Merge tag 'sched-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / arch / arm64 / kvm / guest.c
blob9bbd30e62799a27da6e8030abeb25ed9ebe73f7c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
6 * Derived from arch/arm/kvm/guest.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/sigcontext.h>
29 #include "trace.h"
31 struct kvm_stats_debugfs_item debugfs_entries[] = {
32 VCPU_STAT("halt_successful_poll", halt_successful_poll),
33 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
34 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
35 VCPU_STAT("halt_wakeup", halt_wakeup),
36 VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
37 VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
38 VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
39 VCPU_STAT("mmio_exit_user", mmio_exit_user),
40 VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
41 VCPU_STAT("exits", exits),
42 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
43 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
44 { NULL }
47 static bool core_reg_offset_is_vreg(u64 off)
49 return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
50 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
53 static u64 core_reg_offset_from_id(u64 id)
55 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
58 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
60 int size;
62 switch (off) {
63 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
64 KVM_REG_ARM_CORE_REG(regs.regs[30]):
65 case KVM_REG_ARM_CORE_REG(regs.sp):
66 case KVM_REG_ARM_CORE_REG(regs.pc):
67 case KVM_REG_ARM_CORE_REG(regs.pstate):
68 case KVM_REG_ARM_CORE_REG(sp_el1):
69 case KVM_REG_ARM_CORE_REG(elr_el1):
70 case KVM_REG_ARM_CORE_REG(spsr[0]) ...
71 KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
72 size = sizeof(__u64);
73 break;
75 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
76 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
77 size = sizeof(__uint128_t);
78 break;
80 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
81 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
82 size = sizeof(__u32);
83 break;
85 default:
86 return -EINVAL;
89 if (!IS_ALIGNED(off, size / sizeof(__u32)))
90 return -EINVAL;
93 * The KVM_REG_ARM64_SVE regs must be used instead of
94 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
95 * SVE-enabled vcpus:
97 if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
98 return -EINVAL;
100 return size;
103 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
105 u64 off = core_reg_offset_from_id(reg->id);
106 int size = core_reg_size_from_offset(vcpu, off);
108 if (size < 0)
109 return NULL;
111 if (KVM_REG_SIZE(reg->id) != size)
112 return NULL;
114 switch (off) {
115 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
116 KVM_REG_ARM_CORE_REG(regs.regs[30]):
117 off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
118 off /= 2;
119 return &vcpu->arch.ctxt.regs.regs[off];
121 case KVM_REG_ARM_CORE_REG(regs.sp):
122 return &vcpu->arch.ctxt.regs.sp;
124 case KVM_REG_ARM_CORE_REG(regs.pc):
125 return &vcpu->arch.ctxt.regs.pc;
127 case KVM_REG_ARM_CORE_REG(regs.pstate):
128 return &vcpu->arch.ctxt.regs.pstate;
130 case KVM_REG_ARM_CORE_REG(sp_el1):
131 return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
133 case KVM_REG_ARM_CORE_REG(elr_el1):
134 return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
136 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
137 return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
139 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
140 return &vcpu->arch.ctxt.spsr_abt;
142 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
143 return &vcpu->arch.ctxt.spsr_und;
145 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
146 return &vcpu->arch.ctxt.spsr_irq;
148 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
149 return &vcpu->arch.ctxt.spsr_fiq;
151 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
152 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
153 off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
154 off /= 4;
155 return &vcpu->arch.ctxt.fp_regs.vregs[off];
157 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
158 return &vcpu->arch.ctxt.fp_regs.fpsr;
160 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
161 return &vcpu->arch.ctxt.fp_regs.fpcr;
163 default:
164 return NULL;
168 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
171 * Because the kvm_regs structure is a mix of 32, 64 and
172 * 128bit fields, we index it as if it was a 32bit
173 * array. Hence below, nr_regs is the number of entries, and
174 * off the index in the "array".
176 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
177 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
178 void *addr;
179 u32 off;
181 /* Our ID is an index into the kvm_regs struct. */
182 off = core_reg_offset_from_id(reg->id);
183 if (off >= nr_regs ||
184 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
185 return -ENOENT;
187 addr = core_reg_addr(vcpu, reg);
188 if (!addr)
189 return -EINVAL;
191 if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
192 return -EFAULT;
194 return 0;
197 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
199 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
200 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
201 __uint128_t tmp;
202 void *valp = &tmp, *addr;
203 u64 off;
204 int err = 0;
206 /* Our ID is an index into the kvm_regs struct. */
207 off = core_reg_offset_from_id(reg->id);
208 if (off >= nr_regs ||
209 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
210 return -ENOENT;
212 addr = core_reg_addr(vcpu, reg);
213 if (!addr)
214 return -EINVAL;
216 if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
217 return -EINVAL;
219 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
220 err = -EFAULT;
221 goto out;
224 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
225 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
226 switch (mode) {
227 case PSR_AA32_MODE_USR:
228 if (!system_supports_32bit_el0())
229 return -EINVAL;
230 break;
231 case PSR_AA32_MODE_FIQ:
232 case PSR_AA32_MODE_IRQ:
233 case PSR_AA32_MODE_SVC:
234 case PSR_AA32_MODE_ABT:
235 case PSR_AA32_MODE_UND:
236 if (!vcpu_el1_is_32bit(vcpu))
237 return -EINVAL;
238 break;
239 case PSR_MODE_EL0t:
240 case PSR_MODE_EL1t:
241 case PSR_MODE_EL1h:
242 if (vcpu_el1_is_32bit(vcpu))
243 return -EINVAL;
244 break;
245 default:
246 err = -EINVAL;
247 goto out;
251 memcpy(addr, valp, KVM_REG_SIZE(reg->id));
253 if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
254 int i, nr_reg;
256 switch (*vcpu_cpsr(vcpu)) {
258 * Either we are dealing with user mode, and only the
259 * first 15 registers (+ PC) must be narrowed to 32bit.
260 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
262 case PSR_AA32_MODE_USR:
263 case PSR_AA32_MODE_SYS:
264 nr_reg = 15;
265 break;
268 * Otherwide, this is a priviledged mode, and *all* the
269 * registers must be narrowed to 32bit.
271 default:
272 nr_reg = 31;
273 break;
276 for (i = 0; i < nr_reg; i++)
277 vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
279 *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
281 out:
282 return err;
285 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
286 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
287 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
289 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
291 unsigned int max_vq, vq;
292 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
294 if (!vcpu_has_sve(vcpu))
295 return -ENOENT;
297 if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
298 return -EINVAL;
300 memset(vqs, 0, sizeof(vqs));
302 max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
303 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
304 if (sve_vq_available(vq))
305 vqs[vq_word(vq)] |= vq_mask(vq);
307 if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
308 return -EFAULT;
310 return 0;
313 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
315 unsigned int max_vq, vq;
316 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
318 if (!vcpu_has_sve(vcpu))
319 return -ENOENT;
321 if (kvm_arm_vcpu_sve_finalized(vcpu))
322 return -EPERM; /* too late! */
324 if (WARN_ON(vcpu->arch.sve_state))
325 return -EINVAL;
327 if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
328 return -EFAULT;
330 max_vq = 0;
331 for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
332 if (vq_present(vqs, vq))
333 max_vq = vq;
335 if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
336 return -EINVAL;
339 * Vector lengths supported by the host can't currently be
340 * hidden from the guest individually: instead we can only set a
341 * maximum via ZCR_EL2.LEN. So, make sure the available vector
342 * lengths match the set requested exactly up to the requested
343 * maximum:
345 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
346 if (vq_present(vqs, vq) != sve_vq_available(vq))
347 return -EINVAL;
349 /* Can't run with no vector lengths at all: */
350 if (max_vq < SVE_VQ_MIN)
351 return -EINVAL;
353 /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
354 vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
356 return 0;
359 #define SVE_REG_SLICE_SHIFT 0
360 #define SVE_REG_SLICE_BITS 5
361 #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
362 #define SVE_REG_ID_BITS 5
364 #define SVE_REG_SLICE_MASK \
365 GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
366 SVE_REG_SLICE_SHIFT)
367 #define SVE_REG_ID_MASK \
368 GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
370 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
372 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
373 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
376 * Number of register slices required to cover each whole SVE register.
377 * NOTE: Only the first slice every exists, for now.
378 * If you are tempted to modify this, you must also rework sve_reg_to_region()
379 * to match:
381 #define vcpu_sve_slices(vcpu) 1
383 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
384 struct sve_state_reg_region {
385 unsigned int koffset; /* offset into sve_state in kernel memory */
386 unsigned int klen; /* length in kernel memory */
387 unsigned int upad; /* extra trailing padding in user memory */
391 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
392 * register copy
394 static int sve_reg_to_region(struct sve_state_reg_region *region,
395 struct kvm_vcpu *vcpu,
396 const struct kvm_one_reg *reg)
398 /* reg ID ranges for Z- registers */
399 const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
400 const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
401 SVE_NUM_SLICES - 1);
403 /* reg ID ranges for P- registers and FFR (which are contiguous) */
404 const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
405 const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
407 unsigned int vq;
408 unsigned int reg_num;
410 unsigned int reqoffset, reqlen; /* User-requested offset and length */
411 unsigned int maxlen; /* Maximum permitted length */
413 size_t sve_state_size;
415 const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
416 SVE_NUM_SLICES - 1);
418 /* Verify that the P-regs and FFR really do have contiguous IDs: */
419 BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
421 /* Verify that we match the UAPI header: */
422 BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
424 reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
426 if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
427 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
428 return -ENOENT;
430 vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
432 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
433 SVE_SIG_REGS_OFFSET;
434 reqlen = KVM_SVE_ZREG_SIZE;
435 maxlen = SVE_SIG_ZREG_SIZE(vq);
436 } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
437 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
438 return -ENOENT;
440 vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
442 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
443 SVE_SIG_REGS_OFFSET;
444 reqlen = KVM_SVE_PREG_SIZE;
445 maxlen = SVE_SIG_PREG_SIZE(vq);
446 } else {
447 return -EINVAL;
450 sve_state_size = vcpu_sve_state_size(vcpu);
451 if (WARN_ON(!sve_state_size))
452 return -EINVAL;
454 region->koffset = array_index_nospec(reqoffset, sve_state_size);
455 region->klen = min(maxlen, reqlen);
456 region->upad = reqlen - region->klen;
458 return 0;
461 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
463 int ret;
464 struct sve_state_reg_region region;
465 char __user *uptr = (char __user *)reg->addr;
467 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
468 if (reg->id == KVM_REG_ARM64_SVE_VLS)
469 return get_sve_vls(vcpu, reg);
471 /* Try to interpret reg ID as an architectural SVE register... */
472 ret = sve_reg_to_region(&region, vcpu, reg);
473 if (ret)
474 return ret;
476 if (!kvm_arm_vcpu_sve_finalized(vcpu))
477 return -EPERM;
479 if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
480 region.klen) ||
481 clear_user(uptr + region.klen, region.upad))
482 return -EFAULT;
484 return 0;
487 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
489 int ret;
490 struct sve_state_reg_region region;
491 const char __user *uptr = (const char __user *)reg->addr;
493 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
494 if (reg->id == KVM_REG_ARM64_SVE_VLS)
495 return set_sve_vls(vcpu, reg);
497 /* Try to interpret reg ID as an architectural SVE register... */
498 ret = sve_reg_to_region(&region, vcpu, reg);
499 if (ret)
500 return ret;
502 if (!kvm_arm_vcpu_sve_finalized(vcpu))
503 return -EPERM;
505 if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
506 region.klen))
507 return -EFAULT;
509 return 0;
512 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
514 return -EINVAL;
517 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
519 return -EINVAL;
522 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
523 u64 __user *uindices)
525 unsigned int i;
526 int n = 0;
528 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
529 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
530 int size = core_reg_size_from_offset(vcpu, i);
532 if (size < 0)
533 continue;
535 switch (size) {
536 case sizeof(__u32):
537 reg |= KVM_REG_SIZE_U32;
538 break;
540 case sizeof(__u64):
541 reg |= KVM_REG_SIZE_U64;
542 break;
544 case sizeof(__uint128_t):
545 reg |= KVM_REG_SIZE_U128;
546 break;
548 default:
549 WARN_ON(1);
550 continue;
553 if (uindices) {
554 if (put_user(reg, uindices))
555 return -EFAULT;
556 uindices++;
559 n++;
562 return n;
565 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
567 return copy_core_reg_indices(vcpu, NULL);
571 * ARM64 versions of the TIMER registers, always available on arm64
574 #define NUM_TIMER_REGS 3
576 static bool is_timer_reg(u64 index)
578 switch (index) {
579 case KVM_REG_ARM_TIMER_CTL:
580 case KVM_REG_ARM_TIMER_CNT:
581 case KVM_REG_ARM_TIMER_CVAL:
582 return true;
584 return false;
587 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
589 if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
590 return -EFAULT;
591 uindices++;
592 if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
593 return -EFAULT;
594 uindices++;
595 if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
596 return -EFAULT;
598 return 0;
601 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
603 void __user *uaddr = (void __user *)(long)reg->addr;
604 u64 val;
605 int ret;
607 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
608 if (ret != 0)
609 return -EFAULT;
611 return kvm_arm_timer_set_reg(vcpu, reg->id, val);
614 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
616 void __user *uaddr = (void __user *)(long)reg->addr;
617 u64 val;
619 val = kvm_arm_timer_get_reg(vcpu, reg->id);
620 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
623 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
625 const unsigned int slices = vcpu_sve_slices(vcpu);
627 if (!vcpu_has_sve(vcpu))
628 return 0;
630 /* Policed by KVM_GET_REG_LIST: */
631 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
633 return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
634 + 1; /* KVM_REG_ARM64_SVE_VLS */
637 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
638 u64 __user *uindices)
640 const unsigned int slices = vcpu_sve_slices(vcpu);
641 u64 reg;
642 unsigned int i, n;
643 int num_regs = 0;
645 if (!vcpu_has_sve(vcpu))
646 return 0;
648 /* Policed by KVM_GET_REG_LIST: */
649 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
652 * Enumerate this first, so that userspace can save/restore in
653 * the order reported by KVM_GET_REG_LIST:
655 reg = KVM_REG_ARM64_SVE_VLS;
656 if (put_user(reg, uindices++))
657 return -EFAULT;
658 ++num_regs;
660 for (i = 0; i < slices; i++) {
661 for (n = 0; n < SVE_NUM_ZREGS; n++) {
662 reg = KVM_REG_ARM64_SVE_ZREG(n, i);
663 if (put_user(reg, uindices++))
664 return -EFAULT;
665 num_regs++;
668 for (n = 0; n < SVE_NUM_PREGS; n++) {
669 reg = KVM_REG_ARM64_SVE_PREG(n, i);
670 if (put_user(reg, uindices++))
671 return -EFAULT;
672 num_regs++;
675 reg = KVM_REG_ARM64_SVE_FFR(i);
676 if (put_user(reg, uindices++))
677 return -EFAULT;
678 num_regs++;
681 return num_regs;
685 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
687 * This is for all registers.
689 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
691 unsigned long res = 0;
693 res += num_core_regs(vcpu);
694 res += num_sve_regs(vcpu);
695 res += kvm_arm_num_sys_reg_descs(vcpu);
696 res += kvm_arm_get_fw_num_regs(vcpu);
697 res += NUM_TIMER_REGS;
699 return res;
703 * kvm_arm_copy_reg_indices - get indices of all registers.
705 * We do core registers right here, then we append system regs.
707 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
709 int ret;
711 ret = copy_core_reg_indices(vcpu, uindices);
712 if (ret < 0)
713 return ret;
714 uindices += ret;
716 ret = copy_sve_reg_indices(vcpu, uindices);
717 if (ret < 0)
718 return ret;
719 uindices += ret;
721 ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
722 if (ret < 0)
723 return ret;
724 uindices += kvm_arm_get_fw_num_regs(vcpu);
726 ret = copy_timer_indices(vcpu, uindices);
727 if (ret < 0)
728 return ret;
729 uindices += NUM_TIMER_REGS;
731 return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
734 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
736 /* We currently use nothing arch-specific in upper 32 bits */
737 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
738 return -EINVAL;
740 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
741 case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
742 case KVM_REG_ARM_FW: return kvm_arm_get_fw_reg(vcpu, reg);
743 case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
746 if (is_timer_reg(reg->id))
747 return get_timer_reg(vcpu, reg);
749 return kvm_arm_sys_reg_get_reg(vcpu, reg);
752 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
754 /* We currently use nothing arch-specific in upper 32 bits */
755 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
756 return -EINVAL;
758 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
759 case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
760 case KVM_REG_ARM_FW: return kvm_arm_set_fw_reg(vcpu, reg);
761 case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
764 if (is_timer_reg(reg->id))
765 return set_timer_reg(vcpu, reg);
767 return kvm_arm_sys_reg_set_reg(vcpu, reg);
770 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
771 struct kvm_sregs *sregs)
773 return -EINVAL;
776 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
777 struct kvm_sregs *sregs)
779 return -EINVAL;
782 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
783 struct kvm_vcpu_events *events)
785 events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
786 events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
788 if (events->exception.serror_pending && events->exception.serror_has_esr)
789 events->exception.serror_esr = vcpu_get_vsesr(vcpu);
792 * We never return a pending ext_dabt here because we deliver it to
793 * the virtual CPU directly when setting the event and it's no longer
794 * 'pending' at this point.
797 return 0;
800 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
801 struct kvm_vcpu_events *events)
803 bool serror_pending = events->exception.serror_pending;
804 bool has_esr = events->exception.serror_has_esr;
805 bool ext_dabt_pending = events->exception.ext_dabt_pending;
807 if (serror_pending && has_esr) {
808 if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
809 return -EINVAL;
811 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
812 kvm_set_sei_esr(vcpu, events->exception.serror_esr);
813 else
814 return -EINVAL;
815 } else if (serror_pending) {
816 kvm_inject_vabt(vcpu);
819 if (ext_dabt_pending)
820 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
822 return 0;
825 int __attribute_const__ kvm_target_cpu(void)
827 unsigned long implementor = read_cpuid_implementor();
828 unsigned long part_number = read_cpuid_part_number();
830 switch (implementor) {
831 case ARM_CPU_IMP_ARM:
832 switch (part_number) {
833 case ARM_CPU_PART_AEM_V8:
834 return KVM_ARM_TARGET_AEM_V8;
835 case ARM_CPU_PART_FOUNDATION:
836 return KVM_ARM_TARGET_FOUNDATION_V8;
837 case ARM_CPU_PART_CORTEX_A53:
838 return KVM_ARM_TARGET_CORTEX_A53;
839 case ARM_CPU_PART_CORTEX_A57:
840 return KVM_ARM_TARGET_CORTEX_A57;
842 break;
843 case ARM_CPU_IMP_APM:
844 switch (part_number) {
845 case APM_CPU_PART_POTENZA:
846 return KVM_ARM_TARGET_XGENE_POTENZA;
848 break;
851 /* Return a default generic target */
852 return KVM_ARM_TARGET_GENERIC_V8;
855 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
857 int target = kvm_target_cpu();
859 if (target < 0)
860 return -ENODEV;
862 memset(init, 0, sizeof(*init));
865 * For now, we don't return any features.
866 * In future, we might use features to return target
867 * specific features available for the preferred
868 * target type.
870 init->target = (__u32)target;
872 return 0;
875 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
877 return -EINVAL;
880 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
882 return -EINVAL;
885 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
886 struct kvm_translation *tr)
888 return -EINVAL;
891 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
892 KVM_GUESTDBG_USE_SW_BP | \
893 KVM_GUESTDBG_USE_HW | \
894 KVM_GUESTDBG_SINGLESTEP)
897 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
898 * @kvm: pointer to the KVM struct
899 * @kvm_guest_debug: the ioctl data buffer
901 * This sets up and enables the VM for guest debugging. Userspace
902 * passes in a control flag to enable different debug types and
903 * potentially other architecture specific information in the rest of
904 * the structure.
906 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
907 struct kvm_guest_debug *dbg)
909 int ret = 0;
911 trace_kvm_set_guest_debug(vcpu, dbg->control);
913 if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
914 ret = -EINVAL;
915 goto out;
918 if (dbg->control & KVM_GUESTDBG_ENABLE) {
919 vcpu->guest_debug = dbg->control;
921 /* Hardware assisted Break and Watch points */
922 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
923 vcpu->arch.external_debug_state = dbg->arch;
926 } else {
927 /* If not enabled clear all flags */
928 vcpu->guest_debug = 0;
931 out:
932 return ret;
935 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
936 struct kvm_device_attr *attr)
938 int ret;
940 switch (attr->group) {
941 case KVM_ARM_VCPU_PMU_V3_CTRL:
942 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
943 break;
944 case KVM_ARM_VCPU_TIMER_CTRL:
945 ret = kvm_arm_timer_set_attr(vcpu, attr);
946 break;
947 case KVM_ARM_VCPU_PVTIME_CTRL:
948 ret = kvm_arm_pvtime_set_attr(vcpu, attr);
949 break;
950 default:
951 ret = -ENXIO;
952 break;
955 return ret;
958 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
959 struct kvm_device_attr *attr)
961 int ret;
963 switch (attr->group) {
964 case KVM_ARM_VCPU_PMU_V3_CTRL:
965 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
966 break;
967 case KVM_ARM_VCPU_TIMER_CTRL:
968 ret = kvm_arm_timer_get_attr(vcpu, attr);
969 break;
970 case KVM_ARM_VCPU_PVTIME_CTRL:
971 ret = kvm_arm_pvtime_get_attr(vcpu, attr);
972 break;
973 default:
974 ret = -ENXIO;
975 break;
978 return ret;
981 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
982 struct kvm_device_attr *attr)
984 int ret;
986 switch (attr->group) {
987 case KVM_ARM_VCPU_PMU_V3_CTRL:
988 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
989 break;
990 case KVM_ARM_VCPU_TIMER_CTRL:
991 ret = kvm_arm_timer_has_attr(vcpu, attr);
992 break;
993 case KVM_ARM_VCPU_PVTIME_CTRL:
994 ret = kvm_arm_pvtime_has_attr(vcpu, attr);
995 break;
996 default:
997 ret = -ENXIO;
998 break;
1001 return ret;