1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Kernel dynamically loadable module help for PARISC.
4 * The best reference for this stuff is probably the Processor-
5 * Specific ELF Supplement for PA-RISC:
6 * https://parisc.wiki.kernel.org/index.php/File:Elf-pa-hp.pdf
8 * Linux/PA-RISC Project
9 * Copyright (C) 2003 Randolph Chung <tausq at debian . org>
10 * Copyright (C) 2008 Helge Deller <deller@gmx.de>
14 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
15 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
16 * fail to reach their PLT stub if we only create one big stub array for
17 * all sections at the beginning of the core or init section.
18 * Instead we now insert individual PLT stub entries directly in front of
19 * of the code sections where the stubs are actually called.
20 * This reduces the distance between the PCREL location and the stub entry
21 * so that the relocations can be fulfilled.
22 * While calculating the final layout of the kernel module in memory, the
23 * kernel module loader calls arch_mod_section_prepend() to request the
24 * to be reserved amount of memory in front of each individual section.
27 * We are not doing SEGREL32 handling correctly. According to the ABI, we
28 * should do a value offset, like this:
29 * if (in_init(me, (void *)val))
30 * val -= (uint32_t)me->init_layout.base;
32 * val -= (uint32_t)me->core_layout.base;
33 * However, SEGREL32 is used only for PARISC unwind entries, and we want
34 * those entries to have an absolute address, and not just an offset.
36 * The unwind table mechanism has the ability to specify an offset for
37 * the unwind table; however, because we split off the init functions into
38 * a different piece of memory, it is not possible to do this using a
39 * single offset. Instead, we use the above hack for now.
42 #include <linux/moduleloader.h>
43 #include <linux/elf.h>
44 #include <linux/vmalloc.h>
46 #include <linux/ftrace.h>
47 #include <linux/string.h>
48 #include <linux/kernel.h>
49 #include <linux/bug.h>
51 #include <linux/slab.h>
53 #include <asm/unwind.h>
54 #include <asm/sections.h>
56 #define RELOC_REACHABLE(val, bits) \
57 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \
58 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
61 #define CHECK_RELOC(val, bits) \
62 if (!RELOC_REACHABLE(val, bits)) { \
63 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
64 me->name, strtab + sym->st_name, (unsigned long)val, bits); \
68 /* Maximum number of GOT entries. We use a long displacement ldd from
69 * the bottom of the table, which has a maximum signed displacement of
70 * 0x3fff; however, since we're only going forward, this becomes
71 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
72 * at most 1023 entries.
73 * To overcome this 14bit displacement with some kernel modules, we'll
74 * use instead the unusal 16bit displacement method (see reassemble_16a)
75 * which gives us a maximum positive displacement of 0x7fff, and as such
76 * allows us to allocate up to 4095 GOT entries. */
79 /* three functions to determine where in the module core
80 * or init pieces the location is */
81 static inline int in_init(struct module
*me
, void *loc
)
83 return (loc
>= me
->init_layout
.base
&&
84 loc
<= (me
->init_layout
.base
+ me
->init_layout
.size
));
87 static inline int in_core(struct module
*me
, void *loc
)
89 return (loc
>= me
->core_layout
.base
&&
90 loc
<= (me
->core_layout
.base
+ me
->core_layout
.size
));
93 static inline int in_local(struct module
*me
, void *loc
)
95 return in_init(me
, loc
) || in_core(me
, loc
);
104 Elf32_Word insns
[2]; /* each stub entry has two insns */
112 Elf64_Word insns
[4]; /* each stub entry has four insns */
116 /* Field selection types defined by hppa */
117 #define rnd(x) (((x)+0x1000)&~0x1fff)
118 /* fsel: full 32 bits */
119 #define fsel(v,a) ((v)+(a))
120 /* lsel: select left 21 bits */
121 #define lsel(v,a) (((v)+(a))>>11)
122 /* rsel: select right 11 bits */
123 #define rsel(v,a) (((v)+(a))&0x7ff)
124 /* lrsel with rounding of addend to nearest 8k */
125 #define lrsel(v,a) (((v)+rnd(a))>>11)
126 /* rrsel with rounding of addend to nearest 8k */
127 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
129 #define mask(x,sz) ((x) & ~((1<<(sz))-1))
132 /* The reassemble_* functions prepare an immediate value for
133 insertion into an opcode. pa-risc uses all sorts of weird bitfields
134 in the instruction to hold the value. */
135 static inline int sign_unext(int x
, int len
)
139 len_ones
= (1 << len
) - 1;
143 static inline int low_sign_unext(int x
, int len
)
147 sign
= (x
>> (len
-1)) & 1;
148 temp
= sign_unext(x
, len
-1);
149 return (temp
<< 1) | sign
;
152 static inline int reassemble_14(int as14
)
154 return (((as14
& 0x1fff) << 1) |
155 ((as14
& 0x2000) >> 13));
158 static inline int reassemble_16a(int as16
)
162 /* Unusual 16-bit encoding, for wide mode only. */
163 t
= (as16
<< 1) & 0xffff;
165 return (t
^ s
^ (s
>> 1)) | (s
>> 15);
169 static inline int reassemble_17(int as17
)
171 return (((as17
& 0x10000) >> 16) |
172 ((as17
& 0x0f800) << 5) |
173 ((as17
& 0x00400) >> 8) |
174 ((as17
& 0x003ff) << 3));
177 static inline int reassemble_21(int as21
)
179 return (((as21
& 0x100000) >> 20) |
180 ((as21
& 0x0ffe00) >> 8) |
181 ((as21
& 0x000180) << 7) |
182 ((as21
& 0x00007c) << 14) |
183 ((as21
& 0x000003) << 12));
186 static inline int reassemble_22(int as22
)
188 return (((as22
& 0x200000) >> 21) |
189 ((as22
& 0x1f0000) << 5) |
190 ((as22
& 0x00f800) << 5) |
191 ((as22
& 0x000400) >> 8) |
192 ((as22
& 0x0003ff) << 3));
195 void *module_alloc(unsigned long size
)
197 /* using RWX means less protection for modules, but it's
198 * easier than trying to map the text, data, init_text and
199 * init_data correctly */
200 return __vmalloc_node_range(size
, 1, VMALLOC_START
, VMALLOC_END
,
202 PAGE_KERNEL_RWX
, 0, NUMA_NO_NODE
,
203 __builtin_return_address(0));
207 static inline unsigned long count_gots(const Elf_Rela
*rela
, unsigned long n
)
212 static inline unsigned long count_fdescs(const Elf_Rela
*rela
, unsigned long n
)
217 static inline unsigned long count_stubs(const Elf_Rela
*rela
, unsigned long n
)
219 unsigned long cnt
= 0;
221 for (; n
> 0; n
--, rela
++)
223 switch (ELF32_R_TYPE(rela
->r_info
)) {
224 case R_PARISC_PCREL17F
:
225 case R_PARISC_PCREL22F
:
233 static inline unsigned long count_gots(const Elf_Rela
*rela
, unsigned long n
)
235 unsigned long cnt
= 0;
237 for (; n
> 0; n
--, rela
++)
239 switch (ELF64_R_TYPE(rela
->r_info
)) {
240 case R_PARISC_LTOFF21L
:
241 case R_PARISC_LTOFF14R
:
242 case R_PARISC_PCREL22F
:
250 static inline unsigned long count_fdescs(const Elf_Rela
*rela
, unsigned long n
)
252 unsigned long cnt
= 0;
254 for (; n
> 0; n
--, rela
++)
256 switch (ELF64_R_TYPE(rela
->r_info
)) {
257 case R_PARISC_FPTR64
:
265 static inline unsigned long count_stubs(const Elf_Rela
*rela
, unsigned long n
)
267 unsigned long cnt
= 0;
269 for (; n
> 0; n
--, rela
++)
271 switch (ELF64_R_TYPE(rela
->r_info
)) {
272 case R_PARISC_PCREL22F
:
281 void module_arch_freeing_init(struct module
*mod
)
283 kfree(mod
->arch
.section
);
284 mod
->arch
.section
= NULL
;
287 /* Additional bytes needed in front of individual sections */
288 unsigned int arch_mod_section_prepend(struct module
*mod
,
289 unsigned int section
)
291 /* size needed for all stubs of this section (including
292 * one additional for correct alignment of the stubs) */
293 return (mod
->arch
.section
[section
].stub_entries
+ 1)
294 * sizeof(struct stub_entry
);
298 int module_frob_arch_sections(CONST Elf_Ehdr
*hdr
,
299 CONST Elf_Shdr
*sechdrs
,
300 CONST
char *secstrings
,
303 unsigned long gots
= 0, fdescs
= 0, len
;
306 len
= hdr
->e_shnum
* sizeof(me
->arch
.section
[0]);
307 me
->arch
.section
= kzalloc(len
, GFP_KERNEL
);
308 if (!me
->arch
.section
)
311 for (i
= 1; i
< hdr
->e_shnum
; i
++) {
312 const Elf_Rela
*rels
= (void *)sechdrs
[i
].sh_addr
;
313 unsigned long nrels
= sechdrs
[i
].sh_size
/ sizeof(*rels
);
314 unsigned int count
, s
;
316 if (strncmp(secstrings
+ sechdrs
[i
].sh_name
,
317 ".PARISC.unwind", 14) == 0)
318 me
->arch
.unwind_section
= i
;
320 if (sechdrs
[i
].sh_type
!= SHT_RELA
)
323 /* some of these are not relevant for 32-bit/64-bit
324 * we leave them here to make the code common. the
325 * compiler will do its thing and optimize out the
326 * stuff we don't need
328 gots
+= count_gots(rels
, nrels
);
329 fdescs
+= count_fdescs(rels
, nrels
);
331 /* XXX: By sorting the relocs and finding duplicate entries
332 * we could reduce the number of necessary stubs and save
334 count
= count_stubs(rels
, nrels
);
338 /* so we need relocation stubs. reserve necessary memory. */
339 /* sh_info gives the section for which we need to add stubs. */
340 s
= sechdrs
[i
].sh_info
;
342 /* each code section should only have one relocation section */
343 WARN_ON(me
->arch
.section
[s
].stub_entries
);
345 /* store number of stubs we need for this section */
346 me
->arch
.section
[s
].stub_entries
+= count
;
349 /* align things a bit */
350 me
->core_layout
.size
= ALIGN(me
->core_layout
.size
, 16);
351 me
->arch
.got_offset
= me
->core_layout
.size
;
352 me
->core_layout
.size
+= gots
* sizeof(struct got_entry
);
354 me
->core_layout
.size
= ALIGN(me
->core_layout
.size
, 16);
355 me
->arch
.fdesc_offset
= me
->core_layout
.size
;
356 me
->core_layout
.size
+= fdescs
* sizeof(Elf_Fdesc
);
358 me
->arch
.got_max
= gots
;
359 me
->arch
.fdesc_max
= fdescs
;
365 static Elf64_Word
get_got(struct module
*me
, unsigned long value
, long addend
)
368 struct got_entry
*got
;
374 got
= me
->core_layout
.base
+ me
->arch
.got_offset
;
375 for (i
= 0; got
[i
].addr
; i
++)
376 if (got
[i
].addr
== value
)
379 BUG_ON(++me
->arch
.got_count
> me
->arch
.got_max
);
383 pr_debug("GOT ENTRY %d[%lx] val %lx\n", i
, i
*sizeof(struct got_entry
),
385 return i
* sizeof(struct got_entry
);
387 #endif /* CONFIG_64BIT */
390 static Elf_Addr
get_fdesc(struct module
*me
, unsigned long value
)
392 Elf_Fdesc
*fdesc
= me
->core_layout
.base
+ me
->arch
.fdesc_offset
;
395 printk(KERN_ERR
"%s: zero OPD requested!\n", me
->name
);
399 /* Look for existing fdesc entry. */
400 while (fdesc
->addr
) {
401 if (fdesc
->addr
== value
)
402 return (Elf_Addr
)fdesc
;
406 BUG_ON(++me
->arch
.fdesc_count
> me
->arch
.fdesc_max
);
410 fdesc
->gp
= (Elf_Addr
)me
->core_layout
.base
+ me
->arch
.got_offset
;
411 return (Elf_Addr
)fdesc
;
413 #endif /* CONFIG_64BIT */
421 static Elf_Addr
get_stub(struct module
*me
, unsigned long value
, long addend
,
422 enum elf_stub_type stub_type
, Elf_Addr loc0
, unsigned int targetsec
)
424 struct stub_entry
*stub
;
425 int __maybe_unused d
;
427 /* initialize stub_offset to point in front of the section */
428 if (!me
->arch
.section
[targetsec
].stub_offset
) {
429 loc0
-= (me
->arch
.section
[targetsec
].stub_entries
+ 1) *
430 sizeof(struct stub_entry
);
431 /* get correct alignment for the stubs */
432 loc0
= ALIGN(loc0
, sizeof(struct stub_entry
));
433 me
->arch
.section
[targetsec
].stub_offset
= loc0
;
436 /* get address of stub entry */
437 stub
= (void *) me
->arch
.section
[targetsec
].stub_offset
;
438 me
->arch
.section
[targetsec
].stub_offset
+= sizeof(struct stub_entry
);
440 /* do not write outside available stub area */
441 BUG_ON(0 == me
->arch
.section
[targetsec
].stub_entries
--);
445 /* for 32-bit the stub looks like this:
447 * be,n R'XXX(%sr4,%r1)
449 //value = *(unsigned long *)((value + addend) & ~3); /* why? */
451 stub
->insns
[0] = 0x20200000; /* ldil L'XXX,%r1 */
452 stub
->insns
[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */
454 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
455 stub
->insns
[1] |= reassemble_17(rrsel(value
, addend
) / 4);
458 /* for 64-bit we have three kinds of stubs:
459 * for normal function calls:
471 * for direct branches (jumps between different section of the
479 d
= get_got(me
, value
, addend
);
482 stub
->insns
[0] = 0x0f6010db; /* ldd 0(%dp),%dp */
483 stub
->insns
[0] |= low_sign_unext(d
, 5) << 16;
486 stub
->insns
[0] = 0x537b0000; /* ldd 0(%dp),%dp */
487 stub
->insns
[0] |= reassemble_16a(d
);
489 stub
->insns
[1] = 0x53610020; /* ldd 10(%dp),%r1 */
490 stub
->insns
[2] = 0xe820d000; /* bve (%r1) */
491 stub
->insns
[3] = 0x537b0030; /* ldd 18(%dp),%dp */
494 stub
->insns
[0] = 0x20200000; /* ldil 0,%r1 */
495 stub
->insns
[1] = 0x34210000; /* ldo 0(%r1), %r1 */
496 stub
->insns
[2] = 0x50210020; /* ldd 10(%r1),%r1 */
497 stub
->insns
[3] = 0xe820d002; /* bve,n (%r1) */
499 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
500 stub
->insns
[1] |= reassemble_14(rrsel(value
, addend
));
502 case ELF_STUB_DIRECT
:
503 stub
->insns
[0] = 0x20200000; /* ldil 0,%r1 */
504 stub
->insns
[1] = 0x34210000; /* ldo 0(%r1), %r1 */
505 stub
->insns
[2] = 0xe820d002; /* bve,n (%r1) */
507 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
508 stub
->insns
[1] |= reassemble_14(rrsel(value
, addend
));
514 return (Elf_Addr
)stub
;
518 int apply_relocate_add(Elf_Shdr
*sechdrs
,
520 unsigned int symindex
,
525 Elf32_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
532 unsigned int targetsec
= sechdrs
[relsec
].sh_info
;
533 //unsigned long dp = (unsigned long)$global$;
534 register unsigned long dp
asm ("r27");
536 pr_debug("Applying relocate section %u to %u\n", relsec
,
538 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
539 /* This is where to make the change */
540 loc
= (void *)sechdrs
[targetsec
].sh_addr
542 /* This is the start of the target section */
543 loc0
= sechdrs
[targetsec
].sh_addr
;
544 /* This is the symbol it is referring to */
545 sym
= (Elf32_Sym
*)sechdrs
[symindex
].sh_addr
546 + ELF32_R_SYM(rel
[i
].r_info
);
547 if (!sym
->st_value
) {
548 printk(KERN_WARNING
"%s: Unknown symbol %s\n",
549 me
->name
, strtab
+ sym
->st_name
);
552 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
553 dot
= (Elf32_Addr
)loc
& ~0x03;
556 addend
= rel
[i
].r_addend
;
559 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
560 pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
561 strtab
+ sym
->st_name
,
562 (uint32_t)loc
, val
, addend
,
576 switch (ELF32_R_TYPE(rel
[i
].r_info
)) {
577 case R_PARISC_PLABEL32
:
578 /* 32-bit function address */
579 /* no function descriptors... */
580 *loc
= fsel(val
, addend
);
583 /* direct 32-bit ref */
584 *loc
= fsel(val
, addend
);
586 case R_PARISC_DIR21L
:
587 /* left 21 bits of effective address */
588 val
= lrsel(val
, addend
);
589 *loc
= mask(*loc
, 21) | reassemble_21(val
);
591 case R_PARISC_DIR14R
:
592 /* right 14 bits of effective address */
593 val
= rrsel(val
, addend
);
594 *loc
= mask(*loc
, 14) | reassemble_14(val
);
596 case R_PARISC_SEGREL32
:
597 /* 32-bit segment relative address */
598 /* See note about special handling of SEGREL32 at
599 * the beginning of this file.
601 *loc
= fsel(val
, addend
);
603 case R_PARISC_SECREL32
:
604 /* 32-bit section relative address. */
605 *loc
= fsel(val
, addend
);
607 case R_PARISC_DPREL21L
:
608 /* left 21 bit of relative address */
609 val
= lrsel(val
- dp
, addend
);
610 *loc
= mask(*loc
, 21) | reassemble_21(val
);
612 case R_PARISC_DPREL14R
:
613 /* right 14 bit of relative address */
614 val
= rrsel(val
- dp
, addend
);
615 *loc
= mask(*loc
, 14) | reassemble_14(val
);
617 case R_PARISC_PCREL17F
:
618 /* 17-bit PC relative address */
619 /* calculate direct call offset */
621 val
= (val
- dot
- 8)/4;
622 if (!RELOC_REACHABLE(val
, 17)) {
623 /* direct distance too far, create
624 * stub entry instead */
625 val
= get_stub(me
, sym
->st_value
, addend
,
626 ELF_STUB_DIRECT
, loc0
, targetsec
);
627 val
= (val
- dot
- 8)/4;
628 CHECK_RELOC(val
, 17);
630 *loc
= (*loc
& ~0x1f1ffd) | reassemble_17(val
);
632 case R_PARISC_PCREL22F
:
633 /* 22-bit PC relative address; only defined for pa20 */
634 /* calculate direct call offset */
636 val
= (val
- dot
- 8)/4;
637 if (!RELOC_REACHABLE(val
, 22)) {
638 /* direct distance too far, create
639 * stub entry instead */
640 val
= get_stub(me
, sym
->st_value
, addend
,
641 ELF_STUB_DIRECT
, loc0
, targetsec
);
642 val
= (val
- dot
- 8)/4;
643 CHECK_RELOC(val
, 22);
645 *loc
= (*loc
& ~0x3ff1ffd) | reassemble_22(val
);
647 case R_PARISC_PCREL32
:
648 /* 32-bit PC relative address */
649 *loc
= val
- dot
- 8 + addend
;
653 printk(KERN_ERR
"module %s: Unknown relocation: %u\n",
654 me
->name
, ELF32_R_TYPE(rel
[i
].r_info
));
663 int apply_relocate_add(Elf_Shdr
*sechdrs
,
665 unsigned int symindex
,
670 Elf64_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
678 unsigned int targetsec
= sechdrs
[relsec
].sh_info
;
680 pr_debug("Applying relocate section %u to %u\n", relsec
,
682 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
683 /* This is where to make the change */
684 loc
= (void *)sechdrs
[targetsec
].sh_addr
686 /* This is the start of the target section */
687 loc0
= sechdrs
[targetsec
].sh_addr
;
688 /* This is the symbol it is referring to */
689 sym
= (Elf64_Sym
*)sechdrs
[symindex
].sh_addr
690 + ELF64_R_SYM(rel
[i
].r_info
);
691 if (!sym
->st_value
) {
692 printk(KERN_WARNING
"%s: Unknown symbol %s\n",
693 me
->name
, strtab
+ sym
->st_name
);
696 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
697 dot
= (Elf64_Addr
)loc
& ~0x03;
698 loc64
= (Elf64_Xword
*)loc
;
701 addend
= rel
[i
].r_addend
;
704 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
705 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
706 strtab
+ sym
->st_name
,
718 switch (ELF64_R_TYPE(rel
[i
].r_info
)) {
719 case R_PARISC_LTOFF21L
:
720 /* LT-relative; left 21 bits */
721 val
= get_got(me
, val
, addend
);
722 pr_debug("LTOFF21L Symbol %s loc %p val %llx\n",
723 strtab
+ sym
->st_name
,
726 *loc
= mask(*loc
, 21) | reassemble_21(val
);
728 case R_PARISC_LTOFF14R
:
729 /* L(ltoff(val+addend)) */
730 /* LT-relative; right 14 bits */
731 val
= get_got(me
, val
, addend
);
733 pr_debug("LTOFF14R Symbol %s loc %p val %llx\n",
734 strtab
+ sym
->st_name
,
736 *loc
= mask(*loc
, 14) | reassemble_14(val
);
738 case R_PARISC_PCREL22F
:
739 /* PC-relative; 22 bits */
740 pr_debug("PCREL22F Symbol %s loc %p val %llx\n",
741 strtab
+ sym
->st_name
,
744 /* can we reach it locally? */
745 if (in_local(me
, (void *)val
)) {
746 /* this is the case where the symbol is local
747 * to the module, but in a different section,
748 * so stub the jump in case it's more than 22
750 val
= (val
- dot
- 8)/4;
751 if (!RELOC_REACHABLE(val
, 22)) {
752 /* direct distance too far, create
753 * stub entry instead */
754 val
= get_stub(me
, sym
->st_value
,
755 addend
, ELF_STUB_DIRECT
,
758 /* Ok, we can reach it directly. */
764 if (strncmp(strtab
+ sym
->st_name
, "$$", 2)
766 val
= get_stub(me
, val
, addend
, ELF_STUB_MILLI
,
769 val
= get_stub(me
, val
, addend
, ELF_STUB_GOT
,
772 pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n",
773 strtab
+ sym
->st_name
, loc
, sym
->st_value
,
775 val
= (val
- dot
- 8)/4;
776 CHECK_RELOC(val
, 22);
777 *loc
= (*loc
& ~0x3ff1ffd) | reassemble_22(val
);
779 case R_PARISC_PCREL32
:
780 /* 32-bit PC relative address */
781 *loc
= val
- dot
- 8 + addend
;
783 case R_PARISC_PCREL64
:
784 /* 64-bit PC relative address */
785 *loc64
= val
- dot
- 8 + addend
;
788 /* 64-bit effective address */
789 *loc64
= val
+ addend
;
791 case R_PARISC_SEGREL32
:
792 /* 32-bit segment relative address */
793 /* See note about special handling of SEGREL32 at
794 * the beginning of this file.
796 *loc
= fsel(val
, addend
);
798 case R_PARISC_SECREL32
:
799 /* 32-bit section relative address. */
800 *loc
= fsel(val
, addend
);
802 case R_PARISC_FPTR64
:
803 /* 64-bit function address */
804 if(in_local(me
, (void *)(val
+ addend
))) {
805 *loc64
= get_fdesc(me
, val
+addend
);
806 pr_debug("FDESC for %s at %llx points to %llx\n",
807 strtab
+ sym
->st_name
, *loc64
,
808 ((Elf_Fdesc
*)*loc64
)->addr
);
810 /* if the symbol is not local to this
811 * module then val+addend is a pointer
812 * to the function descriptor */
813 pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n",
814 strtab
+ sym
->st_name
,
816 *loc64
= val
+ addend
;
821 printk(KERN_ERR
"module %s: Unknown relocation: %Lu\n",
822 me
->name
, ELF64_R_TYPE(rel
[i
].r_info
));
831 register_unwind_table(struct module
*me
,
832 const Elf_Shdr
*sechdrs
)
834 unsigned char *table
, *end
;
837 if (!me
->arch
.unwind_section
)
840 table
= (unsigned char *)sechdrs
[me
->arch
.unwind_section
].sh_addr
;
841 end
= table
+ sechdrs
[me
->arch
.unwind_section
].sh_size
;
842 gp
= (Elf_Addr
)me
->core_layout
.base
+ me
->arch
.got_offset
;
844 pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
845 me
->arch
.unwind_section
, table
, end
, gp
);
846 me
->arch
.unwind
= unwind_table_add(me
->name
, 0, gp
, table
, end
);
850 deregister_unwind_table(struct module
*me
)
853 unwind_table_remove(me
->arch
.unwind
);
856 int module_finalize(const Elf_Ehdr
*hdr
,
857 const Elf_Shdr
*sechdrs
,
862 const char *strtab
= NULL
;
866 Elf_Sym
*newptr
, *oldptr
;
867 Elf_Shdr
*symhdr
= NULL
;
872 entry
= (Elf_Fdesc
*)me
->init
;
873 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry
,
874 entry
->gp
, entry
->addr
);
875 addr
= (u32
*)entry
->addr
;
876 printk("INSNS: %x %x %x %x\n",
877 addr
[0], addr
[1], addr
[2], addr
[3]);
878 printk("got entries used %ld, gots max %ld\n"
879 "fdescs used %ld, fdescs max %ld\n",
880 me
->arch
.got_count
, me
->arch
.got_max
,
881 me
->arch
.fdesc_count
, me
->arch
.fdesc_max
);
884 register_unwind_table(me
, sechdrs
);
886 /* haven't filled in me->symtab yet, so have to find it
888 for (i
= 1; i
< hdr
->e_shnum
; i
++) {
889 if(sechdrs
[i
].sh_type
== SHT_SYMTAB
890 && (sechdrs
[i
].sh_flags
& SHF_ALLOC
)) {
891 int strindex
= sechdrs
[i
].sh_link
;
894 * The cast is to drop the const from
895 * the sechdrs pointer */
896 symhdr
= (Elf_Shdr
*)&sechdrs
[i
];
897 strtab
= (char *)sechdrs
[strindex
].sh_addr
;
902 pr_debug("module %s: strtab %p, symhdr %p\n",
903 me
->name
, strtab
, symhdr
);
905 if(me
->arch
.got_count
> MAX_GOTS
) {
906 printk(KERN_ERR
"%s: Global Offset Table overflow (used %ld, allowed %d)\n",
907 me
->name
, me
->arch
.got_count
, MAX_GOTS
);
911 kfree(me
->arch
.section
);
912 me
->arch
.section
= NULL
;
914 /* no symbol table */
918 oldptr
= (void *)symhdr
->sh_addr
;
919 newptr
= oldptr
+ 1; /* we start counting at 1 */
920 nsyms
= symhdr
->sh_size
/ sizeof(Elf_Sym
);
921 pr_debug("OLD num_symtab %lu\n", nsyms
);
923 for (i
= 1; i
< nsyms
; i
++) {
924 oldptr
++; /* note, count starts at 1 so preincrement */
925 if(strncmp(strtab
+ oldptr
->st_name
,
935 nsyms
= newptr
- (Elf_Sym
*)symhdr
->sh_addr
;
936 pr_debug("NEW num_symtab %lu\n", nsyms
);
937 symhdr
->sh_size
= nsyms
* sizeof(Elf_Sym
);
939 /* find .altinstructions section */
940 secstrings
= (void *)hdr
+ sechdrs
[hdr
->e_shstrndx
].sh_offset
;
941 for (s
= sechdrs
; s
< sechdrs
+ hdr
->e_shnum
; s
++) {
942 void *aseg
= (void *) s
->sh_addr
;
943 char *secname
= secstrings
+ s
->sh_name
;
945 if (!strcmp(".altinstructions", secname
))
946 /* patch .altinstructions */
947 apply_alternatives(aseg
, aseg
+ s
->sh_size
, me
->name
);
949 #ifdef CONFIG_DYNAMIC_FTRACE
950 /* For 32 bit kernels we're compiling modules with
951 * -ffunction-sections so we must relocate the addresses in the
952 * ftrace callsite section.
954 if (symindex
!= -1 && !strcmp(secname
, FTRACE_CALLSITE_SECTION
)) {
956 if (s
->sh_type
== SHT_REL
)
957 err
= apply_relocate((Elf_Shdr
*)sechdrs
,
960 else if (s
->sh_type
== SHT_RELA
)
961 err
= apply_relocate_add((Elf_Shdr
*)sechdrs
,
972 void module_arch_cleanup(struct module
*mod
)
974 deregister_unwind_table(mod
);
978 void *dereference_module_function_descriptor(struct module
*mod
, void *ptr
)
980 unsigned long start_opd
= (Elf64_Addr
)mod
->core_layout
.base
+
981 mod
->arch
.fdesc_offset
;
982 unsigned long end_opd
= start_opd
+
983 mod
->arch
.fdesc_count
* sizeof(Elf64_Fdesc
);
985 if (ptr
< (void *)start_opd
|| ptr
>= (void *)end_opd
)
988 return dereference_function_descriptor(ptr
);