1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_emulate.h>
24 #include <asm/kvm_hyp.h>
25 #include <asm/kvm_mmu.h>
26 #include <asm/perf_event.h>
27 #include <asm/sysreg.h>
29 #include <trace/events/kvm.h>
36 * All of this file is extremely similar to the ARM coproc.c, but the
37 * types are different. My gut feeling is that it should be pretty
38 * easy to merge, but that would be an ABI breakage -- again. VFP
39 * would also need to be abstracted.
41 * For AArch32, we only take care of what is being trapped. Anything
42 * that has to do with init and userspace access has to go via the
46 static bool read_from_write_only(struct kvm_vcpu
*vcpu
,
47 struct sys_reg_params
*params
,
48 const struct sys_reg_desc
*r
)
50 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
51 print_sys_reg_instr(params
);
52 kvm_inject_undefined(vcpu
);
56 static bool write_to_read_only(struct kvm_vcpu
*vcpu
,
57 struct sys_reg_params
*params
,
58 const struct sys_reg_desc
*r
)
60 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
61 print_sys_reg_instr(params
);
62 kvm_inject_undefined(vcpu
);
66 u64
vcpu_read_sys_reg(const struct kvm_vcpu
*vcpu
, int reg
)
68 u64 val
= 0x8badf00d8badf00d;
70 if (vcpu
->arch
.sysregs_loaded_on_cpu
&&
71 __vcpu_read_sys_reg_from_cpu(reg
, &val
))
74 return __vcpu_sys_reg(vcpu
, reg
);
77 void vcpu_write_sys_reg(struct kvm_vcpu
*vcpu
, u64 val
, int reg
)
79 if (vcpu
->arch
.sysregs_loaded_on_cpu
&&
80 __vcpu_write_sys_reg_to_cpu(val
, reg
))
83 __vcpu_sys_reg(vcpu
, reg
) = val
;
86 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
87 static u32 cache_levels
;
89 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
92 /* Which cache CCSIDR represents depends on CSSELR value. */
93 static u32
get_ccsidr(u32 csselr
)
97 /* Make sure noone else changes CSSELR during this! */
99 write_sysreg(csselr
, csselr_el1
);
101 ccsidr
= read_sysreg(ccsidr_el1
);
108 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
110 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
111 struct sys_reg_params
*p
,
112 const struct sys_reg_desc
*r
)
115 return read_from_write_only(vcpu
, p
, r
);
118 * Only track S/W ops if we don't have FWB. It still indicates
119 * that the guest is a bit broken (S/W operations should only
120 * be done by firmware, knowing that there is only a single
121 * CPU left in the system, and certainly not from non-secure
124 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB
))
125 kvm_set_way_flush(vcpu
);
130 static void get_access_mask(const struct sys_reg_desc
*r
, u64
*mask
, u64
*shift
)
132 switch (r
->aarch32_map
) {
134 *mask
= GENMASK_ULL(31, 0);
138 *mask
= GENMASK_ULL(63, 32);
142 *mask
= GENMASK_ULL(63, 0);
149 * Generic accessor for VM registers. Only called as long as HCR_TVM
150 * is set. If the guest enables the MMU, we stop trapping the VM
151 * sys_regs and leave it in complete control of the caches.
153 static bool access_vm_reg(struct kvm_vcpu
*vcpu
,
154 struct sys_reg_params
*p
,
155 const struct sys_reg_desc
*r
)
157 bool was_enabled
= vcpu_has_cache_enabled(vcpu
);
158 u64 val
, mask
, shift
;
160 BUG_ON(!p
->is_write
);
162 get_access_mask(r
, &mask
, &shift
);
165 val
= vcpu_read_sys_reg(vcpu
, r
->reg
);
171 val
|= (p
->regval
& (mask
>> shift
)) << shift
;
172 vcpu_write_sys_reg(vcpu
, val
, r
->reg
);
174 kvm_toggle_cache(vcpu
, was_enabled
);
178 static bool access_actlr(struct kvm_vcpu
*vcpu
,
179 struct sys_reg_params
*p
,
180 const struct sys_reg_desc
*r
)
185 return ignore_write(vcpu
, p
);
187 get_access_mask(r
, &mask
, &shift
);
188 p
->regval
= (vcpu_read_sys_reg(vcpu
, r
->reg
) & mask
) >> shift
;
194 * Trap handler for the GICv3 SGI generation system register.
195 * Forward the request to the VGIC emulation.
196 * The cp15_64 code makes sure this automatically works
197 * for both AArch64 and AArch32 accesses.
199 static bool access_gic_sgi(struct kvm_vcpu
*vcpu
,
200 struct sys_reg_params
*p
,
201 const struct sys_reg_desc
*r
)
206 return read_from_write_only(vcpu
, p
, r
);
209 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
210 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
211 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
212 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
215 if (p
->Op0
== 0) { /* AArch32 */
217 default: /* Keep GCC quiet */
218 case 0: /* ICC_SGI1R */
221 case 1: /* ICC_ASGI1R */
222 case 2: /* ICC_SGI0R */
226 } else { /* AArch64 */
228 default: /* Keep GCC quiet */
229 case 5: /* ICC_SGI1R_EL1 */
232 case 6: /* ICC_ASGI1R_EL1 */
233 case 7: /* ICC_SGI0R_EL1 */
239 vgic_v3_dispatch_sgi(vcpu
, p
->regval
, g1
);
244 static bool access_gic_sre(struct kvm_vcpu
*vcpu
,
245 struct sys_reg_params
*p
,
246 const struct sys_reg_desc
*r
)
249 return ignore_write(vcpu
, p
);
251 p
->regval
= vcpu
->arch
.vgic_cpu
.vgic_v3
.vgic_sre
;
255 static bool trap_raz_wi(struct kvm_vcpu
*vcpu
,
256 struct sys_reg_params
*p
,
257 const struct sys_reg_desc
*r
)
260 return ignore_write(vcpu
, p
);
262 return read_zero(vcpu
, p
);
266 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
267 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
268 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
269 * treat it separately.
271 static bool trap_loregion(struct kvm_vcpu
*vcpu
,
272 struct sys_reg_params
*p
,
273 const struct sys_reg_desc
*r
)
275 u64 val
= read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1
);
276 u32 sr
= sys_reg((u32
)r
->Op0
, (u32
)r
->Op1
,
277 (u32
)r
->CRn
, (u32
)r
->CRm
, (u32
)r
->Op2
);
279 if (!(val
& (0xfUL
<< ID_AA64MMFR1_LOR_SHIFT
))) {
280 kvm_inject_undefined(vcpu
);
284 if (p
->is_write
&& sr
== SYS_LORID_EL1
)
285 return write_to_read_only(vcpu
, p
, r
);
287 return trap_raz_wi(vcpu
, p
, r
);
290 static bool trap_oslsr_el1(struct kvm_vcpu
*vcpu
,
291 struct sys_reg_params
*p
,
292 const struct sys_reg_desc
*r
)
295 return ignore_write(vcpu
, p
);
297 p
->regval
= (1 << 3);
302 static bool trap_dbgauthstatus_el1(struct kvm_vcpu
*vcpu
,
303 struct sys_reg_params
*p
,
304 const struct sys_reg_desc
*r
)
307 return ignore_write(vcpu
, p
);
309 p
->regval
= read_sysreg(dbgauthstatus_el1
);
315 * We want to avoid world-switching all the DBG registers all the
318 * - If we've touched any debug register, it is likely that we're
319 * going to touch more of them. It then makes sense to disable the
320 * traps and start doing the save/restore dance
321 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
322 * then mandatory to save/restore the registers, as the guest
325 * For this, we use a DIRTY bit, indicating the guest has modified the
326 * debug registers, used as follow:
329 * - If the dirty bit is set (because we're coming back from trapping),
330 * disable the traps, save host registers, restore guest registers.
331 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
332 * set the dirty bit, disable the traps, save host registers,
333 * restore guest registers.
334 * - Otherwise, enable the traps
337 * - If the dirty bit is set, save guest registers, restore host
338 * registers and clear the dirty bit. This ensure that the host can
339 * now use the debug registers.
341 static bool trap_debug_regs(struct kvm_vcpu
*vcpu
,
342 struct sys_reg_params
*p
,
343 const struct sys_reg_desc
*r
)
346 vcpu_write_sys_reg(vcpu
, p
->regval
, r
->reg
);
347 vcpu
->arch
.flags
|= KVM_ARM64_DEBUG_DIRTY
;
349 p
->regval
= vcpu_read_sys_reg(vcpu
, r
->reg
);
352 trace_trap_reg(__func__
, r
->reg
, p
->is_write
, p
->regval
);
358 * reg_to_dbg/dbg_to_reg
360 * A 32 bit write to a debug register leave top bits alone
361 * A 32 bit read from a debug register only returns the bottom bits
363 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
364 * hyp.S code switches between host and guest values in future.
366 static void reg_to_dbg(struct kvm_vcpu
*vcpu
,
367 struct sys_reg_params
*p
,
368 const struct sys_reg_desc
*rd
,
371 u64 mask
, shift
, val
;
373 get_access_mask(rd
, &mask
, &shift
);
377 val
|= (p
->regval
& (mask
>> shift
)) << shift
;
380 vcpu
->arch
.flags
|= KVM_ARM64_DEBUG_DIRTY
;
383 static void dbg_to_reg(struct kvm_vcpu
*vcpu
,
384 struct sys_reg_params
*p
,
385 const struct sys_reg_desc
*rd
,
390 get_access_mask(rd
, &mask
, &shift
);
391 p
->regval
= (*dbg_reg
& mask
) >> shift
;
394 static bool trap_bvr(struct kvm_vcpu
*vcpu
,
395 struct sys_reg_params
*p
,
396 const struct sys_reg_desc
*rd
)
398 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
401 reg_to_dbg(vcpu
, p
, rd
, dbg_reg
);
403 dbg_to_reg(vcpu
, p
, rd
, dbg_reg
);
405 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
410 static int set_bvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
411 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
413 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
415 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
420 static int get_bvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
421 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
423 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
];
425 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
430 static void reset_bvr(struct kvm_vcpu
*vcpu
,
431 const struct sys_reg_desc
*rd
)
433 vcpu
->arch
.vcpu_debug_state
.dbg_bvr
[rd
->reg
] = rd
->val
;
436 static bool trap_bcr(struct kvm_vcpu
*vcpu
,
437 struct sys_reg_params
*p
,
438 const struct sys_reg_desc
*rd
)
440 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
443 reg_to_dbg(vcpu
, p
, rd
, dbg_reg
);
445 dbg_to_reg(vcpu
, p
, rd
, dbg_reg
);
447 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
452 static int set_bcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
453 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
455 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
457 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
463 static int get_bcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
464 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
466 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
];
468 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
473 static void reset_bcr(struct kvm_vcpu
*vcpu
,
474 const struct sys_reg_desc
*rd
)
476 vcpu
->arch
.vcpu_debug_state
.dbg_bcr
[rd
->reg
] = rd
->val
;
479 static bool trap_wvr(struct kvm_vcpu
*vcpu
,
480 struct sys_reg_params
*p
,
481 const struct sys_reg_desc
*rd
)
483 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
486 reg_to_dbg(vcpu
, p
, rd
, dbg_reg
);
488 dbg_to_reg(vcpu
, p
, rd
, dbg_reg
);
490 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
,
491 vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
]);
496 static int set_wvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
497 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
499 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
501 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
506 static int get_wvr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
507 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
509 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
];
511 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
516 static void reset_wvr(struct kvm_vcpu
*vcpu
,
517 const struct sys_reg_desc
*rd
)
519 vcpu
->arch
.vcpu_debug_state
.dbg_wvr
[rd
->reg
] = rd
->val
;
522 static bool trap_wcr(struct kvm_vcpu
*vcpu
,
523 struct sys_reg_params
*p
,
524 const struct sys_reg_desc
*rd
)
526 u64
*dbg_reg
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
529 reg_to_dbg(vcpu
, p
, rd
, dbg_reg
);
531 dbg_to_reg(vcpu
, p
, rd
, dbg_reg
);
533 trace_trap_reg(__func__
, rd
->reg
, p
->is_write
, *dbg_reg
);
538 static int set_wcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
539 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
541 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
543 if (copy_from_user(r
, uaddr
, KVM_REG_SIZE(reg
->id
)) != 0)
548 static int get_wcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
549 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
551 __u64
*r
= &vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
];
553 if (copy_to_user(uaddr
, r
, KVM_REG_SIZE(reg
->id
)) != 0)
558 static void reset_wcr(struct kvm_vcpu
*vcpu
,
559 const struct sys_reg_desc
*rd
)
561 vcpu
->arch
.vcpu_debug_state
.dbg_wcr
[rd
->reg
] = rd
->val
;
564 static void reset_amair_el1(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
566 u64 amair
= read_sysreg(amair_el1
);
567 vcpu_write_sys_reg(vcpu
, amair
, AMAIR_EL1
);
570 static void reset_actlr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
572 u64 actlr
= read_sysreg(actlr_el1
);
573 vcpu_write_sys_reg(vcpu
, actlr
, ACTLR_EL1
);
576 static void reset_mpidr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
581 * Map the vcpu_id into the first three affinity level fields of
582 * the MPIDR. We limit the number of VCPUs in level 0 due to a
583 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
584 * of the GICv3 to be able to address each CPU directly when
587 mpidr
= (vcpu
->vcpu_id
& 0x0f) << MPIDR_LEVEL_SHIFT(0);
588 mpidr
|= ((vcpu
->vcpu_id
>> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
589 mpidr
|= ((vcpu
->vcpu_id
>> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
590 vcpu_write_sys_reg(vcpu
, (1ULL << 31) | mpidr
, MPIDR_EL1
);
593 static void reset_pmcr(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*r
)
597 pmcr
= read_sysreg(pmcr_el0
);
599 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
600 * except PMCR.E resetting to zero.
602 val
= ((pmcr
& ~ARMV8_PMU_PMCR_MASK
)
603 | (ARMV8_PMU_PMCR_MASK
& 0xdecafbad)) & (~ARMV8_PMU_PMCR_E
);
604 if (!system_supports_32bit_el0())
605 val
|= ARMV8_PMU_PMCR_LC
;
606 __vcpu_sys_reg(vcpu
, r
->reg
) = val
;
609 static bool check_pmu_access_disabled(struct kvm_vcpu
*vcpu
, u64 flags
)
611 u64 reg
= __vcpu_sys_reg(vcpu
, PMUSERENR_EL0
);
612 bool enabled
= kvm_vcpu_has_pmu(vcpu
);
614 enabled
&= (reg
& flags
) || vcpu_mode_priv(vcpu
);
616 kvm_inject_undefined(vcpu
);
621 static bool pmu_access_el0_disabled(struct kvm_vcpu
*vcpu
)
623 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_EN
);
626 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu
*vcpu
)
628 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_SW
| ARMV8_PMU_USERENR_EN
);
631 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu
*vcpu
)
633 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_CR
| ARMV8_PMU_USERENR_EN
);
636 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu
*vcpu
)
638 return check_pmu_access_disabled(vcpu
, ARMV8_PMU_USERENR_ER
| ARMV8_PMU_USERENR_EN
);
641 static bool access_pmcr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
642 const struct sys_reg_desc
*r
)
646 if (pmu_access_el0_disabled(vcpu
))
650 /* Only update writeable bits of PMCR */
651 val
= __vcpu_sys_reg(vcpu
, PMCR_EL0
);
652 val
&= ~ARMV8_PMU_PMCR_MASK
;
653 val
|= p
->regval
& ARMV8_PMU_PMCR_MASK
;
654 if (!system_supports_32bit_el0())
655 val
|= ARMV8_PMU_PMCR_LC
;
656 __vcpu_sys_reg(vcpu
, PMCR_EL0
) = val
;
657 kvm_pmu_handle_pmcr(vcpu
, val
);
658 kvm_vcpu_pmu_restore_guest(vcpu
);
660 /* PMCR.P & PMCR.C are RAZ */
661 val
= __vcpu_sys_reg(vcpu
, PMCR_EL0
)
662 & ~(ARMV8_PMU_PMCR_P
| ARMV8_PMU_PMCR_C
);
669 static bool access_pmselr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
670 const struct sys_reg_desc
*r
)
672 if (pmu_access_event_counter_el0_disabled(vcpu
))
676 __vcpu_sys_reg(vcpu
, PMSELR_EL0
) = p
->regval
;
678 /* return PMSELR.SEL field */
679 p
->regval
= __vcpu_sys_reg(vcpu
, PMSELR_EL0
)
680 & ARMV8_PMU_COUNTER_MASK
;
685 static bool access_pmceid(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
686 const struct sys_reg_desc
*r
)
692 if (pmu_access_el0_disabled(vcpu
))
695 pmceid
= kvm_pmu_get_pmceid(vcpu
, (p
->Op2
& 1));
702 static bool pmu_counter_idx_valid(struct kvm_vcpu
*vcpu
, u64 idx
)
706 pmcr
= __vcpu_sys_reg(vcpu
, PMCR_EL0
);
707 val
= (pmcr
>> ARMV8_PMU_PMCR_N_SHIFT
) & ARMV8_PMU_PMCR_N_MASK
;
708 if (idx
>= val
&& idx
!= ARMV8_PMU_CYCLE_IDX
) {
709 kvm_inject_undefined(vcpu
);
716 static bool access_pmu_evcntr(struct kvm_vcpu
*vcpu
,
717 struct sys_reg_params
*p
,
718 const struct sys_reg_desc
*r
)
722 if (r
->CRn
== 9 && r
->CRm
== 13) {
725 if (pmu_access_event_counter_el0_disabled(vcpu
))
728 idx
= __vcpu_sys_reg(vcpu
, PMSELR_EL0
)
729 & ARMV8_PMU_COUNTER_MASK
;
730 } else if (r
->Op2
== 0) {
732 if (pmu_access_cycle_counter_el0_disabled(vcpu
))
735 idx
= ARMV8_PMU_CYCLE_IDX
;
737 } else if (r
->CRn
== 0 && r
->CRm
== 9) {
739 if (pmu_access_event_counter_el0_disabled(vcpu
))
742 idx
= ARMV8_PMU_CYCLE_IDX
;
743 } else if (r
->CRn
== 14 && (r
->CRm
& 12) == 8) {
745 if (pmu_access_event_counter_el0_disabled(vcpu
))
748 idx
= ((r
->CRm
& 3) << 3) | (r
->Op2
& 7);
751 /* Catch any decoding mistake */
752 WARN_ON(idx
== ~0UL);
754 if (!pmu_counter_idx_valid(vcpu
, idx
))
758 if (pmu_access_el0_disabled(vcpu
))
761 kvm_pmu_set_counter_value(vcpu
, idx
, p
->regval
);
763 p
->regval
= kvm_pmu_get_counter_value(vcpu
, idx
);
769 static bool access_pmu_evtyper(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
770 const struct sys_reg_desc
*r
)
774 if (pmu_access_el0_disabled(vcpu
))
777 if (r
->CRn
== 9 && r
->CRm
== 13 && r
->Op2
== 1) {
779 idx
= __vcpu_sys_reg(vcpu
, PMSELR_EL0
) & ARMV8_PMU_COUNTER_MASK
;
780 reg
= PMEVTYPER0_EL0
+ idx
;
781 } else if (r
->CRn
== 14 && (r
->CRm
& 12) == 12) {
782 idx
= ((r
->CRm
& 3) << 3) | (r
->Op2
& 7);
783 if (idx
== ARMV8_PMU_CYCLE_IDX
)
787 reg
= PMEVTYPER0_EL0
+ idx
;
792 if (!pmu_counter_idx_valid(vcpu
, idx
))
796 kvm_pmu_set_counter_event_type(vcpu
, p
->regval
, idx
);
797 __vcpu_sys_reg(vcpu
, reg
) = p
->regval
& ARMV8_PMU_EVTYPE_MASK
;
798 kvm_vcpu_pmu_restore_guest(vcpu
);
800 p
->regval
= __vcpu_sys_reg(vcpu
, reg
) & ARMV8_PMU_EVTYPE_MASK
;
806 static bool access_pmcnten(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
807 const struct sys_reg_desc
*r
)
811 if (pmu_access_el0_disabled(vcpu
))
814 mask
= kvm_pmu_valid_counter_mask(vcpu
);
816 val
= p
->regval
& mask
;
818 /* accessing PMCNTENSET_EL0 */
819 __vcpu_sys_reg(vcpu
, PMCNTENSET_EL0
) |= val
;
820 kvm_pmu_enable_counter_mask(vcpu
, val
);
821 kvm_vcpu_pmu_restore_guest(vcpu
);
823 /* accessing PMCNTENCLR_EL0 */
824 __vcpu_sys_reg(vcpu
, PMCNTENSET_EL0
) &= ~val
;
825 kvm_pmu_disable_counter_mask(vcpu
, val
);
828 p
->regval
= __vcpu_sys_reg(vcpu
, PMCNTENSET_EL0
) & mask
;
834 static bool access_pminten(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
835 const struct sys_reg_desc
*r
)
837 u64 mask
= kvm_pmu_valid_counter_mask(vcpu
);
839 if (check_pmu_access_disabled(vcpu
, 0))
843 u64 val
= p
->regval
& mask
;
846 /* accessing PMINTENSET_EL1 */
847 __vcpu_sys_reg(vcpu
, PMINTENSET_EL1
) |= val
;
849 /* accessing PMINTENCLR_EL1 */
850 __vcpu_sys_reg(vcpu
, PMINTENSET_EL1
) &= ~val
;
852 p
->regval
= __vcpu_sys_reg(vcpu
, PMINTENSET_EL1
) & mask
;
858 static bool access_pmovs(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
859 const struct sys_reg_desc
*r
)
861 u64 mask
= kvm_pmu_valid_counter_mask(vcpu
);
863 if (pmu_access_el0_disabled(vcpu
))
868 /* accessing PMOVSSET_EL0 */
869 __vcpu_sys_reg(vcpu
, PMOVSSET_EL0
) |= (p
->regval
& mask
);
871 /* accessing PMOVSCLR_EL0 */
872 __vcpu_sys_reg(vcpu
, PMOVSSET_EL0
) &= ~(p
->regval
& mask
);
874 p
->regval
= __vcpu_sys_reg(vcpu
, PMOVSSET_EL0
) & mask
;
880 static bool access_pmswinc(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
881 const struct sys_reg_desc
*r
)
886 return read_from_write_only(vcpu
, p
, r
);
888 if (pmu_write_swinc_el0_disabled(vcpu
))
891 mask
= kvm_pmu_valid_counter_mask(vcpu
);
892 kvm_pmu_software_increment(vcpu
, p
->regval
& mask
);
896 static bool access_pmuserenr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
897 const struct sys_reg_desc
*r
)
899 if (!kvm_vcpu_has_pmu(vcpu
)) {
900 kvm_inject_undefined(vcpu
);
905 if (!vcpu_mode_priv(vcpu
)) {
906 kvm_inject_undefined(vcpu
);
910 __vcpu_sys_reg(vcpu
, PMUSERENR_EL0
) =
911 p
->regval
& ARMV8_PMU_USERENR_MASK
;
913 p
->regval
= __vcpu_sys_reg(vcpu
, PMUSERENR_EL0
)
914 & ARMV8_PMU_USERENR_MASK
;
920 #define reg_to_encoding(x) \
921 sys_reg((u32)(x)->Op0, (u32)(x)->Op1, \
922 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
924 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
925 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
926 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
927 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
928 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
929 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
930 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
931 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
932 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
933 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
935 /* Macro to expand the PMEVCNTRn_EL0 register */
936 #define PMU_PMEVCNTR_EL0(n) \
937 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
938 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
940 /* Macro to expand the PMEVTYPERn_EL0 register */
941 #define PMU_PMEVTYPER_EL0(n) \
942 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
943 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
945 static bool undef_access(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
946 const struct sys_reg_desc
*r
)
948 kvm_inject_undefined(vcpu
);
953 /* Macro to expand the AMU counter and type registers*/
954 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
955 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
956 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
957 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
959 static unsigned int ptrauth_visibility(const struct kvm_vcpu
*vcpu
,
960 const struct sys_reg_desc
*rd
)
962 return vcpu_has_ptrauth(vcpu
) ? 0 : REG_HIDDEN
;
966 * If we land here on a PtrAuth access, that is because we didn't
967 * fixup the access on exit by allowing the PtrAuth sysregs. The only
968 * way this happens is when the guest does not have PtrAuth support
971 #define __PTRAUTH_KEY(k) \
972 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
973 .visibility = ptrauth_visibility}
975 #define PTRAUTH_KEY(k) \
976 __PTRAUTH_KEY(k ## KEYLO_EL1), \
977 __PTRAUTH_KEY(k ## KEYHI_EL1)
979 static bool access_arch_timer(struct kvm_vcpu
*vcpu
,
980 struct sys_reg_params
*p
,
981 const struct sys_reg_desc
*r
)
983 enum kvm_arch_timers tmr
;
984 enum kvm_arch_timer_regs treg
;
985 u64 reg
= reg_to_encoding(r
);
988 case SYS_CNTP_TVAL_EL0
:
989 case SYS_AARCH32_CNTP_TVAL
:
991 treg
= TIMER_REG_TVAL
;
993 case SYS_CNTP_CTL_EL0
:
994 case SYS_AARCH32_CNTP_CTL
:
996 treg
= TIMER_REG_CTL
;
998 case SYS_CNTP_CVAL_EL0
:
999 case SYS_AARCH32_CNTP_CVAL
:
1001 treg
= TIMER_REG_CVAL
;
1008 kvm_arm_timer_write_sysreg(vcpu
, tmr
, treg
, p
->regval
);
1010 p
->regval
= kvm_arm_timer_read_sysreg(vcpu
, tmr
, treg
);
1015 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1016 static u64
read_id_reg(const struct kvm_vcpu
*vcpu
,
1017 struct sys_reg_desc
const *r
, bool raz
)
1019 u32 id
= sys_reg((u32
)r
->Op0
, (u32
)r
->Op1
,
1020 (u32
)r
->CRn
, (u32
)r
->CRm
, (u32
)r
->Op2
);
1021 u64 val
= raz
? 0 : read_sanitised_ftr_reg(id
);
1023 if (id
== SYS_ID_AA64PFR0_EL1
) {
1024 if (!vcpu_has_sve(vcpu
))
1025 val
&= ~(0xfUL
<< ID_AA64PFR0_SVE_SHIFT
);
1026 val
&= ~(0xfUL
<< ID_AA64PFR0_AMU_SHIFT
);
1027 val
&= ~(0xfUL
<< ID_AA64PFR0_CSV2_SHIFT
);
1028 val
|= ((u64
)vcpu
->kvm
->arch
.pfr0_csv2
<< ID_AA64PFR0_CSV2_SHIFT
);
1029 val
&= ~(0xfUL
<< ID_AA64PFR0_CSV3_SHIFT
);
1030 val
|= ((u64
)vcpu
->kvm
->arch
.pfr0_csv3
<< ID_AA64PFR0_CSV3_SHIFT
);
1031 } else if (id
== SYS_ID_AA64PFR1_EL1
) {
1032 val
&= ~(0xfUL
<< ID_AA64PFR1_MTE_SHIFT
);
1033 } else if (id
== SYS_ID_AA64ISAR1_EL1
&& !vcpu_has_ptrauth(vcpu
)) {
1034 val
&= ~((0xfUL
<< ID_AA64ISAR1_APA_SHIFT
) |
1035 (0xfUL
<< ID_AA64ISAR1_API_SHIFT
) |
1036 (0xfUL
<< ID_AA64ISAR1_GPA_SHIFT
) |
1037 (0xfUL
<< ID_AA64ISAR1_GPI_SHIFT
));
1038 } else if (id
== SYS_ID_AA64DFR0_EL1
) {
1041 /* Limit guests to PMUv3 for ARMv8.1 */
1042 if (kvm_vcpu_has_pmu(vcpu
))
1043 cap
= ID_AA64DFR0_PMUVER_8_1
;
1045 val
= cpuid_feature_cap_perfmon_field(val
,
1046 ID_AA64DFR0_PMUVER_SHIFT
,
1048 } else if (id
== SYS_ID_DFR0_EL1
) {
1049 /* Limit guests to PMUv3 for ARMv8.1 */
1050 val
= cpuid_feature_cap_perfmon_field(val
,
1051 ID_DFR0_PERFMON_SHIFT
,
1052 ID_DFR0_PERFMON_8_1
);
1058 static unsigned int id_visibility(const struct kvm_vcpu
*vcpu
,
1059 const struct sys_reg_desc
*r
)
1061 u32 id
= sys_reg((u32
)r
->Op0
, (u32
)r
->Op1
,
1062 (u32
)r
->CRn
, (u32
)r
->CRm
, (u32
)r
->Op2
);
1065 case SYS_ID_AA64ZFR0_EL1
:
1066 if (!vcpu_has_sve(vcpu
))
1074 /* cpufeature ID register access trap handlers */
1076 static bool __access_id_reg(struct kvm_vcpu
*vcpu
,
1077 struct sys_reg_params
*p
,
1078 const struct sys_reg_desc
*r
,
1082 return write_to_read_only(vcpu
, p
, r
);
1084 p
->regval
= read_id_reg(vcpu
, r
, raz
);
1088 static bool access_id_reg(struct kvm_vcpu
*vcpu
,
1089 struct sys_reg_params
*p
,
1090 const struct sys_reg_desc
*r
)
1092 bool raz
= sysreg_visible_as_raz(vcpu
, r
);
1094 return __access_id_reg(vcpu
, p
, r
, raz
);
1097 static bool access_raz_id_reg(struct kvm_vcpu
*vcpu
,
1098 struct sys_reg_params
*p
,
1099 const struct sys_reg_desc
*r
)
1101 return __access_id_reg(vcpu
, p
, r
, true);
1104 static int reg_from_user(u64
*val
, const void __user
*uaddr
, u64 id
);
1105 static int reg_to_user(void __user
*uaddr
, const u64
*val
, u64 id
);
1106 static u64
sys_reg_to_index(const struct sys_reg_desc
*reg
);
1108 /* Visibility overrides for SVE-specific control registers */
1109 static unsigned int sve_visibility(const struct kvm_vcpu
*vcpu
,
1110 const struct sys_reg_desc
*rd
)
1112 if (vcpu_has_sve(vcpu
))
1118 static int set_id_aa64pfr0_el1(struct kvm_vcpu
*vcpu
,
1119 const struct sys_reg_desc
*rd
,
1120 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
1122 const u64 id
= sys_reg_to_index(rd
);
1127 err
= reg_from_user(&val
, uaddr
, id
);
1132 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1133 * it doesn't promise more than what is actually provided (the
1134 * guest could otherwise be covered in ectoplasmic residue).
1136 csv2
= cpuid_feature_extract_unsigned_field(val
, ID_AA64PFR0_CSV2_SHIFT
);
1138 (csv2
&& arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED
))
1141 /* Same thing for CSV3 */
1142 csv3
= cpuid_feature_extract_unsigned_field(val
, ID_AA64PFR0_CSV3_SHIFT
);
1144 (csv3
&& arm64_get_meltdown_state() != SPECTRE_UNAFFECTED
))
1147 /* We can only differ with CSV[23], and anything else is an error */
1148 val
^= read_id_reg(vcpu
, rd
, false);
1149 val
&= ~((0xFUL
<< ID_AA64PFR0_CSV2_SHIFT
) |
1150 (0xFUL
<< ID_AA64PFR0_CSV3_SHIFT
));
1154 vcpu
->kvm
->arch
.pfr0_csv2
= csv2
;
1155 vcpu
->kvm
->arch
.pfr0_csv3
= csv3
;
1161 * cpufeature ID register user accessors
1163 * For now, these registers are immutable for userspace, so no values
1164 * are stored, and for set_id_reg() we don't allow the effective value
1167 static int __get_id_reg(const struct kvm_vcpu
*vcpu
,
1168 const struct sys_reg_desc
*rd
, void __user
*uaddr
,
1171 const u64 id
= sys_reg_to_index(rd
);
1172 const u64 val
= read_id_reg(vcpu
, rd
, raz
);
1174 return reg_to_user(uaddr
, &val
, id
);
1177 static int __set_id_reg(const struct kvm_vcpu
*vcpu
,
1178 const struct sys_reg_desc
*rd
, void __user
*uaddr
,
1181 const u64 id
= sys_reg_to_index(rd
);
1185 err
= reg_from_user(&val
, uaddr
, id
);
1189 /* This is what we mean by invariant: you can't change it. */
1190 if (val
!= read_id_reg(vcpu
, rd
, raz
))
1196 static int get_id_reg(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
1197 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
1199 bool raz
= sysreg_visible_as_raz(vcpu
, rd
);
1201 return __get_id_reg(vcpu
, rd
, uaddr
, raz
);
1204 static int set_id_reg(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
1205 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
1207 bool raz
= sysreg_visible_as_raz(vcpu
, rd
);
1209 return __set_id_reg(vcpu
, rd
, uaddr
, raz
);
1212 static int get_raz_id_reg(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
1213 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
1215 return __get_id_reg(vcpu
, rd
, uaddr
, true);
1218 static int set_raz_id_reg(struct kvm_vcpu
*vcpu
, const struct sys_reg_desc
*rd
,
1219 const struct kvm_one_reg
*reg
, void __user
*uaddr
)
1221 return __set_id_reg(vcpu
, rd
, uaddr
, true);
1224 static bool access_ctr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
1225 const struct sys_reg_desc
*r
)
1228 return write_to_read_only(vcpu
, p
, r
);
1230 p
->regval
= read_sanitised_ftr_reg(SYS_CTR_EL0
);
1234 static bool access_clidr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
1235 const struct sys_reg_desc
*r
)
1238 return write_to_read_only(vcpu
, p
, r
);
1240 p
->regval
= read_sysreg(clidr_el1
);
1244 static bool access_csselr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
1245 const struct sys_reg_desc
*r
)
1250 vcpu_write_sys_reg(vcpu
, p
->regval
, reg
);
1252 p
->regval
= vcpu_read_sys_reg(vcpu
, reg
);
1256 static bool access_ccsidr(struct kvm_vcpu
*vcpu
, struct sys_reg_params
*p
,
1257 const struct sys_reg_desc
*r
)
1262 return write_to_read_only(vcpu
, p
, r
);
1264 csselr
= vcpu_read_sys_reg(vcpu
, CSSELR_EL1
);
1265 p
->regval
= get_ccsidr(csselr
);
1268 * Guests should not be doing cache operations by set/way at all, and
1269 * for this reason, we trap them and attempt to infer the intent, so
1270 * that we can flush the entire guest's address space at the appropriate
1272 * To prevent this trapping from causing performance problems, let's
1273 * expose the geometry of all data and unified caches (which are
1274 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1275 * [If guests should attempt to infer aliasing properties from the
1276 * geometry (which is not permitted by the architecture), they would
1277 * only do so for virtually indexed caches.]
1279 if (!(csselr
& 1)) // data or unified cache
1280 p
->regval
&= ~GENMASK(27, 3);
1284 /* sys_reg_desc initialiser for known cpufeature ID registers */
1285 #define ID_SANITISED(name) { \
1286 SYS_DESC(SYS_##name), \
1287 .access = access_id_reg, \
1288 .get_user = get_id_reg, \
1289 .set_user = set_id_reg, \
1290 .visibility = id_visibility, \
1294 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1295 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1296 * (1 <= crm < 8, 0 <= Op2 < 8).
1298 #define ID_UNALLOCATED(crm, op2) { \
1299 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1300 .access = access_raz_id_reg, \
1301 .get_user = get_raz_id_reg, \
1302 .set_user = set_raz_id_reg, \
1306 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1307 * For now, these are exposed just like unallocated ID regs: they appear
1308 * RAZ for the guest.
1310 #define ID_HIDDEN(name) { \
1311 SYS_DESC(SYS_##name), \
1312 .access = access_raz_id_reg, \
1313 .get_user = get_raz_id_reg, \
1314 .set_user = set_raz_id_reg, \
1318 * Architected system registers.
1319 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1321 * Debug handling: We do trap most, if not all debug related system
1322 * registers. The implementation is good enough to ensure that a guest
1323 * can use these with minimal performance degradation. The drawback is
1324 * that we don't implement any of the external debug, none of the
1325 * OSlock protocol. This should be revisited if we ever encounter a
1326 * more demanding guest...
1328 static const struct sys_reg_desc sys_reg_descs
[] = {
1329 { SYS_DESC(SYS_DC_ISW
), access_dcsw
},
1330 { SYS_DESC(SYS_DC_CSW
), access_dcsw
},
1331 { SYS_DESC(SYS_DC_CISW
), access_dcsw
},
1333 DBG_BCR_BVR_WCR_WVR_EL1(0),
1334 DBG_BCR_BVR_WCR_WVR_EL1(1),
1335 { SYS_DESC(SYS_MDCCINT_EL1
), trap_debug_regs
, reset_val
, MDCCINT_EL1
, 0 },
1336 { SYS_DESC(SYS_MDSCR_EL1
), trap_debug_regs
, reset_val
, MDSCR_EL1
, 0 },
1337 DBG_BCR_BVR_WCR_WVR_EL1(2),
1338 DBG_BCR_BVR_WCR_WVR_EL1(3),
1339 DBG_BCR_BVR_WCR_WVR_EL1(4),
1340 DBG_BCR_BVR_WCR_WVR_EL1(5),
1341 DBG_BCR_BVR_WCR_WVR_EL1(6),
1342 DBG_BCR_BVR_WCR_WVR_EL1(7),
1343 DBG_BCR_BVR_WCR_WVR_EL1(8),
1344 DBG_BCR_BVR_WCR_WVR_EL1(9),
1345 DBG_BCR_BVR_WCR_WVR_EL1(10),
1346 DBG_BCR_BVR_WCR_WVR_EL1(11),
1347 DBG_BCR_BVR_WCR_WVR_EL1(12),
1348 DBG_BCR_BVR_WCR_WVR_EL1(13),
1349 DBG_BCR_BVR_WCR_WVR_EL1(14),
1350 DBG_BCR_BVR_WCR_WVR_EL1(15),
1352 { SYS_DESC(SYS_MDRAR_EL1
), trap_raz_wi
},
1353 { SYS_DESC(SYS_OSLAR_EL1
), trap_raz_wi
},
1354 { SYS_DESC(SYS_OSLSR_EL1
), trap_oslsr_el1
},
1355 { SYS_DESC(SYS_OSDLR_EL1
), trap_raz_wi
},
1356 { SYS_DESC(SYS_DBGPRCR_EL1
), trap_raz_wi
},
1357 { SYS_DESC(SYS_DBGCLAIMSET_EL1
), trap_raz_wi
},
1358 { SYS_DESC(SYS_DBGCLAIMCLR_EL1
), trap_raz_wi
},
1359 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1
), trap_dbgauthstatus_el1
},
1361 { SYS_DESC(SYS_MDCCSR_EL0
), trap_raz_wi
},
1362 { SYS_DESC(SYS_DBGDTR_EL0
), trap_raz_wi
},
1363 // DBGDTR[TR]X_EL0 share the same encoding
1364 { SYS_DESC(SYS_DBGDTRTX_EL0
), trap_raz_wi
},
1366 { SYS_DESC(SYS_DBGVCR32_EL2
), NULL
, reset_val
, DBGVCR32_EL2
, 0 },
1368 { SYS_DESC(SYS_MPIDR_EL1
), NULL
, reset_mpidr
, MPIDR_EL1
},
1371 * ID regs: all ID_SANITISED() entries here must have corresponding
1372 * entries in arm64_ftr_regs[].
1375 /* AArch64 mappings of the AArch32 ID registers */
1377 ID_SANITISED(ID_PFR0_EL1
),
1378 ID_SANITISED(ID_PFR1_EL1
),
1379 ID_SANITISED(ID_DFR0_EL1
),
1380 ID_HIDDEN(ID_AFR0_EL1
),
1381 ID_SANITISED(ID_MMFR0_EL1
),
1382 ID_SANITISED(ID_MMFR1_EL1
),
1383 ID_SANITISED(ID_MMFR2_EL1
),
1384 ID_SANITISED(ID_MMFR3_EL1
),
1387 ID_SANITISED(ID_ISAR0_EL1
),
1388 ID_SANITISED(ID_ISAR1_EL1
),
1389 ID_SANITISED(ID_ISAR2_EL1
),
1390 ID_SANITISED(ID_ISAR3_EL1
),
1391 ID_SANITISED(ID_ISAR4_EL1
),
1392 ID_SANITISED(ID_ISAR5_EL1
),
1393 ID_SANITISED(ID_MMFR4_EL1
),
1394 ID_SANITISED(ID_ISAR6_EL1
),
1397 ID_SANITISED(MVFR0_EL1
),
1398 ID_SANITISED(MVFR1_EL1
),
1399 ID_SANITISED(MVFR2_EL1
),
1400 ID_UNALLOCATED(3,3),
1401 ID_SANITISED(ID_PFR2_EL1
),
1402 ID_HIDDEN(ID_DFR1_EL1
),
1403 ID_SANITISED(ID_MMFR5_EL1
),
1404 ID_UNALLOCATED(3,7),
1406 /* AArch64 ID registers */
1408 { SYS_DESC(SYS_ID_AA64PFR0_EL1
), .access
= access_id_reg
,
1409 .get_user
= get_id_reg
, .set_user
= set_id_aa64pfr0_el1
, },
1410 ID_SANITISED(ID_AA64PFR1_EL1
),
1411 ID_UNALLOCATED(4,2),
1412 ID_UNALLOCATED(4,3),
1413 ID_SANITISED(ID_AA64ZFR0_EL1
),
1414 ID_UNALLOCATED(4,5),
1415 ID_UNALLOCATED(4,6),
1416 ID_UNALLOCATED(4,7),
1419 ID_SANITISED(ID_AA64DFR0_EL1
),
1420 ID_SANITISED(ID_AA64DFR1_EL1
),
1421 ID_UNALLOCATED(5,2),
1422 ID_UNALLOCATED(5,3),
1423 ID_HIDDEN(ID_AA64AFR0_EL1
),
1424 ID_HIDDEN(ID_AA64AFR1_EL1
),
1425 ID_UNALLOCATED(5,6),
1426 ID_UNALLOCATED(5,7),
1429 ID_SANITISED(ID_AA64ISAR0_EL1
),
1430 ID_SANITISED(ID_AA64ISAR1_EL1
),
1431 ID_UNALLOCATED(6,2),
1432 ID_UNALLOCATED(6,3),
1433 ID_UNALLOCATED(6,4),
1434 ID_UNALLOCATED(6,5),
1435 ID_UNALLOCATED(6,6),
1436 ID_UNALLOCATED(6,7),
1439 ID_SANITISED(ID_AA64MMFR0_EL1
),
1440 ID_SANITISED(ID_AA64MMFR1_EL1
),
1441 ID_SANITISED(ID_AA64MMFR2_EL1
),
1442 ID_UNALLOCATED(7,3),
1443 ID_UNALLOCATED(7,4),
1444 ID_UNALLOCATED(7,5),
1445 ID_UNALLOCATED(7,6),
1446 ID_UNALLOCATED(7,7),
1448 { SYS_DESC(SYS_SCTLR_EL1
), access_vm_reg
, reset_val
, SCTLR_EL1
, 0x00C50078 },
1449 { SYS_DESC(SYS_ACTLR_EL1
), access_actlr
, reset_actlr
, ACTLR_EL1
},
1450 { SYS_DESC(SYS_CPACR_EL1
), NULL
, reset_val
, CPACR_EL1
, 0 },
1452 { SYS_DESC(SYS_RGSR_EL1
), undef_access
},
1453 { SYS_DESC(SYS_GCR_EL1
), undef_access
},
1455 { SYS_DESC(SYS_ZCR_EL1
), NULL
, reset_val
, ZCR_EL1
, 0, .visibility
= sve_visibility
},
1456 { SYS_DESC(SYS_TTBR0_EL1
), access_vm_reg
, reset_unknown
, TTBR0_EL1
},
1457 { SYS_DESC(SYS_TTBR1_EL1
), access_vm_reg
, reset_unknown
, TTBR1_EL1
},
1458 { SYS_DESC(SYS_TCR_EL1
), access_vm_reg
, reset_val
, TCR_EL1
, 0 },
1466 { SYS_DESC(SYS_AFSR0_EL1
), access_vm_reg
, reset_unknown
, AFSR0_EL1
},
1467 { SYS_DESC(SYS_AFSR1_EL1
), access_vm_reg
, reset_unknown
, AFSR1_EL1
},
1468 { SYS_DESC(SYS_ESR_EL1
), access_vm_reg
, reset_unknown
, ESR_EL1
},
1470 { SYS_DESC(SYS_ERRIDR_EL1
), trap_raz_wi
},
1471 { SYS_DESC(SYS_ERRSELR_EL1
), trap_raz_wi
},
1472 { SYS_DESC(SYS_ERXFR_EL1
), trap_raz_wi
},
1473 { SYS_DESC(SYS_ERXCTLR_EL1
), trap_raz_wi
},
1474 { SYS_DESC(SYS_ERXSTATUS_EL1
), trap_raz_wi
},
1475 { SYS_DESC(SYS_ERXADDR_EL1
), trap_raz_wi
},
1476 { SYS_DESC(SYS_ERXMISC0_EL1
), trap_raz_wi
},
1477 { SYS_DESC(SYS_ERXMISC1_EL1
), trap_raz_wi
},
1479 { SYS_DESC(SYS_TFSR_EL1
), undef_access
},
1480 { SYS_DESC(SYS_TFSRE0_EL1
), undef_access
},
1482 { SYS_DESC(SYS_FAR_EL1
), access_vm_reg
, reset_unknown
, FAR_EL1
},
1483 { SYS_DESC(SYS_PAR_EL1
), NULL
, reset_unknown
, PAR_EL1
},
1485 { SYS_DESC(SYS_PMINTENSET_EL1
), access_pminten
, reset_unknown
, PMINTENSET_EL1
},
1486 { SYS_DESC(SYS_PMINTENCLR_EL1
), access_pminten
, reset_unknown
, PMINTENSET_EL1
},
1488 { SYS_DESC(SYS_MAIR_EL1
), access_vm_reg
, reset_unknown
, MAIR_EL1
},
1489 { SYS_DESC(SYS_AMAIR_EL1
), access_vm_reg
, reset_amair_el1
, AMAIR_EL1
},
1491 { SYS_DESC(SYS_LORSA_EL1
), trap_loregion
},
1492 { SYS_DESC(SYS_LOREA_EL1
), trap_loregion
},
1493 { SYS_DESC(SYS_LORN_EL1
), trap_loregion
},
1494 { SYS_DESC(SYS_LORC_EL1
), trap_loregion
},
1495 { SYS_DESC(SYS_LORID_EL1
), trap_loregion
},
1497 { SYS_DESC(SYS_VBAR_EL1
), NULL
, reset_val
, VBAR_EL1
, 0 },
1498 { SYS_DESC(SYS_DISR_EL1
), NULL
, reset_val
, DISR_EL1
, 0 },
1500 { SYS_DESC(SYS_ICC_IAR0_EL1
), write_to_read_only
},
1501 { SYS_DESC(SYS_ICC_EOIR0_EL1
), read_from_write_only
},
1502 { SYS_DESC(SYS_ICC_HPPIR0_EL1
), write_to_read_only
},
1503 { SYS_DESC(SYS_ICC_DIR_EL1
), read_from_write_only
},
1504 { SYS_DESC(SYS_ICC_RPR_EL1
), write_to_read_only
},
1505 { SYS_DESC(SYS_ICC_SGI1R_EL1
), access_gic_sgi
},
1506 { SYS_DESC(SYS_ICC_ASGI1R_EL1
), access_gic_sgi
},
1507 { SYS_DESC(SYS_ICC_SGI0R_EL1
), access_gic_sgi
},
1508 { SYS_DESC(SYS_ICC_IAR1_EL1
), write_to_read_only
},
1509 { SYS_DESC(SYS_ICC_EOIR1_EL1
), read_from_write_only
},
1510 { SYS_DESC(SYS_ICC_HPPIR1_EL1
), write_to_read_only
},
1511 { SYS_DESC(SYS_ICC_SRE_EL1
), access_gic_sre
},
1513 { SYS_DESC(SYS_CONTEXTIDR_EL1
), access_vm_reg
, reset_val
, CONTEXTIDR_EL1
, 0 },
1514 { SYS_DESC(SYS_TPIDR_EL1
), NULL
, reset_unknown
, TPIDR_EL1
},
1516 { SYS_DESC(SYS_SCXTNUM_EL1
), undef_access
},
1518 { SYS_DESC(SYS_CNTKCTL_EL1
), NULL
, reset_val
, CNTKCTL_EL1
, 0},
1520 { SYS_DESC(SYS_CCSIDR_EL1
), access_ccsidr
},
1521 { SYS_DESC(SYS_CLIDR_EL1
), access_clidr
},
1522 { SYS_DESC(SYS_CSSELR_EL1
), access_csselr
, reset_unknown
, CSSELR_EL1
},
1523 { SYS_DESC(SYS_CTR_EL0
), access_ctr
},
1525 { SYS_DESC(SYS_PMCR_EL0
), access_pmcr
, reset_pmcr
, PMCR_EL0
},
1526 { SYS_DESC(SYS_PMCNTENSET_EL0
), access_pmcnten
, reset_unknown
, PMCNTENSET_EL0
},
1527 { SYS_DESC(SYS_PMCNTENCLR_EL0
), access_pmcnten
, reset_unknown
, PMCNTENSET_EL0
},
1528 { SYS_DESC(SYS_PMOVSCLR_EL0
), access_pmovs
, reset_unknown
, PMOVSSET_EL0
},
1529 { SYS_DESC(SYS_PMSWINC_EL0
), access_pmswinc
, reset_unknown
, PMSWINC_EL0
},
1530 { SYS_DESC(SYS_PMSELR_EL0
), access_pmselr
, reset_unknown
, PMSELR_EL0
},
1531 { SYS_DESC(SYS_PMCEID0_EL0
), access_pmceid
},
1532 { SYS_DESC(SYS_PMCEID1_EL0
), access_pmceid
},
1533 { SYS_DESC(SYS_PMCCNTR_EL0
), access_pmu_evcntr
, reset_unknown
, PMCCNTR_EL0
},
1534 { SYS_DESC(SYS_PMXEVTYPER_EL0
), access_pmu_evtyper
},
1535 { SYS_DESC(SYS_PMXEVCNTR_EL0
), access_pmu_evcntr
},
1537 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1538 * in 32bit mode. Here we choose to reset it as zero for consistency.
1540 { SYS_DESC(SYS_PMUSERENR_EL0
), access_pmuserenr
, reset_val
, PMUSERENR_EL0
, 0 },
1541 { SYS_DESC(SYS_PMOVSSET_EL0
), access_pmovs
, reset_unknown
, PMOVSSET_EL0
},
1543 { SYS_DESC(SYS_TPIDR_EL0
), NULL
, reset_unknown
, TPIDR_EL0
},
1544 { SYS_DESC(SYS_TPIDRRO_EL0
), NULL
, reset_unknown
, TPIDRRO_EL0
},
1546 { SYS_DESC(SYS_SCXTNUM_EL0
), undef_access
},
1548 { SYS_DESC(SYS_AMCR_EL0
), undef_access
},
1549 { SYS_DESC(SYS_AMCFGR_EL0
), undef_access
},
1550 { SYS_DESC(SYS_AMCGCR_EL0
), undef_access
},
1551 { SYS_DESC(SYS_AMUSERENR_EL0
), undef_access
},
1552 { SYS_DESC(SYS_AMCNTENCLR0_EL0
), undef_access
},
1553 { SYS_DESC(SYS_AMCNTENSET0_EL0
), undef_access
},
1554 { SYS_DESC(SYS_AMCNTENCLR1_EL0
), undef_access
},
1555 { SYS_DESC(SYS_AMCNTENSET1_EL0
), undef_access
},
1556 AMU_AMEVCNTR0_EL0(0),
1557 AMU_AMEVCNTR0_EL0(1),
1558 AMU_AMEVCNTR0_EL0(2),
1559 AMU_AMEVCNTR0_EL0(3),
1560 AMU_AMEVCNTR0_EL0(4),
1561 AMU_AMEVCNTR0_EL0(5),
1562 AMU_AMEVCNTR0_EL0(6),
1563 AMU_AMEVCNTR0_EL0(7),
1564 AMU_AMEVCNTR0_EL0(8),
1565 AMU_AMEVCNTR0_EL0(9),
1566 AMU_AMEVCNTR0_EL0(10),
1567 AMU_AMEVCNTR0_EL0(11),
1568 AMU_AMEVCNTR0_EL0(12),
1569 AMU_AMEVCNTR0_EL0(13),
1570 AMU_AMEVCNTR0_EL0(14),
1571 AMU_AMEVCNTR0_EL0(15),
1572 AMU_AMEVTYPER0_EL0(0),
1573 AMU_AMEVTYPER0_EL0(1),
1574 AMU_AMEVTYPER0_EL0(2),
1575 AMU_AMEVTYPER0_EL0(3),
1576 AMU_AMEVTYPER0_EL0(4),
1577 AMU_AMEVTYPER0_EL0(5),
1578 AMU_AMEVTYPER0_EL0(6),
1579 AMU_AMEVTYPER0_EL0(7),
1580 AMU_AMEVTYPER0_EL0(8),
1581 AMU_AMEVTYPER0_EL0(9),
1582 AMU_AMEVTYPER0_EL0(10),
1583 AMU_AMEVTYPER0_EL0(11),
1584 AMU_AMEVTYPER0_EL0(12),
1585 AMU_AMEVTYPER0_EL0(13),
1586 AMU_AMEVTYPER0_EL0(14),
1587 AMU_AMEVTYPER0_EL0(15),
1588 AMU_AMEVCNTR1_EL0(0),
1589 AMU_AMEVCNTR1_EL0(1),
1590 AMU_AMEVCNTR1_EL0(2),
1591 AMU_AMEVCNTR1_EL0(3),
1592 AMU_AMEVCNTR1_EL0(4),
1593 AMU_AMEVCNTR1_EL0(5),
1594 AMU_AMEVCNTR1_EL0(6),
1595 AMU_AMEVCNTR1_EL0(7),
1596 AMU_AMEVCNTR1_EL0(8),
1597 AMU_AMEVCNTR1_EL0(9),
1598 AMU_AMEVCNTR1_EL0(10),
1599 AMU_AMEVCNTR1_EL0(11),
1600 AMU_AMEVCNTR1_EL0(12),
1601 AMU_AMEVCNTR1_EL0(13),
1602 AMU_AMEVCNTR1_EL0(14),
1603 AMU_AMEVCNTR1_EL0(15),
1604 AMU_AMEVTYPER1_EL0(0),
1605 AMU_AMEVTYPER1_EL0(1),
1606 AMU_AMEVTYPER1_EL0(2),
1607 AMU_AMEVTYPER1_EL0(3),
1608 AMU_AMEVTYPER1_EL0(4),
1609 AMU_AMEVTYPER1_EL0(5),
1610 AMU_AMEVTYPER1_EL0(6),
1611 AMU_AMEVTYPER1_EL0(7),
1612 AMU_AMEVTYPER1_EL0(8),
1613 AMU_AMEVTYPER1_EL0(9),
1614 AMU_AMEVTYPER1_EL0(10),
1615 AMU_AMEVTYPER1_EL0(11),
1616 AMU_AMEVTYPER1_EL0(12),
1617 AMU_AMEVTYPER1_EL0(13),
1618 AMU_AMEVTYPER1_EL0(14),
1619 AMU_AMEVTYPER1_EL0(15),
1621 { SYS_DESC(SYS_CNTP_TVAL_EL0
), access_arch_timer
},
1622 { SYS_DESC(SYS_CNTP_CTL_EL0
), access_arch_timer
},
1623 { SYS_DESC(SYS_CNTP_CVAL_EL0
), access_arch_timer
},
1626 PMU_PMEVCNTR_EL0(0),
1627 PMU_PMEVCNTR_EL0(1),
1628 PMU_PMEVCNTR_EL0(2),
1629 PMU_PMEVCNTR_EL0(3),
1630 PMU_PMEVCNTR_EL0(4),
1631 PMU_PMEVCNTR_EL0(5),
1632 PMU_PMEVCNTR_EL0(6),
1633 PMU_PMEVCNTR_EL0(7),
1634 PMU_PMEVCNTR_EL0(8),
1635 PMU_PMEVCNTR_EL0(9),
1636 PMU_PMEVCNTR_EL0(10),
1637 PMU_PMEVCNTR_EL0(11),
1638 PMU_PMEVCNTR_EL0(12),
1639 PMU_PMEVCNTR_EL0(13),
1640 PMU_PMEVCNTR_EL0(14),
1641 PMU_PMEVCNTR_EL0(15),
1642 PMU_PMEVCNTR_EL0(16),
1643 PMU_PMEVCNTR_EL0(17),
1644 PMU_PMEVCNTR_EL0(18),
1645 PMU_PMEVCNTR_EL0(19),
1646 PMU_PMEVCNTR_EL0(20),
1647 PMU_PMEVCNTR_EL0(21),
1648 PMU_PMEVCNTR_EL0(22),
1649 PMU_PMEVCNTR_EL0(23),
1650 PMU_PMEVCNTR_EL0(24),
1651 PMU_PMEVCNTR_EL0(25),
1652 PMU_PMEVCNTR_EL0(26),
1653 PMU_PMEVCNTR_EL0(27),
1654 PMU_PMEVCNTR_EL0(28),
1655 PMU_PMEVCNTR_EL0(29),
1656 PMU_PMEVCNTR_EL0(30),
1657 /* PMEVTYPERn_EL0 */
1658 PMU_PMEVTYPER_EL0(0),
1659 PMU_PMEVTYPER_EL0(1),
1660 PMU_PMEVTYPER_EL0(2),
1661 PMU_PMEVTYPER_EL0(3),
1662 PMU_PMEVTYPER_EL0(4),
1663 PMU_PMEVTYPER_EL0(5),
1664 PMU_PMEVTYPER_EL0(6),
1665 PMU_PMEVTYPER_EL0(7),
1666 PMU_PMEVTYPER_EL0(8),
1667 PMU_PMEVTYPER_EL0(9),
1668 PMU_PMEVTYPER_EL0(10),
1669 PMU_PMEVTYPER_EL0(11),
1670 PMU_PMEVTYPER_EL0(12),
1671 PMU_PMEVTYPER_EL0(13),
1672 PMU_PMEVTYPER_EL0(14),
1673 PMU_PMEVTYPER_EL0(15),
1674 PMU_PMEVTYPER_EL0(16),
1675 PMU_PMEVTYPER_EL0(17),
1676 PMU_PMEVTYPER_EL0(18),
1677 PMU_PMEVTYPER_EL0(19),
1678 PMU_PMEVTYPER_EL0(20),
1679 PMU_PMEVTYPER_EL0(21),
1680 PMU_PMEVTYPER_EL0(22),
1681 PMU_PMEVTYPER_EL0(23),
1682 PMU_PMEVTYPER_EL0(24),
1683 PMU_PMEVTYPER_EL0(25),
1684 PMU_PMEVTYPER_EL0(26),
1685 PMU_PMEVTYPER_EL0(27),
1686 PMU_PMEVTYPER_EL0(28),
1687 PMU_PMEVTYPER_EL0(29),
1688 PMU_PMEVTYPER_EL0(30),
1690 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1691 * in 32bit mode. Here we choose to reset it as zero for consistency.
1693 { SYS_DESC(SYS_PMCCFILTR_EL0
), access_pmu_evtyper
, reset_val
, PMCCFILTR_EL0
, 0 },
1695 { SYS_DESC(SYS_DACR32_EL2
), NULL
, reset_unknown
, DACR32_EL2
},
1696 { SYS_DESC(SYS_IFSR32_EL2
), NULL
, reset_unknown
, IFSR32_EL2
},
1697 { SYS_DESC(SYS_FPEXC32_EL2
), NULL
, reset_val
, FPEXC32_EL2
, 0x700 },
1700 static bool trap_dbgidr(struct kvm_vcpu
*vcpu
,
1701 struct sys_reg_params
*p
,
1702 const struct sys_reg_desc
*r
)
1705 return ignore_write(vcpu
, p
);
1707 u64 dfr
= read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1
);
1708 u64 pfr
= read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
);
1709 u32 el3
= !!cpuid_feature_extract_unsigned_field(pfr
, ID_AA64PFR0_EL3_SHIFT
);
1711 p
->regval
= ((((dfr
>> ID_AA64DFR0_WRPS_SHIFT
) & 0xf) << 28) |
1712 (((dfr
>> ID_AA64DFR0_BRPS_SHIFT
) & 0xf) << 24) |
1713 (((dfr
>> ID_AA64DFR0_CTX_CMPS_SHIFT
) & 0xf) << 20)
1714 | (6 << 16) | (el3
<< 14) | (el3
<< 12));
1720 * AArch32 debug register mappings
1722 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1723 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1725 * None of the other registers share their location, so treat them as
1726 * if they were 64bit.
1728 #define DBG_BCR_BVR_WCR_WVR(n) \
1730 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1732 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1734 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1736 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1738 #define DBGBXVR(n) \
1739 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1742 * Trapped cp14 registers. We generally ignore most of the external
1743 * debug, on the principle that they don't really make sense to a
1744 * guest. Revisit this one day, would this principle change.
1746 static const struct sys_reg_desc cp14_regs
[] = {
1748 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr
},
1750 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi
},
1752 DBG_BCR_BVR_WCR_WVR(0),
1754 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi
},
1755 DBG_BCR_BVR_WCR_WVR(1),
1757 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs
, NULL
, MDCCINT_EL1
},
1759 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs
, NULL
, MDSCR_EL1
},
1760 DBG_BCR_BVR_WCR_WVR(2),
1761 /* DBGDTR[RT]Xint */
1762 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi
},
1763 /* DBGDTR[RT]Xext */
1764 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi
},
1765 DBG_BCR_BVR_WCR_WVR(3),
1766 DBG_BCR_BVR_WCR_WVR(4),
1767 DBG_BCR_BVR_WCR_WVR(5),
1769 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi
},
1771 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi
},
1772 DBG_BCR_BVR_WCR_WVR(6),
1774 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs
, NULL
, DBGVCR32_EL2
},
1775 DBG_BCR_BVR_WCR_WVR(7),
1776 DBG_BCR_BVR_WCR_WVR(8),
1777 DBG_BCR_BVR_WCR_WVR(9),
1778 DBG_BCR_BVR_WCR_WVR(10),
1779 DBG_BCR_BVR_WCR_WVR(11),
1780 DBG_BCR_BVR_WCR_WVR(12),
1781 DBG_BCR_BVR_WCR_WVR(13),
1782 DBG_BCR_BVR_WCR_WVR(14),
1783 DBG_BCR_BVR_WCR_WVR(15),
1785 /* DBGDRAR (32bit) */
1786 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi
},
1790 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi
},
1793 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1
},
1797 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi
},
1800 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi
},
1813 /* DBGDSAR (32bit) */
1814 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi
},
1817 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi
},
1819 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi
},
1821 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi
},
1823 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi
},
1825 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi
},
1827 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1
},
1830 /* Trapped cp14 64bit registers */
1831 static const struct sys_reg_desc cp14_64_regs
[] = {
1832 /* DBGDRAR (64bit) */
1833 { Op1( 0), CRm( 1), .access
= trap_raz_wi
},
1835 /* DBGDSAR (64bit) */
1836 { Op1( 0), CRm( 2), .access
= trap_raz_wi
},
1839 /* Macro to expand the PMEVCNTRn register */
1840 #define PMU_PMEVCNTR(n) \
1842 { Op1(0), CRn(0b1110), \
1843 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1846 /* Macro to expand the PMEVTYPERn register */
1847 #define PMU_PMEVTYPER(n) \
1849 { Op1(0), CRn(0b1110), \
1850 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1851 access_pmu_evtyper }
1854 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1855 * depending on the way they are accessed (as a 32bit or a 64bit
1858 static const struct sys_reg_desc cp15_regs
[] = {
1859 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr
},
1860 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg
, NULL
, SCTLR_EL1
},
1862 { AA32(LO
), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr
, NULL
, ACTLR_EL1
},
1864 { AA32(HI
), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr
, NULL
, ACTLR_EL1
},
1865 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg
, NULL
, TTBR0_EL1
},
1866 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg
, NULL
, TTBR1_EL1
},
1868 { AA32(LO
), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg
, NULL
, TCR_EL1
},
1870 { AA32(HI
), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg
, NULL
, TCR_EL1
},
1871 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg
, NULL
, DACR32_EL2
},
1873 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg
, NULL
, ESR_EL1
},
1874 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg
, NULL
, IFSR32_EL2
},
1876 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg
, NULL
, AFSR0_EL1
},
1878 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg
, NULL
, AFSR1_EL1
},
1880 { AA32(LO
), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg
, NULL
, FAR_EL1
},
1882 { AA32(HI
), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg
, NULL
, FAR_EL1
},
1885 * DC{C,I,CI}SW operations:
1887 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw
},
1888 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw
},
1889 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw
},
1892 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr
},
1893 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten
},
1894 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten
},
1895 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs
},
1896 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc
},
1897 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr
},
1898 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid
},
1899 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid
},
1900 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr
},
1901 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper
},
1902 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr
},
1903 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr
},
1904 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten
},
1905 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten
},
1906 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs
},
1909 { AA32(LO
), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg
, NULL
, MAIR_EL1
},
1911 { AA32(HI
), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg
, NULL
, MAIR_EL1
},
1913 { AA32(LO
), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg
, NULL
, AMAIR_EL1
},
1915 { AA32(HI
), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg
, NULL
, AMAIR_EL1
},
1918 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre
},
1920 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg
, NULL
, CONTEXTIDR_EL1
},
1923 { SYS_DESC(SYS_AARCH32_CNTP_TVAL
), access_arch_timer
},
1924 { SYS_DESC(SYS_AARCH32_CNTP_CTL
), access_arch_timer
},
1991 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper
},
1993 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr
},
1994 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr
},
1995 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr
, NULL
, CSSELR_EL1
},
1998 static const struct sys_reg_desc cp15_64_regs
[] = {
1999 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg
, NULL
, TTBR0_EL1
},
2000 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr
},
2001 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
}, /* ICC_SGI1R */
2002 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg
, NULL
, TTBR1_EL1
},
2003 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
}, /* ICC_ASGI1R */
2004 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi
}, /* ICC_SGI0R */
2005 { SYS_DESC(SYS_AARCH32_CNTP_CVAL
), access_arch_timer
},
2008 static int check_sysreg_table(const struct sys_reg_desc
*table
, unsigned int n
,
2013 for (i
= 0; i
< n
; i
++) {
2014 if (!is_32
&& table
[i
].reg
&& !table
[i
].reset
) {
2015 kvm_err("sys_reg table %p entry %d has lacks reset\n",
2020 if (i
&& cmp_sys_reg(&table
[i
-1], &table
[i
]) >= 0) {
2021 kvm_err("sys_reg table %p out of order (%d)\n", table
, i
- 1);
2029 static int match_sys_reg(const void *key
, const void *elt
)
2031 const unsigned long pval
= (unsigned long)key
;
2032 const struct sys_reg_desc
*r
= elt
;
2034 return pval
- reg_to_encoding(r
);
2037 static const struct sys_reg_desc
*find_reg(const struct sys_reg_params
*params
,
2038 const struct sys_reg_desc table
[],
2041 unsigned long pval
= reg_to_encoding(params
);
2043 return bsearch((void *)pval
, table
, num
, sizeof(table
[0]), match_sys_reg
);
2046 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
)
2048 kvm_inject_undefined(vcpu
);
2052 static void perform_access(struct kvm_vcpu
*vcpu
,
2053 struct sys_reg_params
*params
,
2054 const struct sys_reg_desc
*r
)
2056 trace_kvm_sys_access(*vcpu_pc(vcpu
), params
, r
);
2058 /* Check for regs disabled by runtime config */
2059 if (sysreg_hidden(vcpu
, r
)) {
2060 kvm_inject_undefined(vcpu
);
2065 * Not having an accessor means that we have configured a trap
2066 * that we don't know how to handle. This certainly qualifies
2067 * as a gross bug that should be fixed right away.
2071 /* Skip instruction if instructed so */
2072 if (likely(r
->access(vcpu
, params
, r
)))
2077 * emulate_cp -- tries to match a sys_reg access in a handling table, and
2078 * call the corresponding trap handler.
2080 * @params: pointer to the descriptor of the access
2081 * @table: array of trap descriptors
2082 * @num: size of the trap descriptor array
2084 * Return 0 if the access has been handled, and -1 if not.
2086 static int emulate_cp(struct kvm_vcpu
*vcpu
,
2087 struct sys_reg_params
*params
,
2088 const struct sys_reg_desc
*table
,
2091 const struct sys_reg_desc
*r
;
2094 return -1; /* Not handled */
2096 r
= find_reg(params
, table
, num
);
2099 perform_access(vcpu
, params
, r
);
2107 static void unhandled_cp_access(struct kvm_vcpu
*vcpu
,
2108 struct sys_reg_params
*params
)
2110 u8 esr_ec
= kvm_vcpu_trap_get_class(vcpu
);
2114 case ESR_ELx_EC_CP15_32
:
2115 case ESR_ELx_EC_CP15_64
:
2118 case ESR_ELx_EC_CP14_MR
:
2119 case ESR_ELx_EC_CP14_64
:
2126 print_sys_reg_msg(params
,
2127 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2128 cp
, *vcpu_pc(vcpu
), *vcpu_cpsr(vcpu
));
2129 kvm_inject_undefined(vcpu
);
2133 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2134 * @vcpu: The VCPU pointer
2135 * @run: The kvm_run struct
2137 static int kvm_handle_cp_64(struct kvm_vcpu
*vcpu
,
2138 const struct sys_reg_desc
*global
,
2141 struct sys_reg_params params
;
2142 u32 esr
= kvm_vcpu_get_esr(vcpu
);
2143 int Rt
= kvm_vcpu_sys_get_rt(vcpu
);
2144 int Rt2
= (esr
>> 10) & 0x1f;
2146 params
.CRm
= (esr
>> 1) & 0xf;
2147 params
.is_write
= ((esr
& 1) == 0);
2150 params
.Op1
= (esr
>> 16) & 0xf;
2155 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2156 * backends between AArch32 and AArch64, we get away with it.
2158 if (params
.is_write
) {
2159 params
.regval
= vcpu_get_reg(vcpu
, Rt
) & 0xffffffff;
2160 params
.regval
|= vcpu_get_reg(vcpu
, Rt2
) << 32;
2164 * If the table contains a handler, handle the
2165 * potential register operation in the case of a read and return
2168 if (!emulate_cp(vcpu
, ¶ms
, global
, nr_global
)) {
2169 /* Split up the value between registers for the read side */
2170 if (!params
.is_write
) {
2171 vcpu_set_reg(vcpu
, Rt
, lower_32_bits(params
.regval
));
2172 vcpu_set_reg(vcpu
, Rt2
, upper_32_bits(params
.regval
));
2178 unhandled_cp_access(vcpu
, ¶ms
);
2183 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2184 * @vcpu: The VCPU pointer
2185 * @run: The kvm_run struct
2187 static int kvm_handle_cp_32(struct kvm_vcpu
*vcpu
,
2188 const struct sys_reg_desc
*global
,
2191 struct sys_reg_params params
;
2192 u32 esr
= kvm_vcpu_get_esr(vcpu
);
2193 int Rt
= kvm_vcpu_sys_get_rt(vcpu
);
2195 params
.CRm
= (esr
>> 1) & 0xf;
2196 params
.regval
= vcpu_get_reg(vcpu
, Rt
);
2197 params
.is_write
= ((esr
& 1) == 0);
2198 params
.CRn
= (esr
>> 10) & 0xf;
2200 params
.Op1
= (esr
>> 14) & 0x7;
2201 params
.Op2
= (esr
>> 17) & 0x7;
2203 if (!emulate_cp(vcpu
, ¶ms
, global
, nr_global
)) {
2204 if (!params
.is_write
)
2205 vcpu_set_reg(vcpu
, Rt
, params
.regval
);
2209 unhandled_cp_access(vcpu
, ¶ms
);
2213 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
)
2215 return kvm_handle_cp_64(vcpu
, cp15_64_regs
, ARRAY_SIZE(cp15_64_regs
));
2218 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
)
2220 return kvm_handle_cp_32(vcpu
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
2223 int kvm_handle_cp14_64(struct kvm_vcpu
*vcpu
)
2225 return kvm_handle_cp_64(vcpu
, cp14_64_regs
, ARRAY_SIZE(cp14_64_regs
));
2228 int kvm_handle_cp14_32(struct kvm_vcpu
*vcpu
)
2230 return kvm_handle_cp_32(vcpu
, cp14_regs
, ARRAY_SIZE(cp14_regs
));
2233 static bool is_imp_def_sys_reg(struct sys_reg_params
*params
)
2235 // See ARM DDI 0487E.a, section D12.3.2
2236 return params
->Op0
== 3 && (params
->CRn
& 0b1011) == 0b1011;
2239 static int emulate_sys_reg(struct kvm_vcpu
*vcpu
,
2240 struct sys_reg_params
*params
)
2242 const struct sys_reg_desc
*r
;
2244 r
= find_reg(params
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
2247 perform_access(vcpu
, params
, r
);
2248 } else if (is_imp_def_sys_reg(params
)) {
2249 kvm_inject_undefined(vcpu
);
2251 print_sys_reg_msg(params
,
2252 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2253 *vcpu_pc(vcpu
), *vcpu_cpsr(vcpu
));
2254 kvm_inject_undefined(vcpu
);
2260 * kvm_reset_sys_regs - sets system registers to reset value
2261 * @vcpu: The VCPU pointer
2263 * This function finds the right table above and sets the registers on the
2264 * virtual CPU struct to their architecturally defined reset values.
2266 void kvm_reset_sys_regs(struct kvm_vcpu
*vcpu
)
2270 for (i
= 0; i
< ARRAY_SIZE(sys_reg_descs
); i
++)
2271 if (sys_reg_descs
[i
].reset
)
2272 sys_reg_descs
[i
].reset(vcpu
, &sys_reg_descs
[i
]);
2276 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2277 * @vcpu: The VCPU pointer
2279 int kvm_handle_sys_reg(struct kvm_vcpu
*vcpu
)
2281 struct sys_reg_params params
;
2282 unsigned long esr
= kvm_vcpu_get_esr(vcpu
);
2283 int Rt
= kvm_vcpu_sys_get_rt(vcpu
);
2286 trace_kvm_handle_sys_reg(esr
);
2288 params
.Op0
= (esr
>> 20) & 3;
2289 params
.Op1
= (esr
>> 14) & 0x7;
2290 params
.CRn
= (esr
>> 10) & 0xf;
2291 params
.CRm
= (esr
>> 1) & 0xf;
2292 params
.Op2
= (esr
>> 17) & 0x7;
2293 params
.regval
= vcpu_get_reg(vcpu
, Rt
);
2294 params
.is_write
= !(esr
& 1);
2296 ret
= emulate_sys_reg(vcpu
, ¶ms
);
2298 if (!params
.is_write
)
2299 vcpu_set_reg(vcpu
, Rt
, params
.regval
);
2303 /******************************************************************************
2305 *****************************************************************************/
2307 static bool index_to_params(u64 id
, struct sys_reg_params
*params
)
2309 switch (id
& KVM_REG_SIZE_MASK
) {
2310 case KVM_REG_SIZE_U64
:
2311 /* Any unused index bits means it's not valid. */
2312 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
2313 | KVM_REG_ARM_COPROC_MASK
2314 | KVM_REG_ARM64_SYSREG_OP0_MASK
2315 | KVM_REG_ARM64_SYSREG_OP1_MASK
2316 | KVM_REG_ARM64_SYSREG_CRN_MASK
2317 | KVM_REG_ARM64_SYSREG_CRM_MASK
2318 | KVM_REG_ARM64_SYSREG_OP2_MASK
))
2320 params
->Op0
= ((id
& KVM_REG_ARM64_SYSREG_OP0_MASK
)
2321 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT
);
2322 params
->Op1
= ((id
& KVM_REG_ARM64_SYSREG_OP1_MASK
)
2323 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT
);
2324 params
->CRn
= ((id
& KVM_REG_ARM64_SYSREG_CRN_MASK
)
2325 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT
);
2326 params
->CRm
= ((id
& KVM_REG_ARM64_SYSREG_CRM_MASK
)
2327 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT
);
2328 params
->Op2
= ((id
& KVM_REG_ARM64_SYSREG_OP2_MASK
)
2329 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT
);
2336 const struct sys_reg_desc
*find_reg_by_id(u64 id
,
2337 struct sys_reg_params
*params
,
2338 const struct sys_reg_desc table
[],
2341 if (!index_to_params(id
, params
))
2344 return find_reg(params
, table
, num
);
2347 /* Decode an index value, and find the sys_reg_desc entry. */
2348 static const struct sys_reg_desc
*index_to_sys_reg_desc(struct kvm_vcpu
*vcpu
,
2351 const struct sys_reg_desc
*r
;
2352 struct sys_reg_params params
;
2354 /* We only do sys_reg for now. */
2355 if ((id
& KVM_REG_ARM_COPROC_MASK
) != KVM_REG_ARM64_SYSREG
)
2358 if (!index_to_params(id
, ¶ms
))
2361 r
= find_reg(¶ms
, sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
));
2363 /* Not saved in the sys_reg array and not otherwise accessible? */
2364 if (r
&& !(r
->reg
|| r
->get_user
))
2371 * These are the invariant sys_reg registers: we let the guest see the
2372 * host versions of these, so they're part of the guest state.
2374 * A future CPU may provide a mechanism to present different values to
2375 * the guest, or a future kvm may trap them.
2378 #define FUNCTION_INVARIANT(reg) \
2379 static void get_##reg(struct kvm_vcpu *v, \
2380 const struct sys_reg_desc *r) \
2382 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
2385 FUNCTION_INVARIANT(midr_el1
)
2386 FUNCTION_INVARIANT(revidr_el1
)
2387 FUNCTION_INVARIANT(clidr_el1
)
2388 FUNCTION_INVARIANT(aidr_el1
)
2390 static void get_ctr_el0(struct kvm_vcpu
*v
, const struct sys_reg_desc
*r
)
2392 ((struct sys_reg_desc
*)r
)->val
= read_sanitised_ftr_reg(SYS_CTR_EL0
);
2395 /* ->val is filled in by kvm_sys_reg_table_init() */
2396 static struct sys_reg_desc invariant_sys_regs
[] = {
2397 { SYS_DESC(SYS_MIDR_EL1
), NULL
, get_midr_el1
},
2398 { SYS_DESC(SYS_REVIDR_EL1
), NULL
, get_revidr_el1
},
2399 { SYS_DESC(SYS_CLIDR_EL1
), NULL
, get_clidr_el1
},
2400 { SYS_DESC(SYS_AIDR_EL1
), NULL
, get_aidr_el1
},
2401 { SYS_DESC(SYS_CTR_EL0
), NULL
, get_ctr_el0
},
2404 static int reg_from_user(u64
*val
, const void __user
*uaddr
, u64 id
)
2406 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
2411 static int reg_to_user(void __user
*uaddr
, const u64
*val
, u64 id
)
2413 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
2418 static int get_invariant_sys_reg(u64 id
, void __user
*uaddr
)
2420 struct sys_reg_params params
;
2421 const struct sys_reg_desc
*r
;
2423 r
= find_reg_by_id(id
, ¶ms
, invariant_sys_regs
,
2424 ARRAY_SIZE(invariant_sys_regs
));
2428 return reg_to_user(uaddr
, &r
->val
, id
);
2431 static int set_invariant_sys_reg(u64 id
, void __user
*uaddr
)
2433 struct sys_reg_params params
;
2434 const struct sys_reg_desc
*r
;
2436 u64 val
= 0; /* Make sure high bits are 0 for 32-bit regs */
2438 r
= find_reg_by_id(id
, ¶ms
, invariant_sys_regs
,
2439 ARRAY_SIZE(invariant_sys_regs
));
2443 err
= reg_from_user(&val
, uaddr
, id
);
2447 /* This is what we mean by invariant: you can't change it. */
2454 static bool is_valid_cache(u32 val
)
2458 if (val
>= CSSELR_MAX
)
2461 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2463 ctype
= (cache_levels
>> (level
* 3)) & 7;
2466 case 0: /* No cache */
2468 case 1: /* Instruction cache only */
2470 case 2: /* Data cache only */
2471 case 4: /* Unified cache */
2473 case 3: /* Separate instruction and data caches */
2475 default: /* Reserved: we can't know instruction or data. */
2480 static int demux_c15_get(u64 id
, void __user
*uaddr
)
2483 u32 __user
*uval
= uaddr
;
2485 /* Fail if we have unknown bits set. */
2486 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
2487 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
2490 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
2491 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
2492 if (KVM_REG_SIZE(id
) != 4)
2494 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
2495 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
2496 if (!is_valid_cache(val
))
2499 return put_user(get_ccsidr(val
), uval
);
2505 static int demux_c15_set(u64 id
, void __user
*uaddr
)
2508 u32 __user
*uval
= uaddr
;
2510 /* Fail if we have unknown bits set. */
2511 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
2512 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
2515 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
2516 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
2517 if (KVM_REG_SIZE(id
) != 4)
2519 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
2520 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
2521 if (!is_valid_cache(val
))
2524 if (get_user(newval
, uval
))
2527 /* This is also invariant: you can't change it. */
2528 if (newval
!= get_ccsidr(val
))
2536 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
2538 const struct sys_reg_desc
*r
;
2539 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
2541 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
2542 return demux_c15_get(reg
->id
, uaddr
);
2544 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
2547 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
2549 return get_invariant_sys_reg(reg
->id
, uaddr
);
2551 /* Check for regs disabled by runtime config */
2552 if (sysreg_hidden(vcpu
, r
))
2556 return (r
->get_user
)(vcpu
, r
, reg
, uaddr
);
2558 return reg_to_user(uaddr
, &__vcpu_sys_reg(vcpu
, r
->reg
), reg
->id
);
2561 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
2563 const struct sys_reg_desc
*r
;
2564 void __user
*uaddr
= (void __user
*)(unsigned long)reg
->addr
;
2566 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
2567 return demux_c15_set(reg
->id
, uaddr
);
2569 if (KVM_REG_SIZE(reg
->id
) != sizeof(__u64
))
2572 r
= index_to_sys_reg_desc(vcpu
, reg
->id
);
2574 return set_invariant_sys_reg(reg
->id
, uaddr
);
2576 /* Check for regs disabled by runtime config */
2577 if (sysreg_hidden(vcpu
, r
))
2581 return (r
->set_user
)(vcpu
, r
, reg
, uaddr
);
2583 return reg_from_user(&__vcpu_sys_reg(vcpu
, r
->reg
), uaddr
, reg
->id
);
2586 static unsigned int num_demux_regs(void)
2588 unsigned int i
, count
= 0;
2590 for (i
= 0; i
< CSSELR_MAX
; i
++)
2591 if (is_valid_cache(i
))
2597 static int write_demux_regids(u64 __user
*uindices
)
2599 u64 val
= KVM_REG_ARM64
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
2602 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
2603 for (i
= 0; i
< CSSELR_MAX
; i
++) {
2604 if (!is_valid_cache(i
))
2606 if (put_user(val
| i
, uindices
))
2613 static u64
sys_reg_to_index(const struct sys_reg_desc
*reg
)
2615 return (KVM_REG_ARM64
| KVM_REG_SIZE_U64
|
2616 KVM_REG_ARM64_SYSREG
|
2617 (reg
->Op0
<< KVM_REG_ARM64_SYSREG_OP0_SHIFT
) |
2618 (reg
->Op1
<< KVM_REG_ARM64_SYSREG_OP1_SHIFT
) |
2619 (reg
->CRn
<< KVM_REG_ARM64_SYSREG_CRN_SHIFT
) |
2620 (reg
->CRm
<< KVM_REG_ARM64_SYSREG_CRM_SHIFT
) |
2621 (reg
->Op2
<< KVM_REG_ARM64_SYSREG_OP2_SHIFT
));
2624 static bool copy_reg_to_user(const struct sys_reg_desc
*reg
, u64 __user
**uind
)
2629 if (put_user(sys_reg_to_index(reg
), *uind
))
2636 static int walk_one_sys_reg(const struct kvm_vcpu
*vcpu
,
2637 const struct sys_reg_desc
*rd
,
2639 unsigned int *total
)
2642 * Ignore registers we trap but don't save,
2643 * and for which no custom user accessor is provided.
2645 if (!(rd
->reg
|| rd
->get_user
))
2648 if (sysreg_hidden(vcpu
, rd
))
2651 if (!copy_reg_to_user(rd
, uind
))
2658 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2659 static int walk_sys_regs(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
2661 const struct sys_reg_desc
*i2
, *end2
;
2662 unsigned int total
= 0;
2666 end2
= sys_reg_descs
+ ARRAY_SIZE(sys_reg_descs
);
2668 while (i2
!= end2
) {
2669 err
= walk_one_sys_reg(vcpu
, i2
++, &uind
, &total
);
2676 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu
*vcpu
)
2678 return ARRAY_SIZE(invariant_sys_regs
)
2680 + walk_sys_regs(vcpu
, (u64 __user
*)NULL
);
2683 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
2688 /* Then give them all the invariant registers' indices. */
2689 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++) {
2690 if (put_user(sys_reg_to_index(&invariant_sys_regs
[i
]), uindices
))
2695 err
= walk_sys_regs(vcpu
, uindices
);
2700 return write_demux_regids(uindices
);
2703 void kvm_sys_reg_table_init(void)
2706 struct sys_reg_desc clidr
;
2708 /* Make sure tables are unique and in order. */
2709 BUG_ON(check_sysreg_table(sys_reg_descs
, ARRAY_SIZE(sys_reg_descs
), false));
2710 BUG_ON(check_sysreg_table(cp14_regs
, ARRAY_SIZE(cp14_regs
), true));
2711 BUG_ON(check_sysreg_table(cp14_64_regs
, ARRAY_SIZE(cp14_64_regs
), true));
2712 BUG_ON(check_sysreg_table(cp15_regs
, ARRAY_SIZE(cp15_regs
), true));
2713 BUG_ON(check_sysreg_table(cp15_64_regs
, ARRAY_SIZE(cp15_64_regs
), true));
2714 BUG_ON(check_sysreg_table(invariant_sys_regs
, ARRAY_SIZE(invariant_sys_regs
), false));
2716 /* We abuse the reset function to overwrite the table itself. */
2717 for (i
= 0; i
< ARRAY_SIZE(invariant_sys_regs
); i
++)
2718 invariant_sys_regs
[i
].reset(NULL
, &invariant_sys_regs
[i
]);
2721 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2723 * If software reads the Cache Type fields from Ctype1
2724 * upwards, once it has seen a value of 0b000, no caches
2725 * exist at further-out levels of the hierarchy. So, for
2726 * example, if Ctype3 is the first Cache Type field with a
2727 * value of 0b000, the values of Ctype4 to Ctype7 must be
2730 get_clidr_el1(NULL
, &clidr
); /* Ugly... */
2731 cache_levels
= clidr
.val
;
2732 for (i
= 0; i
< 7; i
++)
2733 if (((cache_levels
>> (i
*3)) & 7) == 0)
2735 /* Clear all higher bits. */
2736 cache_levels
&= (1 << (i
*3))-1;