashtable *ht)
396 struct bucket_table *old_tbl;
397 struct bucket_table *new_tbl;
398 struct bucket_table *tbl;
399 unsigned int size;
400 int err;
402 old_tbl = rht_dereference_rcu(ht->tbl, ht);
403 tbl = rhashtable_last_table(ht, old_tbl);
405 size = tbl->size;
407 if (rht_grow_above_75(ht, tbl))
408 size *= 2;
409 /* Do not schedule more than one rehash */
410 else if (old_tbl != tbl)
411 return -EBUSY;
413 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
414 if (new_tbl == NULL) {
415 /* Schedule async resize/rehash to try allocation
416 * non-atomic context.
418 schedule_work(&ht->run_work);
419 return -ENOMEM;
422 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
423 if (err) {
424 bucket_table_free(new_tbl);
425 if (err == -EEXIST)
426 err = 0;
427 } else
428 schedule_work(&ht->run_work);
430 return err;
432 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
434 int rhashtable_insert_slow(struct rhashtable *ht, const void *key,
435 struct rhash_head *obj,
436 struct bucket_table *tbl)
438 struct rhash_head *head;
439 unsigned int hash;
440 int err;
442 tbl = rhashtable_last_table(ht, tbl);
443 hash = head_hashfn(ht, tbl, obj);
444 spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
446 err = -EEXIST;
447 if (key && rhashtable_lookup_fast(ht, key, ht->p))
448 goto exit;
450 err = -E2BIG;
451 if (unlikely(rht_grow_above_max(ht, tbl)))
452 goto exit;
454 err = -EAGAIN;
455 if (rhashtable_check_elasticity(ht, tbl, hash) ||
456 rht_grow_above_100(ht, tbl))
457 goto exit;
459 err = 0;
461 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
463 RCU_INIT_POINTER(obj->next, head);
465 rcu_assign_pointer(tbl->buckets[hash], obj);
467 atomic_inc(&ht->nelems);
469 exit:
470 spin_unlock(rht_bucket_lock(tbl, hash));
472 return err;
474 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
477 * rhashtable_walk_init - Initialise an iterator
478 * @ht: Table to walk over
479 * @iter: Hash table Iterator
481 * This function prepares a hash table walk.
483 * Note that if you restart a walk after rhashtable_walk_stop you
484 * may see the same object twice. Also, you may miss objects if
485 * there are removals in between rhashtable_walk_stop and the next
486 * call to rhashtable_walk_start.
488 * For a completely stable walk you should construct your own data
489 * structure outside the hash table.
491 * This function may sleep so you must not call it from interrupt
492 * context or with spin locks held.
494 * You must call rhashtable_walk_exit if this function returns
495 * successfully.
497 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
499 iter->ht = ht;
500 iter->p = NULL;
501 iter->slot = 0;
502 iter->skip = 0;
504 iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
505 if (!iter->walker)
506 return -ENOMEM;
508 mutex_lock(&ht->mutex);
509 iter->walker->tbl = rht_dereference(ht->tbl, ht);
510 list_add(&iter->walker->list, &iter->walker->tbl->walkers);
511 mutex_unlock(&ht->mutex);
513 return 0;
515 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
518 * rhashtable_walk_exit - Free an iterator
519 * @iter: Hash table Iterator
521 * This function frees resources allocated by rhashtable_walk_init.
523 void rhashtable_walk_exit(struct rhashtable_iter *iter)
525 mutex_lock(&iter->ht->mutex);
526 if (iter->walker->tbl)
527 list_del(&iter->walker->list);
528 mutex_unlock(&iter->ht->mutex);
529 kfree(iter->walker);
531 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
534 * rhashtable_walk_start - Start a hash table walk
535 * @iter: Hash table iterator
537 * Start a hash table walk. Note that we take the RCU lock in all
538 * cases including when we return an error. So you must always call
539 * rhashtable_walk_stop to clean up.
541 * Returns zero if successful.
543 * Returns -EAGAIN if resize event occured. Note that the iterator
544 * will rewind back to the beginning and you may use it immediately
545 * by calling rhashtable_walk_next.
547 int rhashtable_walk_start(struct rhashtable_iter *iter)
548 __acquires(RCU)
550 struct rhashtable *ht = iter->ht;
552 mutex_lock(&ht->mutex);
554 if (iter->walker->tbl)
555 list_del(&iter->walker->list);
557 rcu_read_lock();
559 mutex_unlock(&ht->mutex);
561 if (!iter->walker->tbl) {
562 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
563 return -EAGAIN;
566 return 0;
568 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
571 * rhashtable_walk_next - Return the next object and advance the iterator
572 * @iter: Hash table iterator
574 * Note that you must call rhashtable_walk_stop when you are finished
575 * with the walk.
577 * Returns the next object or NULL when the end of the table is reached.
579 * Returns -EAGAIN if resize event occured. Note that the iterator
580 * will rewind back to the beginning and you may continue to use it.
582 void *rhashtable_walk_next(struct rhashtable_iter *iter)
584 struct bucket_table *tbl = iter->walker->tbl;
585 struct rhashtable *ht = iter->ht;
586 struct rhash_head *p = iter->p;
588 if (p) {
589 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
590 goto next;
593 for (; iter->slot < tbl->size; iter->slot++) {
594 int skip = iter->skip;
596 rht_for_each_rcu(p, tbl, iter->slot) {
597 if (!skip)
598 break;
599 skip--;
602 next:
603 if (!rht_is_a_nulls(p)) {
604 iter->skip++;
605 iter->p = p;
606 return rht_obj(ht, p);
609 iter->skip = 0;
612 /* Ensure we see any new tables. */
613 smp_rmb();
615 iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
616 if (iter->walker->tbl) {
617 iter->slot = 0;
618 iter->skip = 0;
619 return ERR_PTR(-EAGAIN);
622 iter->p = NULL;
624 return NULL;
626 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
629 * rhashtable_walk_stop - Finish a hash table walk
630 * @iter: Hash table iterator
632 * Finish a hash table walk.
634 void rhashtable_walk_stop(struct rhashtable_iter *iter)
635 __releases(RCU)
637 struct rhashtable *ht;
638 struct bucket_table *tbl = iter->walker->tbl;
640 if (!tbl)
641 goto out;
643 ht = iter->ht;
645 spin_lock(&ht->lock);
646 if (tbl->rehash < tbl->size)
647 list_add(&iter->walker->list, &tbl->walkers);
648 else
649 iter->walker->tbl = NULL;
650 spin_unlock(&ht->lock);
652 iter->p = NULL;
654 out:
655 rcu_read_unlock();
657 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
659 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
661 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
662 (unsigned long)params->min_size);
665 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
667 return jhash2(key, length, seed);
671 * rhashtable_init - initialize a new hash table
672 * @ht: hash table to be initialized
673 * @params: configuration parameters
675 * Initializes a new hash table based on the provided configuration
676 * parameters. A table can be configured either with a variable or
677 * fixed length key:
679 * Configuration Example 1: Fixed length keys
680 * struct test_obj {
681 * int key;
682 * void * my_member;
683 * struct rhash_head node;
684 * };
686 * struct rhashtable_params params = {
687 * .head_offset = offsetof(struct test_obj, node),
688 * .key_offset = offsetof(struct test_obj, key),
689 * .key_len = sizeof(int),
690 * .hashfn = jhash,
691 * .nulls_base = (1U << RHT_BASE_SHIFT),
692 * };
694 * Configuration Example 2: Variable length keys
695 * struct test_obj {
696 * [...]
697 * struct rhash_head node;
698 * };
700 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
702 * struct test_obj *obj = data;
704 * return [... hash ...];
707 * struct rhashtable_params params = {
708 * .head_offset = offsetof(struct test_obj, node),
709 * .hashfn = jhash,
710 * .obj_hashfn = my_hash_fn,
711 * };
713 int rhashtable_init(struct rhashtable *ht,
714 const struct rhashtable_params *params)
716 struct bucket_table *tbl;
717 size_t size;
719 size = HASH_DEFAULT_SIZE;
721 if ((!params->key_len && !params->obj_hashfn) ||
722 (params->obj_hashfn && !params->obj_cmpfn))
723 return -EINVAL;
725 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
726 return -EINVAL;
728 if (params->nelem_hint)
729 size = rounded_hashtable_size(params);
731 memset(ht, 0, sizeof(*ht));
732 mutex_init(&ht->mutex);
733 spin_lock_init(&ht->lock);
734 memcpy(&ht->p, params, sizeof(*params));
736 if (params->min_size)
737 ht->p.min_size = roundup_pow_of_two(params->min_size);
739 if (params->max_size)
740 ht->p.max_size = rounddown_pow_of_two(params->max_size);
742 if (params->insecure_max_entries)
743 ht->p.insecure_max_entries =
744 rounddown_pow_of_two(params->insecure_max_entries);
745 else
746 ht->p.insecure_max_entries = ht->p.max_size * 2;
748 ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
750 /* The maximum (not average) chain length grows with the
751 * size of the hash table, at a rate of (log N)/(log log N).
752 * The value of 16 is selected so that even if the hash
753 * table grew to 2^32 you would not expect the maximum
754 * chain length to exceed it unless we are under attack
755 * (or extremely unlucky).
757 * As this limit is only to detect attacks, we don't need
758 * to set it to a lower value as you'd need the chain
759 * length to vastly exceed 16 to have any real effect
760 * on the system.
762 if (!params->insecure_elasticity)
763 ht->elasticity = 16;
765 if (params->locks_mul)
766 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
767 else
768 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
770 ht->key_len = ht->p.key_len;
771 if (!params->hashfn) {
772 ht->p.hashfn = jhash;
774 if (!(ht->key_len & (sizeof(u32) - 1))) {
775 ht->key_len /= sizeof(u32);
776 ht->p.hashfn = rhashtable_jhash2;
780 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
781 if (tbl == NULL)
782 return -ENOMEM;
784 atomic_set(&ht->nelems, 0);
786 RCU_INIT_POINTER(ht->tbl, tbl);
788 INIT_WORK(&ht->run_work, rht_deferred_worker);
790 return 0;
792 EXPORT_SYMBOL_GPL(rhashtable_init);
795 * rhashtable_free_and_destroy - free elements and destroy hash table
796 * @ht: the hash table to destroy
797 * @free_fn: callback to release resources of element
798 * @arg: pointer passed to free_fn
800 * Stops an eventual async resize. If defined, invokes free_fn for each
801 * element to releasal resources. Please note that RCU protected
802 * readers may still be accessing the elements. Releasing of resources
803 * must occur in a compatible manner. Then frees the bucket array.
805 * This function will eventually sleep to wait for an async resize
806 * to complete. The caller is responsible that no further write operations
807 * occurs in parallel.
809 void rhashtable_free_and_destroy(struct rhashtable *ht,
810 void (*free_fn)(void *ptr, void *arg),
811 void *arg)
813 const struct bucket_table *tbl;
814 unsigned int i;
816 cancel_work_sync(&ht->run_work);
818 mutex_lock(&ht->mutex);
819 tbl = rht_dereference(ht->tbl, ht);
820 if (free_fn) {
821 for (i = 0; i < tbl->size; i++) {
822 struct rhash_head *pos, *next;
824 for (pos = rht_dereference(tbl->buckets[i], ht),
825 next = !rht_is_a_nulls(pos) ?
826 rht_dereference(pos->next, ht) : NULL;
827 !rht_is_a_nulls(pos);
828 pos = next,
829 next = !rht_is_a_nulls(pos) ?
830 rht_dereference(pos->next, ht) : NULL)
831 free_fn(rht_obj(ht, pos), arg);
835 bucket_table_free(tbl);
836 mutex_unlock(&ht->mutex);
838 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
840 void rhashtable_destroy(struct rhashtable *ht)
842 return rhashtable_free_and_destroy(ht, NULL, NULL);
844 EXPORT_SYMBOL_GPL(rhashtable_destroy);