Merge tag 'sched-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / arch / arm64 / kvm / arm.c
blob6e637d2b4cfb7fe0978fd491f4506da0cc7793e7
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension virt");
47 #endif
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
63 static bool vgic_present;
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
68 extern u64 kvm_nvhe_sym(__cpu_logical_map)[NR_CPUS];
69 extern u32 kvm_nvhe_sym(kvm_host_psci_version);
70 extern struct psci_0_1_function_ids kvm_nvhe_sym(kvm_host_psci_0_1_function_ids);
72 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
74 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
77 int kvm_arch_hardware_setup(void *opaque)
79 return 0;
82 int kvm_arch_check_processor_compat(void *opaque)
84 return 0;
87 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
88 struct kvm_enable_cap *cap)
90 int r;
92 if (cap->flags)
93 return -EINVAL;
95 switch (cap->cap) {
96 case KVM_CAP_ARM_NISV_TO_USER:
97 r = 0;
98 kvm->arch.return_nisv_io_abort_to_user = true;
99 break;
100 default:
101 r = -EINVAL;
102 break;
105 return r;
108 static int kvm_arm_default_max_vcpus(void)
110 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
113 static void set_default_spectre(struct kvm *kvm)
116 * The default is to expose CSV2 == 1 if the HW isn't affected.
117 * Although this is a per-CPU feature, we make it global because
118 * asymmetric systems are just a nuisance.
120 * Userspace can override this as long as it doesn't promise
121 * the impossible.
123 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
124 kvm->arch.pfr0_csv2 = 1;
125 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
126 kvm->arch.pfr0_csv3 = 1;
130 * kvm_arch_init_vm - initializes a VM data structure
131 * @kvm: pointer to the KVM struct
133 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
135 int ret;
137 ret = kvm_arm_setup_stage2(kvm, type);
138 if (ret)
139 return ret;
141 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
142 if (ret)
143 return ret;
145 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
146 if (ret)
147 goto out_free_stage2_pgd;
149 kvm_vgic_early_init(kvm);
151 /* The maximum number of VCPUs is limited by the host's GIC model */
152 kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
154 set_default_spectre(kvm);
156 return ret;
157 out_free_stage2_pgd:
158 kvm_free_stage2_pgd(&kvm->arch.mmu);
159 return ret;
162 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
164 return VM_FAULT_SIGBUS;
169 * kvm_arch_destroy_vm - destroy the VM data structure
170 * @kvm: pointer to the KVM struct
172 void kvm_arch_destroy_vm(struct kvm *kvm)
174 int i;
176 bitmap_free(kvm->arch.pmu_filter);
178 kvm_vgic_destroy(kvm);
180 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
181 if (kvm->vcpus[i]) {
182 kvm_vcpu_destroy(kvm->vcpus[i]);
183 kvm->vcpus[i] = NULL;
186 atomic_set(&kvm->online_vcpus, 0);
189 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
191 int r;
192 switch (ext) {
193 case KVM_CAP_IRQCHIP:
194 r = vgic_present;
195 break;
196 case KVM_CAP_IOEVENTFD:
197 case KVM_CAP_DEVICE_CTRL:
198 case KVM_CAP_USER_MEMORY:
199 case KVM_CAP_SYNC_MMU:
200 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
201 case KVM_CAP_ONE_REG:
202 case KVM_CAP_ARM_PSCI:
203 case KVM_CAP_ARM_PSCI_0_2:
204 case KVM_CAP_READONLY_MEM:
205 case KVM_CAP_MP_STATE:
206 case KVM_CAP_IMMEDIATE_EXIT:
207 case KVM_CAP_VCPU_EVENTS:
208 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
209 case KVM_CAP_ARM_NISV_TO_USER:
210 case KVM_CAP_ARM_INJECT_EXT_DABT:
211 case KVM_CAP_SET_GUEST_DEBUG:
212 case KVM_CAP_VCPU_ATTRIBUTES:
213 r = 1;
214 break;
215 case KVM_CAP_ARM_SET_DEVICE_ADDR:
216 r = 1;
217 break;
218 case KVM_CAP_NR_VCPUS:
219 r = num_online_cpus();
220 break;
221 case KVM_CAP_MAX_VCPUS:
222 case KVM_CAP_MAX_VCPU_ID:
223 if (kvm)
224 r = kvm->arch.max_vcpus;
225 else
226 r = kvm_arm_default_max_vcpus();
227 break;
228 case KVM_CAP_MSI_DEVID:
229 if (!kvm)
230 r = -EINVAL;
231 else
232 r = kvm->arch.vgic.msis_require_devid;
233 break;
234 case KVM_CAP_ARM_USER_IRQ:
236 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
237 * (bump this number if adding more devices)
239 r = 1;
240 break;
241 case KVM_CAP_STEAL_TIME:
242 r = kvm_arm_pvtime_supported();
243 break;
244 case KVM_CAP_ARM_EL1_32BIT:
245 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
246 break;
247 case KVM_CAP_GUEST_DEBUG_HW_BPS:
248 r = get_num_brps();
249 break;
250 case KVM_CAP_GUEST_DEBUG_HW_WPS:
251 r = get_num_wrps();
252 break;
253 case KVM_CAP_ARM_PMU_V3:
254 r = kvm_arm_support_pmu_v3();
255 break;
256 case KVM_CAP_ARM_INJECT_SERROR_ESR:
257 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
258 break;
259 case KVM_CAP_ARM_VM_IPA_SIZE:
260 r = get_kvm_ipa_limit();
261 break;
262 case KVM_CAP_ARM_SVE:
263 r = system_supports_sve();
264 break;
265 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
266 case KVM_CAP_ARM_PTRAUTH_GENERIC:
267 r = system_has_full_ptr_auth();
268 break;
269 default:
270 r = 0;
273 return r;
276 long kvm_arch_dev_ioctl(struct file *filp,
277 unsigned int ioctl, unsigned long arg)
279 return -EINVAL;
282 struct kvm *kvm_arch_alloc_vm(void)
284 if (!has_vhe())
285 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
287 return vzalloc(sizeof(struct kvm));
290 void kvm_arch_free_vm(struct kvm *kvm)
292 if (!has_vhe())
293 kfree(kvm);
294 else
295 vfree(kvm);
298 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
300 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
301 return -EBUSY;
303 if (id >= kvm->arch.max_vcpus)
304 return -EINVAL;
306 return 0;
309 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
311 int err;
313 /* Force users to call KVM_ARM_VCPU_INIT */
314 vcpu->arch.target = -1;
315 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
317 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
319 /* Set up the timer */
320 kvm_timer_vcpu_init(vcpu);
322 kvm_pmu_vcpu_init(vcpu);
324 kvm_arm_reset_debug_ptr(vcpu);
326 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
328 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
330 err = kvm_vgic_vcpu_init(vcpu);
331 if (err)
332 return err;
334 return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
337 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
341 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
343 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
344 static_branch_dec(&userspace_irqchip_in_use);
346 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
347 kvm_timer_vcpu_terminate(vcpu);
348 kvm_pmu_vcpu_destroy(vcpu);
350 kvm_arm_vcpu_destroy(vcpu);
353 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
355 return kvm_timer_is_pending(vcpu);
358 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
361 * If we're about to block (most likely because we've just hit a
362 * WFI), we need to sync back the state of the GIC CPU interface
363 * so that we have the latest PMR and group enables. This ensures
364 * that kvm_arch_vcpu_runnable has up-to-date data to decide
365 * whether we have pending interrupts.
367 * For the same reason, we want to tell GICv4 that we need
368 * doorbells to be signalled, should an interrupt become pending.
370 preempt_disable();
371 kvm_vgic_vmcr_sync(vcpu);
372 vgic_v4_put(vcpu, true);
373 preempt_enable();
376 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
378 preempt_disable();
379 vgic_v4_load(vcpu);
380 preempt_enable();
383 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
385 struct kvm_s2_mmu *mmu;
386 int *last_ran;
388 mmu = vcpu->arch.hw_mmu;
389 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
392 * We might get preempted before the vCPU actually runs, but
393 * over-invalidation doesn't affect correctness.
395 if (*last_ran != vcpu->vcpu_id) {
396 kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
397 *last_ran = vcpu->vcpu_id;
400 vcpu->cpu = cpu;
402 kvm_vgic_load(vcpu);
403 kvm_timer_vcpu_load(vcpu);
404 if (has_vhe())
405 kvm_vcpu_load_sysregs_vhe(vcpu);
406 kvm_arch_vcpu_load_fp(vcpu);
407 kvm_vcpu_pmu_restore_guest(vcpu);
408 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
409 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
411 if (single_task_running())
412 vcpu_clear_wfx_traps(vcpu);
413 else
414 vcpu_set_wfx_traps(vcpu);
416 if (vcpu_has_ptrauth(vcpu))
417 vcpu_ptrauth_disable(vcpu);
420 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
422 kvm_arch_vcpu_put_fp(vcpu);
423 if (has_vhe())
424 kvm_vcpu_put_sysregs_vhe(vcpu);
425 kvm_timer_vcpu_put(vcpu);
426 kvm_vgic_put(vcpu);
427 kvm_vcpu_pmu_restore_host(vcpu);
429 vcpu->cpu = -1;
432 static void vcpu_power_off(struct kvm_vcpu *vcpu)
434 vcpu->arch.power_off = true;
435 kvm_make_request(KVM_REQ_SLEEP, vcpu);
436 kvm_vcpu_kick(vcpu);
439 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
440 struct kvm_mp_state *mp_state)
442 if (vcpu->arch.power_off)
443 mp_state->mp_state = KVM_MP_STATE_STOPPED;
444 else
445 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
447 return 0;
450 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
451 struct kvm_mp_state *mp_state)
453 int ret = 0;
455 switch (mp_state->mp_state) {
456 case KVM_MP_STATE_RUNNABLE:
457 vcpu->arch.power_off = false;
458 break;
459 case KVM_MP_STATE_STOPPED:
460 vcpu_power_off(vcpu);
461 break;
462 default:
463 ret = -EINVAL;
466 return ret;
470 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
471 * @v: The VCPU pointer
473 * If the guest CPU is not waiting for interrupts or an interrupt line is
474 * asserted, the CPU is by definition runnable.
476 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
478 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
479 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
480 && !v->arch.power_off && !v->arch.pause);
483 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
485 return vcpu_mode_priv(vcpu);
488 /* Just ensure a guest exit from a particular CPU */
489 static void exit_vm_noop(void *info)
493 void force_vm_exit(const cpumask_t *mask)
495 preempt_disable();
496 smp_call_function_many(mask, exit_vm_noop, NULL, true);
497 preempt_enable();
501 * need_new_vmid_gen - check that the VMID is still valid
502 * @vmid: The VMID to check
504 * return true if there is a new generation of VMIDs being used
506 * The hardware supports a limited set of values with the value zero reserved
507 * for the host, so we check if an assigned value belongs to a previous
508 * generation, which requires us to assign a new value. If we're the first to
509 * use a VMID for the new generation, we must flush necessary caches and TLBs
510 * on all CPUs.
512 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
514 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
515 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
516 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
520 * update_vmid - Update the vmid with a valid VMID for the current generation
521 * @vmid: The stage-2 VMID information struct
523 static void update_vmid(struct kvm_vmid *vmid)
525 if (!need_new_vmid_gen(vmid))
526 return;
528 spin_lock(&kvm_vmid_lock);
531 * We need to re-check the vmid_gen here to ensure that if another vcpu
532 * already allocated a valid vmid for this vm, then this vcpu should
533 * use the same vmid.
535 if (!need_new_vmid_gen(vmid)) {
536 spin_unlock(&kvm_vmid_lock);
537 return;
540 /* First user of a new VMID generation? */
541 if (unlikely(kvm_next_vmid == 0)) {
542 atomic64_inc(&kvm_vmid_gen);
543 kvm_next_vmid = 1;
546 * On SMP we know no other CPUs can use this CPU's or each
547 * other's VMID after force_vm_exit returns since the
548 * kvm_vmid_lock blocks them from reentry to the guest.
550 force_vm_exit(cpu_all_mask);
552 * Now broadcast TLB + ICACHE invalidation over the inner
553 * shareable domain to make sure all data structures are
554 * clean.
556 kvm_call_hyp(__kvm_flush_vm_context);
559 vmid->vmid = kvm_next_vmid;
560 kvm_next_vmid++;
561 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
563 smp_wmb();
564 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
566 spin_unlock(&kvm_vmid_lock);
569 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
571 struct kvm *kvm = vcpu->kvm;
572 int ret = 0;
574 if (likely(vcpu->arch.has_run_once))
575 return 0;
577 if (!kvm_arm_vcpu_is_finalized(vcpu))
578 return -EPERM;
580 vcpu->arch.has_run_once = true;
582 if (likely(irqchip_in_kernel(kvm))) {
584 * Map the VGIC hardware resources before running a vcpu the
585 * first time on this VM.
587 if (unlikely(!vgic_ready(kvm))) {
588 ret = kvm_vgic_map_resources(kvm);
589 if (ret)
590 return ret;
592 } else {
594 * Tell the rest of the code that there are userspace irqchip
595 * VMs in the wild.
597 static_branch_inc(&userspace_irqchip_in_use);
600 ret = kvm_timer_enable(vcpu);
601 if (ret)
602 return ret;
604 ret = kvm_arm_pmu_v3_enable(vcpu);
606 return ret;
609 bool kvm_arch_intc_initialized(struct kvm *kvm)
611 return vgic_initialized(kvm);
614 void kvm_arm_halt_guest(struct kvm *kvm)
616 int i;
617 struct kvm_vcpu *vcpu;
619 kvm_for_each_vcpu(i, vcpu, kvm)
620 vcpu->arch.pause = true;
621 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
624 void kvm_arm_resume_guest(struct kvm *kvm)
626 int i;
627 struct kvm_vcpu *vcpu;
629 kvm_for_each_vcpu(i, vcpu, kvm) {
630 vcpu->arch.pause = false;
631 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
635 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
637 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
639 rcuwait_wait_event(wait,
640 (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
641 TASK_INTERRUPTIBLE);
643 if (vcpu->arch.power_off || vcpu->arch.pause) {
644 /* Awaken to handle a signal, request we sleep again later. */
645 kvm_make_request(KVM_REQ_SLEEP, vcpu);
649 * Make sure we will observe a potential reset request if we've
650 * observed a change to the power state. Pairs with the smp_wmb() in
651 * kvm_psci_vcpu_on().
653 smp_rmb();
656 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
658 return vcpu->arch.target >= 0;
661 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
663 if (kvm_request_pending(vcpu)) {
664 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
665 vcpu_req_sleep(vcpu);
667 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
668 kvm_reset_vcpu(vcpu);
671 * Clear IRQ_PENDING requests that were made to guarantee
672 * that a VCPU sees new virtual interrupts.
674 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
676 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
677 kvm_update_stolen_time(vcpu);
679 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
680 /* The distributor enable bits were changed */
681 preempt_disable();
682 vgic_v4_put(vcpu, false);
683 vgic_v4_load(vcpu);
684 preempt_enable();
690 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
691 * @vcpu: The VCPU pointer
693 * This function is called through the VCPU_RUN ioctl called from user space. It
694 * will execute VM code in a loop until the time slice for the process is used
695 * or some emulation is needed from user space in which case the function will
696 * return with return value 0 and with the kvm_run structure filled in with the
697 * required data for the requested emulation.
699 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
701 struct kvm_run *run = vcpu->run;
702 int ret;
704 if (unlikely(!kvm_vcpu_initialized(vcpu)))
705 return -ENOEXEC;
707 ret = kvm_vcpu_first_run_init(vcpu);
708 if (ret)
709 return ret;
711 if (run->exit_reason == KVM_EXIT_MMIO) {
712 ret = kvm_handle_mmio_return(vcpu);
713 if (ret)
714 return ret;
717 if (run->immediate_exit)
718 return -EINTR;
720 vcpu_load(vcpu);
722 kvm_sigset_activate(vcpu);
724 ret = 1;
725 run->exit_reason = KVM_EXIT_UNKNOWN;
726 while (ret > 0) {
728 * Check conditions before entering the guest
730 cond_resched();
732 update_vmid(&vcpu->arch.hw_mmu->vmid);
734 check_vcpu_requests(vcpu);
737 * Preparing the interrupts to be injected also
738 * involves poking the GIC, which must be done in a
739 * non-preemptible context.
741 preempt_disable();
743 kvm_pmu_flush_hwstate(vcpu);
745 local_irq_disable();
747 kvm_vgic_flush_hwstate(vcpu);
750 * Exit if we have a signal pending so that we can deliver the
751 * signal to user space.
753 if (signal_pending(current)) {
754 ret = -EINTR;
755 run->exit_reason = KVM_EXIT_INTR;
759 * If we're using a userspace irqchip, then check if we need
760 * to tell a userspace irqchip about timer or PMU level
761 * changes and if so, exit to userspace (the actual level
762 * state gets updated in kvm_timer_update_run and
763 * kvm_pmu_update_run below).
765 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
766 if (kvm_timer_should_notify_user(vcpu) ||
767 kvm_pmu_should_notify_user(vcpu)) {
768 ret = -EINTR;
769 run->exit_reason = KVM_EXIT_INTR;
774 * Ensure we set mode to IN_GUEST_MODE after we disable
775 * interrupts and before the final VCPU requests check.
776 * See the comment in kvm_vcpu_exiting_guest_mode() and
777 * Documentation/virt/kvm/vcpu-requests.rst
779 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
781 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
782 kvm_request_pending(vcpu)) {
783 vcpu->mode = OUTSIDE_GUEST_MODE;
784 isb(); /* Ensure work in x_flush_hwstate is committed */
785 kvm_pmu_sync_hwstate(vcpu);
786 if (static_branch_unlikely(&userspace_irqchip_in_use))
787 kvm_timer_sync_user(vcpu);
788 kvm_vgic_sync_hwstate(vcpu);
789 local_irq_enable();
790 preempt_enable();
791 continue;
794 kvm_arm_setup_debug(vcpu);
796 /**************************************************************
797 * Enter the guest
799 trace_kvm_entry(*vcpu_pc(vcpu));
800 guest_enter_irqoff();
802 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
804 vcpu->mode = OUTSIDE_GUEST_MODE;
805 vcpu->stat.exits++;
807 * Back from guest
808 *************************************************************/
810 kvm_arm_clear_debug(vcpu);
813 * We must sync the PMU state before the vgic state so
814 * that the vgic can properly sample the updated state of the
815 * interrupt line.
817 kvm_pmu_sync_hwstate(vcpu);
820 * Sync the vgic state before syncing the timer state because
821 * the timer code needs to know if the virtual timer
822 * interrupts are active.
824 kvm_vgic_sync_hwstate(vcpu);
827 * Sync the timer hardware state before enabling interrupts as
828 * we don't want vtimer interrupts to race with syncing the
829 * timer virtual interrupt state.
831 if (static_branch_unlikely(&userspace_irqchip_in_use))
832 kvm_timer_sync_user(vcpu);
834 kvm_arch_vcpu_ctxsync_fp(vcpu);
837 * We may have taken a host interrupt in HYP mode (ie
838 * while executing the guest). This interrupt is still
839 * pending, as we haven't serviced it yet!
841 * We're now back in SVC mode, with interrupts
842 * disabled. Enabling the interrupts now will have
843 * the effect of taking the interrupt again, in SVC
844 * mode this time.
846 local_irq_enable();
849 * We do local_irq_enable() before calling guest_exit() so
850 * that if a timer interrupt hits while running the guest we
851 * account that tick as being spent in the guest. We enable
852 * preemption after calling guest_exit() so that if we get
853 * preempted we make sure ticks after that is not counted as
854 * guest time.
856 guest_exit();
857 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
859 /* Exit types that need handling before we can be preempted */
860 handle_exit_early(vcpu, ret);
862 preempt_enable();
865 * The ARMv8 architecture doesn't give the hypervisor
866 * a mechanism to prevent a guest from dropping to AArch32 EL0
867 * if implemented by the CPU. If we spot the guest in such
868 * state and that we decided it wasn't supposed to do so (like
869 * with the asymmetric AArch32 case), return to userspace with
870 * a fatal error.
872 if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
874 * As we have caught the guest red-handed, decide that
875 * it isn't fit for purpose anymore by making the vcpu
876 * invalid. The VMM can try and fix it by issuing a
877 * KVM_ARM_VCPU_INIT if it really wants to.
879 vcpu->arch.target = -1;
880 ret = ARM_EXCEPTION_IL;
883 ret = handle_exit(vcpu, ret);
886 /* Tell userspace about in-kernel device output levels */
887 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
888 kvm_timer_update_run(vcpu);
889 kvm_pmu_update_run(vcpu);
892 kvm_sigset_deactivate(vcpu);
894 vcpu_put(vcpu);
895 return ret;
898 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
900 int bit_index;
901 bool set;
902 unsigned long *hcr;
904 if (number == KVM_ARM_IRQ_CPU_IRQ)
905 bit_index = __ffs(HCR_VI);
906 else /* KVM_ARM_IRQ_CPU_FIQ */
907 bit_index = __ffs(HCR_VF);
909 hcr = vcpu_hcr(vcpu);
910 if (level)
911 set = test_and_set_bit(bit_index, hcr);
912 else
913 set = test_and_clear_bit(bit_index, hcr);
916 * If we didn't change anything, no need to wake up or kick other CPUs
918 if (set == level)
919 return 0;
922 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
923 * trigger a world-switch round on the running physical CPU to set the
924 * virtual IRQ/FIQ fields in the HCR appropriately.
926 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
927 kvm_vcpu_kick(vcpu);
929 return 0;
932 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
933 bool line_status)
935 u32 irq = irq_level->irq;
936 unsigned int irq_type, vcpu_idx, irq_num;
937 int nrcpus = atomic_read(&kvm->online_vcpus);
938 struct kvm_vcpu *vcpu = NULL;
939 bool level = irq_level->level;
941 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
942 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
943 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
944 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
946 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
948 switch (irq_type) {
949 case KVM_ARM_IRQ_TYPE_CPU:
950 if (irqchip_in_kernel(kvm))
951 return -ENXIO;
953 if (vcpu_idx >= nrcpus)
954 return -EINVAL;
956 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
957 if (!vcpu)
958 return -EINVAL;
960 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
961 return -EINVAL;
963 return vcpu_interrupt_line(vcpu, irq_num, level);
964 case KVM_ARM_IRQ_TYPE_PPI:
965 if (!irqchip_in_kernel(kvm))
966 return -ENXIO;
968 if (vcpu_idx >= nrcpus)
969 return -EINVAL;
971 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
972 if (!vcpu)
973 return -EINVAL;
975 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
976 return -EINVAL;
978 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
979 case KVM_ARM_IRQ_TYPE_SPI:
980 if (!irqchip_in_kernel(kvm))
981 return -ENXIO;
983 if (irq_num < VGIC_NR_PRIVATE_IRQS)
984 return -EINVAL;
986 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
989 return -EINVAL;
992 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
993 const struct kvm_vcpu_init *init)
995 unsigned int i, ret;
996 int phys_target = kvm_target_cpu();
998 if (init->target != phys_target)
999 return -EINVAL;
1002 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1003 * use the same target.
1005 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1006 return -EINVAL;
1008 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1009 for (i = 0; i < sizeof(init->features) * 8; i++) {
1010 bool set = (init->features[i / 32] & (1 << (i % 32)));
1012 if (set && i >= KVM_VCPU_MAX_FEATURES)
1013 return -ENOENT;
1016 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1017 * use the same feature set.
1019 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1020 test_bit(i, vcpu->arch.features) != set)
1021 return -EINVAL;
1023 if (set)
1024 set_bit(i, vcpu->arch.features);
1027 vcpu->arch.target = phys_target;
1029 /* Now we know what it is, we can reset it. */
1030 ret = kvm_reset_vcpu(vcpu);
1031 if (ret) {
1032 vcpu->arch.target = -1;
1033 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1036 return ret;
1039 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1040 struct kvm_vcpu_init *init)
1042 int ret;
1044 ret = kvm_vcpu_set_target(vcpu, init);
1045 if (ret)
1046 return ret;
1049 * Ensure a rebooted VM will fault in RAM pages and detect if the
1050 * guest MMU is turned off and flush the caches as needed.
1052 * S2FWB enforces all memory accesses to RAM being cacheable,
1053 * ensuring that the data side is always coherent. We still
1054 * need to invalidate the I-cache though, as FWB does *not*
1055 * imply CTR_EL0.DIC.
1057 if (vcpu->arch.has_run_once) {
1058 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1059 stage2_unmap_vm(vcpu->kvm);
1060 else
1061 __flush_icache_all();
1064 vcpu_reset_hcr(vcpu);
1067 * Handle the "start in power-off" case.
1069 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1070 vcpu_power_off(vcpu);
1071 else
1072 vcpu->arch.power_off = false;
1074 return 0;
1077 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1078 struct kvm_device_attr *attr)
1080 int ret = -ENXIO;
1082 switch (attr->group) {
1083 default:
1084 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1085 break;
1088 return ret;
1091 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1092 struct kvm_device_attr *attr)
1094 int ret = -ENXIO;
1096 switch (attr->group) {
1097 default:
1098 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1099 break;
1102 return ret;
1105 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1106 struct kvm_device_attr *attr)
1108 int ret = -ENXIO;
1110 switch (attr->group) {
1111 default:
1112 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1113 break;
1116 return ret;
1119 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1120 struct kvm_vcpu_events *events)
1122 memset(events, 0, sizeof(*events));
1124 return __kvm_arm_vcpu_get_events(vcpu, events);
1127 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1128 struct kvm_vcpu_events *events)
1130 int i;
1132 /* check whether the reserved field is zero */
1133 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1134 if (events->reserved[i])
1135 return -EINVAL;
1137 /* check whether the pad field is zero */
1138 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1139 if (events->exception.pad[i])
1140 return -EINVAL;
1142 return __kvm_arm_vcpu_set_events(vcpu, events);
1145 long kvm_arch_vcpu_ioctl(struct file *filp,
1146 unsigned int ioctl, unsigned long arg)
1148 struct kvm_vcpu *vcpu = filp->private_data;
1149 void __user *argp = (void __user *)arg;
1150 struct kvm_device_attr attr;
1151 long r;
1153 switch (ioctl) {
1154 case KVM_ARM_VCPU_INIT: {
1155 struct kvm_vcpu_init init;
1157 r = -EFAULT;
1158 if (copy_from_user(&init, argp, sizeof(init)))
1159 break;
1161 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1162 break;
1164 case KVM_SET_ONE_REG:
1165 case KVM_GET_ONE_REG: {
1166 struct kvm_one_reg reg;
1168 r = -ENOEXEC;
1169 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1170 break;
1172 r = -EFAULT;
1173 if (copy_from_user(&reg, argp, sizeof(reg)))
1174 break;
1176 if (ioctl == KVM_SET_ONE_REG)
1177 r = kvm_arm_set_reg(vcpu, &reg);
1178 else
1179 r = kvm_arm_get_reg(vcpu, &reg);
1180 break;
1182 case KVM_GET_REG_LIST: {
1183 struct kvm_reg_list __user *user_list = argp;
1184 struct kvm_reg_list reg_list;
1185 unsigned n;
1187 r = -ENOEXEC;
1188 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1189 break;
1191 r = -EPERM;
1192 if (!kvm_arm_vcpu_is_finalized(vcpu))
1193 break;
1195 r = -EFAULT;
1196 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1197 break;
1198 n = reg_list.n;
1199 reg_list.n = kvm_arm_num_regs(vcpu);
1200 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1201 break;
1202 r = -E2BIG;
1203 if (n < reg_list.n)
1204 break;
1205 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1206 break;
1208 case KVM_SET_DEVICE_ATTR: {
1209 r = -EFAULT;
1210 if (copy_from_user(&attr, argp, sizeof(attr)))
1211 break;
1212 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1213 break;
1215 case KVM_GET_DEVICE_ATTR: {
1216 r = -EFAULT;
1217 if (copy_from_user(&attr, argp, sizeof(attr)))
1218 break;
1219 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1220 break;
1222 case KVM_HAS_DEVICE_ATTR: {
1223 r = -EFAULT;
1224 if (copy_from_user(&attr, argp, sizeof(attr)))
1225 break;
1226 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1227 break;
1229 case KVM_GET_VCPU_EVENTS: {
1230 struct kvm_vcpu_events events;
1232 if (kvm_arm_vcpu_get_events(vcpu, &events))
1233 return -EINVAL;
1235 if (copy_to_user(argp, &events, sizeof(events)))
1236 return -EFAULT;
1238 return 0;
1240 case KVM_SET_VCPU_EVENTS: {
1241 struct kvm_vcpu_events events;
1243 if (copy_from_user(&events, argp, sizeof(events)))
1244 return -EFAULT;
1246 return kvm_arm_vcpu_set_events(vcpu, &events);
1248 case KVM_ARM_VCPU_FINALIZE: {
1249 int what;
1251 if (!kvm_vcpu_initialized(vcpu))
1252 return -ENOEXEC;
1254 if (get_user(what, (const int __user *)argp))
1255 return -EFAULT;
1257 return kvm_arm_vcpu_finalize(vcpu, what);
1259 default:
1260 r = -EINVAL;
1263 return r;
1266 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1271 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1272 struct kvm_memory_slot *memslot)
1274 kvm_flush_remote_tlbs(kvm);
1277 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1278 struct kvm_arm_device_addr *dev_addr)
1280 unsigned long dev_id, type;
1282 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1283 KVM_ARM_DEVICE_ID_SHIFT;
1284 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1285 KVM_ARM_DEVICE_TYPE_SHIFT;
1287 switch (dev_id) {
1288 case KVM_ARM_DEVICE_VGIC_V2:
1289 if (!vgic_present)
1290 return -ENXIO;
1291 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1292 default:
1293 return -ENODEV;
1297 long kvm_arch_vm_ioctl(struct file *filp,
1298 unsigned int ioctl, unsigned long arg)
1300 struct kvm *kvm = filp->private_data;
1301 void __user *argp = (void __user *)arg;
1303 switch (ioctl) {
1304 case KVM_CREATE_IRQCHIP: {
1305 int ret;
1306 if (!vgic_present)
1307 return -ENXIO;
1308 mutex_lock(&kvm->lock);
1309 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1310 mutex_unlock(&kvm->lock);
1311 return ret;
1313 case KVM_ARM_SET_DEVICE_ADDR: {
1314 struct kvm_arm_device_addr dev_addr;
1316 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1317 return -EFAULT;
1318 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1320 case KVM_ARM_PREFERRED_TARGET: {
1321 int err;
1322 struct kvm_vcpu_init init;
1324 err = kvm_vcpu_preferred_target(&init);
1325 if (err)
1326 return err;
1328 if (copy_to_user(argp, &init, sizeof(init)))
1329 return -EFAULT;
1331 return 0;
1333 default:
1334 return -EINVAL;
1338 static unsigned long nvhe_percpu_size(void)
1340 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1341 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1344 static unsigned long nvhe_percpu_order(void)
1346 unsigned long size = nvhe_percpu_size();
1348 return size ? get_order(size) : 0;
1351 /* A lookup table holding the hypervisor VA for each vector slot */
1352 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1354 static int __kvm_vector_slot2idx(enum arm64_hyp_spectre_vector slot)
1356 return slot - (slot != HYP_VECTOR_DIRECT);
1359 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1361 int idx = __kvm_vector_slot2idx(slot);
1363 hyp_spectre_vector_selector[slot] = base + (idx * SZ_2K);
1366 static int kvm_init_vector_slots(void)
1368 int err;
1369 void *base;
1371 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1372 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1374 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1375 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1377 if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1378 return 0;
1380 if (!has_vhe()) {
1381 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1382 __BP_HARDEN_HYP_VECS_SZ, &base);
1383 if (err)
1384 return err;
1387 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1388 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1389 return 0;
1392 static void cpu_init_hyp_mode(void)
1394 struct kvm_nvhe_init_params *params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1395 struct arm_smccc_res res;
1396 unsigned long tcr;
1398 /* Switch from the HYP stub to our own HYP init vector */
1399 __hyp_set_vectors(kvm_get_idmap_vector());
1402 * Calculate the raw per-cpu offset without a translation from the
1403 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1404 * so that we can use adr_l to access per-cpu variables in EL2.
1406 params->tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) -
1407 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1409 params->mair_el2 = read_sysreg(mair_el1);
1412 * The ID map may be configured to use an extended virtual address
1413 * range. This is only the case if system RAM is out of range for the
1414 * currently configured page size and VA_BITS, in which case we will
1415 * also need the extended virtual range for the HYP ID map, or we won't
1416 * be able to enable the EL2 MMU.
1418 * However, at EL2, there is only one TTBR register, and we can't switch
1419 * between translation tables *and* update TCR_EL2.T0SZ at the same
1420 * time. Bottom line: we need to use the extended range with *both* our
1421 * translation tables.
1423 * So use the same T0SZ value we use for the ID map.
1425 tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1426 tcr &= ~TCR_T0SZ_MASK;
1427 tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1428 params->tcr_el2 = tcr;
1430 params->stack_hyp_va = kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE);
1431 params->pgd_pa = kvm_mmu_get_httbr();
1434 * Flush the init params from the data cache because the struct will
1435 * be read while the MMU is off.
1437 kvm_flush_dcache_to_poc(params, sizeof(*params));
1440 * Call initialization code, and switch to the full blown HYP code.
1441 * If the cpucaps haven't been finalized yet, something has gone very
1442 * wrong, and hyp will crash and burn when it uses any
1443 * cpus_have_const_cap() wrapper.
1445 BUG_ON(!system_capabilities_finalized());
1446 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1447 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1450 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1451 * at EL2.
1453 if (this_cpu_has_cap(ARM64_SSBS) &&
1454 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1455 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1459 static void cpu_hyp_reset(void)
1461 if (!is_kernel_in_hyp_mode())
1462 __hyp_reset_vectors();
1466 * EL2 vectors can be mapped and rerouted in a number of ways,
1467 * depending on the kernel configuration and CPU present:
1469 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1470 * placed in one of the vector slots, which is executed before jumping
1471 * to the real vectors.
1473 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1474 * containing the hardening sequence is mapped next to the idmap page,
1475 * and executed before jumping to the real vectors.
1477 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1478 * empty slot is selected, mapped next to the idmap page, and
1479 * executed before jumping to the real vectors.
1481 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1482 * VHE, as we don't have hypervisor-specific mappings. If the system
1483 * is VHE and yet selects this capability, it will be ignored.
1485 static void cpu_set_hyp_vector(void)
1487 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1488 void *vector = hyp_spectre_vector_selector[data->slot];
1490 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1493 static void cpu_hyp_reinit(void)
1495 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1497 cpu_hyp_reset();
1498 cpu_set_hyp_vector();
1500 if (is_kernel_in_hyp_mode())
1501 kvm_timer_init_vhe();
1502 else
1503 cpu_init_hyp_mode();
1505 kvm_arm_init_debug();
1507 if (vgic_present)
1508 kvm_vgic_init_cpu_hardware();
1511 static void _kvm_arch_hardware_enable(void *discard)
1513 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1514 cpu_hyp_reinit();
1515 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1519 int kvm_arch_hardware_enable(void)
1521 _kvm_arch_hardware_enable(NULL);
1522 return 0;
1525 static void _kvm_arch_hardware_disable(void *discard)
1527 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1528 cpu_hyp_reset();
1529 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1533 void kvm_arch_hardware_disable(void)
1535 if (!is_protected_kvm_enabled())
1536 _kvm_arch_hardware_disable(NULL);
1539 #ifdef CONFIG_CPU_PM
1540 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1541 unsigned long cmd,
1542 void *v)
1545 * kvm_arm_hardware_enabled is left with its old value over
1546 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1547 * re-enable hyp.
1549 switch (cmd) {
1550 case CPU_PM_ENTER:
1551 if (__this_cpu_read(kvm_arm_hardware_enabled))
1553 * don't update kvm_arm_hardware_enabled here
1554 * so that the hardware will be re-enabled
1555 * when we resume. See below.
1557 cpu_hyp_reset();
1559 return NOTIFY_OK;
1560 case CPU_PM_ENTER_FAILED:
1561 case CPU_PM_EXIT:
1562 if (__this_cpu_read(kvm_arm_hardware_enabled))
1563 /* The hardware was enabled before suspend. */
1564 cpu_hyp_reinit();
1566 return NOTIFY_OK;
1568 default:
1569 return NOTIFY_DONE;
1573 static struct notifier_block hyp_init_cpu_pm_nb = {
1574 .notifier_call = hyp_init_cpu_pm_notifier,
1577 static void __init hyp_cpu_pm_init(void)
1579 if (!is_protected_kvm_enabled())
1580 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1582 static void __init hyp_cpu_pm_exit(void)
1584 if (!is_protected_kvm_enabled())
1585 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1587 #else
1588 static inline void hyp_cpu_pm_init(void)
1591 static inline void hyp_cpu_pm_exit(void)
1594 #endif
1596 static void init_cpu_logical_map(void)
1598 unsigned int cpu;
1601 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1602 * Only copy the set of online CPUs whose features have been chacked
1603 * against the finalized system capabilities. The hypervisor will not
1604 * allow any other CPUs from the `possible` set to boot.
1606 for_each_online_cpu(cpu)
1607 kvm_nvhe_sym(__cpu_logical_map)[cpu] = cpu_logical_map(cpu);
1610 static bool init_psci_relay(void)
1613 * If PSCI has not been initialized, protected KVM cannot install
1614 * itself on newly booted CPUs.
1616 if (!psci_ops.get_version) {
1617 kvm_err("Cannot initialize protected mode without PSCI\n");
1618 return false;
1621 kvm_nvhe_sym(kvm_host_psci_version) = psci_ops.get_version();
1622 kvm_nvhe_sym(kvm_host_psci_0_1_function_ids) = get_psci_0_1_function_ids();
1623 return true;
1626 static int init_common_resources(void)
1628 return kvm_set_ipa_limit();
1631 static int init_subsystems(void)
1633 int err = 0;
1636 * Enable hardware so that subsystem initialisation can access EL2.
1638 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1641 * Register CPU lower-power notifier
1643 hyp_cpu_pm_init();
1646 * Init HYP view of VGIC
1648 err = kvm_vgic_hyp_init();
1649 switch (err) {
1650 case 0:
1651 vgic_present = true;
1652 break;
1653 case -ENODEV:
1654 case -ENXIO:
1655 vgic_present = false;
1656 err = 0;
1657 break;
1658 default:
1659 goto out;
1663 * Init HYP architected timer support
1665 err = kvm_timer_hyp_init(vgic_present);
1666 if (err)
1667 goto out;
1669 kvm_perf_init();
1670 kvm_sys_reg_table_init();
1672 out:
1673 if (err || !is_protected_kvm_enabled())
1674 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1676 return err;
1679 static void teardown_hyp_mode(void)
1681 int cpu;
1683 free_hyp_pgds();
1684 for_each_possible_cpu(cpu) {
1685 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1686 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1691 * Inits Hyp-mode on all online CPUs
1693 static int init_hyp_mode(void)
1695 int cpu;
1696 int err = 0;
1699 * Allocate Hyp PGD and setup Hyp identity mapping
1701 err = kvm_mmu_init();
1702 if (err)
1703 goto out_err;
1706 * Allocate stack pages for Hypervisor-mode
1708 for_each_possible_cpu(cpu) {
1709 unsigned long stack_page;
1711 stack_page = __get_free_page(GFP_KERNEL);
1712 if (!stack_page) {
1713 err = -ENOMEM;
1714 goto out_err;
1717 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1721 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1723 for_each_possible_cpu(cpu) {
1724 struct page *page;
1725 void *page_addr;
1727 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1728 if (!page) {
1729 err = -ENOMEM;
1730 goto out_err;
1733 page_addr = page_address(page);
1734 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1735 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1739 * Map the Hyp-code called directly from the host
1741 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1742 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1743 if (err) {
1744 kvm_err("Cannot map world-switch code\n");
1745 goto out_err;
1748 err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_ro_after_init_start),
1749 kvm_ksym_ref(__hyp_data_ro_after_init_end),
1750 PAGE_HYP_RO);
1751 if (err) {
1752 kvm_err("Cannot map .hyp.data..ro_after_init section\n");
1753 goto out_err;
1756 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1757 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1758 if (err) {
1759 kvm_err("Cannot map rodata section\n");
1760 goto out_err;
1763 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1764 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1765 if (err) {
1766 kvm_err("Cannot map bss section\n");
1767 goto out_err;
1771 * Map the Hyp stack pages
1773 for_each_possible_cpu(cpu) {
1774 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1775 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1776 PAGE_HYP);
1778 if (err) {
1779 kvm_err("Cannot map hyp stack\n");
1780 goto out_err;
1785 * Map Hyp percpu pages
1787 for_each_possible_cpu(cpu) {
1788 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1789 char *percpu_end = percpu_begin + nvhe_percpu_size();
1791 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1793 if (err) {
1794 kvm_err("Cannot map hyp percpu region\n");
1795 goto out_err;
1799 if (is_protected_kvm_enabled()) {
1800 init_cpu_logical_map();
1802 if (!init_psci_relay())
1803 goto out_err;
1806 return 0;
1808 out_err:
1809 teardown_hyp_mode();
1810 kvm_err("error initializing Hyp mode: %d\n", err);
1811 return err;
1814 static void check_kvm_target_cpu(void *ret)
1816 *(int *)ret = kvm_target_cpu();
1819 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1821 struct kvm_vcpu *vcpu;
1822 int i;
1824 mpidr &= MPIDR_HWID_BITMASK;
1825 kvm_for_each_vcpu(i, vcpu, kvm) {
1826 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1827 return vcpu;
1829 return NULL;
1832 bool kvm_arch_has_irq_bypass(void)
1834 return true;
1837 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1838 struct irq_bypass_producer *prod)
1840 struct kvm_kernel_irqfd *irqfd =
1841 container_of(cons, struct kvm_kernel_irqfd, consumer);
1843 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1844 &irqfd->irq_entry);
1846 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1847 struct irq_bypass_producer *prod)
1849 struct kvm_kernel_irqfd *irqfd =
1850 container_of(cons, struct kvm_kernel_irqfd, consumer);
1852 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1853 &irqfd->irq_entry);
1856 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1858 struct kvm_kernel_irqfd *irqfd =
1859 container_of(cons, struct kvm_kernel_irqfd, consumer);
1861 kvm_arm_halt_guest(irqfd->kvm);
1864 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1866 struct kvm_kernel_irqfd *irqfd =
1867 container_of(cons, struct kvm_kernel_irqfd, consumer);
1869 kvm_arm_resume_guest(irqfd->kvm);
1873 * Initialize Hyp-mode and memory mappings on all CPUs.
1875 int kvm_arch_init(void *opaque)
1877 int err;
1878 int ret, cpu;
1879 bool in_hyp_mode;
1881 if (!is_hyp_mode_available()) {
1882 kvm_info("HYP mode not available\n");
1883 return -ENODEV;
1886 in_hyp_mode = is_kernel_in_hyp_mode();
1888 if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1889 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1890 return -ENODEV;
1893 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
1894 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1895 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
1896 "Only trusted guests should be used on this system.\n");
1898 for_each_online_cpu(cpu) {
1899 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1900 if (ret < 0) {
1901 kvm_err("Error, CPU %d not supported!\n", cpu);
1902 return -ENODEV;
1906 err = init_common_resources();
1907 if (err)
1908 return err;
1910 err = kvm_arm_init_sve();
1911 if (err)
1912 return err;
1914 if (!in_hyp_mode) {
1915 err = init_hyp_mode();
1916 if (err)
1917 goto out_err;
1920 err = kvm_init_vector_slots();
1921 if (err) {
1922 kvm_err("Cannot initialise vector slots\n");
1923 goto out_err;
1926 err = init_subsystems();
1927 if (err)
1928 goto out_hyp;
1930 if (is_protected_kvm_enabled()) {
1931 static_branch_enable(&kvm_protected_mode_initialized);
1932 kvm_info("Protected nVHE mode initialized successfully\n");
1933 } else if (in_hyp_mode) {
1934 kvm_info("VHE mode initialized successfully\n");
1935 } else {
1936 kvm_info("Hyp mode initialized successfully\n");
1939 return 0;
1941 out_hyp:
1942 hyp_cpu_pm_exit();
1943 if (!in_hyp_mode)
1944 teardown_hyp_mode();
1945 out_err:
1946 return err;
1949 /* NOP: Compiling as a module not supported */
1950 void kvm_arch_exit(void)
1952 kvm_perf_teardown();
1955 static int __init early_kvm_mode_cfg(char *arg)
1957 if (!arg)
1958 return -EINVAL;
1960 if (strcmp(arg, "protected") == 0) {
1961 kvm_mode = KVM_MODE_PROTECTED;
1962 return 0;
1965 return -EINVAL;
1967 early_param("kvm-arm.mode", early_kvm_mode_cfg);
1969 enum kvm_mode kvm_get_mode(void)
1971 return kvm_mode;
1974 static int arm_init(void)
1976 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1977 return rc;
1980 module_init(arm_init);