1 /* rc-main.c - Remote Controller core module
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <media/rc-core.h>
16 #include <linux/spinlock.h>
17 #include <linux/delay.h>
18 #include <linux/input.h>
19 #include <linux/leds.h>
20 #include <linux/slab.h>
21 #include <linux/device.h>
22 #include <linux/module.h>
23 #include "rc-core-priv.h"
25 /* Bitmap to store allocated device numbers from 0 to IRRCV_NUM_DEVICES - 1 */
26 #define IRRCV_NUM_DEVICES 256
27 static DECLARE_BITMAP(ir_core_dev_number
, IRRCV_NUM_DEVICES
);
29 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30 #define IR_TAB_MIN_SIZE 256
31 #define IR_TAB_MAX_SIZE 8192
33 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
34 #define IR_KEYPRESS_TIMEOUT 250
36 /* Used to keep track of known keymaps */
37 static LIST_HEAD(rc_map_list
);
38 static DEFINE_SPINLOCK(rc_map_lock
);
39 static struct led_trigger
*led_feedback
;
41 static struct rc_map_list
*seek_rc_map(const char *name
)
43 struct rc_map_list
*map
= NULL
;
45 spin_lock(&rc_map_lock
);
46 list_for_each_entry(map
, &rc_map_list
, list
) {
47 if (!strcmp(name
, map
->map
.name
)) {
48 spin_unlock(&rc_map_lock
);
52 spin_unlock(&rc_map_lock
);
57 struct rc_map
*rc_map_get(const char *name
)
60 struct rc_map_list
*map
;
62 map
= seek_rc_map(name
);
65 int rc
= request_module("%s", name
);
67 printk(KERN_ERR
"Couldn't load IR keymap %s\n", name
);
70 msleep(20); /* Give some time for IR to register */
72 map
= seek_rc_map(name
);
76 printk(KERN_ERR
"IR keymap %s not found\n", name
);
80 printk(KERN_INFO
"Registered IR keymap %s\n", map
->map
.name
);
84 EXPORT_SYMBOL_GPL(rc_map_get
);
86 int rc_map_register(struct rc_map_list
*map
)
88 spin_lock(&rc_map_lock
);
89 list_add_tail(&map
->list
, &rc_map_list
);
90 spin_unlock(&rc_map_lock
);
93 EXPORT_SYMBOL_GPL(rc_map_register
);
95 void rc_map_unregister(struct rc_map_list
*map
)
97 spin_lock(&rc_map_lock
);
99 spin_unlock(&rc_map_lock
);
101 EXPORT_SYMBOL_GPL(rc_map_unregister
);
104 static struct rc_map_table empty
[] = {
105 { 0x2a, KEY_COFFEE
},
108 static struct rc_map_list empty_map
= {
111 .size
= ARRAY_SIZE(empty
),
112 .rc_type
= RC_TYPE_UNKNOWN
, /* Legacy IR type */
113 .name
= RC_MAP_EMPTY
,
118 * ir_create_table() - initializes a scancode table
119 * @rc_map: the rc_map to initialize
120 * @name: name to assign to the table
121 * @rc_type: ir type to assign to the new table
122 * @size: initial size of the table
123 * @return: zero on success or a negative error code
125 * This routine will initialize the rc_map and will allocate
126 * memory to hold at least the specified number of elements.
128 static int ir_create_table(struct rc_map
*rc_map
,
129 const char *name
, u64 rc_type
, size_t size
)
132 rc_map
->rc_type
= rc_type
;
133 rc_map
->alloc
= roundup_pow_of_two(size
* sizeof(struct rc_map_table
));
134 rc_map
->size
= rc_map
->alloc
/ sizeof(struct rc_map_table
);
135 rc_map
->scan
= kmalloc(rc_map
->alloc
, GFP_KERNEL
);
139 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
140 rc_map
->size
, rc_map
->alloc
);
145 * ir_free_table() - frees memory allocated by a scancode table
146 * @rc_map: the table whose mappings need to be freed
148 * This routine will free memory alloctaed for key mappings used by given
151 static void ir_free_table(struct rc_map
*rc_map
)
159 * ir_resize_table() - resizes a scancode table if necessary
160 * @rc_map: the rc_map to resize
161 * @gfp_flags: gfp flags to use when allocating memory
162 * @return: zero on success or a negative error code
164 * This routine will shrink the rc_map if it has lots of
165 * unused entries and grow it if it is full.
167 static int ir_resize_table(struct rc_map
*rc_map
, gfp_t gfp_flags
)
169 unsigned int oldalloc
= rc_map
->alloc
;
170 unsigned int newalloc
= oldalloc
;
171 struct rc_map_table
*oldscan
= rc_map
->scan
;
172 struct rc_map_table
*newscan
;
174 if (rc_map
->size
== rc_map
->len
) {
175 /* All entries in use -> grow keytable */
176 if (rc_map
->alloc
>= IR_TAB_MAX_SIZE
)
180 IR_dprintk(1, "Growing table to %u bytes\n", newalloc
);
183 if ((rc_map
->len
* 3 < rc_map
->size
) && (oldalloc
> IR_TAB_MIN_SIZE
)) {
184 /* Less than 1/3 of entries in use -> shrink keytable */
186 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc
);
189 if (newalloc
== oldalloc
)
192 newscan
= kmalloc(newalloc
, gfp_flags
);
194 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc
);
198 memcpy(newscan
, rc_map
->scan
, rc_map
->len
* sizeof(struct rc_map_table
));
199 rc_map
->scan
= newscan
;
200 rc_map
->alloc
= newalloc
;
201 rc_map
->size
= rc_map
->alloc
/ sizeof(struct rc_map_table
);
207 * ir_update_mapping() - set a keycode in the scancode->keycode table
208 * @dev: the struct rc_dev device descriptor
209 * @rc_map: scancode table to be adjusted
210 * @index: index of the mapping that needs to be updated
211 * @keycode: the desired keycode
212 * @return: previous keycode assigned to the mapping
214 * This routine is used to update scancode->keycode mapping at given
217 static unsigned int ir_update_mapping(struct rc_dev
*dev
,
218 struct rc_map
*rc_map
,
220 unsigned int new_keycode
)
222 int old_keycode
= rc_map
->scan
[index
].keycode
;
225 /* Did the user wish to remove the mapping? */
226 if (new_keycode
== KEY_RESERVED
|| new_keycode
== KEY_UNKNOWN
) {
227 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
228 index
, rc_map
->scan
[index
].scancode
);
230 memmove(&rc_map
->scan
[index
], &rc_map
->scan
[index
+ 1],
231 (rc_map
->len
- index
) * sizeof(struct rc_map_table
));
233 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
235 old_keycode
== KEY_RESERVED
? "New" : "Replacing",
236 rc_map
->scan
[index
].scancode
, new_keycode
);
237 rc_map
->scan
[index
].keycode
= new_keycode
;
238 __set_bit(new_keycode
, dev
->input_dev
->keybit
);
241 if (old_keycode
!= KEY_RESERVED
) {
242 /* A previous mapping was updated... */
243 __clear_bit(old_keycode
, dev
->input_dev
->keybit
);
244 /* ... but another scancode might use the same keycode */
245 for (i
= 0; i
< rc_map
->len
; i
++) {
246 if (rc_map
->scan
[i
].keycode
== old_keycode
) {
247 __set_bit(old_keycode
, dev
->input_dev
->keybit
);
252 /* Possibly shrink the keytable, failure is not a problem */
253 ir_resize_table(rc_map
, GFP_ATOMIC
);
260 * ir_establish_scancode() - set a keycode in the scancode->keycode table
261 * @dev: the struct rc_dev device descriptor
262 * @rc_map: scancode table to be searched
263 * @scancode: the desired scancode
264 * @resize: controls whether we allowed to resize the table to
265 * accommodate not yet present scancodes
266 * @return: index of the mapping containing scancode in question
267 * or -1U in case of failure.
269 * This routine is used to locate given scancode in rc_map.
270 * If scancode is not yet present the routine will allocate a new slot
273 static unsigned int ir_establish_scancode(struct rc_dev
*dev
,
274 struct rc_map
*rc_map
,
275 unsigned int scancode
,
281 * Unfortunately, some hardware-based IR decoders don't provide
282 * all bits for the complete IR code. In general, they provide only
283 * the command part of the IR code. Yet, as it is possible to replace
284 * the provided IR with another one, it is needed to allow loading
285 * IR tables from other remotes. So, we support specifying a mask to
286 * indicate the valid bits of the scancodes.
288 if (dev
->scancode_mask
)
289 scancode
&= dev
->scancode_mask
;
291 /* First check if we already have a mapping for this ir command */
292 for (i
= 0; i
< rc_map
->len
; i
++) {
293 if (rc_map
->scan
[i
].scancode
== scancode
)
296 /* Keytable is sorted from lowest to highest scancode */
297 if (rc_map
->scan
[i
].scancode
>= scancode
)
301 /* No previous mapping found, we might need to grow the table */
302 if (rc_map
->size
== rc_map
->len
) {
303 if (!resize
|| ir_resize_table(rc_map
, GFP_ATOMIC
))
307 /* i is the proper index to insert our new keycode */
309 memmove(&rc_map
->scan
[i
+ 1], &rc_map
->scan
[i
],
310 (rc_map
->len
- i
) * sizeof(struct rc_map_table
));
311 rc_map
->scan
[i
].scancode
= scancode
;
312 rc_map
->scan
[i
].keycode
= KEY_RESERVED
;
319 * ir_setkeycode() - set a keycode in the scancode->keycode table
320 * @idev: the struct input_dev device descriptor
321 * @scancode: the desired scancode
323 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
325 * This routine is used to handle evdev EVIOCSKEY ioctl.
327 static int ir_setkeycode(struct input_dev
*idev
,
328 const struct input_keymap_entry
*ke
,
329 unsigned int *old_keycode
)
331 struct rc_dev
*rdev
= input_get_drvdata(idev
);
332 struct rc_map
*rc_map
= &rdev
->rc_map
;
334 unsigned int scancode
;
338 spin_lock_irqsave(&rc_map
->lock
, flags
);
340 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
342 if (index
>= rc_map
->len
) {
347 retval
= input_scancode_to_scalar(ke
, &scancode
);
351 index
= ir_establish_scancode(rdev
, rc_map
, scancode
, true);
352 if (index
>= rc_map
->len
) {
358 *old_keycode
= ir_update_mapping(rdev
, rc_map
, index
, ke
->keycode
);
361 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
366 * ir_setkeytable() - sets several entries in the scancode->keycode table
367 * @dev: the struct rc_dev device descriptor
368 * @to: the struct rc_map to copy entries to
369 * @from: the struct rc_map to copy entries from
370 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
372 * This routine is used to handle table initialization.
374 static int ir_setkeytable(struct rc_dev
*dev
,
375 const struct rc_map
*from
)
377 struct rc_map
*rc_map
= &dev
->rc_map
;
378 unsigned int i
, index
;
381 rc
= ir_create_table(rc_map
, from
->name
,
382 from
->rc_type
, from
->size
);
386 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
387 rc_map
->size
, rc_map
->alloc
);
389 for (i
= 0; i
< from
->size
; i
++) {
390 index
= ir_establish_scancode(dev
, rc_map
,
391 from
->scan
[i
].scancode
, false);
392 if (index
>= rc_map
->len
) {
397 ir_update_mapping(dev
, rc_map
, index
,
398 from
->scan
[i
].keycode
);
402 ir_free_table(rc_map
);
408 * ir_lookup_by_scancode() - locate mapping by scancode
409 * @rc_map: the struct rc_map to search
410 * @scancode: scancode to look for in the table
411 * @return: index in the table, -1U if not found
413 * This routine performs binary search in RC keykeymap table for
416 static unsigned int ir_lookup_by_scancode(const struct rc_map
*rc_map
,
417 unsigned int scancode
)
420 int end
= rc_map
->len
- 1;
423 while (start
<= end
) {
424 mid
= (start
+ end
) / 2;
425 if (rc_map
->scan
[mid
].scancode
< scancode
)
427 else if (rc_map
->scan
[mid
].scancode
> scancode
)
437 * ir_getkeycode() - get a keycode from the scancode->keycode table
438 * @idev: the struct input_dev device descriptor
439 * @scancode: the desired scancode
440 * @keycode: used to return the keycode, if found, or KEY_RESERVED
441 * @return: always returns zero.
443 * This routine is used to handle evdev EVIOCGKEY ioctl.
445 static int ir_getkeycode(struct input_dev
*idev
,
446 struct input_keymap_entry
*ke
)
448 struct rc_dev
*rdev
= input_get_drvdata(idev
);
449 struct rc_map
*rc_map
= &rdev
->rc_map
;
450 struct rc_map_table
*entry
;
453 unsigned int scancode
;
456 spin_lock_irqsave(&rc_map
->lock
, flags
);
458 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
461 retval
= input_scancode_to_scalar(ke
, &scancode
);
465 index
= ir_lookup_by_scancode(rc_map
, scancode
);
468 if (index
< rc_map
->len
) {
469 entry
= &rc_map
->scan
[index
];
472 ke
->keycode
= entry
->keycode
;
473 ke
->len
= sizeof(entry
->scancode
);
474 memcpy(ke
->scancode
, &entry
->scancode
, sizeof(entry
->scancode
));
476 } else if (!(ke
->flags
& INPUT_KEYMAP_BY_INDEX
)) {
478 * We do not really know the valid range of scancodes
479 * so let's respond with KEY_RESERVED to anything we
480 * do not have mapping for [yet].
483 ke
->keycode
= KEY_RESERVED
;
492 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
497 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
498 * @dev: the struct rc_dev descriptor of the device
499 * @scancode: the scancode to look for
500 * @return: the corresponding keycode, or KEY_RESERVED
502 * This routine is used by drivers which need to convert a scancode to a
503 * keycode. Normally it should not be used since drivers should have no
504 * interest in keycodes.
506 u32
rc_g_keycode_from_table(struct rc_dev
*dev
, u32 scancode
)
508 struct rc_map
*rc_map
= &dev
->rc_map
;
509 unsigned int keycode
;
513 spin_lock_irqsave(&rc_map
->lock
, flags
);
515 index
= ir_lookup_by_scancode(rc_map
, scancode
);
516 keycode
= index
< rc_map
->len
?
517 rc_map
->scan
[index
].keycode
: KEY_RESERVED
;
519 spin_unlock_irqrestore(&rc_map
->lock
, flags
);
521 if (keycode
!= KEY_RESERVED
)
522 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
523 dev
->input_name
, scancode
, keycode
);
527 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table
);
530 * ir_do_keyup() - internal function to signal the release of a keypress
531 * @dev: the struct rc_dev descriptor of the device
532 * @sync: whether or not to call input_sync
534 * This function is used internally to release a keypress, it must be
535 * called with keylock held.
537 static void ir_do_keyup(struct rc_dev
*dev
, bool sync
)
539 if (!dev
->keypressed
)
542 IR_dprintk(1, "keyup key 0x%04x\n", dev
->last_keycode
);
543 input_report_key(dev
->input_dev
, dev
->last_keycode
, 0);
544 led_trigger_event(led_feedback
, LED_OFF
);
546 input_sync(dev
->input_dev
);
547 dev
->keypressed
= false;
551 * rc_keyup() - signals the release of a keypress
552 * @dev: the struct rc_dev descriptor of the device
554 * This routine is used to signal that a key has been released on the
557 void rc_keyup(struct rc_dev
*dev
)
561 spin_lock_irqsave(&dev
->keylock
, flags
);
562 ir_do_keyup(dev
, true);
563 spin_unlock_irqrestore(&dev
->keylock
, flags
);
565 EXPORT_SYMBOL_GPL(rc_keyup
);
568 * ir_timer_keyup() - generates a keyup event after a timeout
569 * @cookie: a pointer to the struct rc_dev for the device
571 * This routine will generate a keyup event some time after a keydown event
572 * is generated when no further activity has been detected.
574 static void ir_timer_keyup(unsigned long cookie
)
576 struct rc_dev
*dev
= (struct rc_dev
*)cookie
;
580 * ir->keyup_jiffies is used to prevent a race condition if a
581 * hardware interrupt occurs at this point and the keyup timer
582 * event is moved further into the future as a result.
584 * The timer will then be reactivated and this function called
585 * again in the future. We need to exit gracefully in that case
586 * to allow the input subsystem to do its auto-repeat magic or
587 * a keyup event might follow immediately after the keydown.
589 spin_lock_irqsave(&dev
->keylock
, flags
);
590 if (time_is_before_eq_jiffies(dev
->keyup_jiffies
))
591 ir_do_keyup(dev
, true);
592 spin_unlock_irqrestore(&dev
->keylock
, flags
);
596 * rc_repeat() - signals that a key is still pressed
597 * @dev: the struct rc_dev descriptor of the device
599 * This routine is used by IR decoders when a repeat message which does
600 * not include the necessary bits to reproduce the scancode has been
603 void rc_repeat(struct rc_dev
*dev
)
607 spin_lock_irqsave(&dev
->keylock
, flags
);
609 input_event(dev
->input_dev
, EV_MSC
, MSC_SCAN
, dev
->last_scancode
);
610 input_sync(dev
->input_dev
);
612 if (!dev
->keypressed
)
615 dev
->keyup_jiffies
= jiffies
+ msecs_to_jiffies(IR_KEYPRESS_TIMEOUT
);
616 mod_timer(&dev
->timer_keyup
, dev
->keyup_jiffies
);
619 spin_unlock_irqrestore(&dev
->keylock
, flags
);
621 EXPORT_SYMBOL_GPL(rc_repeat
);
624 * ir_do_keydown() - internal function to process a keypress
625 * @dev: the struct rc_dev descriptor of the device
626 * @protocol: the protocol of the keypress
627 * @scancode: the scancode of the keypress
628 * @keycode: the keycode of the keypress
629 * @toggle: the toggle value of the keypress
631 * This function is used internally to register a keypress, it must be
632 * called with keylock held.
634 static void ir_do_keydown(struct rc_dev
*dev
, enum rc_type protocol
,
635 u32 scancode
, u32 keycode
, u8 toggle
)
637 bool new_event
= (!dev
->keypressed
||
638 dev
->last_protocol
!= protocol
||
639 dev
->last_scancode
!= scancode
||
640 dev
->last_toggle
!= toggle
);
642 if (new_event
&& dev
->keypressed
)
643 ir_do_keyup(dev
, false);
645 input_event(dev
->input_dev
, EV_MSC
, MSC_SCAN
, scancode
);
647 if (new_event
&& keycode
!= KEY_RESERVED
) {
648 /* Register a keypress */
649 dev
->keypressed
= true;
650 dev
->last_protocol
= protocol
;
651 dev
->last_scancode
= scancode
;
652 dev
->last_toggle
= toggle
;
653 dev
->last_keycode
= keycode
;
655 IR_dprintk(1, "%s: key down event, "
656 "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
657 dev
->input_name
, keycode
, protocol
, scancode
);
658 input_report_key(dev
->input_dev
, keycode
, 1);
660 led_trigger_event(led_feedback
, LED_FULL
);
663 input_sync(dev
->input_dev
);
667 * rc_keydown() - generates input event for a key press
668 * @dev: the struct rc_dev descriptor of the device
669 * @protocol: the protocol for the keypress
670 * @scancode: the scancode for the keypress
671 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
672 * support toggle values, this should be set to zero)
674 * This routine is used to signal that a key has been pressed on the
677 void rc_keydown(struct rc_dev
*dev
, enum rc_type protocol
, u32 scancode
, u8 toggle
)
680 u32 keycode
= rc_g_keycode_from_table(dev
, scancode
);
682 spin_lock_irqsave(&dev
->keylock
, flags
);
683 ir_do_keydown(dev
, protocol
, scancode
, keycode
, toggle
);
685 if (dev
->keypressed
) {
686 dev
->keyup_jiffies
= jiffies
+ msecs_to_jiffies(IR_KEYPRESS_TIMEOUT
);
687 mod_timer(&dev
->timer_keyup
, dev
->keyup_jiffies
);
689 spin_unlock_irqrestore(&dev
->keylock
, flags
);
691 EXPORT_SYMBOL_GPL(rc_keydown
);
694 * rc_keydown_notimeout() - generates input event for a key press without
695 * an automatic keyup event at a later time
696 * @dev: the struct rc_dev descriptor of the device
697 * @protocol: the protocol for the keypress
698 * @scancode: the scancode for the keypress
699 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
700 * support toggle values, this should be set to zero)
702 * This routine is used to signal that a key has been pressed on the
703 * remote control. The driver must manually call rc_keyup() at a later stage.
705 void rc_keydown_notimeout(struct rc_dev
*dev
, enum rc_type protocol
,
706 u32 scancode
, u8 toggle
)
709 u32 keycode
= rc_g_keycode_from_table(dev
, scancode
);
711 spin_lock_irqsave(&dev
->keylock
, flags
);
712 ir_do_keydown(dev
, protocol
, scancode
, keycode
, toggle
);
713 spin_unlock_irqrestore(&dev
->keylock
, flags
);
715 EXPORT_SYMBOL_GPL(rc_keydown_notimeout
);
717 int rc_open(struct rc_dev
*rdev
)
724 mutex_lock(&rdev
->lock
);
725 if (!rdev
->users
++ && rdev
->open
!= NULL
)
726 rval
= rdev
->open(rdev
);
731 mutex_unlock(&rdev
->lock
);
735 EXPORT_SYMBOL_GPL(rc_open
);
737 static int ir_open(struct input_dev
*idev
)
739 struct rc_dev
*rdev
= input_get_drvdata(idev
);
741 return rc_open(rdev
);
744 void rc_close(struct rc_dev
*rdev
)
747 mutex_lock(&rdev
->lock
);
749 if (!--rdev
->users
&& rdev
->close
!= NULL
)
752 mutex_unlock(&rdev
->lock
);
755 EXPORT_SYMBOL_GPL(rc_close
);
757 static void ir_close(struct input_dev
*idev
)
759 struct rc_dev
*rdev
= input_get_drvdata(idev
);
763 /* class for /sys/class/rc */
764 static char *rc_devnode(struct device
*dev
, umode_t
*mode
)
766 return kasprintf(GFP_KERNEL
, "rc/%s", dev_name(dev
));
769 static struct class rc_class
= {
771 .devnode
= rc_devnode
,
775 * These are the protocol textual descriptions that are
776 * used by the sysfs protocols file. Note that the order
777 * of the entries is relevant.
783 { RC_BIT_NONE
, "none" },
784 { RC_BIT_OTHER
, "other" },
785 { RC_BIT_UNKNOWN
, "unknown" },
787 RC_BIT_RC5X
, "rc-5" },
788 { RC_BIT_NEC
, "nec" },
793 RC_BIT_RC6_MCE
, "rc-6" },
794 { RC_BIT_JVC
, "jvc" },
797 RC_BIT_SONY20
, "sony" },
798 { RC_BIT_RC5_SZ
, "rc-5-sz" },
799 { RC_BIT_SANYO
, "sanyo" },
800 { RC_BIT_SHARP
, "sharp" },
801 { RC_BIT_MCE_KBD
, "mce_kbd" },
802 { RC_BIT_LIRC
, "lirc" },
803 { RC_BIT_XMP
, "xmp" },
807 * struct rc_filter_attribute - Device attribute relating to a filter type.
808 * @attr: Device attribute.
809 * @type: Filter type.
810 * @mask: false for filter value, true for filter mask.
812 struct rc_filter_attribute
{
813 struct device_attribute attr
;
814 enum rc_filter_type type
;
817 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
819 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type) \
820 struct rc_filter_attribute dev_attr_##_name = { \
821 .attr = __ATTR(_name, _mode, _show, _store), \
824 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
825 struct rc_filter_attribute dev_attr_##_name = { \
826 .attr = __ATTR(_name, _mode, _show, _store), \
832 * show_protocols() - shows the current/wakeup IR protocol(s)
833 * @device: the device descriptor
834 * @mattr: the device attribute struct
835 * @buf: a pointer to the output buffer
837 * This routine is a callback routine for input read the IR protocol type(s).
838 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
839 * It returns the protocol names of supported protocols.
840 * Enabled protocols are printed in brackets.
842 * dev->lock is taken to guard against races between device
843 * registration, store_protocols and show_protocols.
845 static ssize_t
show_protocols(struct device
*device
,
846 struct device_attribute
*mattr
, char *buf
)
848 struct rc_dev
*dev
= to_rc_dev(device
);
849 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(mattr
);
850 u64 allowed
, enabled
;
854 /* Device is being removed */
858 mutex_lock(&dev
->lock
);
860 if (fattr
->type
== RC_FILTER_NORMAL
) {
861 enabled
= dev
->enabled_protocols
;
862 allowed
= dev
->allowed_protocols
;
863 if (dev
->raw
&& !allowed
)
864 allowed
= ir_raw_get_allowed_protocols();
866 enabled
= dev
->enabled_wakeup_protocols
;
867 allowed
= dev
->allowed_wakeup_protocols
;
870 mutex_unlock(&dev
->lock
);
872 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
873 __func__
, (long long)allowed
, (long long)enabled
);
875 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
876 if (allowed
& enabled
& proto_names
[i
].type
)
877 tmp
+= sprintf(tmp
, "[%s] ", proto_names
[i
].name
);
878 else if (allowed
& proto_names
[i
].type
)
879 tmp
+= sprintf(tmp
, "%s ", proto_names
[i
].name
);
881 if (allowed
& proto_names
[i
].type
)
882 allowed
&= ~proto_names
[i
].type
;
889 return tmp
+ 1 - buf
;
893 * parse_protocol_change() - parses a protocol change request
894 * @protocols: pointer to the bitmask of current protocols
895 * @buf: pointer to the buffer with a list of changes
897 * Writing "+proto" will add a protocol to the protocol mask.
898 * Writing "-proto" will remove a protocol from protocol mask.
899 * Writing "proto" will enable only "proto".
900 * Writing "none" will disable all protocols.
901 * Returns the number of changes performed or a negative error code.
903 static int parse_protocol_change(u64
*protocols
, const char *buf
)
907 bool enable
, disable
;
911 while ((tmp
= strsep((char **)&buf
, " \n")) != NULL
) {
919 } else if (*tmp
== '-') {
928 for (i
= 0; i
< ARRAY_SIZE(proto_names
); i
++) {
929 if (!strcasecmp(tmp
, proto_names
[i
].name
)) {
930 mask
= proto_names
[i
].type
;
935 if (i
== ARRAY_SIZE(proto_names
)) {
936 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp
);
951 IR_dprintk(1, "Protocol not specified\n");
959 * store_protocols() - changes the current/wakeup IR protocol(s)
960 * @device: the device descriptor
961 * @mattr: the device attribute struct
962 * @buf: a pointer to the input buffer
963 * @len: length of the input buffer
965 * This routine is for changing the IR protocol type.
966 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
967 * See parse_protocol_change() for the valid commands.
968 * Returns @len on success or a negative error code.
970 * dev->lock is taken to guard against races between device
971 * registration, store_protocols and show_protocols.
973 static ssize_t
store_protocols(struct device
*device
,
974 struct device_attribute
*mattr
,
975 const char *buf
, size_t len
)
977 struct rc_dev
*dev
= to_rc_dev(device
);
978 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(mattr
);
979 u64
*current_protocols
;
980 int (*change_protocol
)(struct rc_dev
*dev
, u64
*rc_type
);
981 struct rc_scancode_filter
*filter
;
982 int (*set_filter
)(struct rc_dev
*dev
, struct rc_scancode_filter
*filter
);
983 u64 old_protocols
, new_protocols
;
986 /* Device is being removed */
990 if (fattr
->type
== RC_FILTER_NORMAL
) {
991 IR_dprintk(1, "Normal protocol change requested\n");
992 current_protocols
= &dev
->enabled_protocols
;
993 change_protocol
= dev
->change_protocol
;
994 filter
= &dev
->scancode_filter
;
995 set_filter
= dev
->s_filter
;
997 IR_dprintk(1, "Wakeup protocol change requested\n");
998 current_protocols
= &dev
->enabled_wakeup_protocols
;
999 change_protocol
= dev
->change_wakeup_protocol
;
1000 filter
= &dev
->scancode_wakeup_filter
;
1001 set_filter
= dev
->s_wakeup_filter
;
1004 if (!change_protocol
) {
1005 IR_dprintk(1, "Protocol switching not supported\n");
1009 mutex_lock(&dev
->lock
);
1011 old_protocols
= *current_protocols
;
1012 new_protocols
= old_protocols
;
1013 rc
= parse_protocol_change(&new_protocols
, buf
);
1017 rc
= change_protocol(dev
, &new_protocols
);
1019 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1020 (long long)new_protocols
);
1024 if (new_protocols
!= old_protocols
) {
1025 *current_protocols
= new_protocols
;
1026 IR_dprintk(1, "Protocols changed to 0x%llx\n",
1027 (long long)new_protocols
);
1031 * If a protocol change was attempted the filter may need updating, even
1032 * if the actual protocol mask hasn't changed (since the driver may have
1033 * cleared the filter).
1034 * Try setting the same filter with the new protocol (if any).
1035 * Fall back to clearing the filter.
1037 if (set_filter
&& filter
->mask
) {
1039 rc
= set_filter(dev
, filter
);
1046 set_filter(dev
, filter
);
1053 mutex_unlock(&dev
->lock
);
1058 * show_filter() - shows the current scancode filter value or mask
1059 * @device: the device descriptor
1060 * @attr: the device attribute struct
1061 * @buf: a pointer to the output buffer
1063 * This routine is a callback routine to read a scancode filter value or mask.
1064 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1065 * It prints the current scancode filter value or mask of the appropriate filter
1066 * type in hexadecimal into @buf and returns the size of the buffer.
1068 * Bits of the filter value corresponding to set bits in the filter mask are
1069 * compared against input scancodes and non-matching scancodes are discarded.
1071 * dev->lock is taken to guard against races between device registration,
1072 * store_filter and show_filter.
1074 static ssize_t
show_filter(struct device
*device
,
1075 struct device_attribute
*attr
,
1078 struct rc_dev
*dev
= to_rc_dev(device
);
1079 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(attr
);
1080 struct rc_scancode_filter
*filter
;
1083 /* Device is being removed */
1087 if (fattr
->type
== RC_FILTER_NORMAL
)
1088 filter
= &dev
->scancode_filter
;
1090 filter
= &dev
->scancode_wakeup_filter
;
1092 mutex_lock(&dev
->lock
);
1097 mutex_unlock(&dev
->lock
);
1099 return sprintf(buf
, "%#x\n", val
);
1103 * store_filter() - changes the scancode filter value
1104 * @device: the device descriptor
1105 * @attr: the device attribute struct
1106 * @buf: a pointer to the input buffer
1107 * @len: length of the input buffer
1109 * This routine is for changing a scancode filter value or mask.
1110 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1111 * Returns -EINVAL if an invalid filter value for the current protocol was
1112 * specified or if scancode filtering is not supported by the driver, otherwise
1115 * Bits of the filter value corresponding to set bits in the filter mask are
1116 * compared against input scancodes and non-matching scancodes are discarded.
1118 * dev->lock is taken to guard against races between device registration,
1119 * store_filter and show_filter.
1121 static ssize_t
store_filter(struct device
*device
,
1122 struct device_attribute
*attr
,
1123 const char *buf
, size_t len
)
1125 struct rc_dev
*dev
= to_rc_dev(device
);
1126 struct rc_filter_attribute
*fattr
= to_rc_filter_attr(attr
);
1127 struct rc_scancode_filter new_filter
, *filter
;
1130 int (*set_filter
)(struct rc_dev
*dev
, struct rc_scancode_filter
*filter
);
1131 u64
*enabled_protocols
;
1133 /* Device is being removed */
1137 ret
= kstrtoul(buf
, 0, &val
);
1141 if (fattr
->type
== RC_FILTER_NORMAL
) {
1142 set_filter
= dev
->s_filter
;
1143 enabled_protocols
= &dev
->enabled_protocols
;
1144 filter
= &dev
->scancode_filter
;
1146 set_filter
= dev
->s_wakeup_filter
;
1147 enabled_protocols
= &dev
->enabled_wakeup_protocols
;
1148 filter
= &dev
->scancode_wakeup_filter
;
1154 mutex_lock(&dev
->lock
);
1156 new_filter
= *filter
;
1158 new_filter
.mask
= val
;
1160 new_filter
.data
= val
;
1162 if (!*enabled_protocols
&& val
) {
1163 /* refuse to set a filter unless a protocol is enabled */
1168 ret
= set_filter(dev
, &new_filter
);
1172 *filter
= new_filter
;
1175 mutex_unlock(&dev
->lock
);
1176 return (ret
< 0) ? ret
: len
;
1179 static void rc_dev_release(struct device
*device
)
1183 #define ADD_HOTPLUG_VAR(fmt, val...) \
1185 int err = add_uevent_var(env, fmt, val); \
1190 static int rc_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1192 struct rc_dev
*dev
= to_rc_dev(device
);
1194 if (dev
->rc_map
.name
)
1195 ADD_HOTPLUG_VAR("NAME=%s", dev
->rc_map
.name
);
1196 if (dev
->driver_name
)
1197 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev
->driver_name
);
1203 * Static device attribute struct with the sysfs attributes for IR's
1205 static RC_PROTO_ATTR(protocols
, S_IRUGO
| S_IWUSR
,
1206 show_protocols
, store_protocols
, RC_FILTER_NORMAL
);
1207 static RC_PROTO_ATTR(wakeup_protocols
, S_IRUGO
| S_IWUSR
,
1208 show_protocols
, store_protocols
, RC_FILTER_WAKEUP
);
1209 static RC_FILTER_ATTR(filter
, S_IRUGO
|S_IWUSR
,
1210 show_filter
, store_filter
, RC_FILTER_NORMAL
, false);
1211 static RC_FILTER_ATTR(filter_mask
, S_IRUGO
|S_IWUSR
,
1212 show_filter
, store_filter
, RC_FILTER_NORMAL
, true);
1213 static RC_FILTER_ATTR(wakeup_filter
, S_IRUGO
|S_IWUSR
,
1214 show_filter
, store_filter
, RC_FILTER_WAKEUP
, false);
1215 static RC_FILTER_ATTR(wakeup_filter_mask
, S_IRUGO
|S_IWUSR
,
1216 show_filter
, store_filter
, RC_FILTER_WAKEUP
, true);
1218 static struct attribute
*rc_dev_protocol_attrs
[] = {
1219 &dev_attr_protocols
.attr
.attr
,
1223 static struct attribute_group rc_dev_protocol_attr_grp
= {
1224 .attrs
= rc_dev_protocol_attrs
,
1227 static struct attribute
*rc_dev_wakeup_protocol_attrs
[] = {
1228 &dev_attr_wakeup_protocols
.attr
.attr
,
1232 static struct attribute_group rc_dev_wakeup_protocol_attr_grp
= {
1233 .attrs
= rc_dev_wakeup_protocol_attrs
,
1236 static struct attribute
*rc_dev_filter_attrs
[] = {
1237 &dev_attr_filter
.attr
.attr
,
1238 &dev_attr_filter_mask
.attr
.attr
,
1242 static struct attribute_group rc_dev_filter_attr_grp
= {
1243 .attrs
= rc_dev_filter_attrs
,
1246 static struct attribute
*rc_dev_wakeup_filter_attrs
[] = {
1247 &dev_attr_wakeup_filter
.attr
.attr
,
1248 &dev_attr_wakeup_filter_mask
.attr
.attr
,
1252 static struct attribute_group rc_dev_wakeup_filter_attr_grp
= {
1253 .attrs
= rc_dev_wakeup_filter_attrs
,
1256 static struct device_type rc_dev_type
= {
1257 .release
= rc_dev_release
,
1258 .uevent
= rc_dev_uevent
,
1261 struct rc_dev
*rc_allocate_device(void)
1265 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1269 dev
->input_dev
= input_allocate_device();
1270 if (!dev
->input_dev
) {
1275 dev
->input_dev
->getkeycode
= ir_getkeycode
;
1276 dev
->input_dev
->setkeycode
= ir_setkeycode
;
1277 input_set_drvdata(dev
->input_dev
, dev
);
1279 spin_lock_init(&dev
->rc_map
.lock
);
1280 spin_lock_init(&dev
->keylock
);
1281 mutex_init(&dev
->lock
);
1282 setup_timer(&dev
->timer_keyup
, ir_timer_keyup
, (unsigned long)dev
);
1284 dev
->dev
.type
= &rc_dev_type
;
1285 dev
->dev
.class = &rc_class
;
1286 device_initialize(&dev
->dev
);
1288 __module_get(THIS_MODULE
);
1291 EXPORT_SYMBOL_GPL(rc_allocate_device
);
1293 void rc_free_device(struct rc_dev
*dev
)
1299 input_free_device(dev
->input_dev
);
1301 put_device(&dev
->dev
);
1304 module_put(THIS_MODULE
);
1306 EXPORT_SYMBOL_GPL(rc_free_device
);
1308 int rc_register_device(struct rc_dev
*dev
)
1310 static bool raw_init
= false; /* raw decoders loaded? */
1311 struct rc_map
*rc_map
;
1313 int rc
, devno
, attr
= 0;
1315 if (!dev
|| !dev
->map_name
)
1318 rc_map
= rc_map_get(dev
->map_name
);
1320 rc_map
= rc_map_get(RC_MAP_EMPTY
);
1321 if (!rc_map
|| !rc_map
->scan
|| rc_map
->size
== 0)
1324 set_bit(EV_KEY
, dev
->input_dev
->evbit
);
1325 set_bit(EV_REP
, dev
->input_dev
->evbit
);
1326 set_bit(EV_MSC
, dev
->input_dev
->evbit
);
1327 set_bit(MSC_SCAN
, dev
->input_dev
->mscbit
);
1329 dev
->input_dev
->open
= ir_open
;
1331 dev
->input_dev
->close
= ir_close
;
1334 devno
= find_first_zero_bit(ir_core_dev_number
,
1336 /* No free device slots */
1337 if (devno
>= IRRCV_NUM_DEVICES
)
1339 } while (test_and_set_bit(devno
, ir_core_dev_number
));
1341 dev
->dev
.groups
= dev
->sysfs_groups
;
1342 dev
->sysfs_groups
[attr
++] = &rc_dev_protocol_attr_grp
;
1344 dev
->sysfs_groups
[attr
++] = &rc_dev_filter_attr_grp
;
1345 if (dev
->s_wakeup_filter
)
1346 dev
->sysfs_groups
[attr
++] = &rc_dev_wakeup_filter_attr_grp
;
1347 if (dev
->change_wakeup_protocol
)
1348 dev
->sysfs_groups
[attr
++] = &rc_dev_wakeup_protocol_attr_grp
;
1349 dev
->sysfs_groups
[attr
++] = NULL
;
1352 * Take the lock here, as the device sysfs node will appear
1353 * when device_add() is called, which may trigger an ir-keytable udev
1354 * rule, which will in turn call show_protocols and access
1355 * dev->enabled_protocols before it has been initialized.
1357 mutex_lock(&dev
->lock
);
1360 dev_set_name(&dev
->dev
, "rc%ld", dev
->devno
);
1361 dev_set_drvdata(&dev
->dev
, dev
);
1362 rc
= device_add(&dev
->dev
);
1366 rc
= ir_setkeytable(dev
, rc_map
);
1370 dev
->input_dev
->dev
.parent
= &dev
->dev
;
1371 memcpy(&dev
->input_dev
->id
, &dev
->input_id
, sizeof(dev
->input_id
));
1372 dev
->input_dev
->phys
= dev
->input_phys
;
1373 dev
->input_dev
->name
= dev
->input_name
;
1375 /* input_register_device can call ir_open, so unlock mutex here */
1376 mutex_unlock(&dev
->lock
);
1378 rc
= input_register_device(dev
->input_dev
);
1380 mutex_lock(&dev
->lock
);
1386 * Default delay of 250ms is too short for some protocols, especially
1387 * since the timeout is currently set to 250ms. Increase it to 500ms,
1388 * to avoid wrong repetition of the keycodes. Note that this must be
1389 * set after the call to input_register_device().
1391 dev
->input_dev
->rep
[REP_DELAY
] = 500;
1394 * As a repeat event on protocols like RC-5 and NEC take as long as
1395 * 110/114ms, using 33ms as a repeat period is not the right thing
1398 dev
->input_dev
->rep
[REP_PERIOD
] = 125;
1400 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1401 printk(KERN_INFO
"%s: %s as %s\n",
1402 dev_name(&dev
->dev
),
1403 dev
->input_name
? dev
->input_name
: "Unspecified device",
1404 path
? path
: "N/A");
1407 if (dev
->driver_type
== RC_DRIVER_IR_RAW
) {
1408 /* Load raw decoders, if they aren't already */
1410 IR_dprintk(1, "Loading raw decoders\n");
1414 rc
= ir_raw_event_register(dev
);
1419 if (dev
->change_protocol
) {
1420 u64 rc_type
= (1 << rc_map
->rc_type
);
1421 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1422 rc_type
|= RC_BIT_LIRC
;
1423 rc
= dev
->change_protocol(dev
, &rc_type
);
1426 dev
->enabled_protocols
= rc_type
;
1429 mutex_unlock(&dev
->lock
);
1431 IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1433 dev
->driver_name
? dev
->driver_name
: "unknown",
1434 rc_map
->name
? rc_map
->name
: "unknown",
1435 dev
->driver_type
== RC_DRIVER_IR_RAW
? "raw" : "cooked");
1440 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1441 ir_raw_event_unregister(dev
);
1443 input_unregister_device(dev
->input_dev
);
1444 dev
->input_dev
= NULL
;
1446 ir_free_table(&dev
->rc_map
);
1448 device_del(&dev
->dev
);
1450 mutex_unlock(&dev
->lock
);
1451 clear_bit(dev
->devno
, ir_core_dev_number
);
1454 EXPORT_SYMBOL_GPL(rc_register_device
);
1456 void rc_unregister_device(struct rc_dev
*dev
)
1461 del_timer_sync(&dev
->timer_keyup
);
1463 clear_bit(dev
->devno
, ir_core_dev_number
);
1465 if (dev
->driver_type
== RC_DRIVER_IR_RAW
)
1466 ir_raw_event_unregister(dev
);
1468 /* Freeing the table should also call the stop callback */
1469 ir_free_table(&dev
->rc_map
);
1470 IR_dprintk(1, "Freed keycode table\n");
1472 input_unregister_device(dev
->input_dev
);
1473 dev
->input_dev
= NULL
;
1475 device_del(&dev
->dev
);
1477 rc_free_device(dev
);
1480 EXPORT_SYMBOL_GPL(rc_unregister_device
);
1483 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1486 static int __init
rc_core_init(void)
1488 int rc
= class_register(&rc_class
);
1490 printk(KERN_ERR
"rc_core: unable to register rc class\n");
1494 led_trigger_register_simple("rc-feedback", &led_feedback
);
1495 rc_map_register(&empty_map
);
1500 static void __exit
rc_core_exit(void)
1502 class_unregister(&rc_class
);
1503 led_trigger_unregister_simple(led_feedback
);
1504 rc_map_unregister(&empty_map
);
1507 subsys_initcall(rc_core_init
);
1508 module_exit(rc_core_exit
);
1510 int rc_core_debug
; /* ir_debug level (0,1,2) */
1511 EXPORT_SYMBOL_GPL(rc_core_debug
);
1512 module_param_named(debug
, rc_core_debug
, int, 0644);
1514 MODULE_AUTHOR("Mauro Carvalho Chehab");
1515 MODULE_LICENSE("GPL");