2 * Handle unaligned accesses by emulation.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Copyright (C) 2014 Imagination Technologies Ltd.
12 * This file contains exception handler for address error exception with the
13 * special capability to execute faulting instructions in software. The
14 * handler does not try to handle the case when the program counter points
15 * to an address not aligned to a word boundary.
17 * Putting data to unaligned addresses is a bad practice even on Intel where
18 * only the performance is affected. Much worse is that such code is non-
19 * portable. Due to several programs that die on MIPS due to alignment
20 * problems I decided to implement this handler anyway though I originally
21 * didn't intend to do this at all for user code.
23 * For now I enable fixing of address errors by default to make life easier.
24 * I however intend to disable this somewhen in the future when the alignment
25 * problems with user programs have been fixed. For programmers this is the
28 * Fixing address errors is a per process option. The option is inherited
29 * across fork(2) and execve(2) calls. If you really want to use the
30 * option in your user programs - I discourage the use of the software
31 * emulation strongly - use the following code in your userland stuff:
33 * #include <sys/sysmips.h>
36 * sysmips(MIPS_FIXADE, x);
39 * The argument x is 0 for disabling software emulation, enabled otherwise.
41 * Below a little program to play around with this feature.
44 * #include <sys/sysmips.h>
47 * unsigned char bar[8];
50 * main(int argc, char *argv[])
52 * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
53 * unsigned int *p = (unsigned int *) (x.bar + 3);
57 * sysmips(MIPS_FIXADE, atoi(argv[1]));
59 * printf("*p = %08lx\n", *p);
63 * for(i = 0; i <= 7; i++)
64 * printf("%02x ", x.bar[i]);
68 * Coprocessor loads are not supported; I think this case is unimportant
71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
72 * exception for the R6000.
73 * A store crossing a page boundary might be executed only partially.
74 * Undo the partial store in this case.
76 #include <linux/context_tracking.h>
78 #include <linux/signal.h>
79 #include <linux/smp.h>
80 #include <linux/sched.h>
81 #include <linux/debugfs.h>
82 #include <linux/perf_event.h>
85 #include <asm/branch.h>
86 #include <asm/byteorder.h>
88 #include <asm/debug.h>
90 #include <asm/fpu_emulator.h>
92 #include <asm/unaligned-emul.h>
93 #include <asm/mmu_context.h>
94 #include <linux/uaccess.h>
97 UNALIGNED_ACTION_QUIET
,
98 UNALIGNED_ACTION_SIGNAL
,
99 UNALIGNED_ACTION_SHOW
,
101 #ifdef CONFIG_DEBUG_FS
102 static u32 unaligned_instructions
;
103 static u32 unaligned_action
;
105 #define unaligned_action UNALIGNED_ACTION_QUIET
107 extern void show_registers(struct pt_regs
*regs
);
109 static void emulate_load_store_insn(struct pt_regs
*regs
,
110 void __user
*addr
, unsigned int __user
*pc
)
112 unsigned long origpc
, orig31
, value
;
113 union mips_instruction insn
;
118 origpc
= (unsigned long)pc
;
119 orig31
= regs
->regs
[31];
121 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
, 1, regs
, 0);
124 * This load never faults.
126 __get_user(insn
.word
, pc
);
128 switch (insn
.i_format
.opcode
) {
130 * These are instructions that a compiler doesn't generate. We
131 * can assume therefore that the code is MIPS-aware and
132 * really buggy. Emulating these instructions would break the
141 * For these instructions the only way to create an address
142 * error is an attempted access to kernel/supervisor address
159 * The remaining opcodes are the ones that are really of
163 if (insn
.dsp_format
.func
== lx_op
) {
164 switch (insn
.dsp_format
.op
) {
166 if (!access_ok(addr
, 4))
168 LoadW(addr
, value
, res
);
171 compute_return_epc(regs
);
172 regs
->regs
[insn
.dsp_format
.rd
] = value
;
175 if (!access_ok(addr
, 2))
177 LoadHW(addr
, value
, res
);
180 compute_return_epc(regs
);
181 regs
->regs
[insn
.dsp_format
.rd
] = value
;
190 * we can land here only from kernel accessing user
191 * memory, so we need to "switch" the address limit to
192 * user space, so that address check can work properly.
194 seg
= force_uaccess_begin();
195 switch (insn
.spec3_format
.func
) {
197 if (!access_ok(addr
, 2)) {
198 force_uaccess_end(seg
);
201 LoadHWE(addr
, value
, res
);
203 force_uaccess_end(seg
);
206 compute_return_epc(regs
);
207 regs
->regs
[insn
.spec3_format
.rt
] = value
;
210 if (!access_ok(addr
, 4)) {
211 force_uaccess_end(seg
);
214 LoadWE(addr
, value
, res
);
216 force_uaccess_end(seg
);
219 compute_return_epc(regs
);
220 regs
->regs
[insn
.spec3_format
.rt
] = value
;
223 if (!access_ok(addr
, 2)) {
224 force_uaccess_end(seg
);
227 LoadHWUE(addr
, value
, res
);
229 force_uaccess_end(seg
);
232 compute_return_epc(regs
);
233 regs
->regs
[insn
.spec3_format
.rt
] = value
;
236 if (!access_ok(addr
, 2)) {
237 force_uaccess_end(seg
);
240 compute_return_epc(regs
);
241 value
= regs
->regs
[insn
.spec3_format
.rt
];
242 StoreHWE(addr
, value
, res
);
244 force_uaccess_end(seg
);
249 if (!access_ok(addr
, 4)) {
250 force_uaccess_end(seg
);
253 compute_return_epc(regs
);
254 value
= regs
->regs
[insn
.spec3_format
.rt
];
255 StoreWE(addr
, value
, res
);
257 force_uaccess_end(seg
);
262 force_uaccess_end(seg
);
265 force_uaccess_end(seg
);
270 if (!access_ok(addr
, 2))
273 if (IS_ENABLED(CONFIG_EVA
)) {
274 if (uaccess_kernel())
275 LoadHW(addr
, value
, res
);
277 LoadHWE(addr
, value
, res
);
279 LoadHW(addr
, value
, res
);
284 compute_return_epc(regs
);
285 regs
->regs
[insn
.i_format
.rt
] = value
;
289 if (!access_ok(addr
, 4))
292 if (IS_ENABLED(CONFIG_EVA
)) {
293 if (uaccess_kernel())
294 LoadW(addr
, value
, res
);
296 LoadWE(addr
, value
, res
);
298 LoadW(addr
, value
, res
);
303 compute_return_epc(regs
);
304 regs
->regs
[insn
.i_format
.rt
] = value
;
308 if (!access_ok(addr
, 2))
311 if (IS_ENABLED(CONFIG_EVA
)) {
312 if (uaccess_kernel())
313 LoadHWU(addr
, value
, res
);
315 LoadHWUE(addr
, value
, res
);
317 LoadHWU(addr
, value
, res
);
322 compute_return_epc(regs
);
323 regs
->regs
[insn
.i_format
.rt
] = value
;
329 * A 32-bit kernel might be running on a 64-bit processor. But
330 * if we're on a 32-bit processor and an i-cache incoherency
331 * or race makes us see a 64-bit instruction here the sdl/sdr
332 * would blow up, so for now we don't handle unaligned 64-bit
333 * instructions on 32-bit kernels.
335 if (!access_ok(addr
, 4))
338 LoadWU(addr
, value
, res
);
341 compute_return_epc(regs
);
342 regs
->regs
[insn
.i_format
.rt
] = value
;
344 #endif /* CONFIG_64BIT */
346 /* Cannot handle 64-bit instructions in 32-bit kernel */
352 * A 32-bit kernel might be running on a 64-bit processor. But
353 * if we're on a 32-bit processor and an i-cache incoherency
354 * or race makes us see a 64-bit instruction here the sdl/sdr
355 * would blow up, so for now we don't handle unaligned 64-bit
356 * instructions on 32-bit kernels.
358 if (!access_ok(addr
, 8))
361 LoadDW(addr
, value
, res
);
364 compute_return_epc(regs
);
365 regs
->regs
[insn
.i_format
.rt
] = value
;
367 #endif /* CONFIG_64BIT */
369 /* Cannot handle 64-bit instructions in 32-bit kernel */
373 if (!access_ok(addr
, 2))
376 compute_return_epc(regs
);
377 value
= regs
->regs
[insn
.i_format
.rt
];
379 if (IS_ENABLED(CONFIG_EVA
)) {
380 if (uaccess_kernel())
381 StoreHW(addr
, value
, res
);
383 StoreHWE(addr
, value
, res
);
385 StoreHW(addr
, value
, res
);
393 if (!access_ok(addr
, 4))
396 compute_return_epc(regs
);
397 value
= regs
->regs
[insn
.i_format
.rt
];
399 if (IS_ENABLED(CONFIG_EVA
)) {
400 if (uaccess_kernel())
401 StoreW(addr
, value
, res
);
403 StoreWE(addr
, value
, res
);
405 StoreW(addr
, value
, res
);
415 * A 32-bit kernel might be running on a 64-bit processor. But
416 * if we're on a 32-bit processor and an i-cache incoherency
417 * or race makes us see a 64-bit instruction here the sdl/sdr
418 * would blow up, so for now we don't handle unaligned 64-bit
419 * instructions on 32-bit kernels.
421 if (!access_ok(addr
, 8))
424 compute_return_epc(regs
);
425 value
= regs
->regs
[insn
.i_format
.rt
];
426 StoreDW(addr
, value
, res
);
430 #endif /* CONFIG_64BIT */
432 /* Cannot handle 64-bit instructions in 32-bit kernel */
435 #ifdef CONFIG_MIPS_FP_SUPPORT
442 void __user
*fault_addr
= NULL
;
444 die_if_kernel("Unaligned FP access in kernel code", regs
);
445 BUG_ON(!used_math());
447 res
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
449 own_fpu(1); /* Restore FPU state. */
451 /* Signal if something went wrong. */
452 process_fpemu_return(res
, fault_addr
, 0);
458 #endif /* CONFIG_MIPS_FP_SUPPORT */
460 #ifdef CONFIG_CPU_HAS_MSA
463 unsigned int wd
, preempted
;
471 * If we've reached this point then userland should have taken
472 * the MSA disabled exception & initialised vector context at
473 * some point in the past.
475 BUG_ON(!thread_msa_context_live());
477 df
= insn
.msa_mi10_format
.df
;
478 wd
= insn
.msa_mi10_format
.wd
;
479 fpr
= ¤t
->thread
.fpu
.fpr
[wd
];
481 switch (insn
.msa_mi10_format
.func
) {
483 if (!access_ok(addr
, sizeof(*fpr
)))
488 * If we have live MSA context keep track of
489 * whether we get preempted in order to avoid
490 * the register context we load being clobbered
491 * by the live context as it's saved during
492 * preemption. If we don't have live context
493 * then it can't be saved to clobber the value
496 preempted
= test_thread_flag(TIF_USEDMSA
);
498 res
= __copy_from_user_inatomic(fpr
, addr
,
504 * Update the hardware register if it is in use
505 * by the task in this quantum, in order to
506 * avoid having to save & restore the whole
510 if (test_thread_flag(TIF_USEDMSA
)) {
511 write_msa_wr(wd
, fpr
, df
);
519 if (!access_ok(addr
, sizeof(*fpr
)))
523 * Update from the hardware register if it is in use by
524 * the task in this quantum, in order to avoid having to
525 * save & restore the whole vector context.
528 if (test_thread_flag(TIF_USEDMSA
))
529 read_msa_wr(wd
, fpr
, df
);
532 res
= __copy_to_user_inatomic(addr
, fpr
, sizeof(*fpr
));
541 compute_return_epc(regs
);
544 #endif /* CONFIG_CPU_HAS_MSA */
546 #ifndef CONFIG_CPU_MIPSR6
548 * COP2 is available to implementor for application specific use.
549 * It's up to applications to register a notifier chain and do
550 * whatever they have to do, including possible sending of signals.
552 * This instruction has been reallocated in Release 6
555 cu2_notifier_call_chain(CU2_LWC2_OP
, regs
);
559 cu2_notifier_call_chain(CU2_LDC2_OP
, regs
);
563 cu2_notifier_call_chain(CU2_SWC2_OP
, regs
);
567 cu2_notifier_call_chain(CU2_SDC2_OP
, regs
);
572 * Pheeee... We encountered an yet unknown instruction or
573 * cache coherence problem. Die sucker, die ...
578 #ifdef CONFIG_DEBUG_FS
579 unaligned_instructions
++;
585 /* roll back jump/branch */
586 regs
->cp0_epc
= origpc
;
587 regs
->regs
[31] = orig31
;
588 /* Did we have an exception handler installed? */
589 if (fixup_exception(regs
))
592 die_if_kernel("Unhandled kernel unaligned access", regs
);
598 die_if_kernel("Unhandled kernel unaligned access", regs
);
605 ("Unhandled kernel unaligned access or invalid instruction", regs
);
609 /* Recode table from 16-bit register notation to 32-bit GPR. */
610 const int reg16to32
[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
612 /* Recode table from 16-bit STORE register notation to 32-bit GPR. */
613 static const int reg16to32st
[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
615 static void emulate_load_store_microMIPS(struct pt_regs
*regs
,
621 unsigned int reg
= 0, rvar
;
622 unsigned long orig31
;
626 unsigned long origpc
, contpc
;
627 union mips_instruction insn
;
628 struct mm_decoded_insn mminsn
;
630 origpc
= regs
->cp0_epc
;
631 orig31
= regs
->regs
[31];
633 mminsn
.micro_mips_mode
= 1;
636 * This load never faults.
638 pc16
= (unsigned short __user
*)msk_isa16_mode(regs
->cp0_epc
);
639 __get_user(halfword
, pc16
);
641 contpc
= regs
->cp0_epc
+ 2;
642 word
= ((unsigned int)halfword
<< 16);
645 if (!mm_insn_16bit(halfword
)) {
646 __get_user(halfword
, pc16
);
648 contpc
= regs
->cp0_epc
+ 4;
654 if (get_user(halfword
, pc16
))
656 mminsn
.next_pc_inc
= 2;
657 word
= ((unsigned int)halfword
<< 16);
659 if (!mm_insn_16bit(halfword
)) {
661 if (get_user(halfword
, pc16
))
663 mminsn
.next_pc_inc
= 4;
666 mminsn
.next_insn
= word
;
668 insn
= (union mips_instruction
)(mminsn
.insn
);
669 if (mm_isBranchInstr(regs
, mminsn
, &contpc
))
670 insn
= (union mips_instruction
)(mminsn
.next_insn
);
672 /* Parse instruction to find what to do */
674 switch (insn
.mm_i_format
.opcode
) {
677 switch (insn
.mm_x_format
.func
) {
679 reg
= insn
.mm_x_format
.rd
;
686 switch (insn
.mm_m_format
.func
) {
688 reg
= insn
.mm_m_format
.rd
;
692 if (!access_ok(addr
, 8))
695 LoadW(addr
, value
, res
);
698 regs
->regs
[reg
] = value
;
700 LoadW(addr
, value
, res
);
703 regs
->regs
[reg
+ 1] = value
;
707 reg
= insn
.mm_m_format
.rd
;
711 if (!access_ok(addr
, 8))
714 value
= regs
->regs
[reg
];
715 StoreW(addr
, value
, res
);
719 value
= regs
->regs
[reg
+ 1];
720 StoreW(addr
, value
, res
);
727 reg
= insn
.mm_m_format
.rd
;
731 if (!access_ok(addr
, 16))
734 LoadDW(addr
, value
, res
);
737 regs
->regs
[reg
] = value
;
739 LoadDW(addr
, value
, res
);
742 regs
->regs
[reg
+ 1] = value
;
744 #endif /* CONFIG_64BIT */
750 reg
= insn
.mm_m_format
.rd
;
754 if (!access_ok(addr
, 16))
757 value
= regs
->regs
[reg
];
758 StoreDW(addr
, value
, res
);
762 value
= regs
->regs
[reg
+ 1];
763 StoreDW(addr
, value
, res
);
767 #endif /* CONFIG_64BIT */
772 reg
= insn
.mm_m_format
.rd
;
774 if ((rvar
> 9) || !reg
)
777 if (!access_ok(addr
, 4 * (rvar
+ 1)))
780 if (!access_ok(addr
, 4 * rvar
))
785 for (i
= 16; rvar
; rvar
--, i
++) {
786 LoadW(addr
, value
, res
);
790 regs
->regs
[i
] = value
;
792 if ((reg
& 0xf) == 9) {
793 LoadW(addr
, value
, res
);
797 regs
->regs
[30] = value
;
800 LoadW(addr
, value
, res
);
803 regs
->regs
[31] = value
;
808 reg
= insn
.mm_m_format
.rd
;
810 if ((rvar
> 9) || !reg
)
813 if (!access_ok(addr
, 4 * (rvar
+ 1)))
816 if (!access_ok(addr
, 4 * rvar
))
821 for (i
= 16; rvar
; rvar
--, i
++) {
822 value
= regs
->regs
[i
];
823 StoreW(addr
, value
, res
);
828 if ((reg
& 0xf) == 9) {
829 value
= regs
->regs
[30];
830 StoreW(addr
, value
, res
);
836 value
= regs
->regs
[31];
837 StoreW(addr
, value
, res
);
845 reg
= insn
.mm_m_format
.rd
;
847 if ((rvar
> 9) || !reg
)
850 if (!access_ok(addr
, 8 * (rvar
+ 1)))
853 if (!access_ok(addr
, 8 * rvar
))
859 for (i
= 16; rvar
; rvar
--, i
++) {
860 LoadDW(addr
, value
, res
);
864 regs
->regs
[i
] = value
;
866 if ((reg
& 0xf) == 9) {
867 LoadDW(addr
, value
, res
);
871 regs
->regs
[30] = value
;
874 LoadDW(addr
, value
, res
);
877 regs
->regs
[31] = value
;
880 #endif /* CONFIG_64BIT */
886 reg
= insn
.mm_m_format
.rd
;
888 if ((rvar
> 9) || !reg
)
891 if (!access_ok(addr
, 8 * (rvar
+ 1)))
894 if (!access_ok(addr
, 8 * rvar
))
900 for (i
= 16; rvar
; rvar
--, i
++) {
901 value
= regs
->regs
[i
];
902 StoreDW(addr
, value
, res
);
907 if ((reg
& 0xf) == 9) {
908 value
= regs
->regs
[30];
909 StoreDW(addr
, value
, res
);
915 value
= regs
->regs
[31];
916 StoreDW(addr
, value
, res
);
921 #endif /* CONFIG_64BIT */
925 /* LWC2, SWC2, LDC2, SDC2 are not serviced */
931 switch (insn
.mm_m_format
.func
) {
933 reg
= insn
.mm_m_format
.rd
;
937 /* LL,SC,LLD,SCD are not serviced */
940 #ifdef CONFIG_MIPS_FP_SUPPORT
942 switch (insn
.mm_x_format
.func
) {
956 void __user
*fault_addr
= NULL
;
959 /* roll back jump/branch */
960 regs
->cp0_epc
= origpc
;
961 regs
->regs
[31] = orig31
;
963 die_if_kernel("Unaligned FP access in kernel code", regs
);
964 BUG_ON(!used_math());
965 BUG_ON(!is_fpu_owner());
967 res
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
969 own_fpu(1); /* restore FPU state */
971 /* If something went wrong, signal */
972 process_fpemu_return(res
, fault_addr
, 0);
978 #endif /* CONFIG_MIPS_FP_SUPPORT */
981 reg
= insn
.mm_i_format
.rt
;
985 reg
= insn
.mm_i_format
.rt
;
989 reg
= insn
.mm_i_format
.rt
;
993 reg
= insn
.mm_i_format
.rt
;
997 reg
= insn
.mm_i_format
.rt
;
1001 reg
= insn
.mm_i_format
.rt
;
1005 reg
= insn
.mm_i_format
.rt
;
1009 switch (insn
.mm16_m_format
.func
) {
1011 reg
= insn
.mm16_m_format
.rlist
;
1013 if (!access_ok(addr
, 4 * rvar
))
1016 for (i
= 16; rvar
; rvar
--, i
++) {
1017 LoadW(addr
, value
, res
);
1021 regs
->regs
[i
] = value
;
1023 LoadW(addr
, value
, res
);
1026 regs
->regs
[31] = value
;
1031 reg
= insn
.mm16_m_format
.rlist
;
1033 if (!access_ok(addr
, 4 * rvar
))
1036 for (i
= 16; rvar
; rvar
--, i
++) {
1037 value
= regs
->regs
[i
];
1038 StoreW(addr
, value
, res
);
1043 value
= regs
->regs
[31];
1044 StoreW(addr
, value
, res
);
1055 reg
= reg16to32
[insn
.mm16_rb_format
.rt
];
1059 reg
= reg16to32
[insn
.mm16_rb_format
.rt
];
1063 reg
= reg16to32st
[insn
.mm16_rb_format
.rt
];
1067 reg
= reg16to32st
[insn
.mm16_rb_format
.rt
];
1071 reg
= insn
.mm16_r5_format
.rt
;
1075 reg
= insn
.mm16_r5_format
.rt
;
1079 reg
= reg16to32
[insn
.mm16_r3_format
.rt
];
1087 if (!access_ok(addr
, 2))
1090 LoadHW(addr
, value
, res
);
1093 regs
->regs
[reg
] = value
;
1097 if (!access_ok(addr
, 2))
1100 LoadHWU(addr
, value
, res
);
1103 regs
->regs
[reg
] = value
;
1107 if (!access_ok(addr
, 4))
1110 LoadW(addr
, value
, res
);
1113 regs
->regs
[reg
] = value
;
1119 * A 32-bit kernel might be running on a 64-bit processor. But
1120 * if we're on a 32-bit processor and an i-cache incoherency
1121 * or race makes us see a 64-bit instruction here the sdl/sdr
1122 * would blow up, so for now we don't handle unaligned 64-bit
1123 * instructions on 32-bit kernels.
1125 if (!access_ok(addr
, 4))
1128 LoadWU(addr
, value
, res
);
1131 regs
->regs
[reg
] = value
;
1133 #endif /* CONFIG_64BIT */
1135 /* Cannot handle 64-bit instructions in 32-bit kernel */
1141 * A 32-bit kernel might be running on a 64-bit processor. But
1142 * if we're on a 32-bit processor and an i-cache incoherency
1143 * or race makes us see a 64-bit instruction here the sdl/sdr
1144 * would blow up, so for now we don't handle unaligned 64-bit
1145 * instructions on 32-bit kernels.
1147 if (!access_ok(addr
, 8))
1150 LoadDW(addr
, value
, res
);
1153 regs
->regs
[reg
] = value
;
1155 #endif /* CONFIG_64BIT */
1157 /* Cannot handle 64-bit instructions in 32-bit kernel */
1161 if (!access_ok(addr
, 2))
1164 value
= regs
->regs
[reg
];
1165 StoreHW(addr
, value
, res
);
1171 if (!access_ok(addr
, 4))
1174 value
= regs
->regs
[reg
];
1175 StoreW(addr
, value
, res
);
1183 * A 32-bit kernel might be running on a 64-bit processor. But
1184 * if we're on a 32-bit processor and an i-cache incoherency
1185 * or race makes us see a 64-bit instruction here the sdl/sdr
1186 * would blow up, so for now we don't handle unaligned 64-bit
1187 * instructions on 32-bit kernels.
1189 if (!access_ok(addr
, 8))
1192 value
= regs
->regs
[reg
];
1193 StoreDW(addr
, value
, res
);
1197 #endif /* CONFIG_64BIT */
1199 /* Cannot handle 64-bit instructions in 32-bit kernel */
1203 regs
->cp0_epc
= contpc
; /* advance or branch */
1205 #ifdef CONFIG_DEBUG_FS
1206 unaligned_instructions
++;
1211 /* roll back jump/branch */
1212 regs
->cp0_epc
= origpc
;
1213 regs
->regs
[31] = orig31
;
1214 /* Did we have an exception handler installed? */
1215 if (fixup_exception(regs
))
1218 die_if_kernel("Unhandled kernel unaligned access", regs
);
1224 die_if_kernel("Unhandled kernel unaligned access", regs
);
1231 ("Unhandled kernel unaligned access or invalid instruction", regs
);
1235 static void emulate_load_store_MIPS16e(struct pt_regs
*regs
, void __user
* addr
)
1237 unsigned long value
;
1240 unsigned long orig31
;
1242 unsigned long origpc
;
1243 union mips16e_instruction mips16inst
, oldinst
;
1244 unsigned int opcode
;
1247 origpc
= regs
->cp0_epc
;
1248 orig31
= regs
->regs
[31];
1249 pc16
= (unsigned short __user
*)msk_isa16_mode(origpc
);
1251 * This load never faults.
1253 __get_user(mips16inst
.full
, pc16
);
1254 oldinst
= mips16inst
;
1256 /* skip EXTEND instruction */
1257 if (mips16inst
.ri
.opcode
== MIPS16e_extend_op
) {
1260 __get_user(mips16inst
.full
, pc16
);
1261 } else if (delay_slot(regs
)) {
1262 /* skip jump instructions */
1263 /* JAL/JALX are 32 bits but have OPCODE in first short int */
1264 if (mips16inst
.ri
.opcode
== MIPS16e_jal_op
)
1267 if (get_user(mips16inst
.full
, pc16
))
1271 opcode
= mips16inst
.ri
.opcode
;
1273 case MIPS16e_i64_op
: /* I64 or RI64 instruction */
1274 switch (mips16inst
.i64
.func
) { /* I64/RI64 func field check */
1275 case MIPS16e_ldpc_func
:
1276 case MIPS16e_ldsp_func
:
1277 reg
= reg16to32
[mips16inst
.ri64
.ry
];
1280 case MIPS16e_sdsp_func
:
1281 reg
= reg16to32
[mips16inst
.ri64
.ry
];
1284 case MIPS16e_sdrasp_func
:
1285 reg
= 29; /* GPRSP */
1291 case MIPS16e_swsp_op
:
1292 reg
= reg16to32
[mips16inst
.ri
.rx
];
1293 if (extended
&& cpu_has_mips16e2
)
1294 switch (mips16inst
.ri
.imm
>> 5) {
1299 opcode
= MIPS16e_sh_op
;
1306 case MIPS16e_lwpc_op
:
1307 reg
= reg16to32
[mips16inst
.ri
.rx
];
1310 case MIPS16e_lwsp_op
:
1311 reg
= reg16to32
[mips16inst
.ri
.rx
];
1312 if (extended
&& cpu_has_mips16e2
)
1313 switch (mips16inst
.ri
.imm
>> 5) {
1318 opcode
= MIPS16e_lh_op
;
1321 opcode
= MIPS16e_lhu_op
;
1329 if (mips16inst
.i8
.func
!= MIPS16e_swrasp_func
)
1331 reg
= 29; /* GPRSP */
1335 reg
= reg16to32
[mips16inst
.rri
.ry
];
1342 case MIPS16e_lbu_op
:
1347 if (!access_ok(addr
, 2))
1350 LoadHW(addr
, value
, res
);
1353 MIPS16e_compute_return_epc(regs
, &oldinst
);
1354 regs
->regs
[reg
] = value
;
1357 case MIPS16e_lhu_op
:
1358 if (!access_ok(addr
, 2))
1361 LoadHWU(addr
, value
, res
);
1364 MIPS16e_compute_return_epc(regs
, &oldinst
);
1365 regs
->regs
[reg
] = value
;
1369 case MIPS16e_lwpc_op
:
1370 case MIPS16e_lwsp_op
:
1371 if (!access_ok(addr
, 4))
1374 LoadW(addr
, value
, res
);
1377 MIPS16e_compute_return_epc(regs
, &oldinst
);
1378 regs
->regs
[reg
] = value
;
1381 case MIPS16e_lwu_op
:
1384 * A 32-bit kernel might be running on a 64-bit processor. But
1385 * if we're on a 32-bit processor and an i-cache incoherency
1386 * or race makes us see a 64-bit instruction here the sdl/sdr
1387 * would blow up, so for now we don't handle unaligned 64-bit
1388 * instructions on 32-bit kernels.
1390 if (!access_ok(addr
, 4))
1393 LoadWU(addr
, value
, res
);
1396 MIPS16e_compute_return_epc(regs
, &oldinst
);
1397 regs
->regs
[reg
] = value
;
1399 #endif /* CONFIG_64BIT */
1401 /* Cannot handle 64-bit instructions in 32-bit kernel */
1408 * A 32-bit kernel might be running on a 64-bit processor. But
1409 * if we're on a 32-bit processor and an i-cache incoherency
1410 * or race makes us see a 64-bit instruction here the sdl/sdr
1411 * would blow up, so for now we don't handle unaligned 64-bit
1412 * instructions on 32-bit kernels.
1414 if (!access_ok(addr
, 8))
1417 LoadDW(addr
, value
, res
);
1420 MIPS16e_compute_return_epc(regs
, &oldinst
);
1421 regs
->regs
[reg
] = value
;
1423 #endif /* CONFIG_64BIT */
1425 /* Cannot handle 64-bit instructions in 32-bit kernel */
1429 if (!access_ok(addr
, 2))
1432 MIPS16e_compute_return_epc(regs
, &oldinst
);
1433 value
= regs
->regs
[reg
];
1434 StoreHW(addr
, value
, res
);
1440 case MIPS16e_swsp_op
:
1441 case MIPS16e_i8_op
: /* actually - MIPS16e_swrasp_func */
1442 if (!access_ok(addr
, 4))
1445 MIPS16e_compute_return_epc(regs
, &oldinst
);
1446 value
= regs
->regs
[reg
];
1447 StoreW(addr
, value
, res
);
1456 * A 32-bit kernel might be running on a 64-bit processor. But
1457 * if we're on a 32-bit processor and an i-cache incoherency
1458 * or race makes us see a 64-bit instruction here the sdl/sdr
1459 * would blow up, so for now we don't handle unaligned 64-bit
1460 * instructions on 32-bit kernels.
1462 if (!access_ok(addr
, 8))
1465 MIPS16e_compute_return_epc(regs
, &oldinst
);
1466 value
= regs
->regs
[reg
];
1467 StoreDW(addr
, value
, res
);
1471 #endif /* CONFIG_64BIT */
1473 /* Cannot handle 64-bit instructions in 32-bit kernel */
1478 * Pheeee... We encountered an yet unknown instruction or
1479 * cache coherence problem. Die sucker, die ...
1484 #ifdef CONFIG_DEBUG_FS
1485 unaligned_instructions
++;
1491 /* roll back jump/branch */
1492 regs
->cp0_epc
= origpc
;
1493 regs
->regs
[31] = orig31
;
1494 /* Did we have an exception handler installed? */
1495 if (fixup_exception(regs
))
1498 die_if_kernel("Unhandled kernel unaligned access", regs
);
1504 die_if_kernel("Unhandled kernel unaligned access", regs
);
1511 ("Unhandled kernel unaligned access or invalid instruction", regs
);
1515 asmlinkage
void do_ade(struct pt_regs
*regs
)
1517 enum ctx_state prev_state
;
1518 unsigned int __user
*pc
;
1521 prev_state
= exception_enter();
1522 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS
,
1523 1, regs
, regs
->cp0_badvaddr
);
1525 * Did we catch a fault trying to load an instruction?
1527 if (regs
->cp0_badvaddr
== regs
->cp0_epc
)
1530 if (user_mode(regs
) && !test_thread_flag(TIF_FIXADE
))
1532 if (unaligned_action
== UNALIGNED_ACTION_SIGNAL
)
1536 * Do branch emulation only if we didn't forward the exception.
1537 * This is all so but ugly ...
1541 * Are we running in microMIPS mode?
1543 if (get_isa16_mode(regs
->cp0_epc
)) {
1545 * Did we catch a fault trying to load an instruction in
1548 if (regs
->cp0_badvaddr
== msk_isa16_mode(regs
->cp0_epc
))
1550 if (unaligned_action
== UNALIGNED_ACTION_SHOW
)
1551 show_registers(regs
);
1553 if (cpu_has_mmips
) {
1555 if (!user_mode(regs
))
1557 emulate_load_store_microMIPS(regs
,
1558 (void __user
*)regs
->cp0_badvaddr
);
1564 if (cpu_has_mips16
) {
1566 if (!user_mode(regs
))
1568 emulate_load_store_MIPS16e(regs
,
1569 (void __user
*)regs
->cp0_badvaddr
);
1578 if (unaligned_action
== UNALIGNED_ACTION_SHOW
)
1579 show_registers(regs
);
1580 pc
= (unsigned int __user
*)exception_epc(regs
);
1583 if (!user_mode(regs
))
1585 emulate_load_store_insn(regs
, (void __user
*)regs
->cp0_badvaddr
, pc
);
1591 die_if_kernel("Kernel unaligned instruction access", regs
);
1595 * XXX On return from the signal handler we should advance the epc
1597 exception_exit(prev_state
);
1600 #ifdef CONFIG_DEBUG_FS
1601 static int __init
debugfs_unaligned(void)
1603 debugfs_create_u32("unaligned_instructions", S_IRUGO
, mips_debugfs_dir
,
1604 &unaligned_instructions
);
1605 debugfs_create_u32("unaligned_action", S_IRUGO
| S_IWUSR
,
1606 mips_debugfs_dir
, &unaligned_action
);
1609 arch_initcall(debugfs_unaligned
);