Merge tag 'sched-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / arch / arm64 / kvm / sys_regs.c
blob3313dedfa5053413bae960bd44eee01439cb63df
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_emulate.h>
24 #include <asm/kvm_hyp.h>
25 #include <asm/kvm_mmu.h>
26 #include <asm/perf_event.h>
27 #include <asm/sysreg.h>
29 #include <trace/events/kvm.h>
31 #include "sys_regs.h"
33 #include "trace.h"
36 * All of this file is extremely similar to the ARM coproc.c, but the
37 * types are different. My gut feeling is that it should be pretty
38 * easy to merge, but that would be an ABI breakage -- again. VFP
39 * would also need to be abstracted.
41 * For AArch32, we only take care of what is being trapped. Anything
42 * that has to do with init and userspace access has to go via the
43 * 64bit interface.
46 static bool read_from_write_only(struct kvm_vcpu *vcpu,
47 struct sys_reg_params *params,
48 const struct sys_reg_desc *r)
50 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
51 print_sys_reg_instr(params);
52 kvm_inject_undefined(vcpu);
53 return false;
56 static bool write_to_read_only(struct kvm_vcpu *vcpu,
57 struct sys_reg_params *params,
58 const struct sys_reg_desc *r)
60 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
61 print_sys_reg_instr(params);
62 kvm_inject_undefined(vcpu);
63 return false;
66 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
68 u64 val = 0x8badf00d8badf00d;
70 if (vcpu->arch.sysregs_loaded_on_cpu &&
71 __vcpu_read_sys_reg_from_cpu(reg, &val))
72 return val;
74 return __vcpu_sys_reg(vcpu, reg);
77 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
79 if (vcpu->arch.sysregs_loaded_on_cpu &&
80 __vcpu_write_sys_reg_to_cpu(val, reg))
81 return;
83 __vcpu_sys_reg(vcpu, reg) = val;
86 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
87 static u32 cache_levels;
89 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
90 #define CSSELR_MAX 14
92 /* Which cache CCSIDR represents depends on CSSELR value. */
93 static u32 get_ccsidr(u32 csselr)
95 u32 ccsidr;
97 /* Make sure noone else changes CSSELR during this! */
98 local_irq_disable();
99 write_sysreg(csselr, csselr_el1);
100 isb();
101 ccsidr = read_sysreg(ccsidr_el1);
102 local_irq_enable();
104 return ccsidr;
108 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
110 static bool access_dcsw(struct kvm_vcpu *vcpu,
111 struct sys_reg_params *p,
112 const struct sys_reg_desc *r)
114 if (!p->is_write)
115 return read_from_write_only(vcpu, p, r);
118 * Only track S/W ops if we don't have FWB. It still indicates
119 * that the guest is a bit broken (S/W operations should only
120 * be done by firmware, knowing that there is only a single
121 * CPU left in the system, and certainly not from non-secure
122 * software).
124 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
125 kvm_set_way_flush(vcpu);
127 return true;
130 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
132 switch (r->aarch32_map) {
133 case AA32_LO:
134 *mask = GENMASK_ULL(31, 0);
135 *shift = 0;
136 break;
137 case AA32_HI:
138 *mask = GENMASK_ULL(63, 32);
139 *shift = 32;
140 break;
141 default:
142 *mask = GENMASK_ULL(63, 0);
143 *shift = 0;
144 break;
149 * Generic accessor for VM registers. Only called as long as HCR_TVM
150 * is set. If the guest enables the MMU, we stop trapping the VM
151 * sys_regs and leave it in complete control of the caches.
153 static bool access_vm_reg(struct kvm_vcpu *vcpu,
154 struct sys_reg_params *p,
155 const struct sys_reg_desc *r)
157 bool was_enabled = vcpu_has_cache_enabled(vcpu);
158 u64 val, mask, shift;
160 BUG_ON(!p->is_write);
162 get_access_mask(r, &mask, &shift);
164 if (~mask) {
165 val = vcpu_read_sys_reg(vcpu, r->reg);
166 val &= ~mask;
167 } else {
168 val = 0;
171 val |= (p->regval & (mask >> shift)) << shift;
172 vcpu_write_sys_reg(vcpu, val, r->reg);
174 kvm_toggle_cache(vcpu, was_enabled);
175 return true;
178 static bool access_actlr(struct kvm_vcpu *vcpu,
179 struct sys_reg_params *p,
180 const struct sys_reg_desc *r)
182 u64 mask, shift;
184 if (p->is_write)
185 return ignore_write(vcpu, p);
187 get_access_mask(r, &mask, &shift);
188 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
190 return true;
194 * Trap handler for the GICv3 SGI generation system register.
195 * Forward the request to the VGIC emulation.
196 * The cp15_64 code makes sure this automatically works
197 * for both AArch64 and AArch32 accesses.
199 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
200 struct sys_reg_params *p,
201 const struct sys_reg_desc *r)
203 bool g1;
205 if (!p->is_write)
206 return read_from_write_only(vcpu, p, r);
209 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
210 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
211 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
212 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
213 * group.
215 if (p->Op0 == 0) { /* AArch32 */
216 switch (p->Op1) {
217 default: /* Keep GCC quiet */
218 case 0: /* ICC_SGI1R */
219 g1 = true;
220 break;
221 case 1: /* ICC_ASGI1R */
222 case 2: /* ICC_SGI0R */
223 g1 = false;
224 break;
226 } else { /* AArch64 */
227 switch (p->Op2) {
228 default: /* Keep GCC quiet */
229 case 5: /* ICC_SGI1R_EL1 */
230 g1 = true;
231 break;
232 case 6: /* ICC_ASGI1R_EL1 */
233 case 7: /* ICC_SGI0R_EL1 */
234 g1 = false;
235 break;
239 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
241 return true;
244 static bool access_gic_sre(struct kvm_vcpu *vcpu,
245 struct sys_reg_params *p,
246 const struct sys_reg_desc *r)
248 if (p->is_write)
249 return ignore_write(vcpu, p);
251 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
252 return true;
255 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
256 struct sys_reg_params *p,
257 const struct sys_reg_desc *r)
259 if (p->is_write)
260 return ignore_write(vcpu, p);
261 else
262 return read_zero(vcpu, p);
266 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
267 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
268 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
269 * treat it separately.
271 static bool trap_loregion(struct kvm_vcpu *vcpu,
272 struct sys_reg_params *p,
273 const struct sys_reg_desc *r)
275 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
276 u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
277 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
279 if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
280 kvm_inject_undefined(vcpu);
281 return false;
284 if (p->is_write && sr == SYS_LORID_EL1)
285 return write_to_read_only(vcpu, p, r);
287 return trap_raz_wi(vcpu, p, r);
290 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
291 struct sys_reg_params *p,
292 const struct sys_reg_desc *r)
294 if (p->is_write) {
295 return ignore_write(vcpu, p);
296 } else {
297 p->regval = (1 << 3);
298 return true;
302 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
303 struct sys_reg_params *p,
304 const struct sys_reg_desc *r)
306 if (p->is_write) {
307 return ignore_write(vcpu, p);
308 } else {
309 p->regval = read_sysreg(dbgauthstatus_el1);
310 return true;
315 * We want to avoid world-switching all the DBG registers all the
316 * time:
318 * - If we've touched any debug register, it is likely that we're
319 * going to touch more of them. It then makes sense to disable the
320 * traps and start doing the save/restore dance
321 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
322 * then mandatory to save/restore the registers, as the guest
323 * depends on them.
325 * For this, we use a DIRTY bit, indicating the guest has modified the
326 * debug registers, used as follow:
328 * On guest entry:
329 * - If the dirty bit is set (because we're coming back from trapping),
330 * disable the traps, save host registers, restore guest registers.
331 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
332 * set the dirty bit, disable the traps, save host registers,
333 * restore guest registers.
334 * - Otherwise, enable the traps
336 * On guest exit:
337 * - If the dirty bit is set, save guest registers, restore host
338 * registers and clear the dirty bit. This ensure that the host can
339 * now use the debug registers.
341 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
342 struct sys_reg_params *p,
343 const struct sys_reg_desc *r)
345 if (p->is_write) {
346 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
347 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
348 } else {
349 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
352 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
354 return true;
358 * reg_to_dbg/dbg_to_reg
360 * A 32 bit write to a debug register leave top bits alone
361 * A 32 bit read from a debug register only returns the bottom bits
363 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
364 * hyp.S code switches between host and guest values in future.
366 static void reg_to_dbg(struct kvm_vcpu *vcpu,
367 struct sys_reg_params *p,
368 const struct sys_reg_desc *rd,
369 u64 *dbg_reg)
371 u64 mask, shift, val;
373 get_access_mask(rd, &mask, &shift);
375 val = *dbg_reg;
376 val &= ~mask;
377 val |= (p->regval & (mask >> shift)) << shift;
378 *dbg_reg = val;
380 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
383 static void dbg_to_reg(struct kvm_vcpu *vcpu,
384 struct sys_reg_params *p,
385 const struct sys_reg_desc *rd,
386 u64 *dbg_reg)
388 u64 mask, shift;
390 get_access_mask(rd, &mask, &shift);
391 p->regval = (*dbg_reg & mask) >> shift;
394 static bool trap_bvr(struct kvm_vcpu *vcpu,
395 struct sys_reg_params *p,
396 const struct sys_reg_desc *rd)
398 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
400 if (p->is_write)
401 reg_to_dbg(vcpu, p, rd, dbg_reg);
402 else
403 dbg_to_reg(vcpu, p, rd, dbg_reg);
405 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
407 return true;
410 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411 const struct kvm_one_reg *reg, void __user *uaddr)
413 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
415 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
416 return -EFAULT;
417 return 0;
420 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
421 const struct kvm_one_reg *reg, void __user *uaddr)
423 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
425 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
426 return -EFAULT;
427 return 0;
430 static void reset_bvr(struct kvm_vcpu *vcpu,
431 const struct sys_reg_desc *rd)
433 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
436 static bool trap_bcr(struct kvm_vcpu *vcpu,
437 struct sys_reg_params *p,
438 const struct sys_reg_desc *rd)
440 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
442 if (p->is_write)
443 reg_to_dbg(vcpu, p, rd, dbg_reg);
444 else
445 dbg_to_reg(vcpu, p, rd, dbg_reg);
447 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
449 return true;
452 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
453 const struct kvm_one_reg *reg, void __user *uaddr)
455 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
457 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
458 return -EFAULT;
460 return 0;
463 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464 const struct kvm_one_reg *reg, void __user *uaddr)
466 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
468 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469 return -EFAULT;
470 return 0;
473 static void reset_bcr(struct kvm_vcpu *vcpu,
474 const struct sys_reg_desc *rd)
476 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
479 static bool trap_wvr(struct kvm_vcpu *vcpu,
480 struct sys_reg_params *p,
481 const struct sys_reg_desc *rd)
483 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
485 if (p->is_write)
486 reg_to_dbg(vcpu, p, rd, dbg_reg);
487 else
488 dbg_to_reg(vcpu, p, rd, dbg_reg);
490 trace_trap_reg(__func__, rd->reg, p->is_write,
491 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
493 return true;
496 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
497 const struct kvm_one_reg *reg, void __user *uaddr)
499 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
501 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
502 return -EFAULT;
503 return 0;
506 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507 const struct kvm_one_reg *reg, void __user *uaddr)
509 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
511 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512 return -EFAULT;
513 return 0;
516 static void reset_wvr(struct kvm_vcpu *vcpu,
517 const struct sys_reg_desc *rd)
519 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
522 static bool trap_wcr(struct kvm_vcpu *vcpu,
523 struct sys_reg_params *p,
524 const struct sys_reg_desc *rd)
526 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
528 if (p->is_write)
529 reg_to_dbg(vcpu, p, rd, dbg_reg);
530 else
531 dbg_to_reg(vcpu, p, rd, dbg_reg);
533 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
535 return true;
538 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
539 const struct kvm_one_reg *reg, void __user *uaddr)
541 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
543 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
544 return -EFAULT;
545 return 0;
548 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
549 const struct kvm_one_reg *reg, void __user *uaddr)
551 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
553 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
554 return -EFAULT;
555 return 0;
558 static void reset_wcr(struct kvm_vcpu *vcpu,
559 const struct sys_reg_desc *rd)
561 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
564 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
566 u64 amair = read_sysreg(amair_el1);
567 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
570 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
572 u64 actlr = read_sysreg(actlr_el1);
573 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
576 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
578 u64 mpidr;
581 * Map the vcpu_id into the first three affinity level fields of
582 * the MPIDR. We limit the number of VCPUs in level 0 due to a
583 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
584 * of the GICv3 to be able to address each CPU directly when
585 * sending IPIs.
587 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
588 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
589 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
590 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
593 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
595 u64 pmcr, val;
597 pmcr = read_sysreg(pmcr_el0);
599 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
600 * except PMCR.E resetting to zero.
602 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
603 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
604 if (!system_supports_32bit_el0())
605 val |= ARMV8_PMU_PMCR_LC;
606 __vcpu_sys_reg(vcpu, r->reg) = val;
609 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
611 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
612 bool enabled = kvm_vcpu_has_pmu(vcpu);
614 enabled &= (reg & flags) || vcpu_mode_priv(vcpu);
615 if (!enabled)
616 kvm_inject_undefined(vcpu);
618 return !enabled;
621 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
623 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
626 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
628 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
631 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
633 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
636 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
638 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
641 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
642 const struct sys_reg_desc *r)
644 u64 val;
646 if (pmu_access_el0_disabled(vcpu))
647 return false;
649 if (p->is_write) {
650 /* Only update writeable bits of PMCR */
651 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
652 val &= ~ARMV8_PMU_PMCR_MASK;
653 val |= p->regval & ARMV8_PMU_PMCR_MASK;
654 if (!system_supports_32bit_el0())
655 val |= ARMV8_PMU_PMCR_LC;
656 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
657 kvm_pmu_handle_pmcr(vcpu, val);
658 kvm_vcpu_pmu_restore_guest(vcpu);
659 } else {
660 /* PMCR.P & PMCR.C are RAZ */
661 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
662 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
663 p->regval = val;
666 return true;
669 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
670 const struct sys_reg_desc *r)
672 if (pmu_access_event_counter_el0_disabled(vcpu))
673 return false;
675 if (p->is_write)
676 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
677 else
678 /* return PMSELR.SEL field */
679 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
680 & ARMV8_PMU_COUNTER_MASK;
682 return true;
685 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
686 const struct sys_reg_desc *r)
688 u64 pmceid;
690 BUG_ON(p->is_write);
692 if (pmu_access_el0_disabled(vcpu))
693 return false;
695 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
697 p->regval = pmceid;
699 return true;
702 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
704 u64 pmcr, val;
706 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
707 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
708 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
709 kvm_inject_undefined(vcpu);
710 return false;
713 return true;
716 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
717 struct sys_reg_params *p,
718 const struct sys_reg_desc *r)
720 u64 idx = ~0UL;
722 if (r->CRn == 9 && r->CRm == 13) {
723 if (r->Op2 == 2) {
724 /* PMXEVCNTR_EL0 */
725 if (pmu_access_event_counter_el0_disabled(vcpu))
726 return false;
728 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
729 & ARMV8_PMU_COUNTER_MASK;
730 } else if (r->Op2 == 0) {
731 /* PMCCNTR_EL0 */
732 if (pmu_access_cycle_counter_el0_disabled(vcpu))
733 return false;
735 idx = ARMV8_PMU_CYCLE_IDX;
737 } else if (r->CRn == 0 && r->CRm == 9) {
738 /* PMCCNTR */
739 if (pmu_access_event_counter_el0_disabled(vcpu))
740 return false;
742 idx = ARMV8_PMU_CYCLE_IDX;
743 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
744 /* PMEVCNTRn_EL0 */
745 if (pmu_access_event_counter_el0_disabled(vcpu))
746 return false;
748 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
751 /* Catch any decoding mistake */
752 WARN_ON(idx == ~0UL);
754 if (!pmu_counter_idx_valid(vcpu, idx))
755 return false;
757 if (p->is_write) {
758 if (pmu_access_el0_disabled(vcpu))
759 return false;
761 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
762 } else {
763 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
766 return true;
769 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
770 const struct sys_reg_desc *r)
772 u64 idx, reg;
774 if (pmu_access_el0_disabled(vcpu))
775 return false;
777 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
778 /* PMXEVTYPER_EL0 */
779 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
780 reg = PMEVTYPER0_EL0 + idx;
781 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
782 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
783 if (idx == ARMV8_PMU_CYCLE_IDX)
784 reg = PMCCFILTR_EL0;
785 else
786 /* PMEVTYPERn_EL0 */
787 reg = PMEVTYPER0_EL0 + idx;
788 } else {
789 BUG();
792 if (!pmu_counter_idx_valid(vcpu, idx))
793 return false;
795 if (p->is_write) {
796 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
797 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
798 kvm_vcpu_pmu_restore_guest(vcpu);
799 } else {
800 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
803 return true;
806 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
807 const struct sys_reg_desc *r)
809 u64 val, mask;
811 if (pmu_access_el0_disabled(vcpu))
812 return false;
814 mask = kvm_pmu_valid_counter_mask(vcpu);
815 if (p->is_write) {
816 val = p->regval & mask;
817 if (r->Op2 & 0x1) {
818 /* accessing PMCNTENSET_EL0 */
819 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
820 kvm_pmu_enable_counter_mask(vcpu, val);
821 kvm_vcpu_pmu_restore_guest(vcpu);
822 } else {
823 /* accessing PMCNTENCLR_EL0 */
824 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
825 kvm_pmu_disable_counter_mask(vcpu, val);
827 } else {
828 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
831 return true;
834 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
835 const struct sys_reg_desc *r)
837 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
839 if (check_pmu_access_disabled(vcpu, 0))
840 return false;
842 if (p->is_write) {
843 u64 val = p->regval & mask;
845 if (r->Op2 & 0x1)
846 /* accessing PMINTENSET_EL1 */
847 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
848 else
849 /* accessing PMINTENCLR_EL1 */
850 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
851 } else {
852 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
855 return true;
858 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
859 const struct sys_reg_desc *r)
861 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
863 if (pmu_access_el0_disabled(vcpu))
864 return false;
866 if (p->is_write) {
867 if (r->CRm & 0x2)
868 /* accessing PMOVSSET_EL0 */
869 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
870 else
871 /* accessing PMOVSCLR_EL0 */
872 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
873 } else {
874 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
877 return true;
880 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
881 const struct sys_reg_desc *r)
883 u64 mask;
885 if (!p->is_write)
886 return read_from_write_only(vcpu, p, r);
888 if (pmu_write_swinc_el0_disabled(vcpu))
889 return false;
891 mask = kvm_pmu_valid_counter_mask(vcpu);
892 kvm_pmu_software_increment(vcpu, p->regval & mask);
893 return true;
896 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
897 const struct sys_reg_desc *r)
899 if (!kvm_vcpu_has_pmu(vcpu)) {
900 kvm_inject_undefined(vcpu);
901 return false;
904 if (p->is_write) {
905 if (!vcpu_mode_priv(vcpu)) {
906 kvm_inject_undefined(vcpu);
907 return false;
910 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
911 p->regval & ARMV8_PMU_USERENR_MASK;
912 } else {
913 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
914 & ARMV8_PMU_USERENR_MASK;
917 return true;
920 #define reg_to_encoding(x) \
921 sys_reg((u32)(x)->Op0, (u32)(x)->Op1, \
922 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
924 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
925 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
926 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
927 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
928 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
929 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
930 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
931 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
932 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
933 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
935 /* Macro to expand the PMEVCNTRn_EL0 register */
936 #define PMU_PMEVCNTR_EL0(n) \
937 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
938 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
940 /* Macro to expand the PMEVTYPERn_EL0 register */
941 #define PMU_PMEVTYPER_EL0(n) \
942 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
943 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
945 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
946 const struct sys_reg_desc *r)
948 kvm_inject_undefined(vcpu);
950 return false;
953 /* Macro to expand the AMU counter and type registers*/
954 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
955 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
956 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
957 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
959 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
960 const struct sys_reg_desc *rd)
962 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
966 * If we land here on a PtrAuth access, that is because we didn't
967 * fixup the access on exit by allowing the PtrAuth sysregs. The only
968 * way this happens is when the guest does not have PtrAuth support
969 * enabled.
971 #define __PTRAUTH_KEY(k) \
972 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
973 .visibility = ptrauth_visibility}
975 #define PTRAUTH_KEY(k) \
976 __PTRAUTH_KEY(k ## KEYLO_EL1), \
977 __PTRAUTH_KEY(k ## KEYHI_EL1)
979 static bool access_arch_timer(struct kvm_vcpu *vcpu,
980 struct sys_reg_params *p,
981 const struct sys_reg_desc *r)
983 enum kvm_arch_timers tmr;
984 enum kvm_arch_timer_regs treg;
985 u64 reg = reg_to_encoding(r);
987 switch (reg) {
988 case SYS_CNTP_TVAL_EL0:
989 case SYS_AARCH32_CNTP_TVAL:
990 tmr = TIMER_PTIMER;
991 treg = TIMER_REG_TVAL;
992 break;
993 case SYS_CNTP_CTL_EL0:
994 case SYS_AARCH32_CNTP_CTL:
995 tmr = TIMER_PTIMER;
996 treg = TIMER_REG_CTL;
997 break;
998 case SYS_CNTP_CVAL_EL0:
999 case SYS_AARCH32_CNTP_CVAL:
1000 tmr = TIMER_PTIMER;
1001 treg = TIMER_REG_CVAL;
1002 break;
1003 default:
1004 BUG();
1007 if (p->is_write)
1008 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1009 else
1010 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1012 return true;
1015 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1016 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1017 struct sys_reg_desc const *r, bool raz)
1019 u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1020 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1021 u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1023 if (id == SYS_ID_AA64PFR0_EL1) {
1024 if (!vcpu_has_sve(vcpu))
1025 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1026 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1027 val &= ~(0xfUL << ID_AA64PFR0_CSV2_SHIFT);
1028 val |= ((u64)vcpu->kvm->arch.pfr0_csv2 << ID_AA64PFR0_CSV2_SHIFT);
1029 val &= ~(0xfUL << ID_AA64PFR0_CSV3_SHIFT);
1030 val |= ((u64)vcpu->kvm->arch.pfr0_csv3 << ID_AA64PFR0_CSV3_SHIFT);
1031 } else if (id == SYS_ID_AA64PFR1_EL1) {
1032 val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1033 } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1034 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1035 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1036 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1037 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1038 } else if (id == SYS_ID_AA64DFR0_EL1) {
1039 u64 cap = 0;
1041 /* Limit guests to PMUv3 for ARMv8.1 */
1042 if (kvm_vcpu_has_pmu(vcpu))
1043 cap = ID_AA64DFR0_PMUVER_8_1;
1045 val = cpuid_feature_cap_perfmon_field(val,
1046 ID_AA64DFR0_PMUVER_SHIFT,
1047 cap);
1048 } else if (id == SYS_ID_DFR0_EL1) {
1049 /* Limit guests to PMUv3 for ARMv8.1 */
1050 val = cpuid_feature_cap_perfmon_field(val,
1051 ID_DFR0_PERFMON_SHIFT,
1052 ID_DFR0_PERFMON_8_1);
1055 return val;
1058 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1059 const struct sys_reg_desc *r)
1061 u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1062 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1064 switch (id) {
1065 case SYS_ID_AA64ZFR0_EL1:
1066 if (!vcpu_has_sve(vcpu))
1067 return REG_RAZ;
1068 break;
1071 return 0;
1074 /* cpufeature ID register access trap handlers */
1076 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1077 struct sys_reg_params *p,
1078 const struct sys_reg_desc *r,
1079 bool raz)
1081 if (p->is_write)
1082 return write_to_read_only(vcpu, p, r);
1084 p->regval = read_id_reg(vcpu, r, raz);
1085 return true;
1088 static bool access_id_reg(struct kvm_vcpu *vcpu,
1089 struct sys_reg_params *p,
1090 const struct sys_reg_desc *r)
1092 bool raz = sysreg_visible_as_raz(vcpu, r);
1094 return __access_id_reg(vcpu, p, r, raz);
1097 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1098 struct sys_reg_params *p,
1099 const struct sys_reg_desc *r)
1101 return __access_id_reg(vcpu, p, r, true);
1104 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1105 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1106 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1108 /* Visibility overrides for SVE-specific control registers */
1109 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1110 const struct sys_reg_desc *rd)
1112 if (vcpu_has_sve(vcpu))
1113 return 0;
1115 return REG_HIDDEN;
1118 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1119 const struct sys_reg_desc *rd,
1120 const struct kvm_one_reg *reg, void __user *uaddr)
1122 const u64 id = sys_reg_to_index(rd);
1123 u8 csv2, csv3;
1124 int err;
1125 u64 val;
1127 err = reg_from_user(&val, uaddr, id);
1128 if (err)
1129 return err;
1132 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1133 * it doesn't promise more than what is actually provided (the
1134 * guest could otherwise be covered in ectoplasmic residue).
1136 csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1137 if (csv2 > 1 ||
1138 (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1139 return -EINVAL;
1141 /* Same thing for CSV3 */
1142 csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1143 if (csv3 > 1 ||
1144 (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1145 return -EINVAL;
1147 /* We can only differ with CSV[23], and anything else is an error */
1148 val ^= read_id_reg(vcpu, rd, false);
1149 val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1150 (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1151 if (val)
1152 return -EINVAL;
1154 vcpu->kvm->arch.pfr0_csv2 = csv2;
1155 vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1157 return 0;
1161 * cpufeature ID register user accessors
1163 * For now, these registers are immutable for userspace, so no values
1164 * are stored, and for set_id_reg() we don't allow the effective value
1165 * to be changed.
1167 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1168 const struct sys_reg_desc *rd, void __user *uaddr,
1169 bool raz)
1171 const u64 id = sys_reg_to_index(rd);
1172 const u64 val = read_id_reg(vcpu, rd, raz);
1174 return reg_to_user(uaddr, &val, id);
1177 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1178 const struct sys_reg_desc *rd, void __user *uaddr,
1179 bool raz)
1181 const u64 id = sys_reg_to_index(rd);
1182 int err;
1183 u64 val;
1185 err = reg_from_user(&val, uaddr, id);
1186 if (err)
1187 return err;
1189 /* This is what we mean by invariant: you can't change it. */
1190 if (val != read_id_reg(vcpu, rd, raz))
1191 return -EINVAL;
1193 return 0;
1196 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1197 const struct kvm_one_reg *reg, void __user *uaddr)
1199 bool raz = sysreg_visible_as_raz(vcpu, rd);
1201 return __get_id_reg(vcpu, rd, uaddr, raz);
1204 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1205 const struct kvm_one_reg *reg, void __user *uaddr)
1207 bool raz = sysreg_visible_as_raz(vcpu, rd);
1209 return __set_id_reg(vcpu, rd, uaddr, raz);
1212 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1213 const struct kvm_one_reg *reg, void __user *uaddr)
1215 return __get_id_reg(vcpu, rd, uaddr, true);
1218 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1219 const struct kvm_one_reg *reg, void __user *uaddr)
1221 return __set_id_reg(vcpu, rd, uaddr, true);
1224 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1225 const struct sys_reg_desc *r)
1227 if (p->is_write)
1228 return write_to_read_only(vcpu, p, r);
1230 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1231 return true;
1234 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1235 const struct sys_reg_desc *r)
1237 if (p->is_write)
1238 return write_to_read_only(vcpu, p, r);
1240 p->regval = read_sysreg(clidr_el1);
1241 return true;
1244 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1245 const struct sys_reg_desc *r)
1247 int reg = r->reg;
1249 if (p->is_write)
1250 vcpu_write_sys_reg(vcpu, p->regval, reg);
1251 else
1252 p->regval = vcpu_read_sys_reg(vcpu, reg);
1253 return true;
1256 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1257 const struct sys_reg_desc *r)
1259 u32 csselr;
1261 if (p->is_write)
1262 return write_to_read_only(vcpu, p, r);
1264 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1265 p->regval = get_ccsidr(csselr);
1268 * Guests should not be doing cache operations by set/way at all, and
1269 * for this reason, we trap them and attempt to infer the intent, so
1270 * that we can flush the entire guest's address space at the appropriate
1271 * time.
1272 * To prevent this trapping from causing performance problems, let's
1273 * expose the geometry of all data and unified caches (which are
1274 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1275 * [If guests should attempt to infer aliasing properties from the
1276 * geometry (which is not permitted by the architecture), they would
1277 * only do so for virtually indexed caches.]
1279 if (!(csselr & 1)) // data or unified cache
1280 p->regval &= ~GENMASK(27, 3);
1281 return true;
1284 /* sys_reg_desc initialiser for known cpufeature ID registers */
1285 #define ID_SANITISED(name) { \
1286 SYS_DESC(SYS_##name), \
1287 .access = access_id_reg, \
1288 .get_user = get_id_reg, \
1289 .set_user = set_id_reg, \
1290 .visibility = id_visibility, \
1294 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1295 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1296 * (1 <= crm < 8, 0 <= Op2 < 8).
1298 #define ID_UNALLOCATED(crm, op2) { \
1299 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1300 .access = access_raz_id_reg, \
1301 .get_user = get_raz_id_reg, \
1302 .set_user = set_raz_id_reg, \
1306 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1307 * For now, these are exposed just like unallocated ID regs: they appear
1308 * RAZ for the guest.
1310 #define ID_HIDDEN(name) { \
1311 SYS_DESC(SYS_##name), \
1312 .access = access_raz_id_reg, \
1313 .get_user = get_raz_id_reg, \
1314 .set_user = set_raz_id_reg, \
1318 * Architected system registers.
1319 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1321 * Debug handling: We do trap most, if not all debug related system
1322 * registers. The implementation is good enough to ensure that a guest
1323 * can use these with minimal performance degradation. The drawback is
1324 * that we don't implement any of the external debug, none of the
1325 * OSlock protocol. This should be revisited if we ever encounter a
1326 * more demanding guest...
1328 static const struct sys_reg_desc sys_reg_descs[] = {
1329 { SYS_DESC(SYS_DC_ISW), access_dcsw },
1330 { SYS_DESC(SYS_DC_CSW), access_dcsw },
1331 { SYS_DESC(SYS_DC_CISW), access_dcsw },
1333 DBG_BCR_BVR_WCR_WVR_EL1(0),
1334 DBG_BCR_BVR_WCR_WVR_EL1(1),
1335 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1336 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1337 DBG_BCR_BVR_WCR_WVR_EL1(2),
1338 DBG_BCR_BVR_WCR_WVR_EL1(3),
1339 DBG_BCR_BVR_WCR_WVR_EL1(4),
1340 DBG_BCR_BVR_WCR_WVR_EL1(5),
1341 DBG_BCR_BVR_WCR_WVR_EL1(6),
1342 DBG_BCR_BVR_WCR_WVR_EL1(7),
1343 DBG_BCR_BVR_WCR_WVR_EL1(8),
1344 DBG_BCR_BVR_WCR_WVR_EL1(9),
1345 DBG_BCR_BVR_WCR_WVR_EL1(10),
1346 DBG_BCR_BVR_WCR_WVR_EL1(11),
1347 DBG_BCR_BVR_WCR_WVR_EL1(12),
1348 DBG_BCR_BVR_WCR_WVR_EL1(13),
1349 DBG_BCR_BVR_WCR_WVR_EL1(14),
1350 DBG_BCR_BVR_WCR_WVR_EL1(15),
1352 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1353 { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1354 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1355 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1356 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1357 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1358 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1359 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1361 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1362 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1363 // DBGDTR[TR]X_EL0 share the same encoding
1364 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1366 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1368 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1371 * ID regs: all ID_SANITISED() entries here must have corresponding
1372 * entries in arm64_ftr_regs[].
1375 /* AArch64 mappings of the AArch32 ID registers */
1376 /* CRm=1 */
1377 ID_SANITISED(ID_PFR0_EL1),
1378 ID_SANITISED(ID_PFR1_EL1),
1379 ID_SANITISED(ID_DFR0_EL1),
1380 ID_HIDDEN(ID_AFR0_EL1),
1381 ID_SANITISED(ID_MMFR0_EL1),
1382 ID_SANITISED(ID_MMFR1_EL1),
1383 ID_SANITISED(ID_MMFR2_EL1),
1384 ID_SANITISED(ID_MMFR3_EL1),
1386 /* CRm=2 */
1387 ID_SANITISED(ID_ISAR0_EL1),
1388 ID_SANITISED(ID_ISAR1_EL1),
1389 ID_SANITISED(ID_ISAR2_EL1),
1390 ID_SANITISED(ID_ISAR3_EL1),
1391 ID_SANITISED(ID_ISAR4_EL1),
1392 ID_SANITISED(ID_ISAR5_EL1),
1393 ID_SANITISED(ID_MMFR4_EL1),
1394 ID_SANITISED(ID_ISAR6_EL1),
1396 /* CRm=3 */
1397 ID_SANITISED(MVFR0_EL1),
1398 ID_SANITISED(MVFR1_EL1),
1399 ID_SANITISED(MVFR2_EL1),
1400 ID_UNALLOCATED(3,3),
1401 ID_SANITISED(ID_PFR2_EL1),
1402 ID_HIDDEN(ID_DFR1_EL1),
1403 ID_SANITISED(ID_MMFR5_EL1),
1404 ID_UNALLOCATED(3,7),
1406 /* AArch64 ID registers */
1407 /* CRm=4 */
1408 { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1409 .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1410 ID_SANITISED(ID_AA64PFR1_EL1),
1411 ID_UNALLOCATED(4,2),
1412 ID_UNALLOCATED(4,3),
1413 ID_SANITISED(ID_AA64ZFR0_EL1),
1414 ID_UNALLOCATED(4,5),
1415 ID_UNALLOCATED(4,6),
1416 ID_UNALLOCATED(4,7),
1418 /* CRm=5 */
1419 ID_SANITISED(ID_AA64DFR0_EL1),
1420 ID_SANITISED(ID_AA64DFR1_EL1),
1421 ID_UNALLOCATED(5,2),
1422 ID_UNALLOCATED(5,3),
1423 ID_HIDDEN(ID_AA64AFR0_EL1),
1424 ID_HIDDEN(ID_AA64AFR1_EL1),
1425 ID_UNALLOCATED(5,6),
1426 ID_UNALLOCATED(5,7),
1428 /* CRm=6 */
1429 ID_SANITISED(ID_AA64ISAR0_EL1),
1430 ID_SANITISED(ID_AA64ISAR1_EL1),
1431 ID_UNALLOCATED(6,2),
1432 ID_UNALLOCATED(6,3),
1433 ID_UNALLOCATED(6,4),
1434 ID_UNALLOCATED(6,5),
1435 ID_UNALLOCATED(6,6),
1436 ID_UNALLOCATED(6,7),
1438 /* CRm=7 */
1439 ID_SANITISED(ID_AA64MMFR0_EL1),
1440 ID_SANITISED(ID_AA64MMFR1_EL1),
1441 ID_SANITISED(ID_AA64MMFR2_EL1),
1442 ID_UNALLOCATED(7,3),
1443 ID_UNALLOCATED(7,4),
1444 ID_UNALLOCATED(7,5),
1445 ID_UNALLOCATED(7,6),
1446 ID_UNALLOCATED(7,7),
1448 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1449 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1450 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1452 { SYS_DESC(SYS_RGSR_EL1), undef_access },
1453 { SYS_DESC(SYS_GCR_EL1), undef_access },
1455 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1456 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1457 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1458 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1460 PTRAUTH_KEY(APIA),
1461 PTRAUTH_KEY(APIB),
1462 PTRAUTH_KEY(APDA),
1463 PTRAUTH_KEY(APDB),
1464 PTRAUTH_KEY(APGA),
1466 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1467 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1468 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1470 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1471 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1472 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1473 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1474 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1475 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1476 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1477 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1479 { SYS_DESC(SYS_TFSR_EL1), undef_access },
1480 { SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1482 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1483 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1485 { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1486 { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1488 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1489 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1491 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1492 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1493 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1494 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1495 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1497 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1498 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1500 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1501 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1502 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1503 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1504 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1505 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1506 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1507 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1508 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1509 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1510 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1511 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1513 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1514 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1516 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1518 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1520 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1521 { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1522 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1523 { SYS_DESC(SYS_CTR_EL0), access_ctr },
1525 { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1526 { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1527 { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1528 { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1529 { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1530 { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1531 { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1532 { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1533 { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1534 { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1535 { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1537 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1538 * in 32bit mode. Here we choose to reset it as zero for consistency.
1540 { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1541 { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1543 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1544 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1546 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1548 { SYS_DESC(SYS_AMCR_EL0), undef_access },
1549 { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1550 { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1551 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1552 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1553 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1554 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1555 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1556 AMU_AMEVCNTR0_EL0(0),
1557 AMU_AMEVCNTR0_EL0(1),
1558 AMU_AMEVCNTR0_EL0(2),
1559 AMU_AMEVCNTR0_EL0(3),
1560 AMU_AMEVCNTR0_EL0(4),
1561 AMU_AMEVCNTR0_EL0(5),
1562 AMU_AMEVCNTR0_EL0(6),
1563 AMU_AMEVCNTR0_EL0(7),
1564 AMU_AMEVCNTR0_EL0(8),
1565 AMU_AMEVCNTR0_EL0(9),
1566 AMU_AMEVCNTR0_EL0(10),
1567 AMU_AMEVCNTR0_EL0(11),
1568 AMU_AMEVCNTR0_EL0(12),
1569 AMU_AMEVCNTR0_EL0(13),
1570 AMU_AMEVCNTR0_EL0(14),
1571 AMU_AMEVCNTR0_EL0(15),
1572 AMU_AMEVTYPER0_EL0(0),
1573 AMU_AMEVTYPER0_EL0(1),
1574 AMU_AMEVTYPER0_EL0(2),
1575 AMU_AMEVTYPER0_EL0(3),
1576 AMU_AMEVTYPER0_EL0(4),
1577 AMU_AMEVTYPER0_EL0(5),
1578 AMU_AMEVTYPER0_EL0(6),
1579 AMU_AMEVTYPER0_EL0(7),
1580 AMU_AMEVTYPER0_EL0(8),
1581 AMU_AMEVTYPER0_EL0(9),
1582 AMU_AMEVTYPER0_EL0(10),
1583 AMU_AMEVTYPER0_EL0(11),
1584 AMU_AMEVTYPER0_EL0(12),
1585 AMU_AMEVTYPER0_EL0(13),
1586 AMU_AMEVTYPER0_EL0(14),
1587 AMU_AMEVTYPER0_EL0(15),
1588 AMU_AMEVCNTR1_EL0(0),
1589 AMU_AMEVCNTR1_EL0(1),
1590 AMU_AMEVCNTR1_EL0(2),
1591 AMU_AMEVCNTR1_EL0(3),
1592 AMU_AMEVCNTR1_EL0(4),
1593 AMU_AMEVCNTR1_EL0(5),
1594 AMU_AMEVCNTR1_EL0(6),
1595 AMU_AMEVCNTR1_EL0(7),
1596 AMU_AMEVCNTR1_EL0(8),
1597 AMU_AMEVCNTR1_EL0(9),
1598 AMU_AMEVCNTR1_EL0(10),
1599 AMU_AMEVCNTR1_EL0(11),
1600 AMU_AMEVCNTR1_EL0(12),
1601 AMU_AMEVCNTR1_EL0(13),
1602 AMU_AMEVCNTR1_EL0(14),
1603 AMU_AMEVCNTR1_EL0(15),
1604 AMU_AMEVTYPER1_EL0(0),
1605 AMU_AMEVTYPER1_EL0(1),
1606 AMU_AMEVTYPER1_EL0(2),
1607 AMU_AMEVTYPER1_EL0(3),
1608 AMU_AMEVTYPER1_EL0(4),
1609 AMU_AMEVTYPER1_EL0(5),
1610 AMU_AMEVTYPER1_EL0(6),
1611 AMU_AMEVTYPER1_EL0(7),
1612 AMU_AMEVTYPER1_EL0(8),
1613 AMU_AMEVTYPER1_EL0(9),
1614 AMU_AMEVTYPER1_EL0(10),
1615 AMU_AMEVTYPER1_EL0(11),
1616 AMU_AMEVTYPER1_EL0(12),
1617 AMU_AMEVTYPER1_EL0(13),
1618 AMU_AMEVTYPER1_EL0(14),
1619 AMU_AMEVTYPER1_EL0(15),
1621 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1622 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1623 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1625 /* PMEVCNTRn_EL0 */
1626 PMU_PMEVCNTR_EL0(0),
1627 PMU_PMEVCNTR_EL0(1),
1628 PMU_PMEVCNTR_EL0(2),
1629 PMU_PMEVCNTR_EL0(3),
1630 PMU_PMEVCNTR_EL0(4),
1631 PMU_PMEVCNTR_EL0(5),
1632 PMU_PMEVCNTR_EL0(6),
1633 PMU_PMEVCNTR_EL0(7),
1634 PMU_PMEVCNTR_EL0(8),
1635 PMU_PMEVCNTR_EL0(9),
1636 PMU_PMEVCNTR_EL0(10),
1637 PMU_PMEVCNTR_EL0(11),
1638 PMU_PMEVCNTR_EL0(12),
1639 PMU_PMEVCNTR_EL0(13),
1640 PMU_PMEVCNTR_EL0(14),
1641 PMU_PMEVCNTR_EL0(15),
1642 PMU_PMEVCNTR_EL0(16),
1643 PMU_PMEVCNTR_EL0(17),
1644 PMU_PMEVCNTR_EL0(18),
1645 PMU_PMEVCNTR_EL0(19),
1646 PMU_PMEVCNTR_EL0(20),
1647 PMU_PMEVCNTR_EL0(21),
1648 PMU_PMEVCNTR_EL0(22),
1649 PMU_PMEVCNTR_EL0(23),
1650 PMU_PMEVCNTR_EL0(24),
1651 PMU_PMEVCNTR_EL0(25),
1652 PMU_PMEVCNTR_EL0(26),
1653 PMU_PMEVCNTR_EL0(27),
1654 PMU_PMEVCNTR_EL0(28),
1655 PMU_PMEVCNTR_EL0(29),
1656 PMU_PMEVCNTR_EL0(30),
1657 /* PMEVTYPERn_EL0 */
1658 PMU_PMEVTYPER_EL0(0),
1659 PMU_PMEVTYPER_EL0(1),
1660 PMU_PMEVTYPER_EL0(2),
1661 PMU_PMEVTYPER_EL0(3),
1662 PMU_PMEVTYPER_EL0(4),
1663 PMU_PMEVTYPER_EL0(5),
1664 PMU_PMEVTYPER_EL0(6),
1665 PMU_PMEVTYPER_EL0(7),
1666 PMU_PMEVTYPER_EL0(8),
1667 PMU_PMEVTYPER_EL0(9),
1668 PMU_PMEVTYPER_EL0(10),
1669 PMU_PMEVTYPER_EL0(11),
1670 PMU_PMEVTYPER_EL0(12),
1671 PMU_PMEVTYPER_EL0(13),
1672 PMU_PMEVTYPER_EL0(14),
1673 PMU_PMEVTYPER_EL0(15),
1674 PMU_PMEVTYPER_EL0(16),
1675 PMU_PMEVTYPER_EL0(17),
1676 PMU_PMEVTYPER_EL0(18),
1677 PMU_PMEVTYPER_EL0(19),
1678 PMU_PMEVTYPER_EL0(20),
1679 PMU_PMEVTYPER_EL0(21),
1680 PMU_PMEVTYPER_EL0(22),
1681 PMU_PMEVTYPER_EL0(23),
1682 PMU_PMEVTYPER_EL0(24),
1683 PMU_PMEVTYPER_EL0(25),
1684 PMU_PMEVTYPER_EL0(26),
1685 PMU_PMEVTYPER_EL0(27),
1686 PMU_PMEVTYPER_EL0(28),
1687 PMU_PMEVTYPER_EL0(29),
1688 PMU_PMEVTYPER_EL0(30),
1690 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1691 * in 32bit mode. Here we choose to reset it as zero for consistency.
1693 { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1695 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1696 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1697 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1700 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1701 struct sys_reg_params *p,
1702 const struct sys_reg_desc *r)
1704 if (p->is_write) {
1705 return ignore_write(vcpu, p);
1706 } else {
1707 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1708 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1709 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1711 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1712 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1713 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1714 | (6 << 16) | (el3 << 14) | (el3 << 12));
1715 return true;
1720 * AArch32 debug register mappings
1722 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1723 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1725 * None of the other registers share their location, so treat them as
1726 * if they were 64bit.
1728 #define DBG_BCR_BVR_WCR_WVR(n) \
1729 /* DBGBVRn */ \
1730 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1731 /* DBGBCRn */ \
1732 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1733 /* DBGWVRn */ \
1734 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1735 /* DBGWCRn */ \
1736 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1738 #define DBGBXVR(n) \
1739 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1742 * Trapped cp14 registers. We generally ignore most of the external
1743 * debug, on the principle that they don't really make sense to a
1744 * guest. Revisit this one day, would this principle change.
1746 static const struct sys_reg_desc cp14_regs[] = {
1747 /* DBGIDR */
1748 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1749 /* DBGDTRRXext */
1750 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1752 DBG_BCR_BVR_WCR_WVR(0),
1753 /* DBGDSCRint */
1754 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1755 DBG_BCR_BVR_WCR_WVR(1),
1756 /* DBGDCCINT */
1757 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1758 /* DBGDSCRext */
1759 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1760 DBG_BCR_BVR_WCR_WVR(2),
1761 /* DBGDTR[RT]Xint */
1762 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1763 /* DBGDTR[RT]Xext */
1764 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1765 DBG_BCR_BVR_WCR_WVR(3),
1766 DBG_BCR_BVR_WCR_WVR(4),
1767 DBG_BCR_BVR_WCR_WVR(5),
1768 /* DBGWFAR */
1769 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1770 /* DBGOSECCR */
1771 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1772 DBG_BCR_BVR_WCR_WVR(6),
1773 /* DBGVCR */
1774 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1775 DBG_BCR_BVR_WCR_WVR(7),
1776 DBG_BCR_BVR_WCR_WVR(8),
1777 DBG_BCR_BVR_WCR_WVR(9),
1778 DBG_BCR_BVR_WCR_WVR(10),
1779 DBG_BCR_BVR_WCR_WVR(11),
1780 DBG_BCR_BVR_WCR_WVR(12),
1781 DBG_BCR_BVR_WCR_WVR(13),
1782 DBG_BCR_BVR_WCR_WVR(14),
1783 DBG_BCR_BVR_WCR_WVR(15),
1785 /* DBGDRAR (32bit) */
1786 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1788 DBGBXVR(0),
1789 /* DBGOSLAR */
1790 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1791 DBGBXVR(1),
1792 /* DBGOSLSR */
1793 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1794 DBGBXVR(2),
1795 DBGBXVR(3),
1796 /* DBGOSDLR */
1797 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1798 DBGBXVR(4),
1799 /* DBGPRCR */
1800 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1801 DBGBXVR(5),
1802 DBGBXVR(6),
1803 DBGBXVR(7),
1804 DBGBXVR(8),
1805 DBGBXVR(9),
1806 DBGBXVR(10),
1807 DBGBXVR(11),
1808 DBGBXVR(12),
1809 DBGBXVR(13),
1810 DBGBXVR(14),
1811 DBGBXVR(15),
1813 /* DBGDSAR (32bit) */
1814 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1816 /* DBGDEVID2 */
1817 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1818 /* DBGDEVID1 */
1819 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1820 /* DBGDEVID */
1821 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1822 /* DBGCLAIMSET */
1823 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1824 /* DBGCLAIMCLR */
1825 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1826 /* DBGAUTHSTATUS */
1827 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1830 /* Trapped cp14 64bit registers */
1831 static const struct sys_reg_desc cp14_64_regs[] = {
1832 /* DBGDRAR (64bit) */
1833 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1835 /* DBGDSAR (64bit) */
1836 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1839 /* Macro to expand the PMEVCNTRn register */
1840 #define PMU_PMEVCNTR(n) \
1841 /* PMEVCNTRn */ \
1842 { Op1(0), CRn(0b1110), \
1843 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1844 access_pmu_evcntr }
1846 /* Macro to expand the PMEVTYPERn register */
1847 #define PMU_PMEVTYPER(n) \
1848 /* PMEVTYPERn */ \
1849 { Op1(0), CRn(0b1110), \
1850 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1851 access_pmu_evtyper }
1854 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1855 * depending on the way they are accessed (as a 32bit or a 64bit
1856 * register).
1858 static const struct sys_reg_desc cp15_regs[] = {
1859 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1860 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1861 /* ACTLR */
1862 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1863 /* ACTLR2 */
1864 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1865 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1866 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1867 /* TTBCR */
1868 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1869 /* TTBCR2 */
1870 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1871 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1872 /* DFSR */
1873 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1874 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1875 /* ADFSR */
1876 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1877 /* AIFSR */
1878 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
1879 /* DFAR */
1880 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
1881 /* IFAR */
1882 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
1885 * DC{C,I,CI}SW operations:
1887 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1888 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1889 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1891 /* PMU */
1892 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1893 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1894 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1895 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1896 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1897 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1898 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1899 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1900 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1901 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1902 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1903 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1904 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1905 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1906 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1908 /* PRRR/MAIR0 */
1909 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
1910 /* NMRR/MAIR1 */
1911 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
1912 /* AMAIR0 */
1913 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
1914 /* AMAIR1 */
1915 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
1917 /* ICC_SRE */
1918 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1920 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
1922 /* Arch Tmers */
1923 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1924 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1926 /* PMEVCNTRn */
1927 PMU_PMEVCNTR(0),
1928 PMU_PMEVCNTR(1),
1929 PMU_PMEVCNTR(2),
1930 PMU_PMEVCNTR(3),
1931 PMU_PMEVCNTR(4),
1932 PMU_PMEVCNTR(5),
1933 PMU_PMEVCNTR(6),
1934 PMU_PMEVCNTR(7),
1935 PMU_PMEVCNTR(8),
1936 PMU_PMEVCNTR(9),
1937 PMU_PMEVCNTR(10),
1938 PMU_PMEVCNTR(11),
1939 PMU_PMEVCNTR(12),
1940 PMU_PMEVCNTR(13),
1941 PMU_PMEVCNTR(14),
1942 PMU_PMEVCNTR(15),
1943 PMU_PMEVCNTR(16),
1944 PMU_PMEVCNTR(17),
1945 PMU_PMEVCNTR(18),
1946 PMU_PMEVCNTR(19),
1947 PMU_PMEVCNTR(20),
1948 PMU_PMEVCNTR(21),
1949 PMU_PMEVCNTR(22),
1950 PMU_PMEVCNTR(23),
1951 PMU_PMEVCNTR(24),
1952 PMU_PMEVCNTR(25),
1953 PMU_PMEVCNTR(26),
1954 PMU_PMEVCNTR(27),
1955 PMU_PMEVCNTR(28),
1956 PMU_PMEVCNTR(29),
1957 PMU_PMEVCNTR(30),
1958 /* PMEVTYPERn */
1959 PMU_PMEVTYPER(0),
1960 PMU_PMEVTYPER(1),
1961 PMU_PMEVTYPER(2),
1962 PMU_PMEVTYPER(3),
1963 PMU_PMEVTYPER(4),
1964 PMU_PMEVTYPER(5),
1965 PMU_PMEVTYPER(6),
1966 PMU_PMEVTYPER(7),
1967 PMU_PMEVTYPER(8),
1968 PMU_PMEVTYPER(9),
1969 PMU_PMEVTYPER(10),
1970 PMU_PMEVTYPER(11),
1971 PMU_PMEVTYPER(12),
1972 PMU_PMEVTYPER(13),
1973 PMU_PMEVTYPER(14),
1974 PMU_PMEVTYPER(15),
1975 PMU_PMEVTYPER(16),
1976 PMU_PMEVTYPER(17),
1977 PMU_PMEVTYPER(18),
1978 PMU_PMEVTYPER(19),
1979 PMU_PMEVTYPER(20),
1980 PMU_PMEVTYPER(21),
1981 PMU_PMEVTYPER(22),
1982 PMU_PMEVTYPER(23),
1983 PMU_PMEVTYPER(24),
1984 PMU_PMEVTYPER(25),
1985 PMU_PMEVTYPER(26),
1986 PMU_PMEVTYPER(27),
1987 PMU_PMEVTYPER(28),
1988 PMU_PMEVTYPER(29),
1989 PMU_PMEVTYPER(30),
1990 /* PMCCFILTR */
1991 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1993 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1994 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1995 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
1998 static const struct sys_reg_desc cp15_64_regs[] = {
1999 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2000 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2001 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2002 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2003 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2004 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2005 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
2008 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2009 bool is_32)
2011 unsigned int i;
2013 for (i = 0; i < n; i++) {
2014 if (!is_32 && table[i].reg && !table[i].reset) {
2015 kvm_err("sys_reg table %p entry %d has lacks reset\n",
2016 table, i);
2017 return 1;
2020 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2021 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2022 return 1;
2026 return 0;
2029 static int match_sys_reg(const void *key, const void *elt)
2031 const unsigned long pval = (unsigned long)key;
2032 const struct sys_reg_desc *r = elt;
2034 return pval - reg_to_encoding(r);
2037 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2038 const struct sys_reg_desc table[],
2039 unsigned int num)
2041 unsigned long pval = reg_to_encoding(params);
2043 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2046 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2048 kvm_inject_undefined(vcpu);
2049 return 1;
2052 static void perform_access(struct kvm_vcpu *vcpu,
2053 struct sys_reg_params *params,
2054 const struct sys_reg_desc *r)
2056 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2058 /* Check for regs disabled by runtime config */
2059 if (sysreg_hidden(vcpu, r)) {
2060 kvm_inject_undefined(vcpu);
2061 return;
2065 * Not having an accessor means that we have configured a trap
2066 * that we don't know how to handle. This certainly qualifies
2067 * as a gross bug that should be fixed right away.
2069 BUG_ON(!r->access);
2071 /* Skip instruction if instructed so */
2072 if (likely(r->access(vcpu, params, r)))
2073 kvm_incr_pc(vcpu);
2077 * emulate_cp -- tries to match a sys_reg access in a handling table, and
2078 * call the corresponding trap handler.
2080 * @params: pointer to the descriptor of the access
2081 * @table: array of trap descriptors
2082 * @num: size of the trap descriptor array
2084 * Return 0 if the access has been handled, and -1 if not.
2086 static int emulate_cp(struct kvm_vcpu *vcpu,
2087 struct sys_reg_params *params,
2088 const struct sys_reg_desc *table,
2089 size_t num)
2091 const struct sys_reg_desc *r;
2093 if (!table)
2094 return -1; /* Not handled */
2096 r = find_reg(params, table, num);
2098 if (r) {
2099 perform_access(vcpu, params, r);
2100 return 0;
2103 /* Not handled */
2104 return -1;
2107 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2108 struct sys_reg_params *params)
2110 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2111 int cp = -1;
2113 switch (esr_ec) {
2114 case ESR_ELx_EC_CP15_32:
2115 case ESR_ELx_EC_CP15_64:
2116 cp = 15;
2117 break;
2118 case ESR_ELx_EC_CP14_MR:
2119 case ESR_ELx_EC_CP14_64:
2120 cp = 14;
2121 break;
2122 default:
2123 WARN_ON(1);
2126 print_sys_reg_msg(params,
2127 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2128 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2129 kvm_inject_undefined(vcpu);
2133 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2134 * @vcpu: The VCPU pointer
2135 * @run: The kvm_run struct
2137 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2138 const struct sys_reg_desc *global,
2139 size_t nr_global)
2141 struct sys_reg_params params;
2142 u32 esr = kvm_vcpu_get_esr(vcpu);
2143 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2144 int Rt2 = (esr >> 10) & 0x1f;
2146 params.CRm = (esr >> 1) & 0xf;
2147 params.is_write = ((esr & 1) == 0);
2149 params.Op0 = 0;
2150 params.Op1 = (esr >> 16) & 0xf;
2151 params.Op2 = 0;
2152 params.CRn = 0;
2155 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2156 * backends between AArch32 and AArch64, we get away with it.
2158 if (params.is_write) {
2159 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2160 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2164 * If the table contains a handler, handle the
2165 * potential register operation in the case of a read and return
2166 * with success.
2168 if (!emulate_cp(vcpu, &params, global, nr_global)) {
2169 /* Split up the value between registers for the read side */
2170 if (!params.is_write) {
2171 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2172 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2175 return 1;
2178 unhandled_cp_access(vcpu, &params);
2179 return 1;
2183 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2184 * @vcpu: The VCPU pointer
2185 * @run: The kvm_run struct
2187 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2188 const struct sys_reg_desc *global,
2189 size_t nr_global)
2191 struct sys_reg_params params;
2192 u32 esr = kvm_vcpu_get_esr(vcpu);
2193 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2195 params.CRm = (esr >> 1) & 0xf;
2196 params.regval = vcpu_get_reg(vcpu, Rt);
2197 params.is_write = ((esr & 1) == 0);
2198 params.CRn = (esr >> 10) & 0xf;
2199 params.Op0 = 0;
2200 params.Op1 = (esr >> 14) & 0x7;
2201 params.Op2 = (esr >> 17) & 0x7;
2203 if (!emulate_cp(vcpu, &params, global, nr_global)) {
2204 if (!params.is_write)
2205 vcpu_set_reg(vcpu, Rt, params.regval);
2206 return 1;
2209 unhandled_cp_access(vcpu, &params);
2210 return 1;
2213 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2215 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2218 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2220 return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2223 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2225 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2228 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2230 return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2233 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2235 // See ARM DDI 0487E.a, section D12.3.2
2236 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2239 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2240 struct sys_reg_params *params)
2242 const struct sys_reg_desc *r;
2244 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2246 if (likely(r)) {
2247 perform_access(vcpu, params, r);
2248 } else if (is_imp_def_sys_reg(params)) {
2249 kvm_inject_undefined(vcpu);
2250 } else {
2251 print_sys_reg_msg(params,
2252 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2253 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2254 kvm_inject_undefined(vcpu);
2256 return 1;
2260 * kvm_reset_sys_regs - sets system registers to reset value
2261 * @vcpu: The VCPU pointer
2263 * This function finds the right table above and sets the registers on the
2264 * virtual CPU struct to their architecturally defined reset values.
2266 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2268 unsigned long i;
2270 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2271 if (sys_reg_descs[i].reset)
2272 sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2276 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2277 * @vcpu: The VCPU pointer
2279 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2281 struct sys_reg_params params;
2282 unsigned long esr = kvm_vcpu_get_esr(vcpu);
2283 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2284 int ret;
2286 trace_kvm_handle_sys_reg(esr);
2288 params.Op0 = (esr >> 20) & 3;
2289 params.Op1 = (esr >> 14) & 0x7;
2290 params.CRn = (esr >> 10) & 0xf;
2291 params.CRm = (esr >> 1) & 0xf;
2292 params.Op2 = (esr >> 17) & 0x7;
2293 params.regval = vcpu_get_reg(vcpu, Rt);
2294 params.is_write = !(esr & 1);
2296 ret = emulate_sys_reg(vcpu, &params);
2298 if (!params.is_write)
2299 vcpu_set_reg(vcpu, Rt, params.regval);
2300 return ret;
2303 /******************************************************************************
2304 * Userspace API
2305 *****************************************************************************/
2307 static bool index_to_params(u64 id, struct sys_reg_params *params)
2309 switch (id & KVM_REG_SIZE_MASK) {
2310 case KVM_REG_SIZE_U64:
2311 /* Any unused index bits means it's not valid. */
2312 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2313 | KVM_REG_ARM_COPROC_MASK
2314 | KVM_REG_ARM64_SYSREG_OP0_MASK
2315 | KVM_REG_ARM64_SYSREG_OP1_MASK
2316 | KVM_REG_ARM64_SYSREG_CRN_MASK
2317 | KVM_REG_ARM64_SYSREG_CRM_MASK
2318 | KVM_REG_ARM64_SYSREG_OP2_MASK))
2319 return false;
2320 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2321 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2322 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2323 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2324 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2325 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2326 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2327 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2328 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2329 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2330 return true;
2331 default:
2332 return false;
2336 const struct sys_reg_desc *find_reg_by_id(u64 id,
2337 struct sys_reg_params *params,
2338 const struct sys_reg_desc table[],
2339 unsigned int num)
2341 if (!index_to_params(id, params))
2342 return NULL;
2344 return find_reg(params, table, num);
2347 /* Decode an index value, and find the sys_reg_desc entry. */
2348 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2349 u64 id)
2351 const struct sys_reg_desc *r;
2352 struct sys_reg_params params;
2354 /* We only do sys_reg for now. */
2355 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2356 return NULL;
2358 if (!index_to_params(id, &params))
2359 return NULL;
2361 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2363 /* Not saved in the sys_reg array and not otherwise accessible? */
2364 if (r && !(r->reg || r->get_user))
2365 r = NULL;
2367 return r;
2371 * These are the invariant sys_reg registers: we let the guest see the
2372 * host versions of these, so they're part of the guest state.
2374 * A future CPU may provide a mechanism to present different values to
2375 * the guest, or a future kvm may trap them.
2378 #define FUNCTION_INVARIANT(reg) \
2379 static void get_##reg(struct kvm_vcpu *v, \
2380 const struct sys_reg_desc *r) \
2382 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
2385 FUNCTION_INVARIANT(midr_el1)
2386 FUNCTION_INVARIANT(revidr_el1)
2387 FUNCTION_INVARIANT(clidr_el1)
2388 FUNCTION_INVARIANT(aidr_el1)
2390 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2392 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2395 /* ->val is filled in by kvm_sys_reg_table_init() */
2396 static struct sys_reg_desc invariant_sys_regs[] = {
2397 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2398 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2399 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2400 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2401 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2404 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2406 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2407 return -EFAULT;
2408 return 0;
2411 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2413 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2414 return -EFAULT;
2415 return 0;
2418 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2420 struct sys_reg_params params;
2421 const struct sys_reg_desc *r;
2423 r = find_reg_by_id(id, &params, invariant_sys_regs,
2424 ARRAY_SIZE(invariant_sys_regs));
2425 if (!r)
2426 return -ENOENT;
2428 return reg_to_user(uaddr, &r->val, id);
2431 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2433 struct sys_reg_params params;
2434 const struct sys_reg_desc *r;
2435 int err;
2436 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2438 r = find_reg_by_id(id, &params, invariant_sys_regs,
2439 ARRAY_SIZE(invariant_sys_regs));
2440 if (!r)
2441 return -ENOENT;
2443 err = reg_from_user(&val, uaddr, id);
2444 if (err)
2445 return err;
2447 /* This is what we mean by invariant: you can't change it. */
2448 if (r->val != val)
2449 return -EINVAL;
2451 return 0;
2454 static bool is_valid_cache(u32 val)
2456 u32 level, ctype;
2458 if (val >= CSSELR_MAX)
2459 return false;
2461 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2462 level = (val >> 1);
2463 ctype = (cache_levels >> (level * 3)) & 7;
2465 switch (ctype) {
2466 case 0: /* No cache */
2467 return false;
2468 case 1: /* Instruction cache only */
2469 return (val & 1);
2470 case 2: /* Data cache only */
2471 case 4: /* Unified cache */
2472 return !(val & 1);
2473 case 3: /* Separate instruction and data caches */
2474 return true;
2475 default: /* Reserved: we can't know instruction or data. */
2476 return false;
2480 static int demux_c15_get(u64 id, void __user *uaddr)
2482 u32 val;
2483 u32 __user *uval = uaddr;
2485 /* Fail if we have unknown bits set. */
2486 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2487 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2488 return -ENOENT;
2490 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2491 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2492 if (KVM_REG_SIZE(id) != 4)
2493 return -ENOENT;
2494 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2495 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2496 if (!is_valid_cache(val))
2497 return -ENOENT;
2499 return put_user(get_ccsidr(val), uval);
2500 default:
2501 return -ENOENT;
2505 static int demux_c15_set(u64 id, void __user *uaddr)
2507 u32 val, newval;
2508 u32 __user *uval = uaddr;
2510 /* Fail if we have unknown bits set. */
2511 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2512 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2513 return -ENOENT;
2515 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2516 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2517 if (KVM_REG_SIZE(id) != 4)
2518 return -ENOENT;
2519 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2520 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2521 if (!is_valid_cache(val))
2522 return -ENOENT;
2524 if (get_user(newval, uval))
2525 return -EFAULT;
2527 /* This is also invariant: you can't change it. */
2528 if (newval != get_ccsidr(val))
2529 return -EINVAL;
2530 return 0;
2531 default:
2532 return -ENOENT;
2536 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2538 const struct sys_reg_desc *r;
2539 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2541 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2542 return demux_c15_get(reg->id, uaddr);
2544 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2545 return -ENOENT;
2547 r = index_to_sys_reg_desc(vcpu, reg->id);
2548 if (!r)
2549 return get_invariant_sys_reg(reg->id, uaddr);
2551 /* Check for regs disabled by runtime config */
2552 if (sysreg_hidden(vcpu, r))
2553 return -ENOENT;
2555 if (r->get_user)
2556 return (r->get_user)(vcpu, r, reg, uaddr);
2558 return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2561 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2563 const struct sys_reg_desc *r;
2564 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2566 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2567 return demux_c15_set(reg->id, uaddr);
2569 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2570 return -ENOENT;
2572 r = index_to_sys_reg_desc(vcpu, reg->id);
2573 if (!r)
2574 return set_invariant_sys_reg(reg->id, uaddr);
2576 /* Check for regs disabled by runtime config */
2577 if (sysreg_hidden(vcpu, r))
2578 return -ENOENT;
2580 if (r->set_user)
2581 return (r->set_user)(vcpu, r, reg, uaddr);
2583 return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2586 static unsigned int num_demux_regs(void)
2588 unsigned int i, count = 0;
2590 for (i = 0; i < CSSELR_MAX; i++)
2591 if (is_valid_cache(i))
2592 count++;
2594 return count;
2597 static int write_demux_regids(u64 __user *uindices)
2599 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2600 unsigned int i;
2602 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2603 for (i = 0; i < CSSELR_MAX; i++) {
2604 if (!is_valid_cache(i))
2605 continue;
2606 if (put_user(val | i, uindices))
2607 return -EFAULT;
2608 uindices++;
2610 return 0;
2613 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2615 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2616 KVM_REG_ARM64_SYSREG |
2617 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2618 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2619 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2620 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2621 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2624 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2626 if (!*uind)
2627 return true;
2629 if (put_user(sys_reg_to_index(reg), *uind))
2630 return false;
2632 (*uind)++;
2633 return true;
2636 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2637 const struct sys_reg_desc *rd,
2638 u64 __user **uind,
2639 unsigned int *total)
2642 * Ignore registers we trap but don't save,
2643 * and for which no custom user accessor is provided.
2645 if (!(rd->reg || rd->get_user))
2646 return 0;
2648 if (sysreg_hidden(vcpu, rd))
2649 return 0;
2651 if (!copy_reg_to_user(rd, uind))
2652 return -EFAULT;
2654 (*total)++;
2655 return 0;
2658 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2659 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2661 const struct sys_reg_desc *i2, *end2;
2662 unsigned int total = 0;
2663 int err;
2665 i2 = sys_reg_descs;
2666 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2668 while (i2 != end2) {
2669 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2670 if (err)
2671 return err;
2673 return total;
2676 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2678 return ARRAY_SIZE(invariant_sys_regs)
2679 + num_demux_regs()
2680 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2683 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2685 unsigned int i;
2686 int err;
2688 /* Then give them all the invariant registers' indices. */
2689 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2690 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2691 return -EFAULT;
2692 uindices++;
2695 err = walk_sys_regs(vcpu, uindices);
2696 if (err < 0)
2697 return err;
2698 uindices += err;
2700 return write_demux_regids(uindices);
2703 void kvm_sys_reg_table_init(void)
2705 unsigned int i;
2706 struct sys_reg_desc clidr;
2708 /* Make sure tables are unique and in order. */
2709 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2710 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2711 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2712 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2713 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2714 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2716 /* We abuse the reset function to overwrite the table itself. */
2717 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2718 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2721 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2723 * If software reads the Cache Type fields from Ctype1
2724 * upwards, once it has seen a value of 0b000, no caches
2725 * exist at further-out levels of the hierarchy. So, for
2726 * example, if Ctype3 is the first Cache Type field with a
2727 * value of 0b000, the values of Ctype4 to Ctype7 must be
2728 * ignored.
2730 get_clidr_el1(NULL, &clidr); /* Ugly... */
2731 cache_levels = clidr.val;
2732 for (i = 0; i < 7; i++)
2733 if (((cache_levels >> (i*3)) & 7) == 0)
2734 break;
2735 /* Clear all higher bits. */
2736 cache_levels &= (1 << (i*3))-1;