1 // SPDX-License-Identifier: GPL-2.0-only
3 * AArch64 loadable module support.
5 * Copyright (C) 2012 ARM Limited
7 * Author: Will Deacon <will.deacon@arm.com>
10 #include <linux/bitops.h>
11 #include <linux/elf.h>
12 #include <linux/ftrace.h>
13 #include <linux/gfp.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
17 #include <linux/moduleloader.h>
18 #include <linux/vmalloc.h>
19 #include <asm/alternative.h>
21 #include <asm/sections.h>
23 void *module_alloc(unsigned long size
)
25 u64 module_alloc_end
= module_alloc_base
+ MODULES_VSIZE
;
26 gfp_t gfp_mask
= GFP_KERNEL
;
29 /* Silence the initial allocation */
30 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS
))
31 gfp_mask
|= __GFP_NOWARN
;
33 if (IS_ENABLED(CONFIG_KASAN_GENERIC
) ||
34 IS_ENABLED(CONFIG_KASAN_SW_TAGS
))
35 /* don't exceed the static module region - see below */
36 module_alloc_end
= MODULES_END
;
38 p
= __vmalloc_node_range(size
, MODULE_ALIGN
, module_alloc_base
,
39 module_alloc_end
, gfp_mask
, PAGE_KERNEL
, 0,
40 NUMA_NO_NODE
, __builtin_return_address(0));
42 if (!p
&& IS_ENABLED(CONFIG_ARM64_MODULE_PLTS
) &&
43 !IS_ENABLED(CONFIG_KASAN_GENERIC
) &&
44 !IS_ENABLED(CONFIG_KASAN_SW_TAGS
))
46 * KASAN can only deal with module allocations being served
47 * from the reserved module region, since the remainder of
48 * the vmalloc region is already backed by zero shadow pages,
49 * and punching holes into it is non-trivial. Since the module
50 * region is not randomized when KASAN is enabled, it is even
51 * less likely that the module region gets exhausted, so we
52 * can simply omit this fallback in that case.
54 p
= __vmalloc_node_range(size
, MODULE_ALIGN
, module_alloc_base
,
55 module_alloc_base
+ SZ_2G
, GFP_KERNEL
,
56 PAGE_KERNEL
, 0, NUMA_NO_NODE
,
57 __builtin_return_address(0));
59 if (p
&& (kasan_module_alloc(p
, size
) < 0)) {
67 enum aarch64_reloc_op
{
74 static u64
do_reloc(enum aarch64_reloc_op reloc_op
, __le32
*place
, u64 val
)
80 return val
- (u64
)place
;
82 return (val
& ~0xfff) - ((u64
)place
& ~0xfff);
87 pr_err("do_reloc: unknown relocation operation %d\n", reloc_op
);
91 static int reloc_data(enum aarch64_reloc_op op
, void *place
, u64 val
, int len
)
93 s64 sval
= do_reloc(op
, place
, val
);
96 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
97 * relative and absolute relocations as having a range of [-2^15, 2^16)
98 * or [-2^31, 2^32), respectively. However, in order to be able to
99 * detect overflows reliably, we have to choose whether we interpret
100 * such quantities as signed or as unsigned, and stick with it.
101 * The way we organize our address space requires a signed
102 * interpretation of 32-bit relative references, so let's use that
103 * for all R_AARCH64_PRELxx relocations. This means our upper
104 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
109 *(s16
*)place
= sval
;
112 if (sval
< 0 || sval
> U16_MAX
)
116 if (sval
< S16_MIN
|| sval
> S16_MAX
)
120 pr_err("Invalid 16-bit data relocation (%d)\n", op
);
125 *(s32
*)place
= sval
;
128 if (sval
< 0 || sval
> U32_MAX
)
132 if (sval
< S32_MIN
|| sval
> S32_MAX
)
136 pr_err("Invalid 32-bit data relocation (%d)\n", op
);
141 *(s64
*)place
= sval
;
144 pr_err("Invalid length (%d) for data relocation\n", len
);
150 enum aarch64_insn_movw_imm_type
{
151 AARCH64_INSN_IMM_MOVNZ
,
152 AARCH64_INSN_IMM_MOVKZ
,
155 static int reloc_insn_movw(enum aarch64_reloc_op op
, __le32
*place
, u64 val
,
156 int lsb
, enum aarch64_insn_movw_imm_type imm_type
)
160 u32 insn
= le32_to_cpu(*place
);
162 sval
= do_reloc(op
, place
, val
);
165 if (imm_type
== AARCH64_INSN_IMM_MOVNZ
) {
167 * For signed MOVW relocations, we have to manipulate the
168 * instruction encoding depending on whether or not the
169 * immediate is less than zero.
173 /* >=0: Set the instruction to MOVZ (opcode 10b). */
177 * <0: Set the instruction to MOVN (opcode 00b).
178 * Since we've masked the opcode already, we
179 * don't need to do anything other than
180 * inverting the new immediate field.
186 /* Update the instruction with the new encoding. */
187 insn
= aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16
, insn
, imm
);
188 *place
= cpu_to_le32(insn
);
196 static int reloc_insn_imm(enum aarch64_reloc_op op
, __le32
*place
, u64 val
,
197 int lsb
, int len
, enum aarch64_insn_imm_type imm_type
)
201 u32 insn
= le32_to_cpu(*place
);
203 /* Calculate the relocation value. */
204 sval
= do_reloc(op
, place
, val
);
207 /* Extract the value bits and shift them to bit 0. */
208 imm_mask
= (BIT(lsb
+ len
) - 1) >> lsb
;
209 imm
= sval
& imm_mask
;
211 /* Update the instruction's immediate field. */
212 insn
= aarch64_insn_encode_immediate(imm_type
, insn
, imm
);
213 *place
= cpu_to_le32(insn
);
216 * Extract the upper value bits (including the sign bit) and
217 * shift them to bit 0.
219 sval
= (s64
)(sval
& ~(imm_mask
>> 1)) >> (len
- 1);
222 * Overflow has occurred if the upper bits are not all equal to
223 * the sign bit of the value.
225 if ((u64
)(sval
+ 1) >= 2)
231 static int reloc_insn_adrp(struct module
*mod
, Elf64_Shdr
*sechdrs
,
232 __le32
*place
, u64 val
)
236 if (!is_forbidden_offset_for_adrp(place
))
237 return reloc_insn_imm(RELOC_OP_PAGE
, place
, val
, 12, 21,
238 AARCH64_INSN_IMM_ADR
);
240 /* patch ADRP to ADR if it is in range */
241 if (!reloc_insn_imm(RELOC_OP_PREL
, place
, val
& ~0xfff, 0, 21,
242 AARCH64_INSN_IMM_ADR
)) {
243 insn
= le32_to_cpu(*place
);
246 /* out of range for ADR -> emit a veneer */
247 val
= module_emit_veneer_for_adrp(mod
, sechdrs
, place
, val
& ~0xfff);
250 insn
= aarch64_insn_gen_branch_imm((u64
)place
, val
,
251 AARCH64_INSN_BRANCH_NOLINK
);
254 *place
= cpu_to_le32(insn
);
258 int apply_relocate_add(Elf64_Shdr
*sechdrs
,
260 unsigned int symindex
,
270 Elf64_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
272 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
273 /* loc corresponds to P in the AArch64 ELF document. */
274 loc
= (void *)sechdrs
[sechdrs
[relsec
].sh_info
].sh_addr
277 /* sym is the ELF symbol we're referring to. */
278 sym
= (Elf64_Sym
*)sechdrs
[symindex
].sh_addr
279 + ELF64_R_SYM(rel
[i
].r_info
);
281 /* val corresponds to (S + A) in the AArch64 ELF document. */
282 val
= sym
->st_value
+ rel
[i
].r_addend
;
284 /* Check for overflow by default. */
285 overflow_check
= true;
287 /* Perform the static relocation. */
288 switch (ELF64_R_TYPE(rel
[i
].r_info
)) {
289 /* Null relocations. */
295 /* Data relocations. */
296 case R_AARCH64_ABS64
:
297 overflow_check
= false;
298 ovf
= reloc_data(RELOC_OP_ABS
, loc
, val
, 64);
300 case R_AARCH64_ABS32
:
301 ovf
= reloc_data(RELOC_OP_ABS
, loc
, val
, 32);
303 case R_AARCH64_ABS16
:
304 ovf
= reloc_data(RELOC_OP_ABS
, loc
, val
, 16);
306 case R_AARCH64_PREL64
:
307 overflow_check
= false;
308 ovf
= reloc_data(RELOC_OP_PREL
, loc
, val
, 64);
310 case R_AARCH64_PREL32
:
311 ovf
= reloc_data(RELOC_OP_PREL
, loc
, val
, 32);
313 case R_AARCH64_PREL16
:
314 ovf
= reloc_data(RELOC_OP_PREL
, loc
, val
, 16);
317 /* MOVW instruction relocations. */
318 case R_AARCH64_MOVW_UABS_G0_NC
:
319 overflow_check
= false;
321 case R_AARCH64_MOVW_UABS_G0
:
322 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 0,
323 AARCH64_INSN_IMM_MOVKZ
);
325 case R_AARCH64_MOVW_UABS_G1_NC
:
326 overflow_check
= false;
328 case R_AARCH64_MOVW_UABS_G1
:
329 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 16,
330 AARCH64_INSN_IMM_MOVKZ
);
332 case R_AARCH64_MOVW_UABS_G2_NC
:
333 overflow_check
= false;
335 case R_AARCH64_MOVW_UABS_G2
:
336 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 32,
337 AARCH64_INSN_IMM_MOVKZ
);
339 case R_AARCH64_MOVW_UABS_G3
:
340 /* We're using the top bits so we can't overflow. */
341 overflow_check
= false;
342 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 48,
343 AARCH64_INSN_IMM_MOVKZ
);
345 case R_AARCH64_MOVW_SABS_G0
:
346 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 0,
347 AARCH64_INSN_IMM_MOVNZ
);
349 case R_AARCH64_MOVW_SABS_G1
:
350 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 16,
351 AARCH64_INSN_IMM_MOVNZ
);
353 case R_AARCH64_MOVW_SABS_G2
:
354 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 32,
355 AARCH64_INSN_IMM_MOVNZ
);
357 case R_AARCH64_MOVW_PREL_G0_NC
:
358 overflow_check
= false;
359 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 0,
360 AARCH64_INSN_IMM_MOVKZ
);
362 case R_AARCH64_MOVW_PREL_G0
:
363 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 0,
364 AARCH64_INSN_IMM_MOVNZ
);
366 case R_AARCH64_MOVW_PREL_G1_NC
:
367 overflow_check
= false;
368 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 16,
369 AARCH64_INSN_IMM_MOVKZ
);
371 case R_AARCH64_MOVW_PREL_G1
:
372 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 16,
373 AARCH64_INSN_IMM_MOVNZ
);
375 case R_AARCH64_MOVW_PREL_G2_NC
:
376 overflow_check
= false;
377 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 32,
378 AARCH64_INSN_IMM_MOVKZ
);
380 case R_AARCH64_MOVW_PREL_G2
:
381 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 32,
382 AARCH64_INSN_IMM_MOVNZ
);
384 case R_AARCH64_MOVW_PREL_G3
:
385 /* We're using the top bits so we can't overflow. */
386 overflow_check
= false;
387 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 48,
388 AARCH64_INSN_IMM_MOVNZ
);
391 /* Immediate instruction relocations. */
392 case R_AARCH64_LD_PREL_LO19
:
393 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2, 19,
394 AARCH64_INSN_IMM_19
);
396 case R_AARCH64_ADR_PREL_LO21
:
397 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 0, 21,
398 AARCH64_INSN_IMM_ADR
);
400 case R_AARCH64_ADR_PREL_PG_HI21_NC
:
401 overflow_check
= false;
403 case R_AARCH64_ADR_PREL_PG_HI21
:
404 ovf
= reloc_insn_adrp(me
, sechdrs
, loc
, val
);
405 if (ovf
&& ovf
!= -ERANGE
)
408 case R_AARCH64_ADD_ABS_LO12_NC
:
409 case R_AARCH64_LDST8_ABS_LO12_NC
:
410 overflow_check
= false;
411 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 0, 12,
412 AARCH64_INSN_IMM_12
);
414 case R_AARCH64_LDST16_ABS_LO12_NC
:
415 overflow_check
= false;
416 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 1, 11,
417 AARCH64_INSN_IMM_12
);
419 case R_AARCH64_LDST32_ABS_LO12_NC
:
420 overflow_check
= false;
421 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 2, 10,
422 AARCH64_INSN_IMM_12
);
424 case R_AARCH64_LDST64_ABS_LO12_NC
:
425 overflow_check
= false;
426 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 3, 9,
427 AARCH64_INSN_IMM_12
);
429 case R_AARCH64_LDST128_ABS_LO12_NC
:
430 overflow_check
= false;
431 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 4, 8,
432 AARCH64_INSN_IMM_12
);
434 case R_AARCH64_TSTBR14
:
435 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2, 14,
436 AARCH64_INSN_IMM_14
);
438 case R_AARCH64_CONDBR19
:
439 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2, 19,
440 AARCH64_INSN_IMM_19
);
442 case R_AARCH64_JUMP26
:
443 case R_AARCH64_CALL26
:
444 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2, 26,
445 AARCH64_INSN_IMM_26
);
447 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS
) &&
449 val
= module_emit_plt_entry(me
, sechdrs
, loc
, &rel
[i
], sym
);
452 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2,
453 26, AARCH64_INSN_IMM_26
);
458 pr_err("module %s: unsupported RELA relocation: %llu\n",
459 me
->name
, ELF64_R_TYPE(rel
[i
].r_info
));
463 if (overflow_check
&& ovf
== -ERANGE
)
471 pr_err("module %s: overflow in relocation type %d val %Lx\n",
472 me
->name
, (int)ELF64_R_TYPE(rel
[i
].r_info
), val
);
476 static const Elf_Shdr
*find_section(const Elf_Ehdr
*hdr
,
477 const Elf_Shdr
*sechdrs
,
480 const Elf_Shdr
*s
, *se
;
481 const char *secstrs
= (void *)hdr
+ sechdrs
[hdr
->e_shstrndx
].sh_offset
;
483 for (s
= sechdrs
, se
= sechdrs
+ hdr
->e_shnum
; s
< se
; s
++) {
484 if (strcmp(name
, secstrs
+ s
->sh_name
) == 0)
491 static inline void __init_plt(struct plt_entry
*plt
, unsigned long addr
)
493 *plt
= get_plt_entry(addr
, plt
);
496 static int module_init_ftrace_plt(const Elf_Ehdr
*hdr
,
497 const Elf_Shdr
*sechdrs
,
500 #if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
502 struct plt_entry
*plts
;
504 s
= find_section(hdr
, sechdrs
, ".text.ftrace_trampoline");
508 plts
= (void *)s
->sh_addr
;
510 __init_plt(&plts
[FTRACE_PLT_IDX
], FTRACE_ADDR
);
512 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS
))
513 __init_plt(&plts
[FTRACE_REGS_PLT_IDX
], FTRACE_REGS_ADDR
);
515 mod
->arch
.ftrace_trampolines
= plts
;
520 int module_finalize(const Elf_Ehdr
*hdr
,
521 const Elf_Shdr
*sechdrs
,
525 s
= find_section(hdr
, sechdrs
, ".altinstructions");
527 apply_alternatives_module((void *)s
->sh_addr
, s
->sh_size
);
529 return module_init_ftrace_plt(hdr
, sechdrs
, me
);