1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 * Copyright 2007-2010 Freescale Semiconductor, Inc.
6 * Modified by Cort Dougan (cort@cs.nmt.edu)
7 * and Paul Mackerras (paulus@samba.org)
11 * This file handles the architecture-dependent parts of hardware exceptions
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
19 #include <linux/pkeys.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/extable.h>
27 #include <linux/module.h> /* print_modules */
28 #include <linux/prctl.h>
29 #include <linux/delay.h>
30 #include <linux/kprobes.h>
31 #include <linux/kexec.h>
32 #include <linux/backlight.h>
33 #include <linux/bug.h>
34 #include <linux/kdebug.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/smp.h>
38 #include <linux/console.h>
39 #include <linux/kmsg_dump.h>
41 #include <asm/emulated_ops.h>
42 #include <linux/uaccess.h>
43 #include <asm/debugfs.h>
45 #include <asm/machdep.h>
49 #ifdef CONFIG_PMAC_BACKLIGHT
50 #include <asm/backlight.h>
53 #include <asm/firmware.h>
54 #include <asm/processor.h>
57 #include <asm/kexec.h>
58 #include <asm/ppc-opcode.h>
60 #include <asm/fadump.h>
61 #include <asm/switch_to.h>
63 #include <asm/debug.h>
64 #include <asm/asm-prototypes.h>
66 #include <sysdev/fsl_pci.h>
67 #include <asm/kprobes.h>
68 #include <asm/stacktrace.h>
71 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
72 int (*__debugger
)(struct pt_regs
*regs
) __read_mostly
;
73 int (*__debugger_ipi
)(struct pt_regs
*regs
) __read_mostly
;
74 int (*__debugger_bpt
)(struct pt_regs
*regs
) __read_mostly
;
75 int (*__debugger_sstep
)(struct pt_regs
*regs
) __read_mostly
;
76 int (*__debugger_iabr_match
)(struct pt_regs
*regs
) __read_mostly
;
77 int (*__debugger_break_match
)(struct pt_regs
*regs
) __read_mostly
;
78 int (*__debugger_fault_handler
)(struct pt_regs
*regs
) __read_mostly
;
80 EXPORT_SYMBOL(__debugger
);
81 EXPORT_SYMBOL(__debugger_ipi
);
82 EXPORT_SYMBOL(__debugger_bpt
);
83 EXPORT_SYMBOL(__debugger_sstep
);
84 EXPORT_SYMBOL(__debugger_iabr_match
);
85 EXPORT_SYMBOL(__debugger_break_match
);
86 EXPORT_SYMBOL(__debugger_fault_handler
);
89 /* Transactional Memory trap debug */
91 #define TM_DEBUG(x...) printk(KERN_INFO x)
93 #define TM_DEBUG(x...) do { } while(0)
96 static const char *signame(int signr
)
99 case SIGBUS
: return "bus error";
100 case SIGFPE
: return "floating point exception";
101 case SIGILL
: return "illegal instruction";
102 case SIGSEGV
: return "segfault";
103 case SIGTRAP
: return "unhandled trap";
106 return "unknown signal";
110 * Trap & Exception support
113 #ifdef CONFIG_PMAC_BACKLIGHT
114 static void pmac_backlight_unblank(void)
116 mutex_lock(&pmac_backlight_mutex
);
117 if (pmac_backlight
) {
118 struct backlight_properties
*props
;
120 props
= &pmac_backlight
->props
;
121 props
->brightness
= props
->max_brightness
;
122 props
->power
= FB_BLANK_UNBLANK
;
123 backlight_update_status(pmac_backlight
);
125 mutex_unlock(&pmac_backlight_mutex
);
128 static inline void pmac_backlight_unblank(void) { }
132 * If oops/die is expected to crash the machine, return true here.
134 * This should not be expected to be 100% accurate, there may be
135 * notifiers registered or other unexpected conditions that may bring
136 * down the kernel. Or if the current process in the kernel is holding
137 * locks or has other critical state, the kernel may become effectively
140 bool die_will_crash(void)
142 if (should_fadump_crash())
144 if (kexec_should_crash(current
))
146 if (in_interrupt() || panic_on_oops
||
147 !current
->pid
|| is_global_init(current
))
153 static arch_spinlock_t die_lock
= __ARCH_SPIN_LOCK_UNLOCKED
;
154 static int die_owner
= -1;
155 static unsigned int die_nest_count
;
156 static int die_counter
;
158 extern void panic_flush_kmsg_start(void)
161 * These are mostly taken from kernel/panic.c, but tries to do
162 * relatively minimal work. Don't use delay functions (TB may
163 * be broken), don't crash dump (need to set a firmware log),
164 * don't run notifiers. We do want to get some information to
171 extern void panic_flush_kmsg_end(void)
173 printk_safe_flush_on_panic();
174 kmsg_dump(KMSG_DUMP_PANIC
);
177 console_flush_on_panic(CONSOLE_FLUSH_PENDING
);
180 static unsigned long oops_begin(struct pt_regs
*regs
)
187 /* racy, but better than risking deadlock. */
188 raw_local_irq_save(flags
);
189 cpu
= smp_processor_id();
190 if (!arch_spin_trylock(&die_lock
)) {
191 if (cpu
== die_owner
)
192 /* nested oops. should stop eventually */;
194 arch_spin_lock(&die_lock
);
200 if (machine_is(powermac
))
201 pmac_backlight_unblank();
204 NOKPROBE_SYMBOL(oops_begin
);
206 static void oops_end(unsigned long flags
, struct pt_regs
*regs
,
210 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
214 if (!die_nest_count
) {
215 /* Nest count reaches zero, release the lock. */
217 arch_spin_unlock(&die_lock
);
219 raw_local_irq_restore(flags
);
222 * system_reset_excption handles debugger, crash dump, panic, for 0x100
224 if (TRAP(regs
) == 0x100)
227 crash_fadump(regs
, "die oops");
229 if (kexec_should_crash(current
))
236 * While our oops output is serialised by a spinlock, output
237 * from panic() called below can race and corrupt it. If we
238 * know we are going to panic, delay for 1 second so we have a
239 * chance to get clean backtraces from all CPUs that are oopsing.
241 if (in_interrupt() || panic_on_oops
|| !current
->pid
||
242 is_global_init(current
)) {
243 mdelay(MSEC_PER_SEC
);
247 panic("Fatal exception");
250 NOKPROBE_SYMBOL(oops_end
);
252 static char *get_mmu_str(void)
254 if (early_radix_enabled())
256 if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE
))
261 static int __die(const char *str
, struct pt_regs
*regs
, long err
)
263 printk("Oops: %s, sig: %ld [#%d]\n", str
, err
, ++die_counter
);
265 printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
266 IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN
) ? "LE" : "BE",
267 PAGE_SIZE
/ 1024, get_mmu_str(),
268 IS_ENABLED(CONFIG_PREEMPT
) ? " PREEMPT" : "",
269 IS_ENABLED(CONFIG_SMP
) ? " SMP" : "",
270 IS_ENABLED(CONFIG_SMP
) ? (" NR_CPUS=" __stringify(NR_CPUS
)) : "",
271 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
272 IS_ENABLED(CONFIG_NUMA
) ? " NUMA" : "",
273 ppc_md
.name
? ppc_md
.name
: "");
275 if (notify_die(DIE_OOPS
, str
, regs
, err
, 255, SIGSEGV
) == NOTIFY_STOP
)
283 NOKPROBE_SYMBOL(__die
);
285 void die(const char *str
, struct pt_regs
*regs
, long err
)
290 * system_reset_excption handles debugger, crash dump, panic, for 0x100
292 if (TRAP(regs
) != 0x100) {
297 flags
= oops_begin(regs
);
298 if (__die(str
, regs
, err
))
300 oops_end(flags
, regs
, err
);
302 NOKPROBE_SYMBOL(die
);
304 void user_single_step_report(struct pt_regs
*regs
)
306 force_sig_fault(SIGTRAP
, TRAP_TRACE
, (void __user
*)regs
->nip
);
309 static void show_signal_msg(int signr
, struct pt_regs
*regs
, int code
,
312 static DEFINE_RATELIMIT_STATE(rs
, DEFAULT_RATELIMIT_INTERVAL
,
313 DEFAULT_RATELIMIT_BURST
);
315 if (!show_unhandled_signals
)
318 if (!unhandled_signal(current
, signr
))
321 if (!__ratelimit(&rs
))
324 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
325 current
->comm
, current
->pid
, signame(signr
), signr
,
326 addr
, regs
->nip
, regs
->link
, code
);
328 print_vma_addr(KERN_CONT
" in ", regs
->nip
);
332 show_user_instructions(regs
);
335 static bool exception_common(int signr
, struct pt_regs
*regs
, int code
,
338 if (!user_mode(regs
)) {
339 die("Exception in kernel mode", regs
, signr
);
343 show_signal_msg(signr
, regs
, code
, addr
);
345 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs
))
348 current
->thread
.trap_nr
= code
;
353 void _exception_pkey(struct pt_regs
*regs
, unsigned long addr
, int key
)
355 if (!exception_common(SIGSEGV
, regs
, SEGV_PKUERR
, addr
))
358 force_sig_pkuerr((void __user
*) addr
, key
);
361 void _exception(int signr
, struct pt_regs
*regs
, int code
, unsigned long addr
)
363 if (!exception_common(signr
, regs
, code
, addr
))
366 force_sig_fault(signr
, code
, (void __user
*)addr
);
370 * The interrupt architecture has a quirk in that the HV interrupts excluding
371 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
372 * that an interrupt handler must do is save off a GPR into a scratch register,
373 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
374 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
375 * that it is non-reentrant, which leads to random data corruption.
377 * The solution is for NMI interrupts in HV mode to check if they originated
378 * from these critical HV interrupt regions. If so, then mark them not
381 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
382 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
383 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
384 * that would work. However any other guest OS that may have the SPRG live
385 * and MSR[RI]=1 could encounter silent corruption.
387 * Builds that do not support KVM could take this second option to increase
388 * the recoverability of NMIs.
390 void hv_nmi_check_nonrecoverable(struct pt_regs
*regs
)
392 #ifdef CONFIG_PPC_POWERNV
393 unsigned long kbase
= (unsigned long)_stext
;
394 unsigned long nip
= regs
->nip
;
396 if (!(regs
->msr
& MSR_RI
))
398 if (!(regs
->msr
& MSR_HV
))
400 if (regs
->msr
& MSR_PR
)
404 * Now test if the interrupt has hit a range that may be using
405 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
406 * problem ranges all run un-relocated. Test real and virt modes
407 * at the same time by droping the high bit of the nip (virt mode
408 * entry points still have the +0x4000 offset).
410 nip
&= ~0xc000000000000000ULL
;
411 if ((nip
>= 0x500 && nip
< 0x600) || (nip
>= 0x4500 && nip
< 0x4600))
413 if ((nip
>= 0x980 && nip
< 0xa00) || (nip
>= 0x4980 && nip
< 0x4a00))
415 if ((nip
>= 0xe00 && nip
< 0xec0) || (nip
>= 0x4e00 && nip
< 0x4ec0))
417 if ((nip
>= 0xf80 && nip
< 0xfa0) || (nip
>= 0x4f80 && nip
< 0x4fa0))
420 /* Trampoline code runs un-relocated so subtract kbase. */
421 if (nip
>= (unsigned long)(start_real_trampolines
- kbase
) &&
422 nip
< (unsigned long)(end_real_trampolines
- kbase
))
424 if (nip
>= (unsigned long)(start_virt_trampolines
- kbase
) &&
425 nip
< (unsigned long)(end_virt_trampolines
- kbase
))
430 regs
->msr
&= ~MSR_RI
;
434 void system_reset_exception(struct pt_regs
*regs
)
436 unsigned long hsrr0
, hsrr1
;
437 bool saved_hsrrs
= false;
438 u8 ftrace_enabled
= this_cpu_get_ftrace_enabled();
440 this_cpu_set_ftrace_enabled(0);
445 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
446 * The system reset interrupt itself may clobber HSRRs (e.g., to call
447 * OPAL), so save them here and restore them before returning.
449 * Machine checks don't need to save HSRRs, as the real mode handler
450 * is careful to avoid them, and the regular handler is not delivered
453 if (cpu_has_feature(CPU_FTR_HVMODE
)) {
454 hsrr0
= mfspr(SPRN_HSRR0
);
455 hsrr1
= mfspr(SPRN_HSRR1
);
459 hv_nmi_check_nonrecoverable(regs
);
461 __this_cpu_inc(irq_stat
.sreset_irqs
);
463 /* See if any machine dependent calls */
464 if (ppc_md
.system_reset_exception
) {
465 if (ppc_md
.system_reset_exception(regs
))
472 kmsg_dump(KMSG_DUMP_OOPS
);
474 * A system reset is a request to dump, so we always send
475 * it through the crashdump code (if fadump or kdump are
478 crash_fadump(regs
, "System Reset");
483 * We aren't the primary crash CPU. We need to send it
484 * to a holding pattern to avoid it ending up in the panic
487 crash_kexec_secondary(regs
);
490 * No debugger or crash dump registered, print logs then
493 die("System Reset", regs
, SIGABRT
);
495 mdelay(2*MSEC_PER_SEC
); /* Wait a little while for others to print */
496 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
497 nmi_panic(regs
, "System Reset");
500 #ifdef CONFIG_PPC_BOOK3S_64
501 BUG_ON(get_paca()->in_nmi
== 0);
502 if (get_paca()->in_nmi
> 1)
503 die("Unrecoverable nested System Reset", regs
, SIGABRT
);
505 /* Must die if the interrupt is not recoverable */
506 if (!(regs
->msr
& MSR_RI
))
507 die("Unrecoverable System Reset", regs
, SIGABRT
);
510 mtspr(SPRN_HSRR0
, hsrr0
);
511 mtspr(SPRN_HSRR1
, hsrr1
);
516 this_cpu_set_ftrace_enabled(ftrace_enabled
);
518 /* What should we do here? We could issue a shutdown or hard reset. */
522 * I/O accesses can cause machine checks on powermacs.
523 * Check if the NIP corresponds to the address of a sync
524 * instruction for which there is an entry in the exception
528 static inline int check_io_access(struct pt_regs
*regs
)
531 unsigned long msr
= regs
->msr
;
532 const struct exception_table_entry
*entry
;
533 unsigned int *nip
= (unsigned int *)regs
->nip
;
535 if (((msr
& 0xffff0000) == 0 || (msr
& (0x80000 | 0x40000)))
536 && (entry
= search_exception_tables(regs
->nip
)) != NULL
) {
538 * Check that it's a sync instruction, or somewhere
539 * in the twi; isync; nop sequence that inb/inw/inl uses.
540 * As the address is in the exception table
541 * we should be able to read the instr there.
542 * For the debug message, we look at the preceding
545 if (*nip
== PPC_INST_NOP
)
547 else if (*nip
== PPC_INST_ISYNC
)
549 if (*nip
== PPC_INST_SYNC
|| (*nip
>> 26) == OP_TRAP
) {
553 rb
= (*nip
>> 11) & 0x1f;
554 printk(KERN_DEBUG
"%s bad port %lx at %p\n",
555 (*nip
& 0x100)? "OUT to": "IN from",
556 regs
->gpr
[rb
] - _IO_BASE
, nip
);
558 regs
->nip
= extable_fixup(entry
);
562 #endif /* CONFIG_PPC32 */
566 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
567 /* On 4xx, the reason for the machine check or program exception
569 #define get_reason(regs) ((regs)->dsisr)
570 #define REASON_FP ESR_FP
571 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
572 #define REASON_PRIVILEGED ESR_PPR
573 #define REASON_TRAP ESR_PTR
574 #define REASON_PREFIXED 0
575 #define REASON_BOUNDARY 0
577 /* single-step stuff */
578 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
579 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
580 #define clear_br_trace(regs) do {} while(0)
582 /* On non-4xx, the reason for the machine check or program
583 exception is in the MSR. */
584 #define get_reason(regs) ((regs)->msr)
585 #define REASON_TM SRR1_PROGTM
586 #define REASON_FP SRR1_PROGFPE
587 #define REASON_ILLEGAL SRR1_PROGILL
588 #define REASON_PRIVILEGED SRR1_PROGPRIV
589 #define REASON_TRAP SRR1_PROGTRAP
590 #define REASON_PREFIXED SRR1_PREFIXED
591 #define REASON_BOUNDARY SRR1_BOUNDARY
593 #define single_stepping(regs) ((regs)->msr & MSR_SE)
594 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
595 #define clear_br_trace(regs) ((regs)->msr &= ~MSR_BE)
598 #define inst_length(reason) (((reason) & REASON_PREFIXED) ? 8 : 4)
600 #if defined(CONFIG_E500)
601 int machine_check_e500mc(struct pt_regs
*regs
)
603 unsigned long mcsr
= mfspr(SPRN_MCSR
);
604 unsigned long pvr
= mfspr(SPRN_PVR
);
605 unsigned long reason
= mcsr
;
608 if (reason
& MCSR_LD
) {
609 recoverable
= fsl_rio_mcheck_exception(regs
);
610 if (recoverable
== 1)
614 printk("Machine check in kernel mode.\n");
615 printk("Caused by (from MCSR=%lx): ", reason
);
617 if (reason
& MCSR_MCP
)
618 pr_cont("Machine Check Signal\n");
620 if (reason
& MCSR_ICPERR
) {
621 pr_cont("Instruction Cache Parity Error\n");
624 * This is recoverable by invalidating the i-cache.
626 mtspr(SPRN_L1CSR1
, mfspr(SPRN_L1CSR1
) | L1CSR1_ICFI
);
627 while (mfspr(SPRN_L1CSR1
) & L1CSR1_ICFI
)
631 * This will generally be accompanied by an instruction
632 * fetch error report -- only treat MCSR_IF as fatal
633 * if it wasn't due to an L1 parity error.
638 if (reason
& MCSR_DCPERR_MC
) {
639 pr_cont("Data Cache Parity Error\n");
642 * In write shadow mode we auto-recover from the error, but it
643 * may still get logged and cause a machine check. We should
644 * only treat the non-write shadow case as non-recoverable.
646 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
647 * is not implemented but L1 data cache always runs in write
648 * shadow mode. Hence on data cache parity errors HW will
649 * automatically invalidate the L1 Data Cache.
651 if (PVR_VER(pvr
) != PVR_VER_E6500
) {
652 if (!(mfspr(SPRN_L1CSR2
) & L1CSR2_DCWS
))
657 if (reason
& MCSR_L2MMU_MHIT
) {
658 pr_cont("Hit on multiple TLB entries\n");
662 if (reason
& MCSR_NMI
)
663 pr_cont("Non-maskable interrupt\n");
665 if (reason
& MCSR_IF
) {
666 pr_cont("Instruction Fetch Error Report\n");
670 if (reason
& MCSR_LD
) {
671 pr_cont("Load Error Report\n");
675 if (reason
& MCSR_ST
) {
676 pr_cont("Store Error Report\n");
680 if (reason
& MCSR_LDG
) {
681 pr_cont("Guarded Load Error Report\n");
685 if (reason
& MCSR_TLBSYNC
)
686 pr_cont("Simultaneous tlbsync operations\n");
688 if (reason
& MCSR_BSL2_ERR
) {
689 pr_cont("Level 2 Cache Error\n");
693 if (reason
& MCSR_MAV
) {
696 addr
= mfspr(SPRN_MCAR
);
697 addr
|= (u64
)mfspr(SPRN_MCARU
) << 32;
699 pr_cont("Machine Check %s Address: %#llx\n",
700 reason
& MCSR_MEA
? "Effective" : "Physical", addr
);
704 mtspr(SPRN_MCSR
, mcsr
);
705 return mfspr(SPRN_MCSR
) == 0 && recoverable
;
708 int machine_check_e500(struct pt_regs
*regs
)
710 unsigned long reason
= mfspr(SPRN_MCSR
);
712 if (reason
& MCSR_BUS_RBERR
) {
713 if (fsl_rio_mcheck_exception(regs
))
715 if (fsl_pci_mcheck_exception(regs
))
719 printk("Machine check in kernel mode.\n");
720 printk("Caused by (from MCSR=%lx): ", reason
);
722 if (reason
& MCSR_MCP
)
723 pr_cont("Machine Check Signal\n");
724 if (reason
& MCSR_ICPERR
)
725 pr_cont("Instruction Cache Parity Error\n");
726 if (reason
& MCSR_DCP_PERR
)
727 pr_cont("Data Cache Push Parity Error\n");
728 if (reason
& MCSR_DCPERR
)
729 pr_cont("Data Cache Parity Error\n");
730 if (reason
& MCSR_BUS_IAERR
)
731 pr_cont("Bus - Instruction Address Error\n");
732 if (reason
& MCSR_BUS_RAERR
)
733 pr_cont("Bus - Read Address Error\n");
734 if (reason
& MCSR_BUS_WAERR
)
735 pr_cont("Bus - Write Address Error\n");
736 if (reason
& MCSR_BUS_IBERR
)
737 pr_cont("Bus - Instruction Data Error\n");
738 if (reason
& MCSR_BUS_RBERR
)
739 pr_cont("Bus - Read Data Bus Error\n");
740 if (reason
& MCSR_BUS_WBERR
)
741 pr_cont("Bus - Write Data Bus Error\n");
742 if (reason
& MCSR_BUS_IPERR
)
743 pr_cont("Bus - Instruction Parity Error\n");
744 if (reason
& MCSR_BUS_RPERR
)
745 pr_cont("Bus - Read Parity Error\n");
750 int machine_check_generic(struct pt_regs
*regs
)
754 #elif defined(CONFIG_PPC32)
755 int machine_check_generic(struct pt_regs
*regs
)
757 unsigned long reason
= regs
->msr
;
759 printk("Machine check in kernel mode.\n");
760 printk("Caused by (from SRR1=%lx): ", reason
);
761 switch (reason
& 0x601F0000) {
763 pr_cont("Machine check signal\n");
766 case 0x140000: /* 7450 MSS error and TEA */
767 pr_cont("Transfer error ack signal\n");
770 pr_cont("Data parity error signal\n");
773 pr_cont("Address parity error signal\n");
776 pr_cont("L1 Data Cache error\n");
779 pr_cont("L1 Instruction Cache error\n");
782 pr_cont("L2 data cache parity error\n");
785 pr_cont("Unknown values in msr\n");
789 #endif /* everything else */
791 void machine_check_exception(struct pt_regs
*regs
)
796 * BOOK3S_64 does not call this handler as a non-maskable interrupt
797 * (it uses its own early real-mode handler to handle the MCE proper
798 * and then raises irq_work to call this handler when interrupts are
801 * This is silly. The BOOK3S_64 should just call a different function
802 * rather than expecting semantics to magically change. Something
803 * like 'non_nmi_machine_check_exception()', perhaps?
805 const bool nmi
= !IS_ENABLED(CONFIG_PPC_BOOK3S_64
);
807 if (nmi
) nmi_enter();
809 __this_cpu_inc(irq_stat
.mce_exceptions
);
811 add_taint(TAINT_MACHINE_CHECK
, LOCKDEP_NOW_UNRELIABLE
);
813 /* See if any machine dependent calls. In theory, we would want
814 * to call the CPU first, and call the ppc_md. one if the CPU
815 * one returns a positive number. However there is existing code
816 * that assumes the board gets a first chance, so let's keep it
817 * that way for now and fix things later. --BenH.
819 if (ppc_md
.machine_check_exception
)
820 recover
= ppc_md
.machine_check_exception(regs
);
821 else if (cur_cpu_spec
->machine_check
)
822 recover
= cur_cpu_spec
->machine_check(regs
);
827 if (debugger_fault_handler(regs
))
830 if (check_io_access(regs
))
835 die("Machine check", regs
, SIGBUS
);
837 /* Must die if the interrupt is not recoverable */
838 if (!(regs
->msr
& MSR_RI
))
839 die("Unrecoverable Machine check", regs
, SIGBUS
);
847 void SMIException(struct pt_regs
*regs
)
849 die("System Management Interrupt", regs
, SIGABRT
);
853 static void p9_hmi_special_emu(struct pt_regs
*regs
)
855 unsigned int ra
, rb
, t
, i
, sel
, instr
, rc
;
856 const void __user
*addr
;
857 u8 vbuf
[16] __aligned(16), *vdst
;
858 unsigned long ea
, msr
, msr_mask
;
861 if (__get_user_inatomic(instr
, (unsigned int __user
*)regs
->nip
))
865 * lxvb16x opcode: 0x7c0006d8
866 * lxvd2x opcode: 0x7c000698
867 * lxvh8x opcode: 0x7c000658
868 * lxvw4x opcode: 0x7c000618
870 if ((instr
& 0xfc00073e) != 0x7c000618) {
871 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
873 smp_processor_id(), current
->comm
, current
->pid
,
878 /* Grab vector registers into the task struct */
879 msr
= regs
->msr
; /* Grab msr before we flush the bits */
880 flush_vsx_to_thread(current
);
881 enable_kernel_altivec();
884 * Is userspace running with a different endian (this is rare but
887 swap
= (msr
& MSR_LE
) != (MSR_KERNEL
& MSR_LE
);
889 /* Decode the instruction */
890 ra
= (instr
>> 16) & 0x1f;
891 rb
= (instr
>> 11) & 0x1f;
892 t
= (instr
>> 21) & 0x1f;
894 vdst
= (u8
*)¤t
->thread
.vr_state
.vr
[t
];
896 vdst
= (u8
*)¤t
->thread
.fp_state
.fpr
[t
][0];
898 /* Grab the vector address */
899 ea
= regs
->gpr
[rb
] + (ra
? regs
->gpr
[ra
] : 0);
902 addr
= (__force
const void __user
*)ea
;
905 if (!access_ok(addr
, 16)) {
906 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
907 " instr=%08x addr=%016lx\n",
908 smp_processor_id(), current
->comm
, current
->pid
,
909 regs
->nip
, instr
, (unsigned long)addr
);
913 /* Read the vector */
915 if ((unsigned long)addr
& 0xfUL
)
917 rc
= __copy_from_user_inatomic(vbuf
, addr
, 16);
919 __get_user_atomic_128_aligned(vbuf
, addr
, rc
);
921 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
922 " instr=%08x addr=%016lx\n",
923 smp_processor_id(), current
->comm
, current
->pid
,
924 regs
->nip
, instr
, (unsigned long)addr
);
928 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
929 " instr=%08x addr=%016lx\n",
930 smp_processor_id(), current
->comm
, current
->pid
, regs
->nip
,
931 instr
, (unsigned long) addr
);
933 /* Grab instruction "selector" */
934 sel
= (instr
>> 6) & 3;
937 * Check to make sure the facility is actually enabled. This
938 * could happen if we get a false positive hit.
940 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
941 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
944 if ((sel
& 1) && (instr
& 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
946 if (!(msr
& msr_mask
)) {
947 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
948 " instr=%08x msr:%016lx\n",
949 smp_processor_id(), current
->comm
, current
->pid
,
950 regs
->nip
, instr
, msr
);
954 /* Do logging here before we modify sel based on endian */
957 PPC_WARN_EMULATED(lxvw4x
, regs
);
960 PPC_WARN_EMULATED(lxvh8x
, regs
);
963 PPC_WARN_EMULATED(lxvd2x
, regs
);
965 case 3: /* lxvb16x */
966 PPC_WARN_EMULATED(lxvb16x
, regs
);
970 #ifdef __LITTLE_ENDIAN__
972 * An LE kernel stores the vector in the task struct as an LE
973 * byte array (effectively swapping both the components and
974 * the content of the components). Those instructions expect
975 * the components to remain in ascending address order, so we
978 * If we are running a BE user space, the expectation is that
979 * of a simple memcpy, so forcing the emulation to look like
980 * a lxvb16x should do the trick.
987 for (i
= 0; i
< 4; i
++)
988 ((u32
*)vdst
)[i
] = ((u32
*)vbuf
)[3-i
];
991 for (i
= 0; i
< 8; i
++)
992 ((u16
*)vdst
)[i
] = ((u16
*)vbuf
)[7-i
];
995 for (i
= 0; i
< 2; i
++)
996 ((u64
*)vdst
)[i
] = ((u64
*)vbuf
)[1-i
];
998 case 3: /* lxvb16x */
999 for (i
= 0; i
< 16; i
++)
1000 vdst
[i
] = vbuf
[15-i
];
1003 #else /* __LITTLE_ENDIAN__ */
1004 /* On a big endian kernel, a BE userspace only needs a memcpy */
1008 /* Otherwise, we need to swap the content of the components */
1010 case 0: /* lxvw4x */
1011 for (i
= 0; i
< 4; i
++)
1012 ((u32
*)vdst
)[i
] = cpu_to_le32(((u32
*)vbuf
)[i
]);
1014 case 1: /* lxvh8x */
1015 for (i
= 0; i
< 8; i
++)
1016 ((u16
*)vdst
)[i
] = cpu_to_le16(((u16
*)vbuf
)[i
]);
1018 case 2: /* lxvd2x */
1019 for (i
= 0; i
< 2; i
++)
1020 ((u64
*)vdst
)[i
] = cpu_to_le64(((u64
*)vbuf
)[i
]);
1022 case 3: /* lxvb16x */
1023 memcpy(vdst
, vbuf
, 16);
1026 #endif /* !__LITTLE_ENDIAN__ */
1028 /* Go to next instruction */
1031 #endif /* CONFIG_VSX */
1033 void handle_hmi_exception(struct pt_regs
*regs
)
1035 struct pt_regs
*old_regs
;
1037 old_regs
= set_irq_regs(regs
);
1041 /* Real mode flagged P9 special emu is needed */
1042 if (local_paca
->hmi_p9_special_emu
) {
1043 local_paca
->hmi_p9_special_emu
= 0;
1046 * We don't want to take page faults while doing the
1047 * emulation, we just replay the instruction if necessary.
1049 pagefault_disable();
1050 p9_hmi_special_emu(regs
);
1053 #endif /* CONFIG_VSX */
1055 if (ppc_md
.handle_hmi_exception
)
1056 ppc_md
.handle_hmi_exception(regs
);
1059 set_irq_regs(old_regs
);
1062 void unknown_exception(struct pt_regs
*regs
)
1064 enum ctx_state prev_state
= exception_enter();
1066 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1067 regs
->nip
, regs
->msr
, regs
->trap
);
1069 _exception(SIGTRAP
, regs
, TRAP_UNK
, 0);
1071 exception_exit(prev_state
);
1074 void instruction_breakpoint_exception(struct pt_regs
*regs
)
1076 enum ctx_state prev_state
= exception_enter();
1078 if (notify_die(DIE_IABR_MATCH
, "iabr_match", regs
, 5,
1079 5, SIGTRAP
) == NOTIFY_STOP
)
1081 if (debugger_iabr_match(regs
))
1083 _exception(SIGTRAP
, regs
, TRAP_BRKPT
, regs
->nip
);
1086 exception_exit(prev_state
);
1089 void RunModeException(struct pt_regs
*regs
)
1091 _exception(SIGTRAP
, regs
, TRAP_UNK
, 0);
1094 void single_step_exception(struct pt_regs
*regs
)
1096 enum ctx_state prev_state
= exception_enter();
1098 clear_single_step(regs
);
1099 clear_br_trace(regs
);
1101 if (kprobe_post_handler(regs
))
1104 if (notify_die(DIE_SSTEP
, "single_step", regs
, 5,
1105 5, SIGTRAP
) == NOTIFY_STOP
)
1107 if (debugger_sstep(regs
))
1110 _exception(SIGTRAP
, regs
, TRAP_TRACE
, regs
->nip
);
1113 exception_exit(prev_state
);
1115 NOKPROBE_SYMBOL(single_step_exception
);
1118 * After we have successfully emulated an instruction, we have to
1119 * check if the instruction was being single-stepped, and if so,
1120 * pretend we got a single-step exception. This was pointed out
1121 * by Kumar Gala. -- paulus
1123 static void emulate_single_step(struct pt_regs
*regs
)
1125 if (single_stepping(regs
))
1126 single_step_exception(regs
);
1129 static inline int __parse_fpscr(unsigned long fpscr
)
1131 int ret
= FPE_FLTUNK
;
1133 /* Invalid operation */
1134 if ((fpscr
& FPSCR_VE
) && (fpscr
& FPSCR_VX
))
1138 else if ((fpscr
& FPSCR_OE
) && (fpscr
& FPSCR_OX
))
1142 else if ((fpscr
& FPSCR_UE
) && (fpscr
& FPSCR_UX
))
1145 /* Divide by zero */
1146 else if ((fpscr
& FPSCR_ZE
) && (fpscr
& FPSCR_ZX
))
1149 /* Inexact result */
1150 else if ((fpscr
& FPSCR_XE
) && (fpscr
& FPSCR_XX
))
1156 static void parse_fpe(struct pt_regs
*regs
)
1160 flush_fp_to_thread(current
);
1162 #ifdef CONFIG_PPC_FPU_REGS
1163 code
= __parse_fpscr(current
->thread
.fp_state
.fpscr
);
1166 _exception(SIGFPE
, regs
, code
, regs
->nip
);
1170 * Illegal instruction emulation support. Originally written to
1171 * provide the PVR to user applications using the mfspr rd, PVR.
1172 * Return non-zero if we can't emulate, or -EFAULT if the associated
1173 * memory access caused an access fault. Return zero on success.
1175 * There are a couple of ways to do this, either "decode" the instruction
1176 * or directly match lots of bits. In this case, matching lots of
1177 * bits is faster and easier.
1180 static int emulate_string_inst(struct pt_regs
*regs
, u32 instword
)
1182 u8 rT
= (instword
>> 21) & 0x1f;
1183 u8 rA
= (instword
>> 16) & 0x1f;
1184 u8 NB_RB
= (instword
>> 11) & 0x1f;
1189 /* Early out if we are an invalid form of lswx */
1190 if ((instword
& PPC_INST_STRING_MASK
) == PPC_INST_LSWX
)
1191 if ((rT
== rA
) || (rT
== NB_RB
))
1194 EA
= (rA
== 0) ? 0 : regs
->gpr
[rA
];
1196 switch (instword
& PPC_INST_STRING_MASK
) {
1198 case PPC_INST_STSWX
:
1200 num_bytes
= regs
->xer
& 0x7f;
1203 case PPC_INST_STSWI
:
1204 num_bytes
= (NB_RB
== 0) ? 32 : NB_RB
;
1210 while (num_bytes
!= 0)
1213 u32 shift
= 8 * (3 - (pos
& 0x3));
1215 /* if process is 32-bit, clear upper 32 bits of EA */
1216 if ((regs
->msr
& MSR_64BIT
) == 0)
1219 switch ((instword
& PPC_INST_STRING_MASK
)) {
1222 if (get_user(val
, (u8 __user
*)EA
))
1224 /* first time updating this reg,
1228 regs
->gpr
[rT
] |= val
<< shift
;
1230 case PPC_INST_STSWI
:
1231 case PPC_INST_STSWX
:
1232 val
= regs
->gpr
[rT
] >> shift
;
1233 if (put_user(val
, (u8 __user
*)EA
))
1237 /* move EA to next address */
1241 /* manage our position within the register */
1252 static int emulate_popcntb_inst(struct pt_regs
*regs
, u32 instword
)
1257 ra
= (instword
>> 16) & 0x1f;
1258 rs
= (instword
>> 21) & 0x1f;
1260 tmp
= regs
->gpr
[rs
];
1261 tmp
= tmp
- ((tmp
>> 1) & 0x5555555555555555ULL
);
1262 tmp
= (tmp
& 0x3333333333333333ULL
) + ((tmp
>> 2) & 0x3333333333333333ULL
);
1263 tmp
= (tmp
+ (tmp
>> 4)) & 0x0f0f0f0f0f0f0f0fULL
;
1264 regs
->gpr
[ra
] = tmp
;
1269 static int emulate_isel(struct pt_regs
*regs
, u32 instword
)
1271 u8 rT
= (instword
>> 21) & 0x1f;
1272 u8 rA
= (instword
>> 16) & 0x1f;
1273 u8 rB
= (instword
>> 11) & 0x1f;
1274 u8 BC
= (instword
>> 6) & 0x1f;
1278 tmp
= (rA
== 0) ? 0 : regs
->gpr
[rA
];
1279 bit
= (regs
->ccr
>> (31 - BC
)) & 0x1;
1281 regs
->gpr
[rT
] = bit
? tmp
: regs
->gpr
[rB
];
1286 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1287 static inline bool tm_abort_check(struct pt_regs
*regs
, int cause
)
1289 /* If we're emulating a load/store in an active transaction, we cannot
1290 * emulate it as the kernel operates in transaction suspended context.
1291 * We need to abort the transaction. This creates a persistent TM
1292 * abort so tell the user what caused it with a new code.
1294 if (MSR_TM_TRANSACTIONAL(regs
->msr
)) {
1302 static inline bool tm_abort_check(struct pt_regs
*regs
, int reason
)
1308 static int emulate_instruction(struct pt_regs
*regs
)
1313 if (!user_mode(regs
))
1315 CHECK_FULL_REGS(regs
);
1317 if (get_user(instword
, (u32 __user
*)(regs
->nip
)))
1320 /* Emulate the mfspr rD, PVR. */
1321 if ((instword
& PPC_INST_MFSPR_PVR_MASK
) == PPC_INST_MFSPR_PVR
) {
1322 PPC_WARN_EMULATED(mfpvr
, regs
);
1323 rd
= (instword
>> 21) & 0x1f;
1324 regs
->gpr
[rd
] = mfspr(SPRN_PVR
);
1328 /* Emulating the dcba insn is just a no-op. */
1329 if ((instword
& PPC_INST_DCBA_MASK
) == PPC_INST_DCBA
) {
1330 PPC_WARN_EMULATED(dcba
, regs
);
1334 /* Emulate the mcrxr insn. */
1335 if ((instword
& PPC_INST_MCRXR_MASK
) == PPC_INST_MCRXR
) {
1336 int shift
= (instword
>> 21) & 0x1c;
1337 unsigned long msk
= 0xf0000000UL
>> shift
;
1339 PPC_WARN_EMULATED(mcrxr
, regs
);
1340 regs
->ccr
= (regs
->ccr
& ~msk
) | ((regs
->xer
>> shift
) & msk
);
1341 regs
->xer
&= ~0xf0000000UL
;
1345 /* Emulate load/store string insn. */
1346 if ((instword
& PPC_INST_STRING_GEN_MASK
) == PPC_INST_STRING
) {
1347 if (tm_abort_check(regs
,
1348 TM_CAUSE_EMULATE
| TM_CAUSE_PERSISTENT
))
1350 PPC_WARN_EMULATED(string
, regs
);
1351 return emulate_string_inst(regs
, instword
);
1354 /* Emulate the popcntb (Population Count Bytes) instruction. */
1355 if ((instword
& PPC_INST_POPCNTB_MASK
) == PPC_INST_POPCNTB
) {
1356 PPC_WARN_EMULATED(popcntb
, regs
);
1357 return emulate_popcntb_inst(regs
, instword
);
1360 /* Emulate isel (Integer Select) instruction */
1361 if ((instword
& PPC_INST_ISEL_MASK
) == PPC_INST_ISEL
) {
1362 PPC_WARN_EMULATED(isel
, regs
);
1363 return emulate_isel(regs
, instword
);
1366 /* Emulate sync instruction variants */
1367 if ((instword
& PPC_INST_SYNC_MASK
) == PPC_INST_SYNC
) {
1368 PPC_WARN_EMULATED(sync
, regs
);
1369 asm volatile("sync");
1374 /* Emulate the mfspr rD, DSCR. */
1375 if ((((instword
& PPC_INST_MFSPR_DSCR_USER_MASK
) ==
1376 PPC_INST_MFSPR_DSCR_USER
) ||
1377 ((instword
& PPC_INST_MFSPR_DSCR_MASK
) ==
1378 PPC_INST_MFSPR_DSCR
)) &&
1379 cpu_has_feature(CPU_FTR_DSCR
)) {
1380 PPC_WARN_EMULATED(mfdscr
, regs
);
1381 rd
= (instword
>> 21) & 0x1f;
1382 regs
->gpr
[rd
] = mfspr(SPRN_DSCR
);
1385 /* Emulate the mtspr DSCR, rD. */
1386 if ((((instword
& PPC_INST_MTSPR_DSCR_USER_MASK
) ==
1387 PPC_INST_MTSPR_DSCR_USER
) ||
1388 ((instword
& PPC_INST_MTSPR_DSCR_MASK
) ==
1389 PPC_INST_MTSPR_DSCR
)) &&
1390 cpu_has_feature(CPU_FTR_DSCR
)) {
1391 PPC_WARN_EMULATED(mtdscr
, regs
);
1392 rd
= (instword
>> 21) & 0x1f;
1393 current
->thread
.dscr
= regs
->gpr
[rd
];
1394 current
->thread
.dscr_inherit
= 1;
1395 mtspr(SPRN_DSCR
, current
->thread
.dscr
);
1403 int is_valid_bugaddr(unsigned long addr
)
1405 return is_kernel_addr(addr
);
1408 #ifdef CONFIG_MATH_EMULATION
1409 static int emulate_math(struct pt_regs
*regs
)
1412 extern int do_mathemu(struct pt_regs
*regs
);
1414 ret
= do_mathemu(regs
);
1416 PPC_WARN_EMULATED(math
, regs
);
1420 emulate_single_step(regs
);
1424 code
= __parse_fpscr(current
->thread
.fp_state
.fpscr
);
1425 _exception(SIGFPE
, regs
, code
, regs
->nip
);
1429 _exception(SIGSEGV
, regs
, SEGV_MAPERR
, regs
->nip
);
1436 static inline int emulate_math(struct pt_regs
*regs
) { return -1; }
1439 void program_check_exception(struct pt_regs
*regs
)
1441 enum ctx_state prev_state
= exception_enter();
1442 unsigned int reason
= get_reason(regs
);
1444 /* We can now get here via a FP Unavailable exception if the core
1445 * has no FPU, in that case the reason flags will be 0 */
1447 if (reason
& REASON_FP
) {
1448 /* IEEE FP exception */
1452 if (reason
& REASON_TRAP
) {
1453 unsigned long bugaddr
;
1454 /* Debugger is first in line to stop recursive faults in
1455 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1456 if (debugger_bpt(regs
))
1459 if (kprobe_handler(regs
))
1462 /* trap exception */
1463 if (notify_die(DIE_BPT
, "breakpoint", regs
, 5, 5, SIGTRAP
)
1467 bugaddr
= regs
->nip
;
1469 * Fixup bugaddr for BUG_ON() in real mode
1471 if (!is_kernel_addr(bugaddr
) && !(regs
->msr
& MSR_IR
))
1472 bugaddr
+= PAGE_OFFSET
;
1474 if (!(regs
->msr
& MSR_PR
) && /* not user-mode */
1475 report_bug(bugaddr
, regs
) == BUG_TRAP_TYPE_WARN
) {
1479 _exception(SIGTRAP
, regs
, TRAP_BRKPT
, regs
->nip
);
1482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1483 if (reason
& REASON_TM
) {
1484 /* This is a TM "Bad Thing Exception" program check.
1486 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1487 * transition in TM states.
1488 * - A trechkpt is attempted when transactional.
1489 * - A treclaim is attempted when non transactional.
1490 * - A tend is illegally attempted.
1491 * - writing a TM SPR when transactional.
1493 * If usermode caused this, it's done something illegal and
1494 * gets a SIGILL slap on the wrist. We call it an illegal
1495 * operand to distinguish from the instruction just being bad
1496 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1497 * illegal /placement/ of a valid instruction.
1499 if (user_mode(regs
)) {
1500 _exception(SIGILL
, regs
, ILL_ILLOPN
, regs
->nip
);
1503 printk(KERN_EMERG
"Unexpected TM Bad Thing exception "
1504 "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1505 regs
->nip
, regs
->msr
, get_paca()->tm_scratch
);
1506 die("Unrecoverable exception", regs
, SIGABRT
);
1512 * If we took the program check in the kernel skip down to sending a
1513 * SIGILL. The subsequent cases all relate to emulating instructions
1514 * which we should only do for userspace. We also do not want to enable
1515 * interrupts for kernel faults because that might lead to further
1516 * faults, and loose the context of the original exception.
1518 if (!user_mode(regs
))
1521 /* We restore the interrupt state now */
1522 if (!arch_irq_disabled_regs(regs
))
1525 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1526 * but there seems to be a hardware bug on the 405GP (RevD)
1527 * that means ESR is sometimes set incorrectly - either to
1528 * ESR_DST (!?) or 0. In the process of chasing this with the
1529 * hardware people - not sure if it can happen on any illegal
1530 * instruction or only on FP instructions, whether there is a
1531 * pattern to occurrences etc. -dgibson 31/Mar/2003
1533 if (!emulate_math(regs
))
1536 /* Try to emulate it if we should. */
1537 if (reason
& (REASON_ILLEGAL
| REASON_PRIVILEGED
)) {
1538 switch (emulate_instruction(regs
)) {
1541 emulate_single_step(regs
);
1544 _exception(SIGSEGV
, regs
, SEGV_MAPERR
, regs
->nip
);
1550 if (reason
& REASON_PRIVILEGED
)
1551 _exception(SIGILL
, regs
, ILL_PRVOPC
, regs
->nip
);
1553 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1556 exception_exit(prev_state
);
1558 NOKPROBE_SYMBOL(program_check_exception
);
1561 * This occurs when running in hypervisor mode on POWER6 or later
1562 * and an illegal instruction is encountered.
1564 void emulation_assist_interrupt(struct pt_regs
*regs
)
1566 regs
->msr
|= REASON_ILLEGAL
;
1567 program_check_exception(regs
);
1569 NOKPROBE_SYMBOL(emulation_assist_interrupt
);
1571 void alignment_exception(struct pt_regs
*regs
)
1573 enum ctx_state prev_state
= exception_enter();
1574 int sig
, code
, fixed
= 0;
1575 unsigned long reason
;
1577 /* We restore the interrupt state now */
1578 if (!arch_irq_disabled_regs(regs
))
1581 reason
= get_reason(regs
);
1583 if (reason
& REASON_BOUNDARY
) {
1589 if (tm_abort_check(regs
, TM_CAUSE_ALIGNMENT
| TM_CAUSE_PERSISTENT
))
1592 /* we don't implement logging of alignment exceptions */
1593 if (!(current
->thread
.align_ctl
& PR_UNALIGN_SIGBUS
))
1594 fixed
= fix_alignment(regs
);
1597 /* skip over emulated instruction */
1598 regs
->nip
+= inst_length(reason
);
1599 emulate_single_step(regs
);
1603 /* Operand address was bad */
1604 if (fixed
== -EFAULT
) {
1612 if (user_mode(regs
))
1613 _exception(sig
, regs
, code
, regs
->dar
);
1615 bad_page_fault(regs
, regs
->dar
, sig
);
1618 exception_exit(prev_state
);
1621 void StackOverflow(struct pt_regs
*regs
)
1623 pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n",
1624 current
->comm
, task_pid_nr(current
), regs
->gpr
[1]);
1627 panic("kernel stack overflow");
1630 void stack_overflow_exception(struct pt_regs
*regs
)
1632 enum ctx_state prev_state
= exception_enter();
1634 die("Kernel stack overflow", regs
, SIGSEGV
);
1636 exception_exit(prev_state
);
1639 void kernel_fp_unavailable_exception(struct pt_regs
*regs
)
1641 enum ctx_state prev_state
= exception_enter();
1643 printk(KERN_EMERG
"Unrecoverable FP Unavailable Exception "
1644 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1645 die("Unrecoverable FP Unavailable Exception", regs
, SIGABRT
);
1647 exception_exit(prev_state
);
1650 void altivec_unavailable_exception(struct pt_regs
*regs
)
1652 enum ctx_state prev_state
= exception_enter();
1654 if (user_mode(regs
)) {
1655 /* A user program has executed an altivec instruction,
1656 but this kernel doesn't support altivec. */
1657 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1661 printk(KERN_EMERG
"Unrecoverable VMX/Altivec Unavailable Exception "
1662 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1663 die("Unrecoverable VMX/Altivec Unavailable Exception", regs
, SIGABRT
);
1666 exception_exit(prev_state
);
1669 void vsx_unavailable_exception(struct pt_regs
*regs
)
1671 if (user_mode(regs
)) {
1672 /* A user program has executed an vsx instruction,
1673 but this kernel doesn't support vsx. */
1674 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1678 printk(KERN_EMERG
"Unrecoverable VSX Unavailable Exception "
1679 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1680 die("Unrecoverable VSX Unavailable Exception", regs
, SIGABRT
);
1684 static void tm_unavailable(struct pt_regs
*regs
)
1686 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1687 if (user_mode(regs
)) {
1688 current
->thread
.load_tm
++;
1689 regs
->msr
|= MSR_TM
;
1691 tm_restore_sprs(¤t
->thread
);
1695 pr_emerg("Unrecoverable TM Unavailable Exception "
1696 "%lx at %lx\n", regs
->trap
, regs
->nip
);
1697 die("Unrecoverable TM Unavailable Exception", regs
, SIGABRT
);
1700 void facility_unavailable_exception(struct pt_regs
*regs
)
1702 static char *facility_strings
[] = {
1703 [FSCR_FP_LG
] = "FPU",
1704 [FSCR_VECVSX_LG
] = "VMX/VSX",
1705 [FSCR_DSCR_LG
] = "DSCR",
1706 [FSCR_PM_LG
] = "PMU SPRs",
1707 [FSCR_BHRB_LG
] = "BHRB",
1708 [FSCR_TM_LG
] = "TM",
1709 [FSCR_EBB_LG
] = "EBB",
1710 [FSCR_TAR_LG
] = "TAR",
1711 [FSCR_MSGP_LG
] = "MSGP",
1712 [FSCR_SCV_LG
] = "SCV",
1713 [FSCR_PREFIX_LG
] = "PREFIX",
1715 char *facility
= "unknown";
1721 hv
= (TRAP(regs
) == 0xf80);
1723 value
= mfspr(SPRN_HFSCR
);
1725 value
= mfspr(SPRN_FSCR
);
1727 status
= value
>> 56;
1728 if ((hv
|| status
>= 2) &&
1729 (status
< ARRAY_SIZE(facility_strings
)) &&
1730 facility_strings
[status
])
1731 facility
= facility_strings
[status
];
1733 /* We should not have taken this interrupt in kernel */
1734 if (!user_mode(regs
)) {
1735 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1736 facility
, status
, regs
->nip
);
1737 die("Unexpected facility unavailable exception", regs
, SIGABRT
);
1740 /* We restore the interrupt state now */
1741 if (!arch_irq_disabled_regs(regs
))
1744 if (status
== FSCR_DSCR_LG
) {
1746 * User is accessing the DSCR register using the problem
1747 * state only SPR number (0x03) either through a mfspr or
1748 * a mtspr instruction. If it is a write attempt through
1749 * a mtspr, then we set the inherit bit. This also allows
1750 * the user to write or read the register directly in the
1751 * future by setting via the FSCR DSCR bit. But in case it
1752 * is a read DSCR attempt through a mfspr instruction, we
1753 * just emulate the instruction instead. This code path will
1754 * always emulate all the mfspr instructions till the user
1755 * has attempted at least one mtspr instruction. This way it
1756 * preserves the same behaviour when the user is accessing
1757 * the DSCR through privilege level only SPR number (0x11)
1758 * which is emulated through illegal instruction exception.
1759 * We always leave HFSCR DSCR set.
1761 if (get_user(instword
, (u32 __user
*)(regs
->nip
))) {
1762 pr_err("Failed to fetch the user instruction\n");
1766 /* Write into DSCR (mtspr 0x03, RS) */
1767 if ((instword
& PPC_INST_MTSPR_DSCR_USER_MASK
)
1768 == PPC_INST_MTSPR_DSCR_USER
) {
1769 rd
= (instword
>> 21) & 0x1f;
1770 current
->thread
.dscr
= regs
->gpr
[rd
];
1771 current
->thread
.dscr_inherit
= 1;
1772 current
->thread
.fscr
|= FSCR_DSCR
;
1773 mtspr(SPRN_FSCR
, current
->thread
.fscr
);
1776 /* Read from DSCR (mfspr RT, 0x03) */
1777 if ((instword
& PPC_INST_MFSPR_DSCR_USER_MASK
)
1778 == PPC_INST_MFSPR_DSCR_USER
) {
1779 if (emulate_instruction(regs
)) {
1780 pr_err("DSCR based mfspr emulation failed\n");
1784 emulate_single_step(regs
);
1789 if (status
== FSCR_TM_LG
) {
1791 * If we're here then the hardware is TM aware because it
1792 * generated an exception with FSRM_TM set.
1794 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1795 * told us not to do TM, or the kernel is not built with TM
1798 * If both of those things are true, then userspace can spam the
1799 * console by triggering the printk() below just by continually
1800 * doing tbegin (or any TM instruction). So in that case just
1801 * send the process a SIGILL immediately.
1803 if (!cpu_has_feature(CPU_FTR_TM
))
1806 tm_unavailable(regs
);
1810 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1811 hv
? "Hypervisor " : "", facility
, status
, regs
->nip
, regs
->msr
);
1814 _exception(SIGILL
, regs
, ILL_ILLOPC
, regs
->nip
);
1818 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1820 void fp_unavailable_tm(struct pt_regs
*regs
)
1822 /* Note: This does not handle any kind of FP laziness. */
1824 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1825 regs
->nip
, regs
->msr
);
1827 /* We can only have got here if the task started using FP after
1828 * beginning the transaction. So, the transactional regs are just a
1829 * copy of the checkpointed ones. But, we still need to recheckpoint
1830 * as we're enabling FP for the process; it will return, abort the
1831 * transaction, and probably retry but now with FP enabled. So the
1832 * checkpointed FP registers need to be loaded.
1834 tm_reclaim_current(TM_CAUSE_FAC_UNAV
);
1837 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1838 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1840 * At this point, ck{fp,vr}_state contains the exact values we want to
1844 /* Enable FP for the task: */
1845 current
->thread
.load_fp
= 1;
1848 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1850 tm_recheckpoint(¤t
->thread
);
1853 void altivec_unavailable_tm(struct pt_regs
*regs
)
1855 /* See the comments in fp_unavailable_tm(). This function operates
1859 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1861 regs
->nip
, regs
->msr
);
1862 tm_reclaim_current(TM_CAUSE_FAC_UNAV
);
1863 current
->thread
.load_vec
= 1;
1864 tm_recheckpoint(¤t
->thread
);
1865 current
->thread
.used_vr
= 1;
1868 void vsx_unavailable_tm(struct pt_regs
*regs
)
1870 /* See the comments in fp_unavailable_tm(). This works similarly,
1871 * though we're loading both FP and VEC registers in here.
1873 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1874 * regs. Either way, set MSR_VSX.
1877 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1879 regs
->nip
, regs
->msr
);
1881 current
->thread
.used_vsr
= 1;
1883 /* This reclaims FP and/or VR regs if they're already enabled */
1884 tm_reclaim_current(TM_CAUSE_FAC_UNAV
);
1886 current
->thread
.load_vec
= 1;
1887 current
->thread
.load_fp
= 1;
1889 tm_recheckpoint(¤t
->thread
);
1891 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1893 void performance_monitor_exception(struct pt_regs
*regs
)
1895 __this_cpu_inc(irq_stat
.pmu_irqs
);
1900 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1901 static void handle_debug(struct pt_regs
*regs
, unsigned long debug_status
)
1905 * Determine the cause of the debug event, clear the
1906 * event flags and send a trap to the handler. Torez
1908 if (debug_status
& (DBSR_DAC1R
| DBSR_DAC1W
)) {
1909 dbcr_dac(current
) &= ~(DBCR_DAC1R
| DBCR_DAC1W
);
1910 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1911 current
->thread
.debug
.dbcr2
&= ~DBCR2_DAC12MODE
;
1913 do_send_trap(regs
, mfspr(SPRN_DAC1
), debug_status
,
1916 } else if (debug_status
& (DBSR_DAC2R
| DBSR_DAC2W
)) {
1917 dbcr_dac(current
) &= ~(DBCR_DAC2R
| DBCR_DAC2W
);
1918 do_send_trap(regs
, mfspr(SPRN_DAC2
), debug_status
,
1921 } else if (debug_status
& DBSR_IAC1
) {
1922 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC1
;
1923 dbcr_iac_range(current
) &= ~DBCR_IAC12MODE
;
1924 do_send_trap(regs
, mfspr(SPRN_IAC1
), debug_status
,
1927 } else if (debug_status
& DBSR_IAC2
) {
1928 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC2
;
1929 do_send_trap(regs
, mfspr(SPRN_IAC2
), debug_status
,
1932 } else if (debug_status
& DBSR_IAC3
) {
1933 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC3
;
1934 dbcr_iac_range(current
) &= ~DBCR_IAC34MODE
;
1935 do_send_trap(regs
, mfspr(SPRN_IAC3
), debug_status
,
1938 } else if (debug_status
& DBSR_IAC4
) {
1939 current
->thread
.debug
.dbcr0
&= ~DBCR0_IAC4
;
1940 do_send_trap(regs
, mfspr(SPRN_IAC4
), debug_status
,
1945 * At the point this routine was called, the MSR(DE) was turned off.
1946 * Check all other debug flags and see if that bit needs to be turned
1949 if (DBCR_ACTIVE_EVENTS(current
->thread
.debug
.dbcr0
,
1950 current
->thread
.debug
.dbcr1
))
1951 regs
->msr
|= MSR_DE
;
1953 /* Make sure the IDM flag is off */
1954 current
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
1957 mtspr(SPRN_DBCR0
, current
->thread
.debug
.dbcr0
);
1960 void DebugException(struct pt_regs
*regs
, unsigned long debug_status
)
1962 current
->thread
.debug
.dbsr
= debug_status
;
1964 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1965 * on server, it stops on the target of the branch. In order to simulate
1966 * the server behaviour, we thus restart right away with a single step
1967 * instead of stopping here when hitting a BT
1969 if (debug_status
& DBSR_BT
) {
1970 regs
->msr
&= ~MSR_DE
;
1973 mtspr(SPRN_DBCR0
, mfspr(SPRN_DBCR0
) & ~DBCR0_BT
);
1974 /* Clear the BT event */
1975 mtspr(SPRN_DBSR
, DBSR_BT
);
1977 /* Do the single step trick only when coming from userspace */
1978 if (user_mode(regs
)) {
1979 current
->thread
.debug
.dbcr0
&= ~DBCR0_BT
;
1980 current
->thread
.debug
.dbcr0
|= DBCR0_IDM
| DBCR0_IC
;
1981 regs
->msr
|= MSR_DE
;
1985 if (kprobe_post_handler(regs
))
1988 if (notify_die(DIE_SSTEP
, "block_step", regs
, 5,
1989 5, SIGTRAP
) == NOTIFY_STOP
) {
1992 if (debugger_sstep(regs
))
1994 } else if (debug_status
& DBSR_IC
) { /* Instruction complete */
1995 regs
->msr
&= ~MSR_DE
;
1997 /* Disable instruction completion */
1998 mtspr(SPRN_DBCR0
, mfspr(SPRN_DBCR0
) & ~DBCR0_IC
);
1999 /* Clear the instruction completion event */
2000 mtspr(SPRN_DBSR
, DBSR_IC
);
2002 if (kprobe_post_handler(regs
))
2005 if (notify_die(DIE_SSTEP
, "single_step", regs
, 5,
2006 5, SIGTRAP
) == NOTIFY_STOP
) {
2010 if (debugger_sstep(regs
))
2013 if (user_mode(regs
)) {
2014 current
->thread
.debug
.dbcr0
&= ~DBCR0_IC
;
2015 if (DBCR_ACTIVE_EVENTS(current
->thread
.debug
.dbcr0
,
2016 current
->thread
.debug
.dbcr1
))
2017 regs
->msr
|= MSR_DE
;
2019 /* Make sure the IDM bit is off */
2020 current
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
2023 _exception(SIGTRAP
, regs
, TRAP_TRACE
, regs
->nip
);
2025 handle_debug(regs
, debug_status
);
2027 NOKPROBE_SYMBOL(DebugException
);
2028 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2030 #ifdef CONFIG_ALTIVEC
2031 void altivec_assist_exception(struct pt_regs
*regs
)
2035 if (!user_mode(regs
)) {
2036 printk(KERN_EMERG
"VMX/Altivec assist exception in kernel mode"
2037 " at %lx\n", regs
->nip
);
2038 die("Kernel VMX/Altivec assist exception", regs
, SIGILL
);
2041 flush_altivec_to_thread(current
);
2043 PPC_WARN_EMULATED(altivec
, regs
);
2044 err
= emulate_altivec(regs
);
2046 regs
->nip
+= 4; /* skip emulated instruction */
2047 emulate_single_step(regs
);
2051 if (err
== -EFAULT
) {
2052 /* got an error reading the instruction */
2053 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, regs
->nip
);
2055 /* didn't recognize the instruction */
2056 /* XXX quick hack for now: set the non-Java bit in the VSCR */
2057 printk_ratelimited(KERN_ERR
"Unrecognized altivec instruction "
2058 "in %s at %lx\n", current
->comm
, regs
->nip
);
2059 current
->thread
.vr_state
.vscr
.u
[3] |= 0x10000;
2062 #endif /* CONFIG_ALTIVEC */
2064 #ifdef CONFIG_FSL_BOOKE
2065 void CacheLockingException(struct pt_regs
*regs
, unsigned long address
,
2066 unsigned long error_code
)
2068 /* We treat cache locking instructions from the user
2069 * as priv ops, in the future we could try to do
2072 if (error_code
& (ESR_DLK
|ESR_ILK
))
2073 _exception(SIGILL
, regs
, ILL_PRVOPC
, regs
->nip
);
2076 #endif /* CONFIG_FSL_BOOKE */
2079 void SPEFloatingPointException(struct pt_regs
*regs
)
2081 extern int do_spe_mathemu(struct pt_regs
*regs
);
2082 unsigned long spefscr
;
2084 int code
= FPE_FLTUNK
;
2087 /* We restore the interrupt state now */
2088 if (!arch_irq_disabled_regs(regs
))
2091 flush_spe_to_thread(current
);
2093 spefscr
= current
->thread
.spefscr
;
2094 fpexc_mode
= current
->thread
.fpexc_mode
;
2096 if ((spefscr
& SPEFSCR_FOVF
) && (fpexc_mode
& PR_FP_EXC_OVF
)) {
2099 else if ((spefscr
& SPEFSCR_FUNF
) && (fpexc_mode
& PR_FP_EXC_UND
)) {
2102 else if ((spefscr
& SPEFSCR_FDBZ
) && (fpexc_mode
& PR_FP_EXC_DIV
))
2104 else if ((spefscr
& SPEFSCR_FINV
) && (fpexc_mode
& PR_FP_EXC_INV
)) {
2107 else if ((spefscr
& (SPEFSCR_FG
| SPEFSCR_FX
)) && (fpexc_mode
& PR_FP_EXC_RES
))
2110 err
= do_spe_mathemu(regs
);
2112 regs
->nip
+= 4; /* skip emulated instruction */
2113 emulate_single_step(regs
);
2117 if (err
== -EFAULT
) {
2118 /* got an error reading the instruction */
2119 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, regs
->nip
);
2120 } else if (err
== -EINVAL
) {
2121 /* didn't recognize the instruction */
2122 printk(KERN_ERR
"unrecognized spe instruction "
2123 "in %s at %lx\n", current
->comm
, regs
->nip
);
2125 _exception(SIGFPE
, regs
, code
, regs
->nip
);
2131 void SPEFloatingPointRoundException(struct pt_regs
*regs
)
2133 extern int speround_handler(struct pt_regs
*regs
);
2136 /* We restore the interrupt state now */
2137 if (!arch_irq_disabled_regs(regs
))
2141 if (regs
->msr
& MSR_SPE
)
2142 giveup_spe(current
);
2146 err
= speround_handler(regs
);
2148 regs
->nip
+= 4; /* skip emulated instruction */
2149 emulate_single_step(regs
);
2153 if (err
== -EFAULT
) {
2154 /* got an error reading the instruction */
2155 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, regs
->nip
);
2156 } else if (err
== -EINVAL
) {
2157 /* didn't recognize the instruction */
2158 printk(KERN_ERR
"unrecognized spe instruction "
2159 "in %s at %lx\n", current
->comm
, regs
->nip
);
2161 _exception(SIGFPE
, regs
, FPE_FLTUNK
, regs
->nip
);
2168 * We enter here if we get an unrecoverable exception, that is, one
2169 * that happened at a point where the RI (recoverable interrupt) bit
2170 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2171 * we therefore lost state by taking this exception.
2173 void unrecoverable_exception(struct pt_regs
*regs
)
2175 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2176 regs
->trap
, regs
->nip
, regs
->msr
);
2177 die("Unrecoverable exception", regs
, SIGABRT
);
2179 NOKPROBE_SYMBOL(unrecoverable_exception
);
2181 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2183 * Default handler for a Watchdog exception,
2184 * spins until a reboot occurs
2186 void __attribute__ ((weak
)) WatchdogHandler(struct pt_regs
*regs
)
2188 /* Generic WatchdogHandler, implement your own */
2189 mtspr(SPRN_TCR
, mfspr(SPRN_TCR
)&(~TCR_WIE
));
2193 void WatchdogException(struct pt_regs
*regs
)
2195 printk (KERN_EMERG
"PowerPC Book-E Watchdog Exception\n");
2196 WatchdogHandler(regs
);
2201 * We enter here if we discover during exception entry that we are
2202 * running in supervisor mode with a userspace value in the stack pointer.
2204 void kernel_bad_stack(struct pt_regs
*regs
)
2206 printk(KERN_EMERG
"Bad kernel stack pointer %lx at %lx\n",
2207 regs
->gpr
[1], regs
->nip
);
2208 die("Bad kernel stack pointer", regs
, SIGABRT
);
2210 NOKPROBE_SYMBOL(kernel_bad_stack
);
2212 void __init
trap_init(void)
2217 #ifdef CONFIG_PPC_EMULATED_STATS
2219 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2221 struct ppc_emulated ppc_emulated
= {
2222 #ifdef CONFIG_ALTIVEC
2223 WARN_EMULATED_SETUP(altivec
),
2225 WARN_EMULATED_SETUP(dcba
),
2226 WARN_EMULATED_SETUP(dcbz
),
2227 WARN_EMULATED_SETUP(fp_pair
),
2228 WARN_EMULATED_SETUP(isel
),
2229 WARN_EMULATED_SETUP(mcrxr
),
2230 WARN_EMULATED_SETUP(mfpvr
),
2231 WARN_EMULATED_SETUP(multiple
),
2232 WARN_EMULATED_SETUP(popcntb
),
2233 WARN_EMULATED_SETUP(spe
),
2234 WARN_EMULATED_SETUP(string
),
2235 WARN_EMULATED_SETUP(sync
),
2236 WARN_EMULATED_SETUP(unaligned
),
2237 #ifdef CONFIG_MATH_EMULATION
2238 WARN_EMULATED_SETUP(math
),
2241 WARN_EMULATED_SETUP(vsx
),
2244 WARN_EMULATED_SETUP(mfdscr
),
2245 WARN_EMULATED_SETUP(mtdscr
),
2246 WARN_EMULATED_SETUP(lq_stq
),
2247 WARN_EMULATED_SETUP(lxvw4x
),
2248 WARN_EMULATED_SETUP(lxvh8x
),
2249 WARN_EMULATED_SETUP(lxvd2x
),
2250 WARN_EMULATED_SETUP(lxvb16x
),
2254 u32 ppc_warn_emulated
;
2256 void ppc_warn_emulated_print(const char *type
)
2258 pr_warn_ratelimited("%s used emulated %s instruction\n", current
->comm
,
2262 static int __init
ppc_warn_emulated_init(void)
2266 struct ppc_emulated_entry
*entries
= (void *)&ppc_emulated
;
2268 dir
= debugfs_create_dir("emulated_instructions",
2269 powerpc_debugfs_root
);
2271 debugfs_create_u32("do_warn", 0644, dir
, &ppc_warn_emulated
);
2273 for (i
= 0; i
< sizeof(ppc_emulated
)/sizeof(*entries
); i
++)
2274 debugfs_create_u32(entries
[i
].name
, 0644, dir
,
2275 (u32
*)&entries
[i
].val
.counter
);
2280 device_initcall(ppc_warn_emulated_init
);
2282 #endif /* CONFIG_PPC_EMULATED_STATS */