Merge tag 'sched-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / arch / arm64 / kernel / module.c
blobfe21e0f06492ee5e4328288b191e25d08ef28d08
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AArch64 loadable module support.
5 * Copyright (C) 2012 ARM Limited
7 * Author: Will Deacon <will.deacon@arm.com>
8 */
10 #include <linux/bitops.h>
11 #include <linux/elf.h>
12 #include <linux/ftrace.h>
13 #include <linux/gfp.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/moduleloader.h>
18 #include <linux/vmalloc.h>
19 #include <asm/alternative.h>
20 #include <asm/insn.h>
21 #include <asm/sections.h>
23 void *module_alloc(unsigned long size)
25 u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
26 gfp_t gfp_mask = GFP_KERNEL;
27 void *p;
29 /* Silence the initial allocation */
30 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
31 gfp_mask |= __GFP_NOWARN;
33 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
34 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
35 /* don't exceed the static module region - see below */
36 module_alloc_end = MODULES_END;
38 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
39 module_alloc_end, gfp_mask, PAGE_KERNEL, 0,
40 NUMA_NO_NODE, __builtin_return_address(0));
42 if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
43 !IS_ENABLED(CONFIG_KASAN_GENERIC) &&
44 !IS_ENABLED(CONFIG_KASAN_SW_TAGS))
46 * KASAN can only deal with module allocations being served
47 * from the reserved module region, since the remainder of
48 * the vmalloc region is already backed by zero shadow pages,
49 * and punching holes into it is non-trivial. Since the module
50 * region is not randomized when KASAN is enabled, it is even
51 * less likely that the module region gets exhausted, so we
52 * can simply omit this fallback in that case.
54 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
55 module_alloc_base + SZ_2G, GFP_KERNEL,
56 PAGE_KERNEL, 0, NUMA_NO_NODE,
57 __builtin_return_address(0));
59 if (p && (kasan_module_alloc(p, size) < 0)) {
60 vfree(p);
61 return NULL;
64 return p;
67 enum aarch64_reloc_op {
68 RELOC_OP_NONE,
69 RELOC_OP_ABS,
70 RELOC_OP_PREL,
71 RELOC_OP_PAGE,
74 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
76 switch (reloc_op) {
77 case RELOC_OP_ABS:
78 return val;
79 case RELOC_OP_PREL:
80 return val - (u64)place;
81 case RELOC_OP_PAGE:
82 return (val & ~0xfff) - ((u64)place & ~0xfff);
83 case RELOC_OP_NONE:
84 return 0;
87 pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
88 return 0;
91 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
93 s64 sval = do_reloc(op, place, val);
96 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
97 * relative and absolute relocations as having a range of [-2^15, 2^16)
98 * or [-2^31, 2^32), respectively. However, in order to be able to
99 * detect overflows reliably, we have to choose whether we interpret
100 * such quantities as signed or as unsigned, and stick with it.
101 * The way we organize our address space requires a signed
102 * interpretation of 32-bit relative references, so let's use that
103 * for all R_AARCH64_PRELxx relocations. This means our upper
104 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
107 switch (len) {
108 case 16:
109 *(s16 *)place = sval;
110 switch (op) {
111 case RELOC_OP_ABS:
112 if (sval < 0 || sval > U16_MAX)
113 return -ERANGE;
114 break;
115 case RELOC_OP_PREL:
116 if (sval < S16_MIN || sval > S16_MAX)
117 return -ERANGE;
118 break;
119 default:
120 pr_err("Invalid 16-bit data relocation (%d)\n", op);
121 return 0;
123 break;
124 case 32:
125 *(s32 *)place = sval;
126 switch (op) {
127 case RELOC_OP_ABS:
128 if (sval < 0 || sval > U32_MAX)
129 return -ERANGE;
130 break;
131 case RELOC_OP_PREL:
132 if (sval < S32_MIN || sval > S32_MAX)
133 return -ERANGE;
134 break;
135 default:
136 pr_err("Invalid 32-bit data relocation (%d)\n", op);
137 return 0;
139 break;
140 case 64:
141 *(s64 *)place = sval;
142 break;
143 default:
144 pr_err("Invalid length (%d) for data relocation\n", len);
145 return 0;
147 return 0;
150 enum aarch64_insn_movw_imm_type {
151 AARCH64_INSN_IMM_MOVNZ,
152 AARCH64_INSN_IMM_MOVKZ,
155 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
156 int lsb, enum aarch64_insn_movw_imm_type imm_type)
158 u64 imm;
159 s64 sval;
160 u32 insn = le32_to_cpu(*place);
162 sval = do_reloc(op, place, val);
163 imm = sval >> lsb;
165 if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
167 * For signed MOVW relocations, we have to manipulate the
168 * instruction encoding depending on whether or not the
169 * immediate is less than zero.
171 insn &= ~(3 << 29);
172 if (sval >= 0) {
173 /* >=0: Set the instruction to MOVZ (opcode 10b). */
174 insn |= 2 << 29;
175 } else {
177 * <0: Set the instruction to MOVN (opcode 00b).
178 * Since we've masked the opcode already, we
179 * don't need to do anything other than
180 * inverting the new immediate field.
182 imm = ~imm;
186 /* Update the instruction with the new encoding. */
187 insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
188 *place = cpu_to_le32(insn);
190 if (imm > U16_MAX)
191 return -ERANGE;
193 return 0;
196 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
197 int lsb, int len, enum aarch64_insn_imm_type imm_type)
199 u64 imm, imm_mask;
200 s64 sval;
201 u32 insn = le32_to_cpu(*place);
203 /* Calculate the relocation value. */
204 sval = do_reloc(op, place, val);
205 sval >>= lsb;
207 /* Extract the value bits and shift them to bit 0. */
208 imm_mask = (BIT(lsb + len) - 1) >> lsb;
209 imm = sval & imm_mask;
211 /* Update the instruction's immediate field. */
212 insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
213 *place = cpu_to_le32(insn);
216 * Extract the upper value bits (including the sign bit) and
217 * shift them to bit 0.
219 sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
222 * Overflow has occurred if the upper bits are not all equal to
223 * the sign bit of the value.
225 if ((u64)(sval + 1) >= 2)
226 return -ERANGE;
228 return 0;
231 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
232 __le32 *place, u64 val)
234 u32 insn;
236 if (!is_forbidden_offset_for_adrp(place))
237 return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
238 AARCH64_INSN_IMM_ADR);
240 /* patch ADRP to ADR if it is in range */
241 if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
242 AARCH64_INSN_IMM_ADR)) {
243 insn = le32_to_cpu(*place);
244 insn &= ~BIT(31);
245 } else {
246 /* out of range for ADR -> emit a veneer */
247 val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
248 if (!val)
249 return -ENOEXEC;
250 insn = aarch64_insn_gen_branch_imm((u64)place, val,
251 AARCH64_INSN_BRANCH_NOLINK);
254 *place = cpu_to_le32(insn);
255 return 0;
258 int apply_relocate_add(Elf64_Shdr *sechdrs,
259 const char *strtab,
260 unsigned int symindex,
261 unsigned int relsec,
262 struct module *me)
264 unsigned int i;
265 int ovf;
266 bool overflow_check;
267 Elf64_Sym *sym;
268 void *loc;
269 u64 val;
270 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
272 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
273 /* loc corresponds to P in the AArch64 ELF document. */
274 loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
275 + rel[i].r_offset;
277 /* sym is the ELF symbol we're referring to. */
278 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
279 + ELF64_R_SYM(rel[i].r_info);
281 /* val corresponds to (S + A) in the AArch64 ELF document. */
282 val = sym->st_value + rel[i].r_addend;
284 /* Check for overflow by default. */
285 overflow_check = true;
287 /* Perform the static relocation. */
288 switch (ELF64_R_TYPE(rel[i].r_info)) {
289 /* Null relocations. */
290 case R_ARM_NONE:
291 case R_AARCH64_NONE:
292 ovf = 0;
293 break;
295 /* Data relocations. */
296 case R_AARCH64_ABS64:
297 overflow_check = false;
298 ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
299 break;
300 case R_AARCH64_ABS32:
301 ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
302 break;
303 case R_AARCH64_ABS16:
304 ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
305 break;
306 case R_AARCH64_PREL64:
307 overflow_check = false;
308 ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
309 break;
310 case R_AARCH64_PREL32:
311 ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
312 break;
313 case R_AARCH64_PREL16:
314 ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
315 break;
317 /* MOVW instruction relocations. */
318 case R_AARCH64_MOVW_UABS_G0_NC:
319 overflow_check = false;
320 fallthrough;
321 case R_AARCH64_MOVW_UABS_G0:
322 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
323 AARCH64_INSN_IMM_MOVKZ);
324 break;
325 case R_AARCH64_MOVW_UABS_G1_NC:
326 overflow_check = false;
327 fallthrough;
328 case R_AARCH64_MOVW_UABS_G1:
329 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
330 AARCH64_INSN_IMM_MOVKZ);
331 break;
332 case R_AARCH64_MOVW_UABS_G2_NC:
333 overflow_check = false;
334 fallthrough;
335 case R_AARCH64_MOVW_UABS_G2:
336 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
337 AARCH64_INSN_IMM_MOVKZ);
338 break;
339 case R_AARCH64_MOVW_UABS_G3:
340 /* We're using the top bits so we can't overflow. */
341 overflow_check = false;
342 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
343 AARCH64_INSN_IMM_MOVKZ);
344 break;
345 case R_AARCH64_MOVW_SABS_G0:
346 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
347 AARCH64_INSN_IMM_MOVNZ);
348 break;
349 case R_AARCH64_MOVW_SABS_G1:
350 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
351 AARCH64_INSN_IMM_MOVNZ);
352 break;
353 case R_AARCH64_MOVW_SABS_G2:
354 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
355 AARCH64_INSN_IMM_MOVNZ);
356 break;
357 case R_AARCH64_MOVW_PREL_G0_NC:
358 overflow_check = false;
359 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
360 AARCH64_INSN_IMM_MOVKZ);
361 break;
362 case R_AARCH64_MOVW_PREL_G0:
363 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
364 AARCH64_INSN_IMM_MOVNZ);
365 break;
366 case R_AARCH64_MOVW_PREL_G1_NC:
367 overflow_check = false;
368 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
369 AARCH64_INSN_IMM_MOVKZ);
370 break;
371 case R_AARCH64_MOVW_PREL_G1:
372 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
373 AARCH64_INSN_IMM_MOVNZ);
374 break;
375 case R_AARCH64_MOVW_PREL_G2_NC:
376 overflow_check = false;
377 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
378 AARCH64_INSN_IMM_MOVKZ);
379 break;
380 case R_AARCH64_MOVW_PREL_G2:
381 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
382 AARCH64_INSN_IMM_MOVNZ);
383 break;
384 case R_AARCH64_MOVW_PREL_G3:
385 /* We're using the top bits so we can't overflow. */
386 overflow_check = false;
387 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
388 AARCH64_INSN_IMM_MOVNZ);
389 break;
391 /* Immediate instruction relocations. */
392 case R_AARCH64_LD_PREL_LO19:
393 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
394 AARCH64_INSN_IMM_19);
395 break;
396 case R_AARCH64_ADR_PREL_LO21:
397 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
398 AARCH64_INSN_IMM_ADR);
399 break;
400 case R_AARCH64_ADR_PREL_PG_HI21_NC:
401 overflow_check = false;
402 fallthrough;
403 case R_AARCH64_ADR_PREL_PG_HI21:
404 ovf = reloc_insn_adrp(me, sechdrs, loc, val);
405 if (ovf && ovf != -ERANGE)
406 return ovf;
407 break;
408 case R_AARCH64_ADD_ABS_LO12_NC:
409 case R_AARCH64_LDST8_ABS_LO12_NC:
410 overflow_check = false;
411 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
412 AARCH64_INSN_IMM_12);
413 break;
414 case R_AARCH64_LDST16_ABS_LO12_NC:
415 overflow_check = false;
416 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
417 AARCH64_INSN_IMM_12);
418 break;
419 case R_AARCH64_LDST32_ABS_LO12_NC:
420 overflow_check = false;
421 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
422 AARCH64_INSN_IMM_12);
423 break;
424 case R_AARCH64_LDST64_ABS_LO12_NC:
425 overflow_check = false;
426 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
427 AARCH64_INSN_IMM_12);
428 break;
429 case R_AARCH64_LDST128_ABS_LO12_NC:
430 overflow_check = false;
431 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
432 AARCH64_INSN_IMM_12);
433 break;
434 case R_AARCH64_TSTBR14:
435 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
436 AARCH64_INSN_IMM_14);
437 break;
438 case R_AARCH64_CONDBR19:
439 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
440 AARCH64_INSN_IMM_19);
441 break;
442 case R_AARCH64_JUMP26:
443 case R_AARCH64_CALL26:
444 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
445 AARCH64_INSN_IMM_26);
447 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
448 ovf == -ERANGE) {
449 val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
450 if (!val)
451 return -ENOEXEC;
452 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
453 26, AARCH64_INSN_IMM_26);
455 break;
457 default:
458 pr_err("module %s: unsupported RELA relocation: %llu\n",
459 me->name, ELF64_R_TYPE(rel[i].r_info));
460 return -ENOEXEC;
463 if (overflow_check && ovf == -ERANGE)
464 goto overflow;
468 return 0;
470 overflow:
471 pr_err("module %s: overflow in relocation type %d val %Lx\n",
472 me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
473 return -ENOEXEC;
476 static const Elf_Shdr *find_section(const Elf_Ehdr *hdr,
477 const Elf_Shdr *sechdrs,
478 const char *name)
480 const Elf_Shdr *s, *se;
481 const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
483 for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
484 if (strcmp(name, secstrs + s->sh_name) == 0)
485 return s;
488 return NULL;
491 static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
493 *plt = get_plt_entry(addr, plt);
496 static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
497 const Elf_Shdr *sechdrs,
498 struct module *mod)
500 #if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
501 const Elf_Shdr *s;
502 struct plt_entry *plts;
504 s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
505 if (!s)
506 return -ENOEXEC;
508 plts = (void *)s->sh_addr;
510 __init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
512 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS))
513 __init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR);
515 mod->arch.ftrace_trampolines = plts;
516 #endif
517 return 0;
520 int module_finalize(const Elf_Ehdr *hdr,
521 const Elf_Shdr *sechdrs,
522 struct module *me)
524 const Elf_Shdr *s;
525 s = find_section(hdr, sechdrs, ".altinstructions");
526 if (s)
527 apply_alternatives_module((void *)s->sh_addr, s->sh_size);
529 return module_init_ftrace_plt(hdr, sechdrs, me);