1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4 * dump with assistance from firmware. This approach does not use kexec,
5 * instead firmware assists in booting the kdump kernel while preserving
6 * memory contents. The most of the code implementation has been adapted
7 * from phyp assisted dump implementation written by Linas Vepstas and
10 * Copyright 2011 IBM Corporation
11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
15 #define pr_fmt(fmt) "fadump: " fmt
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
28 #include <asm/debugfs.h>
31 #include <asm/fadump.h>
32 #include <asm/fadump-internal.h>
33 #include <asm/setup.h>
36 * The CPU who acquired the lock to trigger the fadump crash should
37 * wait for other CPUs to enter.
39 * The timeout is in milliseconds.
41 #define CRASH_TIMEOUT 500
43 static struct fw_dump fw_dump
;
45 static void __init
fadump_reserve_crash_area(u64 base
);
47 struct kobject
*fadump_kobj
;
49 #ifndef CONFIG_PRESERVE_FA_DUMP
51 static atomic_t cpus_in_fadump
;
52 static DEFINE_MUTEX(fadump_mutex
);
54 struct fadump_mrange_info crash_mrange_info
= { "crash", NULL
, 0, 0, 0, false };
56 #define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */
57 #define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \
58 sizeof(struct fadump_memory_range))
59 static struct fadump_memory_range rngs
[RESERVED_RNGS_CNT
];
60 struct fadump_mrange_info reserved_mrange_info
= { "reserved", rngs
,
62 RESERVED_RNGS_CNT
, true };
64 static void __init
early_init_dt_scan_reserved_ranges(unsigned long node
);
67 static struct cma
*fadump_cma
;
70 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
72 * This function initializes CMA area from fadump reserved memory.
73 * The total size of fadump reserved memory covers for boot memory size
74 * + cpu data size + hpte size and metadata.
75 * Initialize only the area equivalent to boot memory size for CMA use.
76 * The reamining portion of fadump reserved memory will be not given
77 * to CMA and pages for thoes will stay reserved. boot memory size is
78 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
79 * But for some reason even if it fails we still have the memory reservation
80 * with us and we can still continue doing fadump.
82 int __init
fadump_cma_init(void)
84 unsigned long long base
, size
;
87 if (!fw_dump
.fadump_enabled
)
91 * Do not use CMA if user has provided fadump=nocma kernel parameter.
92 * Return 1 to continue with fadump old behaviour.
97 base
= fw_dump
.reserve_dump_area_start
;
98 size
= fw_dump
.boot_memory_size
;
103 rc
= cma_init_reserved_mem(base
, size
, 0, "fadump_cma", &fadump_cma
);
105 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc
);
107 * Though the CMA init has failed we still have memory
108 * reservation with us. The reserved memory will be
109 * blocked from production system usage. Hence return 1,
110 * so that we can continue with fadump.
116 * So we now have successfully initialized cma area for fadump.
118 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
119 "bytes of memory reserved for firmware-assisted dump\n",
120 cma_get_size(fadump_cma
),
121 (unsigned long)cma_get_base(fadump_cma
) >> 20,
122 fw_dump
.reserve_dump_area_size
);
126 static int __init
fadump_cma_init(void) { return 1; }
127 #endif /* CONFIG_CMA */
129 /* Scan the Firmware Assisted dump configuration details. */
130 int __init
early_init_dt_scan_fw_dump(unsigned long node
, const char *uname
,
131 int depth
, void *data
)
134 early_init_dt_scan_reserved_ranges(node
);
141 if (strcmp(uname
, "rtas") == 0) {
142 rtas_fadump_dt_scan(&fw_dump
, node
);
146 if (strcmp(uname
, "ibm,opal") == 0) {
147 opal_fadump_dt_scan(&fw_dump
, node
);
155 * If fadump is registered, check if the memory provided
156 * falls within boot memory area and reserved memory area.
158 int is_fadump_memory_area(u64 addr
, unsigned long size
)
162 if (!fw_dump
.dump_registered
)
168 d_start
= fw_dump
.reserve_dump_area_start
;
169 d_end
= d_start
+ fw_dump
.reserve_dump_area_size
;
170 if (((addr
+ size
) > d_start
) && (addr
<= d_end
))
173 return (addr
<= fw_dump
.boot_mem_top
);
176 int should_fadump_crash(void)
178 if (!fw_dump
.dump_registered
|| !fw_dump
.fadumphdr_addr
)
183 int is_fadump_active(void)
185 return fw_dump
.dump_active
;
189 * Returns true, if there are no holes in memory area between d_start to d_end,
192 static bool is_fadump_mem_area_contiguous(u64 d_start
, u64 d_end
)
194 phys_addr_t reg_start
, reg_end
;
198 for_each_mem_range(i
, ®_start
, ®_end
) {
199 start
= max_t(u64
, d_start
, reg_start
);
200 end
= min_t(u64
, d_end
, reg_end
);
202 /* Memory hole from d_start to start */
219 * Returns true, if there are no holes in boot memory area,
222 bool is_fadump_boot_mem_contiguous(void)
224 unsigned long d_start
, d_end
;
228 for (i
= 0; i
< fw_dump
.boot_mem_regs_cnt
; i
++) {
229 d_start
= fw_dump
.boot_mem_addr
[i
];
230 d_end
= d_start
+ fw_dump
.boot_mem_sz
[i
];
232 ret
= is_fadump_mem_area_contiguous(d_start
, d_end
);
241 * Returns true, if there are no holes in reserved memory area,
244 bool is_fadump_reserved_mem_contiguous(void)
248 d_start
= fw_dump
.reserve_dump_area_start
;
249 d_end
= d_start
+ fw_dump
.reserve_dump_area_size
;
250 return is_fadump_mem_area_contiguous(d_start
, d_end
);
253 /* Print firmware assisted dump configurations for debugging purpose. */
254 static void fadump_show_config(void)
258 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
259 (fw_dump
.fadump_supported
? "present" : "no support"));
261 if (!fw_dump
.fadump_supported
)
264 pr_debug("Fadump enabled : %s\n",
265 (fw_dump
.fadump_enabled
? "yes" : "no"));
266 pr_debug("Dump Active : %s\n",
267 (fw_dump
.dump_active
? "yes" : "no"));
268 pr_debug("Dump section sizes:\n");
269 pr_debug(" CPU state data size: %lx\n", fw_dump
.cpu_state_data_size
);
270 pr_debug(" HPTE region size : %lx\n", fw_dump
.hpte_region_size
);
271 pr_debug(" Boot memory size : %lx\n", fw_dump
.boot_memory_size
);
272 pr_debug(" Boot memory top : %llx\n", fw_dump
.boot_mem_top
);
273 pr_debug("Boot memory regions cnt: %llx\n", fw_dump
.boot_mem_regs_cnt
);
274 for (i
= 0; i
< fw_dump
.boot_mem_regs_cnt
; i
++) {
275 pr_debug("[%03d] base = %llx, size = %llx\n", i
,
276 fw_dump
.boot_mem_addr
[i
], fw_dump
.boot_mem_sz
[i
]);
281 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
283 * Function to find the largest memory size we need to reserve during early
284 * boot process. This will be the size of the memory that is required for a
285 * kernel to boot successfully.
287 * This function has been taken from phyp-assisted dump feature implementation.
289 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
291 * TODO: Come up with better approach to find out more accurate memory size
292 * that is required for a kernel to boot successfully.
295 static inline u64
fadump_calculate_reserve_size(void)
297 u64 base
, size
, bootmem_min
;
300 if (fw_dump
.reserve_bootvar
)
301 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
304 * Check if the size is specified through crashkernel= cmdline
305 * option. If yes, then use that but ignore base as fadump reserves
306 * memory at a predefined offset.
308 ret
= parse_crashkernel(boot_command_line
, memblock_phys_mem_size(),
310 if (ret
== 0 && size
> 0) {
311 unsigned long max_size
;
313 if (fw_dump
.reserve_bootvar
)
314 pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
316 fw_dump
.reserve_bootvar
= (unsigned long)size
;
319 * Adjust if the boot memory size specified is above
322 max_size
= memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO
;
323 if (fw_dump
.reserve_bootvar
> max_size
) {
324 fw_dump
.reserve_bootvar
= max_size
;
325 pr_info("Adjusted boot memory size to %luMB\n",
326 (fw_dump
.reserve_bootvar
>> 20));
329 return fw_dump
.reserve_bootvar
;
330 } else if (fw_dump
.reserve_bootvar
) {
332 * 'fadump_reserve_mem=' is being used to reserve memory
333 * for firmware-assisted dump.
335 return fw_dump
.reserve_bootvar
;
338 /* divide by 20 to get 5% of value */
339 size
= memblock_phys_mem_size() / 20;
341 /* round it down in multiples of 256 */
342 size
= size
& ~0x0FFFFFFFUL
;
344 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
345 if (memory_limit
&& size
> memory_limit
)
348 bootmem_min
= fw_dump
.ops
->fadump_get_bootmem_min();
349 return (size
> bootmem_min
? size
: bootmem_min
);
353 * Calculate the total memory size required to be reserved for
354 * firmware-assisted dump registration.
356 static unsigned long get_fadump_area_size(void)
358 unsigned long size
= 0;
360 size
+= fw_dump
.cpu_state_data_size
;
361 size
+= fw_dump
.hpte_region_size
;
362 size
+= fw_dump
.boot_memory_size
;
363 size
+= sizeof(struct fadump_crash_info_header
);
364 size
+= sizeof(struct elfhdr
); /* ELF core header.*/
365 size
+= sizeof(struct elf_phdr
); /* place holder for cpu notes */
366 /* Program headers for crash memory regions. */
367 size
+= sizeof(struct elf_phdr
) * (memblock_num_regions(memory
) + 2);
369 size
= PAGE_ALIGN(size
);
371 /* This is to hold kernel metadata on platforms that support it */
372 size
+= (fw_dump
.ops
->fadump_get_metadata_size
?
373 fw_dump
.ops
->fadump_get_metadata_size() : 0);
377 static int __init
add_boot_mem_region(unsigned long rstart
,
380 int i
= fw_dump
.boot_mem_regs_cnt
++;
382 if (fw_dump
.boot_mem_regs_cnt
> FADUMP_MAX_MEM_REGS
) {
383 fw_dump
.boot_mem_regs_cnt
= FADUMP_MAX_MEM_REGS
;
387 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
388 i
, rstart
, (rstart
+ rsize
));
389 fw_dump
.boot_mem_addr
[i
] = rstart
;
390 fw_dump
.boot_mem_sz
[i
] = rsize
;
395 * Firmware usually has a hard limit on the data it can copy per region.
396 * Honour that by splitting a memory range into multiple regions.
398 static int __init
add_boot_mem_regions(unsigned long mstart
,
401 unsigned long rstart
, rsize
, max_size
;
405 max_size
= fw_dump
.max_copy_size
? fw_dump
.max_copy_size
: msize
;
407 if (msize
> max_size
)
412 ret
= add_boot_mem_region(rstart
, rsize
);
423 static int __init
fadump_get_boot_mem_regions(void)
425 unsigned long size
, cur_size
, hole_size
, last_end
;
426 unsigned long mem_size
= fw_dump
.boot_memory_size
;
427 phys_addr_t reg_start
, reg_end
;
431 fw_dump
.boot_mem_regs_cnt
= 0;
436 for_each_mem_range(i
, ®_start
, ®_end
) {
437 size
= reg_end
- reg_start
;
438 hole_size
+= (reg_start
- last_end
);
440 if ((cur_size
+ size
) >= mem_size
) {
441 size
= (mem_size
- cur_size
);
442 ret
= add_boot_mem_regions(reg_start
, size
);
448 ret
= add_boot_mem_regions(reg_start
, size
);
454 fw_dump
.boot_mem_top
= PAGE_ALIGN(fw_dump
.boot_memory_size
+ hole_size
);
460 * Returns true, if the given range overlaps with reserved memory ranges
461 * starting at idx. Also, updates idx to index of overlapping memory range
462 * with the given memory range.
465 static bool overlaps_reserved_ranges(u64 base
, u64 end
, int *idx
)
470 for (i
= *idx
; i
< reserved_mrange_info
.mem_range_cnt
; i
++) {
471 u64 rbase
= reserved_mrange_info
.mem_ranges
[i
].base
;
472 u64 rend
= rbase
+ reserved_mrange_info
.mem_ranges
[i
].size
;
477 if ((end
> rbase
) && (base
< rend
)) {
488 * Locate a suitable memory area to reserve memory for FADump. While at it,
489 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
491 static u64 __init
fadump_locate_reserve_mem(u64 base
, u64 size
)
493 struct fadump_memory_range
*mrngs
;
494 phys_addr_t mstart
, mend
;
498 mrngs
= reserved_mrange_info
.mem_ranges
;
499 for_each_free_mem_range(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
,
500 &mstart
, &mend
, NULL
) {
501 pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
502 i
, mstart
, mend
, base
);
505 base
= PAGE_ALIGN(mstart
);
507 while ((mend
> base
) && ((mend
- base
) >= size
)) {
508 if (!overlaps_reserved_ranges(base
, base
+size
, &idx
)) {
513 base
= mrngs
[idx
].base
+ mrngs
[idx
].size
;
514 base
= PAGE_ALIGN(base
);
522 int __init
fadump_reserve_mem(void)
524 u64 base
, size
, mem_boundary
, bootmem_min
;
527 if (!fw_dump
.fadump_enabled
)
530 if (!fw_dump
.fadump_supported
) {
531 pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
536 * Initialize boot memory size
537 * If dump is active then we have already calculated the size during
540 if (!fw_dump
.dump_active
) {
541 fw_dump
.boot_memory_size
=
542 PAGE_ALIGN(fadump_calculate_reserve_size());
544 if (!fw_dump
.nocma
) {
545 fw_dump
.boot_memory_size
=
546 ALIGN(fw_dump
.boot_memory_size
,
547 FADUMP_CMA_ALIGNMENT
);
551 bootmem_min
= fw_dump
.ops
->fadump_get_bootmem_min();
552 if (fw_dump
.boot_memory_size
< bootmem_min
) {
553 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
554 fw_dump
.boot_memory_size
, bootmem_min
);
558 if (!fadump_get_boot_mem_regions()) {
559 pr_err("Too many holes in boot memory area to enable fadump\n");
565 * Calculate the memory boundary.
566 * If memory_limit is less than actual memory boundary then reserve
567 * the memory for fadump beyond the memory_limit and adjust the
568 * memory_limit accordingly, so that the running kernel can run with
569 * specified memory_limit.
571 if (memory_limit
&& memory_limit
< memblock_end_of_DRAM()) {
572 size
= get_fadump_area_size();
573 if ((memory_limit
+ size
) < memblock_end_of_DRAM())
574 memory_limit
+= size
;
576 memory_limit
= memblock_end_of_DRAM();
577 printk(KERN_INFO
"Adjusted memory_limit for firmware-assisted"
578 " dump, now %#016llx\n", memory_limit
);
581 mem_boundary
= memory_limit
;
583 mem_boundary
= memblock_end_of_DRAM();
585 base
= fw_dump
.boot_mem_top
;
586 size
= get_fadump_area_size();
587 fw_dump
.reserve_dump_area_size
= size
;
588 if (fw_dump
.dump_active
) {
589 pr_info("Firmware-assisted dump is active.\n");
591 #ifdef CONFIG_HUGETLB_PAGE
593 * FADump capture kernel doesn't care much about hugepages.
594 * In fact, handling hugepages in capture kernel is asking for
595 * trouble. So, disable HugeTLB support when fadump is active.
597 hugetlb_disabled
= true;
600 * If last boot has crashed then reserve all the memory
601 * above boot memory size so that we don't touch it until
602 * dump is written to disk by userspace tool. This memory
603 * can be released for general use by invalidating fadump.
605 fadump_reserve_crash_area(base
);
607 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump
.fadumphdr_addr
);
608 pr_debug("Reserve dump area start address: 0x%lx\n",
609 fw_dump
.reserve_dump_area_start
);
612 * Reserve memory at an offset closer to bottom of the RAM to
613 * minimize the impact of memory hot-remove operation.
615 base
= fadump_locate_reserve_mem(base
, size
);
617 if (!base
|| (base
+ size
> mem_boundary
)) {
618 pr_err("Failed to find memory chunk for reservation!\n");
621 fw_dump
.reserve_dump_area_start
= base
;
624 * Calculate the kernel metadata address and register it with
625 * f/w if the platform supports.
627 if (fw_dump
.ops
->fadump_setup_metadata
&&
628 (fw_dump
.ops
->fadump_setup_metadata(&fw_dump
) < 0))
631 if (memblock_reserve(base
, size
)) {
632 pr_err("Failed to reserve memory!\n");
636 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
637 (size
>> 20), base
, (memblock_phys_mem_size() >> 20));
639 ret
= fadump_cma_init();
644 fw_dump
.fadump_enabled
= 0;
648 /* Look for fadump= cmdline option. */
649 static int __init
early_fadump_param(char *p
)
654 if (strncmp(p
, "on", 2) == 0)
655 fw_dump
.fadump_enabled
= 1;
656 else if (strncmp(p
, "off", 3) == 0)
657 fw_dump
.fadump_enabled
= 0;
658 else if (strncmp(p
, "nocma", 5) == 0) {
659 fw_dump
.fadump_enabled
= 1;
665 early_param("fadump", early_fadump_param
);
668 * Look for fadump_reserve_mem= cmdline option
669 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
670 * the sooner 'crashkernel=' parameter is accustomed to.
672 static int __init
early_fadump_reserve_mem(char *p
)
675 fw_dump
.reserve_bootvar
= memparse(p
, &p
);
678 early_param("fadump_reserve_mem", early_fadump_reserve_mem
);
680 void crash_fadump(struct pt_regs
*regs
, const char *str
)
683 struct fadump_crash_info_header
*fdh
= NULL
;
684 int old_cpu
, this_cpu
;
685 /* Do not include first CPU */
686 unsigned int ncpus
= num_online_cpus() - 1;
688 if (!should_fadump_crash())
692 * old_cpu == -1 means this is the first CPU which has come here,
693 * go ahead and trigger fadump.
695 * old_cpu != -1 means some other CPU has already on it's way
696 * to trigger fadump, just keep looping here.
698 this_cpu
= smp_processor_id();
699 old_cpu
= cmpxchg(&crashing_cpu
, -1, this_cpu
);
702 atomic_inc(&cpus_in_fadump
);
705 * We can't loop here indefinitely. Wait as long as fadump
706 * is in force. If we race with fadump un-registration this
707 * loop will break and then we go down to normal panic path
708 * and reboot. If fadump is in force the first crashing
709 * cpu will definitely trigger fadump.
711 while (fw_dump
.dump_registered
)
716 fdh
= __va(fw_dump
.fadumphdr_addr
);
717 fdh
->crashing_cpu
= crashing_cpu
;
718 crash_save_vmcoreinfo();
723 ppc_save_regs(&fdh
->regs
);
725 fdh
->online_mask
= *cpu_online_mask
;
728 * If we came in via system reset, wait a while for the secondary
731 if (TRAP(&(fdh
->regs
)) == 0x100) {
732 msecs
= CRASH_TIMEOUT
;
733 while ((atomic_read(&cpus_in_fadump
) < ncpus
) && (--msecs
> 0))
737 fw_dump
.ops
->fadump_trigger(fdh
, str
);
740 u32
*fadump_regs_to_elf_notes(u32
*buf
, struct pt_regs
*regs
)
742 struct elf_prstatus prstatus
;
744 memset(&prstatus
, 0, sizeof(prstatus
));
746 * FIXME: How do i get PID? Do I really need it?
747 * prstatus.pr_pid = ????
749 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
750 buf
= append_elf_note(buf
, CRASH_CORE_NOTE_NAME
, NT_PRSTATUS
,
751 &prstatus
, sizeof(prstatus
));
755 void fadump_update_elfcore_header(char *bufp
)
757 struct elf_phdr
*phdr
;
759 bufp
+= sizeof(struct elfhdr
);
761 /* First note is a place holder for cpu notes info. */
762 phdr
= (struct elf_phdr
*)bufp
;
764 if (phdr
->p_type
== PT_NOTE
) {
765 phdr
->p_paddr
= __pa(fw_dump
.cpu_notes_buf_vaddr
);
766 phdr
->p_offset
= phdr
->p_paddr
;
767 phdr
->p_filesz
= fw_dump
.cpu_notes_buf_size
;
768 phdr
->p_memsz
= fw_dump
.cpu_notes_buf_size
;
773 static void *fadump_alloc_buffer(unsigned long size
)
775 unsigned long count
, i
;
779 vaddr
= alloc_pages_exact(size
, GFP_KERNEL
| __GFP_ZERO
);
783 count
= PAGE_ALIGN(size
) / PAGE_SIZE
;
784 page
= virt_to_page(vaddr
);
785 for (i
= 0; i
< count
; i
++)
786 mark_page_reserved(page
+ i
);
790 static void fadump_free_buffer(unsigned long vaddr
, unsigned long size
)
792 free_reserved_area((void *)vaddr
, (void *)(vaddr
+ size
), -1, NULL
);
795 s32
fadump_setup_cpu_notes_buf(u32 num_cpus
)
797 /* Allocate buffer to hold cpu crash notes. */
798 fw_dump
.cpu_notes_buf_size
= num_cpus
* sizeof(note_buf_t
);
799 fw_dump
.cpu_notes_buf_size
= PAGE_ALIGN(fw_dump
.cpu_notes_buf_size
);
800 fw_dump
.cpu_notes_buf_vaddr
=
801 (unsigned long)fadump_alloc_buffer(fw_dump
.cpu_notes_buf_size
);
802 if (!fw_dump
.cpu_notes_buf_vaddr
) {
803 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
804 fw_dump
.cpu_notes_buf_size
);
808 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
809 fw_dump
.cpu_notes_buf_size
,
810 fw_dump
.cpu_notes_buf_vaddr
);
814 void fadump_free_cpu_notes_buf(void)
816 if (!fw_dump
.cpu_notes_buf_vaddr
)
819 fadump_free_buffer(fw_dump
.cpu_notes_buf_vaddr
,
820 fw_dump
.cpu_notes_buf_size
);
821 fw_dump
.cpu_notes_buf_vaddr
= 0;
822 fw_dump
.cpu_notes_buf_size
= 0;
825 static void fadump_free_mem_ranges(struct fadump_mrange_info
*mrange_info
)
827 if (mrange_info
->is_static
) {
828 mrange_info
->mem_range_cnt
= 0;
832 kfree(mrange_info
->mem_ranges
);
833 memset((void *)((u64
)mrange_info
+ RNG_NAME_SZ
), 0,
834 (sizeof(struct fadump_mrange_info
) - RNG_NAME_SZ
));
838 * Allocate or reallocate mem_ranges array in incremental units
841 static int fadump_alloc_mem_ranges(struct fadump_mrange_info
*mrange_info
)
843 struct fadump_memory_range
*new_array
;
846 new_size
= mrange_info
->mem_ranges_sz
+ PAGE_SIZE
;
847 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
848 new_size
, mrange_info
->name
);
850 new_array
= krealloc(mrange_info
->mem_ranges
, new_size
, GFP_KERNEL
);
851 if (new_array
== NULL
) {
852 pr_err("Insufficient memory for setting up %s memory ranges\n",
854 fadump_free_mem_ranges(mrange_info
);
858 mrange_info
->mem_ranges
= new_array
;
859 mrange_info
->mem_ranges_sz
= new_size
;
860 mrange_info
->max_mem_ranges
= (new_size
/
861 sizeof(struct fadump_memory_range
));
865 static inline int fadump_add_mem_range(struct fadump_mrange_info
*mrange_info
,
868 struct fadump_memory_range
*mem_ranges
= mrange_info
->mem_ranges
;
869 bool is_adjacent
= false;
876 * Fold adjacent memory ranges to bring down the memory ranges/
877 * PT_LOAD segments count.
879 if (mrange_info
->mem_range_cnt
) {
880 start
= mem_ranges
[mrange_info
->mem_range_cnt
- 1].base
;
881 size
= mem_ranges
[mrange_info
->mem_range_cnt
- 1].size
;
883 if ((start
+ size
) == base
)
887 /* resize the array on reaching the limit */
888 if (mrange_info
->mem_range_cnt
== mrange_info
->max_mem_ranges
) {
891 if (mrange_info
->is_static
) {
892 pr_err("Reached array size limit for %s memory ranges\n",
897 ret
= fadump_alloc_mem_ranges(mrange_info
);
901 /* Update to the new resized array */
902 mem_ranges
= mrange_info
->mem_ranges
;
906 mem_ranges
[mrange_info
->mem_range_cnt
].base
= start
;
907 mrange_info
->mem_range_cnt
++;
910 mem_ranges
[mrange_info
->mem_range_cnt
- 1].size
= (end
- start
);
911 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
912 mrange_info
->name
, (mrange_info
->mem_range_cnt
- 1),
913 start
, end
- 1, (end
- start
));
917 static int fadump_exclude_reserved_area(u64 start
, u64 end
)
919 u64 ra_start
, ra_end
;
922 ra_start
= fw_dump
.reserve_dump_area_start
;
923 ra_end
= ra_start
+ fw_dump
.reserve_dump_area_size
;
925 if ((ra_start
< end
) && (ra_end
> start
)) {
926 if ((start
< ra_start
) && (end
> ra_end
)) {
927 ret
= fadump_add_mem_range(&crash_mrange_info
,
932 ret
= fadump_add_mem_range(&crash_mrange_info
,
934 } else if (start
< ra_start
) {
935 ret
= fadump_add_mem_range(&crash_mrange_info
,
937 } else if (ra_end
< end
) {
938 ret
= fadump_add_mem_range(&crash_mrange_info
,
942 ret
= fadump_add_mem_range(&crash_mrange_info
, start
, end
);
947 static int fadump_init_elfcore_header(char *bufp
)
951 elf
= (struct elfhdr
*) bufp
;
952 bufp
+= sizeof(struct elfhdr
);
953 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
954 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
955 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
956 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
957 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
958 memset(elf
->e_ident
+EI_PAD
, 0, EI_NIDENT
-EI_PAD
);
959 elf
->e_type
= ET_CORE
;
960 elf
->e_machine
= ELF_ARCH
;
961 elf
->e_version
= EV_CURRENT
;
963 elf
->e_phoff
= sizeof(struct elfhdr
);
965 #if defined(_CALL_ELF)
966 elf
->e_flags
= _CALL_ELF
;
970 elf
->e_ehsize
= sizeof(struct elfhdr
);
971 elf
->e_phentsize
= sizeof(struct elf_phdr
);
973 elf
->e_shentsize
= 0;
981 * Traverse through memblock structure and setup crash memory ranges. These
982 * ranges will be used create PT_LOAD program headers in elfcore header.
984 static int fadump_setup_crash_memory_ranges(void)
989 pr_debug("Setup crash memory ranges.\n");
990 crash_mrange_info
.mem_range_cnt
= 0;
993 * Boot memory region(s) registered with firmware are moved to
994 * different location at the time of crash. Create separate program
995 * header(s) for this memory chunk(s) with the correct offset.
997 for (i
= 0; i
< fw_dump
.boot_mem_regs_cnt
; i
++) {
998 start
= fw_dump
.boot_mem_addr
[i
];
999 end
= start
+ fw_dump
.boot_mem_sz
[i
];
1000 ret
= fadump_add_mem_range(&crash_mrange_info
, start
, end
);
1005 for_each_mem_range(i
, &start
, &end
) {
1007 * skip the memory chunk that is already added
1008 * (0 through boot_memory_top).
1010 if (start
< fw_dump
.boot_mem_top
) {
1011 if (end
> fw_dump
.boot_mem_top
)
1012 start
= fw_dump
.boot_mem_top
;
1017 /* add this range excluding the reserved dump area. */
1018 ret
= fadump_exclude_reserved_area(start
, end
);
1027 * If the given physical address falls within the boot memory region then
1028 * return the relocated address that points to the dump region reserved
1029 * for saving initial boot memory contents.
1031 static inline unsigned long fadump_relocate(unsigned long paddr
)
1033 unsigned long raddr
, rstart
, rend
, rlast
, hole_size
;
1039 for (i
= 0; i
< fw_dump
.boot_mem_regs_cnt
; i
++) {
1040 rstart
= fw_dump
.boot_mem_addr
[i
];
1041 rend
= rstart
+ fw_dump
.boot_mem_sz
[i
];
1042 hole_size
+= (rstart
- rlast
);
1044 if (paddr
>= rstart
&& paddr
< rend
) {
1045 raddr
+= fw_dump
.boot_mem_dest_addr
- hole_size
;
1052 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr
, raddr
);
1056 static int fadump_create_elfcore_headers(char *bufp
)
1058 unsigned long long raddr
, offset
;
1059 struct elf_phdr
*phdr
;
1063 fadump_init_elfcore_header(bufp
);
1064 elf
= (struct elfhdr
*)bufp
;
1065 bufp
+= sizeof(struct elfhdr
);
1068 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1069 * will be populated during second kernel boot after crash. Hence
1070 * this PT_NOTE will always be the first elf note.
1072 * NOTE: Any new ELF note addition should be placed after this note.
1074 phdr
= (struct elf_phdr
*)bufp
;
1075 bufp
+= sizeof(struct elf_phdr
);
1076 phdr
->p_type
= PT_NOTE
;
1088 /* setup ELF PT_NOTE for vmcoreinfo */
1089 phdr
= (struct elf_phdr
*)bufp
;
1090 bufp
+= sizeof(struct elf_phdr
);
1091 phdr
->p_type
= PT_NOTE
;
1096 phdr
->p_paddr
= fadump_relocate(paddr_vmcoreinfo_note());
1097 phdr
->p_offset
= phdr
->p_paddr
;
1098 phdr
->p_memsz
= phdr
->p_filesz
= VMCOREINFO_NOTE_SIZE
;
1100 /* Increment number of program headers. */
1103 /* setup PT_LOAD sections. */
1106 raddr
= fw_dump
.boot_mem_addr
[0];
1107 for (i
= 0; i
< crash_mrange_info
.mem_range_cnt
; i
++) {
1110 mbase
= crash_mrange_info
.mem_ranges
[i
].base
;
1111 msize
= crash_mrange_info
.mem_ranges
[i
].size
;
1115 phdr
= (struct elf_phdr
*)bufp
;
1116 bufp
+= sizeof(struct elf_phdr
);
1117 phdr
->p_type
= PT_LOAD
;
1118 phdr
->p_flags
= PF_R
|PF_W
|PF_X
;
1119 phdr
->p_offset
= mbase
;
1121 if (mbase
== raddr
) {
1123 * The entire real memory region will be moved by
1124 * firmware to the specified destination_address.
1125 * Hence set the correct offset.
1127 phdr
->p_offset
= fw_dump
.boot_mem_dest_addr
+ offset
;
1128 if (j
< (fw_dump
.boot_mem_regs_cnt
- 1)) {
1129 offset
+= fw_dump
.boot_mem_sz
[j
];
1130 raddr
= fw_dump
.boot_mem_addr
[++j
];
1134 phdr
->p_paddr
= mbase
;
1135 phdr
->p_vaddr
= (unsigned long)__va(mbase
);
1136 phdr
->p_filesz
= msize
;
1137 phdr
->p_memsz
= msize
;
1140 /* Increment number of program headers. */
1146 static unsigned long init_fadump_header(unsigned long addr
)
1148 struct fadump_crash_info_header
*fdh
;
1154 addr
+= sizeof(struct fadump_crash_info_header
);
1156 memset(fdh
, 0, sizeof(struct fadump_crash_info_header
));
1157 fdh
->magic_number
= FADUMP_CRASH_INFO_MAGIC
;
1158 fdh
->elfcorehdr_addr
= addr
;
1159 /* We will set the crashing cpu id in crash_fadump() during crash. */
1160 fdh
->crashing_cpu
= FADUMP_CPU_UNKNOWN
;
1165 static int register_fadump(void)
1172 * If no memory is reserved then we can not register for firmware-
1175 if (!fw_dump
.reserve_dump_area_size
)
1178 ret
= fadump_setup_crash_memory_ranges();
1182 addr
= fw_dump
.fadumphdr_addr
;
1184 /* Initialize fadump crash info header. */
1185 addr
= init_fadump_header(addr
);
1188 pr_debug("Creating ELF core headers at %#016lx\n", addr
);
1189 fadump_create_elfcore_headers(vaddr
);
1191 /* register the future kernel dump with firmware. */
1192 pr_debug("Registering for firmware-assisted kernel dump...\n");
1193 return fw_dump
.ops
->fadump_register(&fw_dump
);
1196 void fadump_cleanup(void)
1198 if (!fw_dump
.fadump_supported
)
1201 /* Invalidate the registration only if dump is active. */
1202 if (fw_dump
.dump_active
) {
1203 pr_debug("Invalidating firmware-assisted dump registration\n");
1204 fw_dump
.ops
->fadump_invalidate(&fw_dump
);
1205 } else if (fw_dump
.dump_registered
) {
1206 /* Un-register Firmware-assisted dump if it was registered. */
1207 fw_dump
.ops
->fadump_unregister(&fw_dump
);
1208 fadump_free_mem_ranges(&crash_mrange_info
);
1211 if (fw_dump
.ops
->fadump_cleanup
)
1212 fw_dump
.ops
->fadump_cleanup(&fw_dump
);
1215 static void fadump_free_reserved_memory(unsigned long start_pfn
,
1216 unsigned long end_pfn
)
1219 unsigned long time_limit
= jiffies
+ HZ
;
1221 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1222 PFN_PHYS(start_pfn
), PFN_PHYS(end_pfn
));
1224 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1225 free_reserved_page(pfn_to_page(pfn
));
1227 if (time_after(jiffies
, time_limit
)) {
1229 time_limit
= jiffies
+ HZ
;
1235 * Skip memory holes and free memory that was actually reserved.
1237 static void fadump_release_reserved_area(u64 start
, u64 end
)
1239 unsigned long reg_spfn
, reg_epfn
;
1240 u64 tstart
, tend
, spfn
, epfn
;
1243 spfn
= PHYS_PFN(start
);
1244 epfn
= PHYS_PFN(end
);
1246 for_each_mem_pfn_range(i
, MAX_NUMNODES
, ®_spfn
, ®_epfn
, NULL
) {
1247 tstart
= max_t(u64
, spfn
, reg_spfn
);
1248 tend
= min_t(u64
, epfn
, reg_epfn
);
1250 if (tstart
< tend
) {
1251 fadump_free_reserved_memory(tstart
, tend
);
1262 * Sort the mem ranges in-place and merge adjacent ranges
1263 * to minimize the memory ranges count.
1265 static void sort_and_merge_mem_ranges(struct fadump_mrange_info
*mrange_info
)
1267 struct fadump_memory_range
*mem_ranges
;
1268 struct fadump_memory_range tmp_range
;
1272 if (!reserved_mrange_info
.mem_range_cnt
)
1275 /* Sort the memory ranges */
1276 mem_ranges
= mrange_info
->mem_ranges
;
1277 for (i
= 0; i
< mrange_info
->mem_range_cnt
; i
++) {
1279 for (j
= (i
+ 1); j
< mrange_info
->mem_range_cnt
; j
++) {
1280 if (mem_ranges
[idx
].base
> mem_ranges
[j
].base
)
1284 tmp_range
= mem_ranges
[idx
];
1285 mem_ranges
[idx
] = mem_ranges
[i
];
1286 mem_ranges
[i
] = tmp_range
;
1290 /* Merge adjacent reserved ranges */
1292 for (i
= 1; i
< mrange_info
->mem_range_cnt
; i
++) {
1293 base
= mem_ranges
[i
-1].base
;
1294 size
= mem_ranges
[i
-1].size
;
1295 if (mem_ranges
[i
].base
== (base
+ size
))
1296 mem_ranges
[idx
].size
+= mem_ranges
[i
].size
;
1302 mem_ranges
[idx
] = mem_ranges
[i
];
1305 mrange_info
->mem_range_cnt
= idx
+ 1;
1309 * Scan reserved-ranges to consider them while reserving/releasing
1310 * memory for FADump.
1312 static void __init
early_init_dt_scan_reserved_ranges(unsigned long node
)
1318 /* reserved-ranges already scanned */
1319 if (reserved_mrange_info
.mem_range_cnt
!= 0)
1322 prop
= of_get_flat_dt_prop(node
, "reserved-ranges", &len
);
1327 * Each reserved range is an (address,size) pair, 2 cells each,
1328 * totalling 4 cells per range.
1330 for (i
= 0; i
< len
/ (sizeof(*prop
) * 4); i
++) {
1333 base
= of_read_number(prop
+ (i
* 4) + 0, 2);
1334 size
= of_read_number(prop
+ (i
* 4) + 2, 2);
1337 ret
= fadump_add_mem_range(&reserved_mrange_info
,
1340 pr_warn("some reserved ranges are ignored!\n");
1346 /* Compact reserved ranges */
1347 sort_and_merge_mem_ranges(&reserved_mrange_info
);
1351 * Release the memory that was reserved during early boot to preserve the
1352 * crash'ed kernel's memory contents except reserved dump area (permanent
1353 * reservation) and reserved ranges used by F/W. The released memory will
1354 * be available for general use.
1356 static void fadump_release_memory(u64 begin
, u64 end
)
1358 u64 ra_start
, ra_end
, tstart
;
1361 ra_start
= fw_dump
.reserve_dump_area_start
;
1362 ra_end
= ra_start
+ fw_dump
.reserve_dump_area_size
;
1365 * If reserved ranges array limit is hit, overwrite the last reserved
1366 * memory range with reserved dump area to ensure it is excluded from
1367 * the memory being released (reused for next FADump registration).
1369 if (reserved_mrange_info
.mem_range_cnt
==
1370 reserved_mrange_info
.max_mem_ranges
)
1371 reserved_mrange_info
.mem_range_cnt
--;
1373 ret
= fadump_add_mem_range(&reserved_mrange_info
, ra_start
, ra_end
);
1377 /* Get the reserved ranges list in order first. */
1378 sort_and_merge_mem_ranges(&reserved_mrange_info
);
1380 /* Exclude reserved ranges and release remaining memory */
1382 for (i
= 0; i
< reserved_mrange_info
.mem_range_cnt
; i
++) {
1383 ra_start
= reserved_mrange_info
.mem_ranges
[i
].base
;
1384 ra_end
= ra_start
+ reserved_mrange_info
.mem_ranges
[i
].size
;
1386 if (tstart
>= ra_end
)
1389 if (tstart
< ra_start
)
1390 fadump_release_reserved_area(tstart
, ra_start
);
1395 fadump_release_reserved_area(tstart
, end
);
1398 static void fadump_invalidate_release_mem(void)
1400 mutex_lock(&fadump_mutex
);
1401 if (!fw_dump
.dump_active
) {
1402 mutex_unlock(&fadump_mutex
);
1407 mutex_unlock(&fadump_mutex
);
1409 fadump_release_memory(fw_dump
.boot_mem_top
, memblock_end_of_DRAM());
1410 fadump_free_cpu_notes_buf();
1413 * Setup kernel metadata and initialize the kernel dump
1414 * memory structure for FADump re-registration.
1416 if (fw_dump
.ops
->fadump_setup_metadata
&&
1417 (fw_dump
.ops
->fadump_setup_metadata(&fw_dump
) < 0))
1418 pr_warn("Failed to setup kernel metadata!\n");
1419 fw_dump
.ops
->fadump_init_mem_struct(&fw_dump
);
1422 static ssize_t
release_mem_store(struct kobject
*kobj
,
1423 struct kobj_attribute
*attr
,
1424 const char *buf
, size_t count
)
1428 if (!fw_dump
.dump_active
)
1431 if (kstrtoint(buf
, 0, &input
))
1436 * Take away the '/proc/vmcore'. We are releasing the dump
1437 * memory, hence it will not be valid anymore.
1439 #ifdef CONFIG_PROC_VMCORE
1442 fadump_invalidate_release_mem();
1449 /* Release the reserved memory and disable the FADump */
1450 static void unregister_fadump(void)
1453 fadump_release_memory(fw_dump
.reserve_dump_area_start
,
1454 fw_dump
.reserve_dump_area_size
);
1455 fw_dump
.fadump_enabled
= 0;
1456 kobject_put(fadump_kobj
);
1459 static ssize_t
enabled_show(struct kobject
*kobj
,
1460 struct kobj_attribute
*attr
,
1463 return sprintf(buf
, "%d\n", fw_dump
.fadump_enabled
);
1466 static ssize_t
mem_reserved_show(struct kobject
*kobj
,
1467 struct kobj_attribute
*attr
,
1470 return sprintf(buf
, "%ld\n", fw_dump
.reserve_dump_area_size
);
1473 static ssize_t
registered_show(struct kobject
*kobj
,
1474 struct kobj_attribute
*attr
,
1477 return sprintf(buf
, "%d\n", fw_dump
.dump_registered
);
1480 static ssize_t
registered_store(struct kobject
*kobj
,
1481 struct kobj_attribute
*attr
,
1482 const char *buf
, size_t count
)
1487 if (!fw_dump
.fadump_enabled
|| fw_dump
.dump_active
)
1490 if (kstrtoint(buf
, 0, &input
))
1493 mutex_lock(&fadump_mutex
);
1497 if (fw_dump
.dump_registered
== 0) {
1501 /* Un-register Firmware-assisted dump */
1502 pr_debug("Un-register firmware-assisted dump\n");
1503 fw_dump
.ops
->fadump_unregister(&fw_dump
);
1506 if (fw_dump
.dump_registered
== 1) {
1507 /* Un-register Firmware-assisted dump */
1508 fw_dump
.ops
->fadump_unregister(&fw_dump
);
1510 /* Register Firmware-assisted dump */
1511 ret
= register_fadump();
1519 mutex_unlock(&fadump_mutex
);
1520 return ret
< 0 ? ret
: count
;
1523 static int fadump_region_show(struct seq_file
*m
, void *private)
1525 if (!fw_dump
.fadump_enabled
)
1528 mutex_lock(&fadump_mutex
);
1529 fw_dump
.ops
->fadump_region_show(&fw_dump
, m
);
1530 mutex_unlock(&fadump_mutex
);
1534 static struct kobj_attribute release_attr
= __ATTR_WO(release_mem
);
1535 static struct kobj_attribute enable_attr
= __ATTR_RO(enabled
);
1536 static struct kobj_attribute register_attr
= __ATTR_RW(registered
);
1537 static struct kobj_attribute mem_reserved_attr
= __ATTR_RO(mem_reserved
);
1539 static struct attribute
*fadump_attrs
[] = {
1541 ®ister_attr
.attr
,
1542 &mem_reserved_attr
.attr
,
1546 ATTRIBUTE_GROUPS(fadump
);
1548 DEFINE_SHOW_ATTRIBUTE(fadump_region
);
1550 static void fadump_init_files(void)
1554 fadump_kobj
= kobject_create_and_add("fadump", kernel_kobj
);
1556 pr_err("failed to create fadump kobject\n");
1560 debugfs_create_file("fadump_region", 0444, powerpc_debugfs_root
, NULL
,
1561 &fadump_region_fops
);
1563 if (fw_dump
.dump_active
) {
1564 rc
= sysfs_create_file(fadump_kobj
, &release_attr
.attr
);
1566 pr_err("unable to create release_mem sysfs file (%d)\n",
1570 rc
= sysfs_create_groups(fadump_kobj
, fadump_groups
);
1572 pr_err("sysfs group creation failed (%d), unregistering FADump",
1574 unregister_fadump();
1579 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1580 * create symlink at old location to maintain backward compatibility.
1582 * - fadump_enabled -> fadump/enabled
1583 * - fadump_registered -> fadump/registered
1584 * - fadump_release_mem -> fadump/release_mem
1586 rc
= compat_only_sysfs_link_entry_to_kobj(kernel_kobj
, fadump_kobj
,
1587 "enabled", "fadump_enabled");
1589 pr_err("unable to create fadump_enabled symlink (%d)", rc
);
1593 rc
= compat_only_sysfs_link_entry_to_kobj(kernel_kobj
, fadump_kobj
,
1595 "fadump_registered");
1597 pr_err("unable to create fadump_registered symlink (%d)", rc
);
1598 sysfs_remove_link(kernel_kobj
, "fadump_enabled");
1602 if (fw_dump
.dump_active
) {
1603 rc
= compat_only_sysfs_link_entry_to_kobj(kernel_kobj
,
1606 "fadump_release_mem");
1608 pr_err("unable to create fadump_release_mem symlink (%d)",
1615 * Prepare for firmware-assisted dump.
1617 int __init
setup_fadump(void)
1619 if (!fw_dump
.fadump_supported
)
1622 fadump_init_files();
1623 fadump_show_config();
1625 if (!fw_dump
.fadump_enabled
)
1629 * If dump data is available then see if it is valid and prepare for
1630 * saving it to the disk.
1632 if (fw_dump
.dump_active
) {
1634 * if dump process fails then invalidate the registration
1635 * and release memory before proceeding for re-registration.
1637 if (fw_dump
.ops
->fadump_process(&fw_dump
) < 0)
1638 fadump_invalidate_release_mem();
1640 /* Initialize the kernel dump memory structure for FAD registration. */
1641 else if (fw_dump
.reserve_dump_area_size
)
1642 fw_dump
.ops
->fadump_init_mem_struct(&fw_dump
);
1646 subsys_initcall(setup_fadump
);
1647 #else /* !CONFIG_PRESERVE_FA_DUMP */
1649 /* Scan the Firmware Assisted dump configuration details. */
1650 int __init
early_init_dt_scan_fw_dump(unsigned long node
, const char *uname
,
1651 int depth
, void *data
)
1653 if ((depth
!= 1) || (strcmp(uname
, "ibm,opal") != 0))
1656 opal_fadump_dt_scan(&fw_dump
, node
);
1661 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1662 * preserve crash data. The subsequent memory preserving kernel boot
1663 * is likely to process this crash data.
1665 int __init
fadump_reserve_mem(void)
1667 if (fw_dump
.dump_active
) {
1669 * If last boot has crashed then reserve all the memory
1670 * above boot memory to preserve crash data.
1672 pr_info("Preserving crash data for processing in next boot.\n");
1673 fadump_reserve_crash_area(fw_dump
.boot_mem_top
);
1675 pr_debug("FADump-aware kernel..\n");
1679 #endif /* CONFIG_PRESERVE_FA_DUMP */
1681 /* Preserve everything above the base address */
1682 static void __init
fadump_reserve_crash_area(u64 base
)
1684 u64 i
, mstart
, mend
, msize
;
1686 for_each_mem_range(i
, &mstart
, &mend
) {
1687 msize
= mend
- mstart
;
1689 if ((mstart
+ msize
) < base
)
1692 if (mstart
< base
) {
1693 msize
-= (base
- mstart
);
1697 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1698 (msize
>> 20), mstart
);
1699 memblock_reserve(mstart
, msize
);
1703 unsigned long __init
arch_reserved_kernel_pages(void)
1705 return memblock_reserved_size() / PAGE_SIZE
;