Merge tag 'sched-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / arch / powerpc / kernel / watchdog.c
blobaf3c15a1d41eb159670be90218c12b9966afa7f1
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Watchdog support on powerpc systems.
5 * Copyright 2017, IBM Corporation.
7 * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8 */
10 #define pr_fmt(fmt) "watchdog: " fmt
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/smp.h>
29 #include <asm/paca.h>
32 * The powerpc watchdog ensures that each CPU is able to service timers.
33 * The watchdog sets up a simple timer on each CPU to run once per timer
34 * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
35 * the heartbeat.
37 * Then there are two systems to check that the heartbeat is still running.
38 * The local soft-NMI, and the SMP checker.
40 * The soft-NMI checker can detect lockups on the local CPU. When interrupts
41 * are disabled with local_irq_disable(), platforms that use soft-masking
42 * can leave hardware interrupts enabled and handle them with a masked
43 * interrupt handler. The masked handler can send the timer interrupt to the
44 * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
45 * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
47 * The soft-NMI checker will compare the heartbeat timestamp for this CPU
48 * with the current time, and take action if the difference exceeds the
49 * watchdog threshold.
51 * The limitation of the soft-NMI watchdog is that it does not work when
52 * interrupts are hard disabled or otherwise not being serviced. This is
53 * solved by also having a SMP watchdog where all CPUs check all other
54 * CPUs heartbeat.
56 * The SMP checker can detect lockups on other CPUs. A gobal "pending"
57 * cpumask is kept, containing all CPUs which enable the watchdog. Each
58 * CPU clears their pending bit in their heartbeat timer. When the bitmask
59 * becomes empty, the last CPU to clear its pending bit updates a global
60 * timestamp and refills the pending bitmask.
62 * In the heartbeat timer, if any CPU notices that the global timestamp has
63 * not been updated for a period exceeding the watchdog threshold, then it
64 * means the CPU(s) with their bit still set in the pending mask have had
65 * their heartbeat stop, and action is taken.
67 * Some platforms implement true NMI IPIs, which can be used by the SMP
68 * watchdog to detect an unresponsive CPU and pull it out of its stuck
69 * state with the NMI IPI, to get crash/debug data from it. This way the
70 * SMP watchdog can detect hardware interrupts off lockups.
73 static cpumask_t wd_cpus_enabled __read_mostly;
75 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
76 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
78 static u64 wd_timer_period_ms __read_mostly; /* interval between heartbeat */
80 static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
81 static DEFINE_PER_CPU(u64, wd_timer_tb);
83 /* SMP checker bits */
84 static unsigned long __wd_smp_lock;
85 static cpumask_t wd_smp_cpus_pending;
86 static cpumask_t wd_smp_cpus_stuck;
87 static u64 wd_smp_last_reset_tb;
89 static inline void wd_smp_lock(unsigned long *flags)
92 * Avoid locking layers if possible.
93 * This may be called from low level interrupt handlers at some
94 * point in future.
96 raw_local_irq_save(*flags);
97 hard_irq_disable(); /* Make it soft-NMI safe */
98 while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
99 raw_local_irq_restore(*flags);
100 spin_until_cond(!test_bit(0, &__wd_smp_lock));
101 raw_local_irq_save(*flags);
102 hard_irq_disable();
106 static inline void wd_smp_unlock(unsigned long *flags)
108 clear_bit_unlock(0, &__wd_smp_lock);
109 raw_local_irq_restore(*flags);
112 static void wd_lockup_ipi(struct pt_regs *regs)
114 int cpu = raw_smp_processor_id();
115 u64 tb = get_tb();
117 pr_emerg("CPU %d Hard LOCKUP\n", cpu);
118 pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
119 cpu, tb, per_cpu(wd_timer_tb, cpu),
120 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
121 print_modules();
122 print_irqtrace_events(current);
123 if (regs)
124 show_regs(regs);
125 else
126 dump_stack();
128 /* Do not panic from here because that can recurse into NMI IPI layer */
131 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
133 cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
134 cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
135 if (cpumask_empty(&wd_smp_cpus_pending)) {
136 wd_smp_last_reset_tb = tb;
137 cpumask_andnot(&wd_smp_cpus_pending,
138 &wd_cpus_enabled,
139 &wd_smp_cpus_stuck);
142 static void set_cpu_stuck(int cpu, u64 tb)
144 set_cpumask_stuck(cpumask_of(cpu), tb);
147 static void watchdog_smp_panic(int cpu, u64 tb)
149 unsigned long flags;
150 int c;
152 wd_smp_lock(&flags);
153 /* Double check some things under lock */
154 if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
155 goto out;
156 if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
157 goto out;
158 if (cpumask_weight(&wd_smp_cpus_pending) == 0)
159 goto out;
161 pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
162 cpu, cpumask_pr_args(&wd_smp_cpus_pending));
163 pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
164 cpu, tb, wd_smp_last_reset_tb,
165 tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
167 if (!sysctl_hardlockup_all_cpu_backtrace) {
169 * Try to trigger the stuck CPUs, unless we are going to
170 * get a backtrace on all of them anyway.
172 for_each_cpu(c, &wd_smp_cpus_pending) {
173 if (c == cpu)
174 continue;
175 smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
179 /* Take the stuck CPUs out of the watch group */
180 set_cpumask_stuck(&wd_smp_cpus_pending, tb);
182 wd_smp_unlock(&flags);
184 printk_safe_flush();
186 * printk_safe_flush() seems to require another print
187 * before anything actually goes out to console.
189 if (sysctl_hardlockup_all_cpu_backtrace)
190 trigger_allbutself_cpu_backtrace();
192 if (hardlockup_panic)
193 nmi_panic(NULL, "Hard LOCKUP");
195 return;
197 out:
198 wd_smp_unlock(&flags);
201 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
203 if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
204 if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
205 struct pt_regs *regs = get_irq_regs();
206 unsigned long flags;
208 wd_smp_lock(&flags);
210 pr_emerg("CPU %d became unstuck TB:%lld\n",
211 cpu, tb);
212 print_irqtrace_events(current);
213 if (regs)
214 show_regs(regs);
215 else
216 dump_stack();
218 cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
219 wd_smp_unlock(&flags);
221 return;
223 cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
224 if (cpumask_empty(&wd_smp_cpus_pending)) {
225 unsigned long flags;
227 wd_smp_lock(&flags);
228 if (cpumask_empty(&wd_smp_cpus_pending)) {
229 wd_smp_last_reset_tb = tb;
230 cpumask_andnot(&wd_smp_cpus_pending,
231 &wd_cpus_enabled,
232 &wd_smp_cpus_stuck);
234 wd_smp_unlock(&flags);
238 static void watchdog_timer_interrupt(int cpu)
240 u64 tb = get_tb();
242 per_cpu(wd_timer_tb, cpu) = tb;
244 wd_smp_clear_cpu_pending(cpu, tb);
246 if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
247 watchdog_smp_panic(cpu, tb);
250 void soft_nmi_interrupt(struct pt_regs *regs)
252 unsigned long flags;
253 int cpu = raw_smp_processor_id();
254 u64 tb;
256 if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
257 return;
259 nmi_enter();
261 __this_cpu_inc(irq_stat.soft_nmi_irqs);
263 tb = get_tb();
264 if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
265 wd_smp_lock(&flags);
266 if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
267 wd_smp_unlock(&flags);
268 goto out;
270 set_cpu_stuck(cpu, tb);
272 pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
273 cpu, (void *)regs->nip);
274 pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
275 cpu, tb, per_cpu(wd_timer_tb, cpu),
276 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
277 print_modules();
278 print_irqtrace_events(current);
279 show_regs(regs);
281 wd_smp_unlock(&flags);
283 if (sysctl_hardlockup_all_cpu_backtrace)
284 trigger_allbutself_cpu_backtrace();
286 if (hardlockup_panic)
287 nmi_panic(regs, "Hard LOCKUP");
289 if (wd_panic_timeout_tb < 0x7fffffff)
290 mtspr(SPRN_DEC, wd_panic_timeout_tb);
292 out:
293 nmi_exit();
296 static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
298 int cpu = smp_processor_id();
300 if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
301 return HRTIMER_NORESTART;
303 if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
304 return HRTIMER_NORESTART;
306 watchdog_timer_interrupt(cpu);
308 hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
310 return HRTIMER_RESTART;
313 void arch_touch_nmi_watchdog(void)
315 unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
316 int cpu = smp_processor_id();
317 u64 tb = get_tb();
319 if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
320 per_cpu(wd_timer_tb, cpu) = tb;
321 wd_smp_clear_cpu_pending(cpu, tb);
324 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
326 static void start_watchdog(void *arg)
328 struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
329 int cpu = smp_processor_id();
330 unsigned long flags;
332 if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
333 WARN_ON(1);
334 return;
337 if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
338 return;
340 if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
341 return;
343 wd_smp_lock(&flags);
344 cpumask_set_cpu(cpu, &wd_cpus_enabled);
345 if (cpumask_weight(&wd_cpus_enabled) == 1) {
346 cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
347 wd_smp_last_reset_tb = get_tb();
349 wd_smp_unlock(&flags);
351 *this_cpu_ptr(&wd_timer_tb) = get_tb();
353 hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
354 hrtimer->function = watchdog_timer_fn;
355 hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
356 HRTIMER_MODE_REL_PINNED);
359 static int start_watchdog_on_cpu(unsigned int cpu)
361 return smp_call_function_single(cpu, start_watchdog, NULL, true);
364 static void stop_watchdog(void *arg)
366 struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
367 int cpu = smp_processor_id();
368 unsigned long flags;
370 if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
371 return; /* Can happen in CPU unplug case */
373 hrtimer_cancel(hrtimer);
375 wd_smp_lock(&flags);
376 cpumask_clear_cpu(cpu, &wd_cpus_enabled);
377 wd_smp_unlock(&flags);
379 wd_smp_clear_cpu_pending(cpu, get_tb());
382 static int stop_watchdog_on_cpu(unsigned int cpu)
384 return smp_call_function_single(cpu, stop_watchdog, NULL, true);
387 static void watchdog_calc_timeouts(void)
389 wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
391 /* Have the SMP detector trigger a bit later */
392 wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
394 /* 2/5 is the factor that the perf based detector uses */
395 wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
398 void watchdog_nmi_stop(void)
400 int cpu;
402 for_each_cpu(cpu, &wd_cpus_enabled)
403 stop_watchdog_on_cpu(cpu);
406 void watchdog_nmi_start(void)
408 int cpu;
410 watchdog_calc_timeouts();
411 for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
412 start_watchdog_on_cpu(cpu);
416 * Invoked from core watchdog init.
418 int __init watchdog_nmi_probe(void)
420 int err;
422 err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
423 "powerpc/watchdog:online",
424 start_watchdog_on_cpu,
425 stop_watchdog_on_cpu);
426 if (err < 0) {
427 pr_warn("could not be initialized");
428 return err;
430 return 0;