1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
46 __asm__(".arch_extension virt");
49 static enum kvm_mode kvm_mode
= KVM_MODE_DEFAULT
;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized
);
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector
);
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page
);
55 unsigned long kvm_arm_hyp_percpu_base
[NR_CPUS
];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params
, kvm_init_params
);
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen
= ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid
;
61 static DEFINE_SPINLOCK(kvm_vmid_lock
);
63 static bool vgic_present
;
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled
);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use
);
68 extern u64
kvm_nvhe_sym(__cpu_logical_map
)[NR_CPUS
];
69 extern u32
kvm_nvhe_sym(kvm_host_psci_version
);
70 extern struct psci_0_1_function_ids
kvm_nvhe_sym(kvm_host_psci_0_1_function_ids
);
72 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
74 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
77 int kvm_arch_hardware_setup(void *opaque
)
82 int kvm_arch_check_processor_compat(void *opaque
)
87 int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
88 struct kvm_enable_cap
*cap
)
96 case KVM_CAP_ARM_NISV_TO_USER
:
98 kvm
->arch
.return_nisv_io_abort_to_user
= true;
108 static int kvm_arm_default_max_vcpus(void)
110 return vgic_present
? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS
;
113 static void set_default_spectre(struct kvm
*kvm
)
116 * The default is to expose CSV2 == 1 if the HW isn't affected.
117 * Although this is a per-CPU feature, we make it global because
118 * asymmetric systems are just a nuisance.
120 * Userspace can override this as long as it doesn't promise
123 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED
)
124 kvm
->arch
.pfr0_csv2
= 1;
125 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED
)
126 kvm
->arch
.pfr0_csv3
= 1;
130 * kvm_arch_init_vm - initializes a VM data structure
131 * @kvm: pointer to the KVM struct
133 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
137 ret
= kvm_arm_setup_stage2(kvm
, type
);
141 ret
= kvm_init_stage2_mmu(kvm
, &kvm
->arch
.mmu
);
145 ret
= create_hyp_mappings(kvm
, kvm
+ 1, PAGE_HYP
);
147 goto out_free_stage2_pgd
;
149 kvm_vgic_early_init(kvm
);
151 /* The maximum number of VCPUs is limited by the host's GIC model */
152 kvm
->arch
.max_vcpus
= kvm_arm_default_max_vcpus();
154 set_default_spectre(kvm
);
158 kvm_free_stage2_pgd(&kvm
->arch
.mmu
);
162 vm_fault_t
kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
164 return VM_FAULT_SIGBUS
;
169 * kvm_arch_destroy_vm - destroy the VM data structure
170 * @kvm: pointer to the KVM struct
172 void kvm_arch_destroy_vm(struct kvm
*kvm
)
176 bitmap_free(kvm
->arch
.pmu_filter
);
178 kvm_vgic_destroy(kvm
);
180 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
182 kvm_vcpu_destroy(kvm
->vcpus
[i
]);
183 kvm
->vcpus
[i
] = NULL
;
186 atomic_set(&kvm
->online_vcpus
, 0);
189 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
193 case KVM_CAP_IRQCHIP
:
196 case KVM_CAP_IOEVENTFD
:
197 case KVM_CAP_DEVICE_CTRL
:
198 case KVM_CAP_USER_MEMORY
:
199 case KVM_CAP_SYNC_MMU
:
200 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
201 case KVM_CAP_ONE_REG
:
202 case KVM_CAP_ARM_PSCI
:
203 case KVM_CAP_ARM_PSCI_0_2
:
204 case KVM_CAP_READONLY_MEM
:
205 case KVM_CAP_MP_STATE
:
206 case KVM_CAP_IMMEDIATE_EXIT
:
207 case KVM_CAP_VCPU_EVENTS
:
208 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2
:
209 case KVM_CAP_ARM_NISV_TO_USER
:
210 case KVM_CAP_ARM_INJECT_EXT_DABT
:
211 case KVM_CAP_SET_GUEST_DEBUG
:
212 case KVM_CAP_VCPU_ATTRIBUTES
:
215 case KVM_CAP_ARM_SET_DEVICE_ADDR
:
218 case KVM_CAP_NR_VCPUS
:
219 r
= num_online_cpus();
221 case KVM_CAP_MAX_VCPUS
:
222 case KVM_CAP_MAX_VCPU_ID
:
224 r
= kvm
->arch
.max_vcpus
;
226 r
= kvm_arm_default_max_vcpus();
228 case KVM_CAP_MSI_DEVID
:
232 r
= kvm
->arch
.vgic
.msis_require_devid
;
234 case KVM_CAP_ARM_USER_IRQ
:
236 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
237 * (bump this number if adding more devices)
241 case KVM_CAP_STEAL_TIME
:
242 r
= kvm_arm_pvtime_supported();
244 case KVM_CAP_ARM_EL1_32BIT
:
245 r
= cpus_have_const_cap(ARM64_HAS_32BIT_EL1
);
247 case KVM_CAP_GUEST_DEBUG_HW_BPS
:
250 case KVM_CAP_GUEST_DEBUG_HW_WPS
:
253 case KVM_CAP_ARM_PMU_V3
:
254 r
= kvm_arm_support_pmu_v3();
256 case KVM_CAP_ARM_INJECT_SERROR_ESR
:
257 r
= cpus_have_const_cap(ARM64_HAS_RAS_EXTN
);
259 case KVM_CAP_ARM_VM_IPA_SIZE
:
260 r
= get_kvm_ipa_limit();
262 case KVM_CAP_ARM_SVE
:
263 r
= system_supports_sve();
265 case KVM_CAP_ARM_PTRAUTH_ADDRESS
:
266 case KVM_CAP_ARM_PTRAUTH_GENERIC
:
267 r
= system_has_full_ptr_auth();
276 long kvm_arch_dev_ioctl(struct file
*filp
,
277 unsigned int ioctl
, unsigned long arg
)
282 struct kvm
*kvm_arch_alloc_vm(void)
285 return kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
287 return vzalloc(sizeof(struct kvm
));
290 void kvm_arch_free_vm(struct kvm
*kvm
)
298 int kvm_arch_vcpu_precreate(struct kvm
*kvm
, unsigned int id
)
300 if (irqchip_in_kernel(kvm
) && vgic_initialized(kvm
))
303 if (id
>= kvm
->arch
.max_vcpus
)
309 int kvm_arch_vcpu_create(struct kvm_vcpu
*vcpu
)
313 /* Force users to call KVM_ARM_VCPU_INIT */
314 vcpu
->arch
.target
= -1;
315 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
317 vcpu
->arch
.mmu_page_cache
.gfp_zero
= __GFP_ZERO
;
319 /* Set up the timer */
320 kvm_timer_vcpu_init(vcpu
);
322 kvm_pmu_vcpu_init(vcpu
);
324 kvm_arm_reset_debug_ptr(vcpu
);
326 kvm_arm_pvtime_vcpu_init(&vcpu
->arch
);
328 vcpu
->arch
.hw_mmu
= &vcpu
->kvm
->arch
.mmu
;
330 err
= kvm_vgic_vcpu_init(vcpu
);
334 return create_hyp_mappings(vcpu
, vcpu
+ 1, PAGE_HYP
);
337 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
341 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
343 if (vcpu
->arch
.has_run_once
&& unlikely(!irqchip_in_kernel(vcpu
->kvm
)))
344 static_branch_dec(&userspace_irqchip_in_use
);
346 kvm_mmu_free_memory_cache(&vcpu
->arch
.mmu_page_cache
);
347 kvm_timer_vcpu_terminate(vcpu
);
348 kvm_pmu_vcpu_destroy(vcpu
);
350 kvm_arm_vcpu_destroy(vcpu
);
353 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
355 return kvm_timer_is_pending(vcpu
);
358 void kvm_arch_vcpu_blocking(struct kvm_vcpu
*vcpu
)
361 * If we're about to block (most likely because we've just hit a
362 * WFI), we need to sync back the state of the GIC CPU interface
363 * so that we have the latest PMR and group enables. This ensures
364 * that kvm_arch_vcpu_runnable has up-to-date data to decide
365 * whether we have pending interrupts.
367 * For the same reason, we want to tell GICv4 that we need
368 * doorbells to be signalled, should an interrupt become pending.
371 kvm_vgic_vmcr_sync(vcpu
);
372 vgic_v4_put(vcpu
, true);
376 void kvm_arch_vcpu_unblocking(struct kvm_vcpu
*vcpu
)
383 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
385 struct kvm_s2_mmu
*mmu
;
388 mmu
= vcpu
->arch
.hw_mmu
;
389 last_ran
= this_cpu_ptr(mmu
->last_vcpu_ran
);
392 * We might get preempted before the vCPU actually runs, but
393 * over-invalidation doesn't affect correctness.
395 if (*last_ran
!= vcpu
->vcpu_id
) {
396 kvm_call_hyp(__kvm_tlb_flush_local_vmid
, mmu
);
397 *last_ran
= vcpu
->vcpu_id
;
403 kvm_timer_vcpu_load(vcpu
);
405 kvm_vcpu_load_sysregs_vhe(vcpu
);
406 kvm_arch_vcpu_load_fp(vcpu
);
407 kvm_vcpu_pmu_restore_guest(vcpu
);
408 if (kvm_arm_is_pvtime_enabled(&vcpu
->arch
))
409 kvm_make_request(KVM_REQ_RECORD_STEAL
, vcpu
);
411 if (single_task_running())
412 vcpu_clear_wfx_traps(vcpu
);
414 vcpu_set_wfx_traps(vcpu
);
416 if (vcpu_has_ptrauth(vcpu
))
417 vcpu_ptrauth_disable(vcpu
);
420 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
422 kvm_arch_vcpu_put_fp(vcpu
);
424 kvm_vcpu_put_sysregs_vhe(vcpu
);
425 kvm_timer_vcpu_put(vcpu
);
427 kvm_vcpu_pmu_restore_host(vcpu
);
432 static void vcpu_power_off(struct kvm_vcpu
*vcpu
)
434 vcpu
->arch
.power_off
= true;
435 kvm_make_request(KVM_REQ_SLEEP
, vcpu
);
439 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
440 struct kvm_mp_state
*mp_state
)
442 if (vcpu
->arch
.power_off
)
443 mp_state
->mp_state
= KVM_MP_STATE_STOPPED
;
445 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
450 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
451 struct kvm_mp_state
*mp_state
)
455 switch (mp_state
->mp_state
) {
456 case KVM_MP_STATE_RUNNABLE
:
457 vcpu
->arch
.power_off
= false;
459 case KVM_MP_STATE_STOPPED
:
460 vcpu_power_off(vcpu
);
470 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
471 * @v: The VCPU pointer
473 * If the guest CPU is not waiting for interrupts or an interrupt line is
474 * asserted, the CPU is by definition runnable.
476 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*v
)
478 bool irq_lines
= *vcpu_hcr(v
) & (HCR_VI
| HCR_VF
);
479 return ((irq_lines
|| kvm_vgic_vcpu_pending_irq(v
))
480 && !v
->arch
.power_off
&& !v
->arch
.pause
);
483 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
485 return vcpu_mode_priv(vcpu
);
488 /* Just ensure a guest exit from a particular CPU */
489 static void exit_vm_noop(void *info
)
493 void force_vm_exit(const cpumask_t
*mask
)
496 smp_call_function_many(mask
, exit_vm_noop
, NULL
, true);
501 * need_new_vmid_gen - check that the VMID is still valid
502 * @vmid: The VMID to check
504 * return true if there is a new generation of VMIDs being used
506 * The hardware supports a limited set of values with the value zero reserved
507 * for the host, so we check if an assigned value belongs to a previous
508 * generation, which requires us to assign a new value. If we're the first to
509 * use a VMID for the new generation, we must flush necessary caches and TLBs
512 static bool need_new_vmid_gen(struct kvm_vmid
*vmid
)
514 u64 current_vmid_gen
= atomic64_read(&kvm_vmid_gen
);
515 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
516 return unlikely(READ_ONCE(vmid
->vmid_gen
) != current_vmid_gen
);
520 * update_vmid - Update the vmid with a valid VMID for the current generation
521 * @vmid: The stage-2 VMID information struct
523 static void update_vmid(struct kvm_vmid
*vmid
)
525 if (!need_new_vmid_gen(vmid
))
528 spin_lock(&kvm_vmid_lock
);
531 * We need to re-check the vmid_gen here to ensure that if another vcpu
532 * already allocated a valid vmid for this vm, then this vcpu should
535 if (!need_new_vmid_gen(vmid
)) {
536 spin_unlock(&kvm_vmid_lock
);
540 /* First user of a new VMID generation? */
541 if (unlikely(kvm_next_vmid
== 0)) {
542 atomic64_inc(&kvm_vmid_gen
);
546 * On SMP we know no other CPUs can use this CPU's or each
547 * other's VMID after force_vm_exit returns since the
548 * kvm_vmid_lock blocks them from reentry to the guest.
550 force_vm_exit(cpu_all_mask
);
552 * Now broadcast TLB + ICACHE invalidation over the inner
553 * shareable domain to make sure all data structures are
556 kvm_call_hyp(__kvm_flush_vm_context
);
559 vmid
->vmid
= kvm_next_vmid
;
561 kvm_next_vmid
&= (1 << kvm_get_vmid_bits()) - 1;
564 WRITE_ONCE(vmid
->vmid_gen
, atomic64_read(&kvm_vmid_gen
));
566 spin_unlock(&kvm_vmid_lock
);
569 static int kvm_vcpu_first_run_init(struct kvm_vcpu
*vcpu
)
571 struct kvm
*kvm
= vcpu
->kvm
;
574 if (likely(vcpu
->arch
.has_run_once
))
577 if (!kvm_arm_vcpu_is_finalized(vcpu
))
580 vcpu
->arch
.has_run_once
= true;
582 if (likely(irqchip_in_kernel(kvm
))) {
584 * Map the VGIC hardware resources before running a vcpu the
585 * first time on this VM.
587 if (unlikely(!vgic_ready(kvm
))) {
588 ret
= kvm_vgic_map_resources(kvm
);
594 * Tell the rest of the code that there are userspace irqchip
597 static_branch_inc(&userspace_irqchip_in_use
);
600 ret
= kvm_timer_enable(vcpu
);
604 ret
= kvm_arm_pmu_v3_enable(vcpu
);
609 bool kvm_arch_intc_initialized(struct kvm
*kvm
)
611 return vgic_initialized(kvm
);
614 void kvm_arm_halt_guest(struct kvm
*kvm
)
617 struct kvm_vcpu
*vcpu
;
619 kvm_for_each_vcpu(i
, vcpu
, kvm
)
620 vcpu
->arch
.pause
= true;
621 kvm_make_all_cpus_request(kvm
, KVM_REQ_SLEEP
);
624 void kvm_arm_resume_guest(struct kvm
*kvm
)
627 struct kvm_vcpu
*vcpu
;
629 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
630 vcpu
->arch
.pause
= false;
631 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu
));
635 static void vcpu_req_sleep(struct kvm_vcpu
*vcpu
)
637 struct rcuwait
*wait
= kvm_arch_vcpu_get_wait(vcpu
);
639 rcuwait_wait_event(wait
,
640 (!vcpu
->arch
.power_off
) &&(!vcpu
->arch
.pause
),
643 if (vcpu
->arch
.power_off
|| vcpu
->arch
.pause
) {
644 /* Awaken to handle a signal, request we sleep again later. */
645 kvm_make_request(KVM_REQ_SLEEP
, vcpu
);
649 * Make sure we will observe a potential reset request if we've
650 * observed a change to the power state. Pairs with the smp_wmb() in
651 * kvm_psci_vcpu_on().
656 static int kvm_vcpu_initialized(struct kvm_vcpu
*vcpu
)
658 return vcpu
->arch
.target
>= 0;
661 static void check_vcpu_requests(struct kvm_vcpu
*vcpu
)
663 if (kvm_request_pending(vcpu
)) {
664 if (kvm_check_request(KVM_REQ_SLEEP
, vcpu
))
665 vcpu_req_sleep(vcpu
);
667 if (kvm_check_request(KVM_REQ_VCPU_RESET
, vcpu
))
668 kvm_reset_vcpu(vcpu
);
671 * Clear IRQ_PENDING requests that were made to guarantee
672 * that a VCPU sees new virtual interrupts.
674 kvm_check_request(KVM_REQ_IRQ_PENDING
, vcpu
);
676 if (kvm_check_request(KVM_REQ_RECORD_STEAL
, vcpu
))
677 kvm_update_stolen_time(vcpu
);
679 if (kvm_check_request(KVM_REQ_RELOAD_GICv4
, vcpu
)) {
680 /* The distributor enable bits were changed */
682 vgic_v4_put(vcpu
, false);
690 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
691 * @vcpu: The VCPU pointer
693 * This function is called through the VCPU_RUN ioctl called from user space. It
694 * will execute VM code in a loop until the time slice for the process is used
695 * or some emulation is needed from user space in which case the function will
696 * return with return value 0 and with the kvm_run structure filled in with the
697 * required data for the requested emulation.
699 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
)
701 struct kvm_run
*run
= vcpu
->run
;
704 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
707 ret
= kvm_vcpu_first_run_init(vcpu
);
711 if (run
->exit_reason
== KVM_EXIT_MMIO
) {
712 ret
= kvm_handle_mmio_return(vcpu
);
717 if (run
->immediate_exit
)
722 kvm_sigset_activate(vcpu
);
725 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
728 * Check conditions before entering the guest
732 update_vmid(&vcpu
->arch
.hw_mmu
->vmid
);
734 check_vcpu_requests(vcpu
);
737 * Preparing the interrupts to be injected also
738 * involves poking the GIC, which must be done in a
739 * non-preemptible context.
743 kvm_pmu_flush_hwstate(vcpu
);
747 kvm_vgic_flush_hwstate(vcpu
);
750 * Exit if we have a signal pending so that we can deliver the
751 * signal to user space.
753 if (signal_pending(current
)) {
755 run
->exit_reason
= KVM_EXIT_INTR
;
759 * If we're using a userspace irqchip, then check if we need
760 * to tell a userspace irqchip about timer or PMU level
761 * changes and if so, exit to userspace (the actual level
762 * state gets updated in kvm_timer_update_run and
763 * kvm_pmu_update_run below).
765 if (static_branch_unlikely(&userspace_irqchip_in_use
)) {
766 if (kvm_timer_should_notify_user(vcpu
) ||
767 kvm_pmu_should_notify_user(vcpu
)) {
769 run
->exit_reason
= KVM_EXIT_INTR
;
774 * Ensure we set mode to IN_GUEST_MODE after we disable
775 * interrupts and before the final VCPU requests check.
776 * See the comment in kvm_vcpu_exiting_guest_mode() and
777 * Documentation/virt/kvm/vcpu-requests.rst
779 smp_store_mb(vcpu
->mode
, IN_GUEST_MODE
);
781 if (ret
<= 0 || need_new_vmid_gen(&vcpu
->arch
.hw_mmu
->vmid
) ||
782 kvm_request_pending(vcpu
)) {
783 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
784 isb(); /* Ensure work in x_flush_hwstate is committed */
785 kvm_pmu_sync_hwstate(vcpu
);
786 if (static_branch_unlikely(&userspace_irqchip_in_use
))
787 kvm_timer_sync_user(vcpu
);
788 kvm_vgic_sync_hwstate(vcpu
);
794 kvm_arm_setup_debug(vcpu
);
796 /**************************************************************
799 trace_kvm_entry(*vcpu_pc(vcpu
));
800 guest_enter_irqoff();
802 ret
= kvm_call_hyp_ret(__kvm_vcpu_run
, vcpu
);
804 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
808 *************************************************************/
810 kvm_arm_clear_debug(vcpu
);
813 * We must sync the PMU state before the vgic state so
814 * that the vgic can properly sample the updated state of the
817 kvm_pmu_sync_hwstate(vcpu
);
820 * Sync the vgic state before syncing the timer state because
821 * the timer code needs to know if the virtual timer
822 * interrupts are active.
824 kvm_vgic_sync_hwstate(vcpu
);
827 * Sync the timer hardware state before enabling interrupts as
828 * we don't want vtimer interrupts to race with syncing the
829 * timer virtual interrupt state.
831 if (static_branch_unlikely(&userspace_irqchip_in_use
))
832 kvm_timer_sync_user(vcpu
);
834 kvm_arch_vcpu_ctxsync_fp(vcpu
);
837 * We may have taken a host interrupt in HYP mode (ie
838 * while executing the guest). This interrupt is still
839 * pending, as we haven't serviced it yet!
841 * We're now back in SVC mode, with interrupts
842 * disabled. Enabling the interrupts now will have
843 * the effect of taking the interrupt again, in SVC
849 * We do local_irq_enable() before calling guest_exit() so
850 * that if a timer interrupt hits while running the guest we
851 * account that tick as being spent in the guest. We enable
852 * preemption after calling guest_exit() so that if we get
853 * preempted we make sure ticks after that is not counted as
857 trace_kvm_exit(ret
, kvm_vcpu_trap_get_class(vcpu
), *vcpu_pc(vcpu
));
859 /* Exit types that need handling before we can be preempted */
860 handle_exit_early(vcpu
, ret
);
865 * The ARMv8 architecture doesn't give the hypervisor
866 * a mechanism to prevent a guest from dropping to AArch32 EL0
867 * if implemented by the CPU. If we spot the guest in such
868 * state and that we decided it wasn't supposed to do so (like
869 * with the asymmetric AArch32 case), return to userspace with
872 if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu
)) {
874 * As we have caught the guest red-handed, decide that
875 * it isn't fit for purpose anymore by making the vcpu
876 * invalid. The VMM can try and fix it by issuing a
877 * KVM_ARM_VCPU_INIT if it really wants to.
879 vcpu
->arch
.target
= -1;
880 ret
= ARM_EXCEPTION_IL
;
883 ret
= handle_exit(vcpu
, ret
);
886 /* Tell userspace about in-kernel device output levels */
887 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
))) {
888 kvm_timer_update_run(vcpu
);
889 kvm_pmu_update_run(vcpu
);
892 kvm_sigset_deactivate(vcpu
);
898 static int vcpu_interrupt_line(struct kvm_vcpu
*vcpu
, int number
, bool level
)
904 if (number
== KVM_ARM_IRQ_CPU_IRQ
)
905 bit_index
= __ffs(HCR_VI
);
906 else /* KVM_ARM_IRQ_CPU_FIQ */
907 bit_index
= __ffs(HCR_VF
);
909 hcr
= vcpu_hcr(vcpu
);
911 set
= test_and_set_bit(bit_index
, hcr
);
913 set
= test_and_clear_bit(bit_index
, hcr
);
916 * If we didn't change anything, no need to wake up or kick other CPUs
922 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
923 * trigger a world-switch round on the running physical CPU to set the
924 * virtual IRQ/FIQ fields in the HCR appropriately.
926 kvm_make_request(KVM_REQ_IRQ_PENDING
, vcpu
);
932 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_level
,
935 u32 irq
= irq_level
->irq
;
936 unsigned int irq_type
, vcpu_idx
, irq_num
;
937 int nrcpus
= atomic_read(&kvm
->online_vcpus
);
938 struct kvm_vcpu
*vcpu
= NULL
;
939 bool level
= irq_level
->level
;
941 irq_type
= (irq
>> KVM_ARM_IRQ_TYPE_SHIFT
) & KVM_ARM_IRQ_TYPE_MASK
;
942 vcpu_idx
= (irq
>> KVM_ARM_IRQ_VCPU_SHIFT
) & KVM_ARM_IRQ_VCPU_MASK
;
943 vcpu_idx
+= ((irq
>> KVM_ARM_IRQ_VCPU2_SHIFT
) & KVM_ARM_IRQ_VCPU2_MASK
) * (KVM_ARM_IRQ_VCPU_MASK
+ 1);
944 irq_num
= (irq
>> KVM_ARM_IRQ_NUM_SHIFT
) & KVM_ARM_IRQ_NUM_MASK
;
946 trace_kvm_irq_line(irq_type
, vcpu_idx
, irq_num
, irq_level
->level
);
949 case KVM_ARM_IRQ_TYPE_CPU
:
950 if (irqchip_in_kernel(kvm
))
953 if (vcpu_idx
>= nrcpus
)
956 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
960 if (irq_num
> KVM_ARM_IRQ_CPU_FIQ
)
963 return vcpu_interrupt_line(vcpu
, irq_num
, level
);
964 case KVM_ARM_IRQ_TYPE_PPI
:
965 if (!irqchip_in_kernel(kvm
))
968 if (vcpu_idx
>= nrcpus
)
971 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
975 if (irq_num
< VGIC_NR_SGIS
|| irq_num
>= VGIC_NR_PRIVATE_IRQS
)
978 return kvm_vgic_inject_irq(kvm
, vcpu
->vcpu_id
, irq_num
, level
, NULL
);
979 case KVM_ARM_IRQ_TYPE_SPI
:
980 if (!irqchip_in_kernel(kvm
))
983 if (irq_num
< VGIC_NR_PRIVATE_IRQS
)
986 return kvm_vgic_inject_irq(kvm
, 0, irq_num
, level
, NULL
);
992 static int kvm_vcpu_set_target(struct kvm_vcpu
*vcpu
,
993 const struct kvm_vcpu_init
*init
)
996 int phys_target
= kvm_target_cpu();
998 if (init
->target
!= phys_target
)
1002 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1003 * use the same target.
1005 if (vcpu
->arch
.target
!= -1 && vcpu
->arch
.target
!= init
->target
)
1008 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1009 for (i
= 0; i
< sizeof(init
->features
) * 8; i
++) {
1010 bool set
= (init
->features
[i
/ 32] & (1 << (i
% 32)));
1012 if (set
&& i
>= KVM_VCPU_MAX_FEATURES
)
1016 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1017 * use the same feature set.
1019 if (vcpu
->arch
.target
!= -1 && i
< KVM_VCPU_MAX_FEATURES
&&
1020 test_bit(i
, vcpu
->arch
.features
) != set
)
1024 set_bit(i
, vcpu
->arch
.features
);
1027 vcpu
->arch
.target
= phys_target
;
1029 /* Now we know what it is, we can reset it. */
1030 ret
= kvm_reset_vcpu(vcpu
);
1032 vcpu
->arch
.target
= -1;
1033 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
1039 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu
*vcpu
,
1040 struct kvm_vcpu_init
*init
)
1044 ret
= kvm_vcpu_set_target(vcpu
, init
);
1049 * Ensure a rebooted VM will fault in RAM pages and detect if the
1050 * guest MMU is turned off and flush the caches as needed.
1052 * S2FWB enforces all memory accesses to RAM being cacheable,
1053 * ensuring that the data side is always coherent. We still
1054 * need to invalidate the I-cache though, as FWB does *not*
1055 * imply CTR_EL0.DIC.
1057 if (vcpu
->arch
.has_run_once
) {
1058 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB
))
1059 stage2_unmap_vm(vcpu
->kvm
);
1061 __flush_icache_all();
1064 vcpu_reset_hcr(vcpu
);
1067 * Handle the "start in power-off" case.
1069 if (test_bit(KVM_ARM_VCPU_POWER_OFF
, vcpu
->arch
.features
))
1070 vcpu_power_off(vcpu
);
1072 vcpu
->arch
.power_off
= false;
1077 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu
*vcpu
,
1078 struct kvm_device_attr
*attr
)
1082 switch (attr
->group
) {
1084 ret
= kvm_arm_vcpu_arch_set_attr(vcpu
, attr
);
1091 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu
*vcpu
,
1092 struct kvm_device_attr
*attr
)
1096 switch (attr
->group
) {
1098 ret
= kvm_arm_vcpu_arch_get_attr(vcpu
, attr
);
1105 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu
*vcpu
,
1106 struct kvm_device_attr
*attr
)
1110 switch (attr
->group
) {
1112 ret
= kvm_arm_vcpu_arch_has_attr(vcpu
, attr
);
1119 static int kvm_arm_vcpu_get_events(struct kvm_vcpu
*vcpu
,
1120 struct kvm_vcpu_events
*events
)
1122 memset(events
, 0, sizeof(*events
));
1124 return __kvm_arm_vcpu_get_events(vcpu
, events
);
1127 static int kvm_arm_vcpu_set_events(struct kvm_vcpu
*vcpu
,
1128 struct kvm_vcpu_events
*events
)
1132 /* check whether the reserved field is zero */
1133 for (i
= 0; i
< ARRAY_SIZE(events
->reserved
); i
++)
1134 if (events
->reserved
[i
])
1137 /* check whether the pad field is zero */
1138 for (i
= 0; i
< ARRAY_SIZE(events
->exception
.pad
); i
++)
1139 if (events
->exception
.pad
[i
])
1142 return __kvm_arm_vcpu_set_events(vcpu
, events
);
1145 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1146 unsigned int ioctl
, unsigned long arg
)
1148 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1149 void __user
*argp
= (void __user
*)arg
;
1150 struct kvm_device_attr attr
;
1154 case KVM_ARM_VCPU_INIT
: {
1155 struct kvm_vcpu_init init
;
1158 if (copy_from_user(&init
, argp
, sizeof(init
)))
1161 r
= kvm_arch_vcpu_ioctl_vcpu_init(vcpu
, &init
);
1164 case KVM_SET_ONE_REG
:
1165 case KVM_GET_ONE_REG
: {
1166 struct kvm_one_reg reg
;
1169 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
1173 if (copy_from_user(®
, argp
, sizeof(reg
)))
1176 if (ioctl
== KVM_SET_ONE_REG
)
1177 r
= kvm_arm_set_reg(vcpu
, ®
);
1179 r
= kvm_arm_get_reg(vcpu
, ®
);
1182 case KVM_GET_REG_LIST
: {
1183 struct kvm_reg_list __user
*user_list
= argp
;
1184 struct kvm_reg_list reg_list
;
1188 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
1192 if (!kvm_arm_vcpu_is_finalized(vcpu
))
1196 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
1199 reg_list
.n
= kvm_arm_num_regs(vcpu
);
1200 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
1205 r
= kvm_arm_copy_reg_indices(vcpu
, user_list
->reg
);
1208 case KVM_SET_DEVICE_ATTR
: {
1210 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1212 r
= kvm_arm_vcpu_set_attr(vcpu
, &attr
);
1215 case KVM_GET_DEVICE_ATTR
: {
1217 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1219 r
= kvm_arm_vcpu_get_attr(vcpu
, &attr
);
1222 case KVM_HAS_DEVICE_ATTR
: {
1224 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1226 r
= kvm_arm_vcpu_has_attr(vcpu
, &attr
);
1229 case KVM_GET_VCPU_EVENTS
: {
1230 struct kvm_vcpu_events events
;
1232 if (kvm_arm_vcpu_get_events(vcpu
, &events
))
1235 if (copy_to_user(argp
, &events
, sizeof(events
)))
1240 case KVM_SET_VCPU_EVENTS
: {
1241 struct kvm_vcpu_events events
;
1243 if (copy_from_user(&events
, argp
, sizeof(events
)))
1246 return kvm_arm_vcpu_set_events(vcpu
, &events
);
1248 case KVM_ARM_VCPU_FINALIZE
: {
1251 if (!kvm_vcpu_initialized(vcpu
))
1254 if (get_user(what
, (const int __user
*)argp
))
1257 return kvm_arm_vcpu_finalize(vcpu
, what
);
1266 void kvm_arch_sync_dirty_log(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
)
1271 void kvm_arch_flush_remote_tlbs_memslot(struct kvm
*kvm
,
1272 struct kvm_memory_slot
*memslot
)
1274 kvm_flush_remote_tlbs(kvm
);
1277 static int kvm_vm_ioctl_set_device_addr(struct kvm
*kvm
,
1278 struct kvm_arm_device_addr
*dev_addr
)
1280 unsigned long dev_id
, type
;
1282 dev_id
= (dev_addr
->id
& KVM_ARM_DEVICE_ID_MASK
) >>
1283 KVM_ARM_DEVICE_ID_SHIFT
;
1284 type
= (dev_addr
->id
& KVM_ARM_DEVICE_TYPE_MASK
) >>
1285 KVM_ARM_DEVICE_TYPE_SHIFT
;
1288 case KVM_ARM_DEVICE_VGIC_V2
:
1291 return kvm_vgic_addr(kvm
, type
, &dev_addr
->addr
, true);
1297 long kvm_arch_vm_ioctl(struct file
*filp
,
1298 unsigned int ioctl
, unsigned long arg
)
1300 struct kvm
*kvm
= filp
->private_data
;
1301 void __user
*argp
= (void __user
*)arg
;
1304 case KVM_CREATE_IRQCHIP
: {
1308 mutex_lock(&kvm
->lock
);
1309 ret
= kvm_vgic_create(kvm
, KVM_DEV_TYPE_ARM_VGIC_V2
);
1310 mutex_unlock(&kvm
->lock
);
1313 case KVM_ARM_SET_DEVICE_ADDR
: {
1314 struct kvm_arm_device_addr dev_addr
;
1316 if (copy_from_user(&dev_addr
, argp
, sizeof(dev_addr
)))
1318 return kvm_vm_ioctl_set_device_addr(kvm
, &dev_addr
);
1320 case KVM_ARM_PREFERRED_TARGET
: {
1322 struct kvm_vcpu_init init
;
1324 err
= kvm_vcpu_preferred_target(&init
);
1328 if (copy_to_user(argp
, &init
, sizeof(init
)))
1338 static unsigned long nvhe_percpu_size(void)
1340 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end
) -
1341 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start
);
1344 static unsigned long nvhe_percpu_order(void)
1346 unsigned long size
= nvhe_percpu_size();
1348 return size
? get_order(size
) : 0;
1351 /* A lookup table holding the hypervisor VA for each vector slot */
1352 static void *hyp_spectre_vector_selector
[BP_HARDEN_EL2_SLOTS
];
1354 static int __kvm_vector_slot2idx(enum arm64_hyp_spectre_vector slot
)
1356 return slot
- (slot
!= HYP_VECTOR_DIRECT
);
1359 static void kvm_init_vector_slot(void *base
, enum arm64_hyp_spectre_vector slot
)
1361 int idx
= __kvm_vector_slot2idx(slot
);
1363 hyp_spectre_vector_selector
[slot
] = base
+ (idx
* SZ_2K
);
1366 static int kvm_init_vector_slots(void)
1371 base
= kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector
));
1372 kvm_init_vector_slot(base
, HYP_VECTOR_DIRECT
);
1374 base
= kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs
));
1375 kvm_init_vector_slot(base
, HYP_VECTOR_SPECTRE_DIRECT
);
1377 if (!cpus_have_const_cap(ARM64_SPECTRE_V3A
))
1381 err
= create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs
),
1382 __BP_HARDEN_HYP_VECS_SZ
, &base
);
1387 kvm_init_vector_slot(base
, HYP_VECTOR_INDIRECT
);
1388 kvm_init_vector_slot(base
, HYP_VECTOR_SPECTRE_INDIRECT
);
1392 static void cpu_init_hyp_mode(void)
1394 struct kvm_nvhe_init_params
*params
= this_cpu_ptr_nvhe_sym(kvm_init_params
);
1395 struct arm_smccc_res res
;
1398 /* Switch from the HYP stub to our own HYP init vector */
1399 __hyp_set_vectors(kvm_get_idmap_vector());
1402 * Calculate the raw per-cpu offset without a translation from the
1403 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1404 * so that we can use adr_l to access per-cpu variables in EL2.
1406 params
->tpidr_el2
= (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start
) -
1407 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start
));
1409 params
->mair_el2
= read_sysreg(mair_el1
);
1412 * The ID map may be configured to use an extended virtual address
1413 * range. This is only the case if system RAM is out of range for the
1414 * currently configured page size and VA_BITS, in which case we will
1415 * also need the extended virtual range for the HYP ID map, or we won't
1416 * be able to enable the EL2 MMU.
1418 * However, at EL2, there is only one TTBR register, and we can't switch
1419 * between translation tables *and* update TCR_EL2.T0SZ at the same
1420 * time. Bottom line: we need to use the extended range with *both* our
1421 * translation tables.
1423 * So use the same T0SZ value we use for the ID map.
1425 tcr
= (read_sysreg(tcr_el1
) & TCR_EL2_MASK
) | TCR_EL2_RES1
;
1426 tcr
&= ~TCR_T0SZ_MASK
;
1427 tcr
|= (idmap_t0sz
& GENMASK(TCR_TxSZ_WIDTH
- 1, 0)) << TCR_T0SZ_OFFSET
;
1428 params
->tcr_el2
= tcr
;
1430 params
->stack_hyp_va
= kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page
) + PAGE_SIZE
);
1431 params
->pgd_pa
= kvm_mmu_get_httbr();
1434 * Flush the init params from the data cache because the struct will
1435 * be read while the MMU is off.
1437 kvm_flush_dcache_to_poc(params
, sizeof(*params
));
1440 * Call initialization code, and switch to the full blown HYP code.
1441 * If the cpucaps haven't been finalized yet, something has gone very
1442 * wrong, and hyp will crash and burn when it uses any
1443 * cpus_have_const_cap() wrapper.
1445 BUG_ON(!system_capabilities_finalized());
1446 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init
), virt_to_phys(params
), &res
);
1447 WARN_ON(res
.a0
!= SMCCC_RET_SUCCESS
);
1450 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1453 if (this_cpu_has_cap(ARM64_SSBS
) &&
1454 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE
) {
1455 kvm_call_hyp_nvhe(__kvm_enable_ssbs
);
1459 static void cpu_hyp_reset(void)
1461 if (!is_kernel_in_hyp_mode())
1462 __hyp_reset_vectors();
1466 * EL2 vectors can be mapped and rerouted in a number of ways,
1467 * depending on the kernel configuration and CPU present:
1469 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1470 * placed in one of the vector slots, which is executed before jumping
1471 * to the real vectors.
1473 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1474 * containing the hardening sequence is mapped next to the idmap page,
1475 * and executed before jumping to the real vectors.
1477 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1478 * empty slot is selected, mapped next to the idmap page, and
1479 * executed before jumping to the real vectors.
1481 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1482 * VHE, as we don't have hypervisor-specific mappings. If the system
1483 * is VHE and yet selects this capability, it will be ignored.
1485 static void cpu_set_hyp_vector(void)
1487 struct bp_hardening_data
*data
= this_cpu_ptr(&bp_hardening_data
);
1488 void *vector
= hyp_spectre_vector_selector
[data
->slot
];
1490 *this_cpu_ptr_hyp_sym(kvm_hyp_vector
) = (unsigned long)vector
;
1493 static void cpu_hyp_reinit(void)
1495 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data
)->host_ctxt
);
1498 cpu_set_hyp_vector();
1500 if (is_kernel_in_hyp_mode())
1501 kvm_timer_init_vhe();
1503 cpu_init_hyp_mode();
1505 kvm_arm_init_debug();
1508 kvm_vgic_init_cpu_hardware();
1511 static void _kvm_arch_hardware_enable(void *discard
)
1513 if (!__this_cpu_read(kvm_arm_hardware_enabled
)) {
1515 __this_cpu_write(kvm_arm_hardware_enabled
, 1);
1519 int kvm_arch_hardware_enable(void)
1521 _kvm_arch_hardware_enable(NULL
);
1525 static void _kvm_arch_hardware_disable(void *discard
)
1527 if (__this_cpu_read(kvm_arm_hardware_enabled
)) {
1529 __this_cpu_write(kvm_arm_hardware_enabled
, 0);
1533 void kvm_arch_hardware_disable(void)
1535 if (!is_protected_kvm_enabled())
1536 _kvm_arch_hardware_disable(NULL
);
1539 #ifdef CONFIG_CPU_PM
1540 static int hyp_init_cpu_pm_notifier(struct notifier_block
*self
,
1545 * kvm_arm_hardware_enabled is left with its old value over
1546 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1551 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1553 * don't update kvm_arm_hardware_enabled here
1554 * so that the hardware will be re-enabled
1555 * when we resume. See below.
1560 case CPU_PM_ENTER_FAILED
:
1562 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1563 /* The hardware was enabled before suspend. */
1573 static struct notifier_block hyp_init_cpu_pm_nb
= {
1574 .notifier_call
= hyp_init_cpu_pm_notifier
,
1577 static void __init
hyp_cpu_pm_init(void)
1579 if (!is_protected_kvm_enabled())
1580 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb
);
1582 static void __init
hyp_cpu_pm_exit(void)
1584 if (!is_protected_kvm_enabled())
1585 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb
);
1588 static inline void hyp_cpu_pm_init(void)
1591 static inline void hyp_cpu_pm_exit(void)
1596 static void init_cpu_logical_map(void)
1601 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1602 * Only copy the set of online CPUs whose features have been chacked
1603 * against the finalized system capabilities. The hypervisor will not
1604 * allow any other CPUs from the `possible` set to boot.
1606 for_each_online_cpu(cpu
)
1607 kvm_nvhe_sym(__cpu_logical_map
)[cpu
] = cpu_logical_map(cpu
);
1610 static bool init_psci_relay(void)
1613 * If PSCI has not been initialized, protected KVM cannot install
1614 * itself on newly booted CPUs.
1616 if (!psci_ops
.get_version
) {
1617 kvm_err("Cannot initialize protected mode without PSCI\n");
1621 kvm_nvhe_sym(kvm_host_psci_version
) = psci_ops
.get_version();
1622 kvm_nvhe_sym(kvm_host_psci_0_1_function_ids
) = get_psci_0_1_function_ids();
1626 static int init_common_resources(void)
1628 return kvm_set_ipa_limit();
1631 static int init_subsystems(void)
1636 * Enable hardware so that subsystem initialisation can access EL2.
1638 on_each_cpu(_kvm_arch_hardware_enable
, NULL
, 1);
1641 * Register CPU lower-power notifier
1646 * Init HYP view of VGIC
1648 err
= kvm_vgic_hyp_init();
1651 vgic_present
= true;
1655 vgic_present
= false;
1663 * Init HYP architected timer support
1665 err
= kvm_timer_hyp_init(vgic_present
);
1670 kvm_sys_reg_table_init();
1673 if (err
|| !is_protected_kvm_enabled())
1674 on_each_cpu(_kvm_arch_hardware_disable
, NULL
, 1);
1679 static void teardown_hyp_mode(void)
1684 for_each_possible_cpu(cpu
) {
1685 free_page(per_cpu(kvm_arm_hyp_stack_page
, cpu
));
1686 free_pages(kvm_arm_hyp_percpu_base
[cpu
], nvhe_percpu_order());
1691 * Inits Hyp-mode on all online CPUs
1693 static int init_hyp_mode(void)
1699 * Allocate Hyp PGD and setup Hyp identity mapping
1701 err
= kvm_mmu_init();
1706 * Allocate stack pages for Hypervisor-mode
1708 for_each_possible_cpu(cpu
) {
1709 unsigned long stack_page
;
1711 stack_page
= __get_free_page(GFP_KERNEL
);
1717 per_cpu(kvm_arm_hyp_stack_page
, cpu
) = stack_page
;
1721 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1723 for_each_possible_cpu(cpu
) {
1727 page
= alloc_pages(GFP_KERNEL
, nvhe_percpu_order());
1733 page_addr
= page_address(page
);
1734 memcpy(page_addr
, CHOOSE_NVHE_SYM(__per_cpu_start
), nvhe_percpu_size());
1735 kvm_arm_hyp_percpu_base
[cpu
] = (unsigned long)page_addr
;
1739 * Map the Hyp-code called directly from the host
1741 err
= create_hyp_mappings(kvm_ksym_ref(__hyp_text_start
),
1742 kvm_ksym_ref(__hyp_text_end
), PAGE_HYP_EXEC
);
1744 kvm_err("Cannot map world-switch code\n");
1748 err
= create_hyp_mappings(kvm_ksym_ref(__hyp_data_ro_after_init_start
),
1749 kvm_ksym_ref(__hyp_data_ro_after_init_end
),
1752 kvm_err("Cannot map .hyp.data..ro_after_init section\n");
1756 err
= create_hyp_mappings(kvm_ksym_ref(__start_rodata
),
1757 kvm_ksym_ref(__end_rodata
), PAGE_HYP_RO
);
1759 kvm_err("Cannot map rodata section\n");
1763 err
= create_hyp_mappings(kvm_ksym_ref(__bss_start
),
1764 kvm_ksym_ref(__bss_stop
), PAGE_HYP_RO
);
1766 kvm_err("Cannot map bss section\n");
1771 * Map the Hyp stack pages
1773 for_each_possible_cpu(cpu
) {
1774 char *stack_page
= (char *)per_cpu(kvm_arm_hyp_stack_page
, cpu
);
1775 err
= create_hyp_mappings(stack_page
, stack_page
+ PAGE_SIZE
,
1779 kvm_err("Cannot map hyp stack\n");
1785 * Map Hyp percpu pages
1787 for_each_possible_cpu(cpu
) {
1788 char *percpu_begin
= (char *)kvm_arm_hyp_percpu_base
[cpu
];
1789 char *percpu_end
= percpu_begin
+ nvhe_percpu_size();
1791 err
= create_hyp_mappings(percpu_begin
, percpu_end
, PAGE_HYP
);
1794 kvm_err("Cannot map hyp percpu region\n");
1799 if (is_protected_kvm_enabled()) {
1800 init_cpu_logical_map();
1802 if (!init_psci_relay())
1809 teardown_hyp_mode();
1810 kvm_err("error initializing Hyp mode: %d\n", err
);
1814 static void check_kvm_target_cpu(void *ret
)
1816 *(int *)ret
= kvm_target_cpu();
1819 struct kvm_vcpu
*kvm_mpidr_to_vcpu(struct kvm
*kvm
, unsigned long mpidr
)
1821 struct kvm_vcpu
*vcpu
;
1824 mpidr
&= MPIDR_HWID_BITMASK
;
1825 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1826 if (mpidr
== kvm_vcpu_get_mpidr_aff(vcpu
))
1832 bool kvm_arch_has_irq_bypass(void)
1837 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
1838 struct irq_bypass_producer
*prod
)
1840 struct kvm_kernel_irqfd
*irqfd
=
1841 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1843 return kvm_vgic_v4_set_forwarding(irqfd
->kvm
, prod
->irq
,
1846 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
1847 struct irq_bypass_producer
*prod
)
1849 struct kvm_kernel_irqfd
*irqfd
=
1850 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1852 kvm_vgic_v4_unset_forwarding(irqfd
->kvm
, prod
->irq
,
1856 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer
*cons
)
1858 struct kvm_kernel_irqfd
*irqfd
=
1859 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1861 kvm_arm_halt_guest(irqfd
->kvm
);
1864 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer
*cons
)
1866 struct kvm_kernel_irqfd
*irqfd
=
1867 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
1869 kvm_arm_resume_guest(irqfd
->kvm
);
1873 * Initialize Hyp-mode and memory mappings on all CPUs.
1875 int kvm_arch_init(void *opaque
)
1881 if (!is_hyp_mode_available()) {
1882 kvm_info("HYP mode not available\n");
1886 in_hyp_mode
= is_kernel_in_hyp_mode();
1888 if (!in_hyp_mode
&& kvm_arch_requires_vhe()) {
1889 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1893 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE
) ||
1894 cpus_have_final_cap(ARM64_WORKAROUND_1508412
))
1895 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
1896 "Only trusted guests should be used on this system.\n");
1898 for_each_online_cpu(cpu
) {
1899 smp_call_function_single(cpu
, check_kvm_target_cpu
, &ret
, 1);
1901 kvm_err("Error, CPU %d not supported!\n", cpu
);
1906 err
= init_common_resources();
1910 err
= kvm_arm_init_sve();
1915 err
= init_hyp_mode();
1920 err
= kvm_init_vector_slots();
1922 kvm_err("Cannot initialise vector slots\n");
1926 err
= init_subsystems();
1930 if (is_protected_kvm_enabled()) {
1931 static_branch_enable(&kvm_protected_mode_initialized
);
1932 kvm_info("Protected nVHE mode initialized successfully\n");
1933 } else if (in_hyp_mode
) {
1934 kvm_info("VHE mode initialized successfully\n");
1936 kvm_info("Hyp mode initialized successfully\n");
1944 teardown_hyp_mode();
1949 /* NOP: Compiling as a module not supported */
1950 void kvm_arch_exit(void)
1952 kvm_perf_teardown();
1955 static int __init
early_kvm_mode_cfg(char *arg
)
1960 if (strcmp(arg
, "protected") == 0) {
1961 kvm_mode
= KVM_MODE_PROTECTED
;
1967 early_param("kvm-arm.mode", early_kvm_mode_cfg
);
1969 enum kvm_mode
kvm_get_mode(void)
1974 static int arm_init(void)
1976 int rc
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1980 module_init(arm_init
);