1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Page table support for the Hexagon architecture
5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
12 * Page table definitions for Qualcomm Hexagon processor.
15 #include <asm-generic/pgtable-nopmd.h>
17 /* A handy thing to have if one has the RAM. Declared in head.S */
18 extern unsigned long empty_zero_page
;
21 * The PTE model described here is that of the Hexagon Virtual Machine,
22 * which autonomously walks 2-level page tables. At a lower level, we
23 * also describe the RISCish software-loaded TLB entry structure of
24 * the underlying Hexagon processor. A kernel built to run on the
25 * virtual machine has no need to know about the underlying hardware.
27 #include <asm/vm_mmu.h>
30 * To maximize the comfort level for the PTE manipulation macros,
31 * define the "well known" architecture-specific bits.
33 #define _PAGE_READ __HVM_PTE_R
34 #define _PAGE_WRITE __HVM_PTE_W
35 #define _PAGE_EXECUTE __HVM_PTE_X
36 #define _PAGE_USER __HVM_PTE_U
39 * We have a total of 4 "soft" bits available in the abstract PTE.
40 * The two mandatory software bits are Dirty and Accessed.
41 * To make nonlinear swap work according to the more recent
42 * model, we want a low order "Present" bit to indicate whether
43 * the PTE describes MMU programming or swap space.
45 #define _PAGE_PRESENT (1<<0)
46 #define _PAGE_DIRTY (1<<1)
47 #define _PAGE_ACCESSED (1<<2)
50 * For now, let's say that Valid and Present are the same thing.
51 * Alternatively, we could say that it's the "or" of R, W, and X
54 #define _PAGE_VALID _PAGE_PRESENT
57 * We're not defining _PAGE_GLOBAL here, since there's no concept
58 * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
59 * and we want to use the same page table structures and macros in
60 * the native kernel as we do in the virtual machine kernel.
61 * So we'll put up with a bit of inefficiency for now...
65 * Top "FOURTH" level (pgd), which for the Hexagon VM is really
66 * only the second from the bottom, pgd and pud both being collapsed.
67 * Each entry represents 4MB of virtual address space, 4K of table
68 * thus maps the full 4GB.
70 #define PGDIR_SHIFT 22
71 #define PTRS_PER_PGD 1024
73 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
74 #define PGDIR_MASK (~(PGDIR_SIZE-1))
76 #ifdef CONFIG_PAGE_SIZE_4KB
77 #define PTRS_PER_PTE 1024
80 #ifdef CONFIG_PAGE_SIZE_16KB
81 #define PTRS_PER_PTE 256
84 #ifdef CONFIG_PAGE_SIZE_64KB
85 #define PTRS_PER_PTE 64
88 #ifdef CONFIG_PAGE_SIZE_256KB
89 #define PTRS_PER_PTE 16
92 #ifdef CONFIG_PAGE_SIZE_1MB
93 #define PTRS_PER_PTE 4
96 /* Any bigger and the PTE disappears. */
97 #define pgd_ERROR(e) \
98 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
102 * Page Protection Constants. Includes (in this variant) cache attributes.
104 extern unsigned long _dflt_cache_att
;
106 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \
108 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \
109 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
110 #define PAGE_COPY PAGE_READONLY
111 #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
112 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
113 #define PAGE_COPY_EXEC PAGE_EXEC
114 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
115 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
116 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \
117 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
121 * Aliases for mapping mmap() protection bits to page protections.
122 * These get used for static initialization, so using the _dflt_cache_att
123 * variable for the default cache attribute isn't workable. If the
124 * default gets changed at boot time, the boot option code has to
125 * update data structures like the protaction_map[] array.
127 #define CACHEDEF (CACHE_DEFAULT << 6)
129 /* Private (copy-on-write) page protections. */
130 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
131 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
132 #define __P010 __P000 /* Write-only copy-on-write */
133 #define __P011 __P001 /* Read/Write copy-on-write */
134 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
135 _PAGE_EXECUTE | CACHEDEF)
136 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
137 _PAGE_READ | CACHEDEF)
138 #define __P110 __P100 /* Write/execute copy-on-write */
139 #define __P111 __P101 /* Read/Write/Execute, copy-on-write */
141 /* Shared page protections. */
142 #define __S000 __P000
143 #define __S001 __P001
144 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
145 _PAGE_WRITE | CACHEDEF)
146 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
147 _PAGE_WRITE | CACHEDEF)
148 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
149 _PAGE_EXECUTE | CACHEDEF)
150 #define __S101 __P101
151 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
152 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
153 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
154 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
156 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
]; /* located in head.S */
158 /* Seems to be zero even in architectures where the zero page is firewalled? */
159 #define FIRST_USER_ADDRESS 0UL
161 /* HUGETLB not working currently */
162 #ifdef CONFIG_HUGETLB_PAGE
163 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
167 * For now, assume that higher-level code will do TLB/MMU invalidations
168 * and don't insert that overhead into this low-level function.
170 extern void sync_icache_dcache(pte_t pte
);
172 #define pte_present_exec_user(pte) \
173 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
174 (_PAGE_EXECUTE | _PAGE_USER))
176 static inline void set_pte(pte_t
*ptep
, pte_t pteval
)
178 /* should really be using pte_exec, if it weren't declared later. */
179 if (pte_present_exec_user(pteval
))
180 sync_icache_dcache(pteval
);
186 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
187 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
188 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7
189 * as a universal null entry, but some of those least significant bits
190 * are interpreted by software.
192 #define _NULL_PMD 0x7
193 #define _NULL_PTE 0x0
195 static inline void pmd_clear(pmd_t
*pmd_entry_ptr
)
197 pmd_val(*pmd_entry_ptr
) = _NULL_PMD
;
201 * Conveniently, a null PTE value is invalid.
203 static inline void pte_clear(struct mm_struct
*mm
, unsigned long addr
,
206 pte_val(*ptep
) = _NULL_PTE
;
210 * pmd_none - check if pmd_entry is mapped
211 * @pmd_entry: pmd entry
213 * MIPS checks it against that "invalid pte table" thing.
215 static inline int pmd_none(pmd_t pmd
)
217 return pmd_val(pmd
) == _NULL_PMD
;
221 * pmd_present - is there a page table behind this?
222 * Essentially the inverse of pmd_none. We maybe
223 * save an inline instruction by defining it this
224 * way, instead of simply "!pmd_none".
226 static inline int pmd_present(pmd_t pmd
)
228 return pmd_val(pmd
) != (unsigned long)_NULL_PMD
;
232 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
233 * As we have no known cause of badness, it's null, as it is for many
236 static inline int pmd_bad(pmd_t pmd
)
242 * pmd_page - converts a PMD entry to a page pointer
244 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
245 #define pmd_pgtable(pmd) pmd_page(pmd)
248 * pte_none - check if pte is mapped
251 static inline int pte_none(pte_t pte
)
253 return pte_val(pte
) == _NULL_PTE
;
257 * pte_present - check if page is present
259 static inline int pte_present(pte_t pte
)
261 return pte_val(pte
) & _PAGE_PRESENT
;
264 /* mk_pte - make a PTE out of a page pointer and protection bits */
265 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
267 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
268 #define pte_page(x) pfn_to_page(pte_pfn(x))
270 /* pte_mkold - mark PTE as not recently accessed */
271 static inline pte_t
pte_mkold(pte_t pte
)
273 pte_val(pte
) &= ~_PAGE_ACCESSED
;
277 /* pte_mkyoung - mark PTE as recently accessed */
278 static inline pte_t
pte_mkyoung(pte_t pte
)
280 pte_val(pte
) |= _PAGE_ACCESSED
;
284 /* pte_mkclean - mark page as in sync with backing store */
285 static inline pte_t
pte_mkclean(pte_t pte
)
287 pte_val(pte
) &= ~_PAGE_DIRTY
;
291 /* pte_mkdirty - mark page as modified */
292 static inline pte_t
pte_mkdirty(pte_t pte
)
294 pte_val(pte
) |= _PAGE_DIRTY
;
298 /* pte_young - "is PTE marked as accessed"? */
299 static inline int pte_young(pte_t pte
)
301 return pte_val(pte
) & _PAGE_ACCESSED
;
304 /* pte_dirty - "is PTE dirty?" */
305 static inline int pte_dirty(pte_t pte
)
307 return pte_val(pte
) & _PAGE_DIRTY
;
310 /* pte_modify - set protection bits on PTE */
311 static inline pte_t
pte_modify(pte_t pte
, pgprot_t prot
)
313 pte_val(pte
) &= PAGE_MASK
;
314 pte_val(pte
) |= pgprot_val(prot
);
318 /* pte_wrprotect - mark page as not writable */
319 static inline pte_t
pte_wrprotect(pte_t pte
)
321 pte_val(pte
) &= ~_PAGE_WRITE
;
325 /* pte_mkwrite - mark page as writable */
326 static inline pte_t
pte_mkwrite(pte_t pte
)
328 pte_val(pte
) |= _PAGE_WRITE
;
332 /* pte_mkexec - mark PTE as executable */
333 static inline pte_t
pte_mkexec(pte_t pte
)
335 pte_val(pte
) |= _PAGE_EXECUTE
;
339 /* pte_read - "is PTE marked as readable?" */
340 static inline int pte_read(pte_t pte
)
342 return pte_val(pte
) & _PAGE_READ
;
345 /* pte_write - "is PTE marked as writable?" */
346 static inline int pte_write(pte_t pte
)
348 return pte_val(pte
) & _PAGE_WRITE
;
352 /* pte_exec - "is PTE marked as executable?" */
353 static inline int pte_exec(pte_t pte
)
355 return pte_val(pte
) & _PAGE_EXECUTE
;
358 /* __pte_to_swp_entry - extract swap entry from PTE */
359 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
361 /* __swp_entry_to_pte - extract PTE from swap entry */
362 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
364 /* pfn_pte - convert page number and protection value to page table entry */
365 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
367 /* pte_pfn - convert pte to page frame number */
368 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
369 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
372 * set_pte_at - update page table and do whatever magic may be
373 * necessary to make the underlying hardware/firmware take note.
375 * VM may require a virtual instruction to alert the MMU.
377 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
379 static inline unsigned long pmd_page_vaddr(pmd_t pmd
)
381 return (unsigned long)__va(pmd_val(pmd
) & PAGE_MASK
);
384 /* ZERO_PAGE - returns the globally shared zero page */
385 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
388 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is
389 * interpreted as swap information. The remaining free bits are interpreted as
390 * swap type/offset tuple. Rather than have the TLB fill handler test
391 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
392 * all zeros for swap entries, which speeds up the miss handler at the cost of
393 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon
394 * processor architecture and target applications suggest a lot of TLB misses
395 * and not much swap space.
397 * Format of swap PTE:
398 * bit 0: Present (zero)
399 * bits 1-5: swap type (arch independent layer uses 5 bits max)
400 * bits 6-9: bits 3:0 of offset
401 * bits 10-12: effectively _PAGE_PROTNONE (all zero)
402 * bits 13-31: bits 22:4 of swap offset
404 * The split offset makes some of the following macros a little gnarly,
405 * but there's plenty of precedent for this sort of thing.
408 /* Used for swap PTEs */
409 #define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f)
411 #define __swp_offset(swp_pte) \
412 ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
414 #define __swp_entry(type, offset) \
417 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })