1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright 2016,2017 IBM Corporation.
6 #define pr_fmt(fmt) "xive: " fmt
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 #include <linux/vmalloc.h>
24 #include <asm/debugfs.h>
28 #include <asm/machdep.h>
30 #include <asm/errno.h>
32 #include <asm/xive-regs.h>
35 #include "xive-internal.h"
41 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \
42 smp_processor_id(), ## __VA_ARGS__)
44 #define DBG_VERBOSE(fmt...) do { } while(0)
48 EXPORT_SYMBOL_GPL(__xive_enabled
);
49 bool xive_cmdline_disabled
;
51 /* We use only one priority for now */
52 static u8 xive_irq_priority
;
54 /* TIMA exported to KVM */
55 void __iomem
*xive_tima
;
56 EXPORT_SYMBOL_GPL(xive_tima
);
60 static const struct xive_ops
*xive_ops
;
62 /* Our global interrupt domain */
63 static struct irq_domain
*xive_irq_domain
;
66 /* The IPIs all use the same logical irq number */
67 static u32 xive_ipi_irq
;
70 /* Xive state for each CPU */
71 static DEFINE_PER_CPU(struct xive_cpu
*, xive_cpu
);
73 /* An invalid CPU target */
74 #define XIVE_INVALID_TARGET (-1)
77 * Read the next entry in a queue, return its content if it's valid
78 * or 0 if there is no new entry.
80 * The queue pointer is moved forward unless "just_peek" is set
82 static u32
xive_read_eq(struct xive_q
*q
, bool just_peek
)
88 cur
= be32_to_cpup(q
->qpage
+ q
->idx
);
90 /* Check valid bit (31) vs current toggle polarity */
91 if ((cur
>> 31) == q
->toggle
)
94 /* If consuming from the queue ... */
97 q
->idx
= (q
->idx
+ 1) & q
->msk
;
99 /* Wrap around: flip valid toggle */
103 /* Mask out the valid bit (31) */
104 return cur
& 0x7fffffff;
108 * Scans all the queue that may have interrupts in them
109 * (based on "pending_prio") in priority order until an
110 * interrupt is found or all the queues are empty.
112 * Then updates the CPPR (Current Processor Priority
113 * Register) based on the most favored interrupt found
114 * (0xff if none) and return what was found (0 if none).
116 * If just_peek is set, return the most favored pending
117 * interrupt if any but don't update the queue pointers.
119 * Note: This function can operate generically on any number
120 * of queues (up to 8). The current implementation of the XIVE
121 * driver only uses a single queue however.
123 * Note2: This will also "flush" "the pending_count" of a queue
124 * into the "count" when that queue is observed to be empty.
125 * This is used to keep track of the amount of interrupts
126 * targetting a queue. When an interrupt is moved away from
127 * a queue, we only decrement that queue count once the queue
128 * has been observed empty to avoid races.
130 static u32
xive_scan_interrupts(struct xive_cpu
*xc
, bool just_peek
)
135 /* Find highest pending priority */
136 while (xc
->pending_prio
!= 0) {
139 prio
= ffs(xc
->pending_prio
) - 1;
140 DBG_VERBOSE("scan_irq: trying prio %d\n", prio
);
143 irq
= xive_read_eq(&xc
->queue
[prio
], just_peek
);
145 /* Found something ? That's it */
147 if (just_peek
|| irq_to_desc(irq
))
150 * We should never get here; if we do then we must
151 * have failed to synchronize the interrupt properly
152 * when shutting it down.
154 pr_crit("xive: got interrupt %d without descriptor, dropping\n",
160 /* Clear pending bits */
161 xc
->pending_prio
&= ~(1 << prio
);
164 * Check if the queue count needs adjusting due to
165 * interrupts being moved away. See description of
166 * xive_dec_target_count()
168 q
= &xc
->queue
[prio
];
169 if (atomic_read(&q
->pending_count
)) {
170 int p
= atomic_xchg(&q
->pending_count
, 0);
172 WARN_ON(p
> atomic_read(&q
->count
));
173 atomic_sub(p
, &q
->count
);
178 /* If nothing was found, set CPPR to 0xff */
182 /* Update HW CPPR to match if necessary */
183 if (prio
!= xc
->cppr
) {
184 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio
);
186 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, prio
);
193 * This is used to perform the magic loads from an ESB
194 * described in xive-regs.h
196 static notrace u8
xive_esb_read(struct xive_irq_data
*xd
, u32 offset
)
200 if (offset
== XIVE_ESB_SET_PQ_10
&& xd
->flags
& XIVE_IRQ_FLAG_STORE_EOI
)
201 offset
|= XIVE_ESB_LD_ST_MO
;
203 if ((xd
->flags
& XIVE_IRQ_FLAG_H_INT_ESB
) && xive_ops
->esb_rw
)
204 val
= xive_ops
->esb_rw(xd
->hw_irq
, offset
, 0, 0);
206 val
= in_be64(xd
->eoi_mmio
+ offset
);
211 static void xive_esb_write(struct xive_irq_data
*xd
, u32 offset
, u64 data
)
213 if ((xd
->flags
& XIVE_IRQ_FLAG_H_INT_ESB
) && xive_ops
->esb_rw
)
214 xive_ops
->esb_rw(xd
->hw_irq
, offset
, data
, 1);
216 out_be64(xd
->eoi_mmio
+ offset
, data
);
220 static notrace
void xive_dump_eq(const char *name
, struct xive_q
*q
)
227 i0
= be32_to_cpup(q
->qpage
+ idx
);
228 idx
= (idx
+ 1) & q
->msk
;
229 i1
= be32_to_cpup(q
->qpage
+ idx
);
230 xmon_printf("%s idx=%d T=%d %08x %08x ...", name
,
231 q
->idx
, q
->toggle
, i0
, i1
);
234 notrace
void xmon_xive_do_dump(int cpu
)
236 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
238 xmon_printf("CPU %d:", cpu
);
240 xmon_printf("pp=%02x CPPR=%02x ", xc
->pending_prio
, xc
->cppr
);
244 u64 val
= xive_esb_read(&xc
->ipi_data
, XIVE_ESB_GET
);
246 xmon_printf("IPI=0x%08x PQ=%c%c ", xc
->hw_ipi
,
247 val
& XIVE_ESB_VAL_P
? 'P' : '-',
248 val
& XIVE_ESB_VAL_Q
? 'Q' : '-');
251 xive_dump_eq("EQ", &xc
->queue
[xive_irq_priority
]);
256 int xmon_xive_get_irq_config(u32 hw_irq
, struct irq_data
*d
)
258 struct irq_chip
*chip
= irq_data_get_irq_chip(d
);
264 if (!is_xive_irq(chip
))
267 rc
= xive_ops
->get_irq_config(hw_irq
, &target
, &prio
, &lirq
);
269 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq
, rc
);
273 xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
274 hw_irq
, target
, prio
, lirq
);
277 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
278 u64 val
= xive_esb_read(xd
, XIVE_ESB_GET
);
280 xmon_printf("flags=%c%c%c PQ=%c%c",
281 xd
->flags
& XIVE_IRQ_FLAG_STORE_EOI
? 'S' : ' ',
282 xd
->flags
& XIVE_IRQ_FLAG_LSI
? 'L' : ' ',
283 xd
->flags
& XIVE_IRQ_FLAG_H_INT_ESB
? 'H' : ' ',
284 val
& XIVE_ESB_VAL_P
? 'P' : '-',
285 val
& XIVE_ESB_VAL_Q
? 'Q' : '-');
292 #endif /* CONFIG_XMON */
294 static unsigned int xive_get_irq(void)
296 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
300 * This can be called either as a result of a HW interrupt or
301 * as a "replay" because EOI decided there was still something
302 * in one of the queues.
304 * First we perform an ACK cycle in order to update our mask
305 * of pending priorities. This will also have the effect of
306 * updating the CPPR to the most favored pending interrupts.
308 * In the future, if we have a way to differentiate a first
309 * entry (on HW interrupt) from a replay triggered by EOI,
310 * we could skip this on replays unless we soft-mask tells us
311 * that a new HW interrupt occurred.
313 xive_ops
->update_pending(xc
);
315 DBG_VERBOSE("get_irq: pending=%02x\n", xc
->pending_prio
);
317 /* Scan our queue(s) for interrupts */
318 irq
= xive_scan_interrupts(xc
, false);
320 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
321 irq
, xc
->pending_prio
);
323 /* Return pending interrupt if any */
324 if (irq
== XIVE_BAD_IRQ
)
330 * After EOI'ing an interrupt, we need to re-check the queue
331 * to see if another interrupt is pending since multiple
332 * interrupts can coalesce into a single notification to the
335 * If we find that there is indeed more in there, we call
336 * force_external_irq_replay() to make Linux synthetize an
337 * external interrupt on the next call to local_irq_restore().
339 static void xive_do_queue_eoi(struct xive_cpu
*xc
)
341 if (xive_scan_interrupts(xc
, true) != 0) {
342 DBG_VERBOSE("eoi: pending=0x%02x\n", xc
->pending_prio
);
343 force_external_irq_replay();
348 * EOI an interrupt at the source. There are several methods
349 * to do this depending on the HW version and source type
351 static void xive_do_source_eoi(struct xive_irq_data
*xd
)
357 /* If the XIVE supports the new "store EOI facility, use it */
358 if (xd
->flags
& XIVE_IRQ_FLAG_STORE_EOI
) {
359 xive_esb_write(xd
, XIVE_ESB_STORE_EOI
, 0);
364 * For LSIs, we use the "EOI cycle" special load rather than
365 * PQ bits, as they are automatically re-triggered in HW when
368 if (xd
->flags
& XIVE_IRQ_FLAG_LSI
) {
369 xive_esb_read(xd
, XIVE_ESB_LOAD_EOI
);
374 * Otherwise, we use the special MMIO that does a clear of
375 * both P and Q and returns the old Q. This allows us to then
376 * do a re-trigger if Q was set rather than synthesizing an
377 * interrupt in software
379 eoi_val
= xive_esb_read(xd
, XIVE_ESB_SET_PQ_00
);
380 DBG_VERBOSE("eoi_val=%x\n", eoi_val
);
382 /* Re-trigger if needed */
383 if ((eoi_val
& XIVE_ESB_VAL_Q
) && xd
->trig_mmio
)
384 out_be64(xd
->trig_mmio
, 0);
387 /* irq_chip eoi callback, called with irq descriptor lock held */
388 static void xive_irq_eoi(struct irq_data
*d
)
390 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
391 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
393 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
394 d
->irq
, irqd_to_hwirq(d
), xc
->pending_prio
);
397 * EOI the source if it hasn't been disabled and hasn't
398 * been passed-through to a KVM guest
400 if (!irqd_irq_disabled(d
) && !irqd_is_forwarded_to_vcpu(d
) &&
401 !(xd
->flags
& XIVE_IRQ_FLAG_NO_EOI
))
402 xive_do_source_eoi(xd
);
407 * Clear saved_p to indicate that it's no longer occupying
408 * a queue slot on the target queue
412 /* Check for more work in the queue */
413 xive_do_queue_eoi(xc
);
417 * Helper used to mask and unmask an interrupt source.
419 static void xive_do_source_set_mask(struct xive_irq_data
*xd
,
425 * If the interrupt had P set, it may be in a queue.
427 * We need to make sure we don't re-enable it until it
428 * has been fetched from that queue and EOId. We keep
429 * a copy of that P state and use it to restore the
430 * ESB accordingly on unmask.
433 val
= xive_esb_read(xd
, XIVE_ESB_SET_PQ_01
);
434 if (!xd
->stale_p
&& !!(val
& XIVE_ESB_VAL_P
))
437 } else if (xd
->saved_p
) {
438 xive_esb_read(xd
, XIVE_ESB_SET_PQ_10
);
441 xive_esb_read(xd
, XIVE_ESB_SET_PQ_00
);
447 * Try to chose "cpu" as a new interrupt target. Increments
448 * the queue accounting for that target if it's not already
451 static bool xive_try_pick_target(int cpu
)
453 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
454 struct xive_q
*q
= &xc
->queue
[xive_irq_priority
];
458 * Calculate max number of interrupts in that queue.
460 * We leave a gap of 1 just in case...
462 max
= (q
->msk
+ 1) - 1;
463 return !!atomic_add_unless(&q
->count
, 1, max
);
467 * Un-account an interrupt for a target CPU. We don't directly
468 * decrement q->count since the interrupt might still be present
471 * Instead increment a separate counter "pending_count" which
472 * will be substracted from "count" later when that CPU observes
473 * the queue to be empty.
475 static void xive_dec_target_count(int cpu
)
477 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
478 struct xive_q
*q
= &xc
->queue
[xive_irq_priority
];
480 if (WARN_ON(cpu
< 0 || !xc
)) {
481 pr_err("%s: cpu=%d xc=%p\n", __func__
, cpu
, xc
);
486 * We increment the "pending count" which will be used
487 * to decrement the target queue count whenever it's next
488 * processed and found empty. This ensure that we don't
489 * decrement while we still have the interrupt there
492 atomic_inc(&q
->pending_count
);
495 /* Find a tentative CPU target in a CPU mask */
496 static int xive_find_target_in_mask(const struct cpumask
*mask
,
499 int cpu
, first
, num
, i
;
501 /* Pick up a starting point CPU in the mask based on fuzz */
502 num
= min_t(int, cpumask_weight(mask
), nr_cpu_ids
);
506 cpu
= cpumask_first(mask
);
507 for (i
= 0; i
< first
&& cpu
< nr_cpu_ids
; i
++)
508 cpu
= cpumask_next(cpu
, mask
);
511 if (WARN_ON(cpu
>= nr_cpu_ids
))
512 cpu
= cpumask_first(cpu_online_mask
);
514 /* Remember first one to handle wrap-around */
518 * Now go through the entire mask until we find a valid
523 * We re-check online as the fallback case passes us
524 * an untested affinity mask
526 if (cpu_online(cpu
) && xive_try_pick_target(cpu
))
528 cpu
= cpumask_next(cpu
, mask
);
530 if (cpu
>= nr_cpu_ids
)
531 cpu
= cpumask_first(mask
);
532 } while (cpu
!= first
);
538 * Pick a target CPU for an interrupt. This is done at
539 * startup or if the affinity is changed in a way that
540 * invalidates the current target.
542 static int xive_pick_irq_target(struct irq_data
*d
,
543 const struct cpumask
*affinity
)
545 static unsigned int fuzz
;
546 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
551 * If we have chip IDs, first we try to build a mask of
552 * CPUs matching the CPU and find a target in there
554 if (xd
->src_chip
!= XIVE_INVALID_CHIP_ID
&&
555 zalloc_cpumask_var(&mask
, GFP_ATOMIC
)) {
556 /* Build a mask of matching chip IDs */
557 for_each_cpu_and(cpu
, affinity
, cpu_online_mask
) {
558 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
559 if (xc
->chip_id
== xd
->src_chip
)
560 cpumask_set_cpu(cpu
, mask
);
562 /* Try to find a target */
563 if (cpumask_empty(mask
))
566 cpu
= xive_find_target_in_mask(mask
, fuzz
++);
567 free_cpumask_var(mask
);
573 /* No chip IDs, fallback to using the affinity mask */
574 return xive_find_target_in_mask(affinity
, fuzz
++);
577 static unsigned int xive_irq_startup(struct irq_data
*d
)
579 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
580 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
585 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
588 #ifdef CONFIG_PCI_MSI
590 * The generic MSI code returns with the interrupt disabled on the
591 * card, using the MSI mask bits. Firmware doesn't appear to unmask
592 * at that level, so we do it here by hand.
594 if (irq_data_get_msi_desc(d
))
595 pci_msi_unmask_irq(d
);
599 target
= xive_pick_irq_target(d
, irq_data_get_affinity_mask(d
));
600 if (target
== XIVE_INVALID_TARGET
) {
601 /* Try again breaking affinity */
602 target
= xive_pick_irq_target(d
, cpu_online_mask
);
603 if (target
== XIVE_INVALID_TARGET
)
605 pr_warn("irq %d started with broken affinity\n", d
->irq
);
609 if (WARN_ON(target
== XIVE_INVALID_TARGET
||
610 target
>= nr_cpu_ids
))
611 target
= smp_processor_id();
616 * Configure the logical number to be the Linux IRQ number
617 * and set the target queue
619 rc
= xive_ops
->configure_irq(hw_irq
,
620 get_hard_smp_processor_id(target
),
621 xive_irq_priority
, d
->irq
);
626 xive_do_source_set_mask(xd
, false);
631 /* called with irq descriptor lock held */
632 static void xive_irq_shutdown(struct irq_data
*d
)
634 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
635 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
637 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
640 if (WARN_ON(xd
->target
== XIVE_INVALID_TARGET
))
643 /* Mask the interrupt at the source */
644 xive_do_source_set_mask(xd
, true);
647 * Mask the interrupt in HW in the IVT/EAS and set the number
648 * to be the "bad" IRQ number
650 xive_ops
->configure_irq(hw_irq
,
651 get_hard_smp_processor_id(xd
->target
),
654 xive_dec_target_count(xd
->target
);
655 xd
->target
= XIVE_INVALID_TARGET
;
658 static void xive_irq_unmask(struct irq_data
*d
)
660 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
662 pr_devel("xive_irq_unmask: irq %d data @%p\n", d
->irq
, xd
);
664 xive_do_source_set_mask(xd
, false);
667 static void xive_irq_mask(struct irq_data
*d
)
669 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
671 pr_devel("xive_irq_mask: irq %d data @%p\n", d
->irq
, xd
);
673 xive_do_source_set_mask(xd
, true);
676 static int xive_irq_set_affinity(struct irq_data
*d
,
677 const struct cpumask
*cpumask
,
680 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
681 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
682 u32 target
, old_target
;
685 pr_devel("xive_irq_set_affinity: irq %d\n", d
->irq
);
687 /* Is this valid ? */
688 if (cpumask_any_and(cpumask
, cpu_online_mask
) >= nr_cpu_ids
)
691 /* Don't do anything if the interrupt isn't started */
692 if (!irqd_is_started(d
))
693 return IRQ_SET_MASK_OK
;
696 * If existing target is already in the new mask, and is
697 * online then do nothing.
699 if (xd
->target
!= XIVE_INVALID_TARGET
&&
700 cpu_online(xd
->target
) &&
701 cpumask_test_cpu(xd
->target
, cpumask
))
702 return IRQ_SET_MASK_OK
;
704 /* Pick a new target */
705 target
= xive_pick_irq_target(d
, cpumask
);
707 /* No target found */
708 if (target
== XIVE_INVALID_TARGET
)
712 if (WARN_ON(target
>= nr_cpu_ids
))
713 target
= smp_processor_id();
715 old_target
= xd
->target
;
718 * Only configure the irq if it's not currently passed-through to
721 if (!irqd_is_forwarded_to_vcpu(d
))
722 rc
= xive_ops
->configure_irq(hw_irq
,
723 get_hard_smp_processor_id(target
),
724 xive_irq_priority
, d
->irq
);
726 pr_err("Error %d reconfiguring irq %d\n", rc
, d
->irq
);
730 pr_devel(" target: 0x%x\n", target
);
733 /* Give up previous target */
734 if (old_target
!= XIVE_INVALID_TARGET
)
735 xive_dec_target_count(old_target
);
737 return IRQ_SET_MASK_OK
;
740 static int xive_irq_set_type(struct irq_data
*d
, unsigned int flow_type
)
742 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
745 * We only support these. This has really no effect other than setting
746 * the corresponding descriptor bits mind you but those will in turn
747 * affect the resend function when re-enabling an edge interrupt.
749 * Set set the default to edge as explained in map().
751 if (flow_type
== IRQ_TYPE_DEFAULT
|| flow_type
== IRQ_TYPE_NONE
)
752 flow_type
= IRQ_TYPE_EDGE_RISING
;
754 if (flow_type
!= IRQ_TYPE_EDGE_RISING
&&
755 flow_type
!= IRQ_TYPE_LEVEL_LOW
)
758 irqd_set_trigger_type(d
, flow_type
);
761 * Double check it matches what the FW thinks
763 * NOTE: We don't know yet if the PAPR interface will provide
764 * the LSI vs MSI information apart from the device-tree so
765 * this check might have to move into an optional backend call
766 * that is specific to the native backend
768 if ((flow_type
== IRQ_TYPE_LEVEL_LOW
) !=
769 !!(xd
->flags
& XIVE_IRQ_FLAG_LSI
)) {
770 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
771 d
->irq
, (u32
)irqd_to_hwirq(d
),
772 (flow_type
== IRQ_TYPE_LEVEL_LOW
) ? "Level" : "Edge",
773 (xd
->flags
& XIVE_IRQ_FLAG_LSI
) ? "Level" : "Edge");
776 return IRQ_SET_MASK_OK_NOCOPY
;
779 static int xive_irq_retrigger(struct irq_data
*d
)
781 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
783 /* This should be only for MSIs */
784 if (WARN_ON(xd
->flags
& XIVE_IRQ_FLAG_LSI
))
788 * To perform a retrigger, we first set the PQ bits to
789 * 11, then perform an EOI.
791 xive_esb_read(xd
, XIVE_ESB_SET_PQ_11
);
792 xive_do_source_eoi(xd
);
798 * Caller holds the irq descriptor lock, so this won't be called
799 * concurrently with xive_get_irqchip_state on the same interrupt.
801 static int xive_irq_set_vcpu_affinity(struct irq_data
*d
, void *state
)
803 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
804 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
809 * This is called by KVM with state non-NULL for enabling
810 * pass-through or NULL for disabling it
813 irqd_set_forwarded_to_vcpu(d
);
815 /* Set it to PQ=10 state to prevent further sends */
816 pq
= xive_esb_read(xd
, XIVE_ESB_SET_PQ_10
);
818 xd
->saved_p
= !!(pq
& XIVE_ESB_VAL_P
);
819 xd
->stale_p
= !xd
->saved_p
;
822 /* No target ? nothing to do */
823 if (xd
->target
== XIVE_INVALID_TARGET
) {
825 * An untargetted interrupt should have been
826 * also masked at the source
828 WARN_ON(xd
->saved_p
);
834 * If P was set, adjust state to PQ=11 to indicate
835 * that a resend is needed for the interrupt to reach
836 * the guest. Also remember the value of P.
838 * This also tells us that it's in flight to a host queue
839 * or has already been fetched but hasn't been EOIed yet
840 * by the host. This it's potentially using up a host
841 * queue slot. This is important to know because as long
842 * as this is the case, we must not hard-unmask it when
843 * "returning" that interrupt to the host.
845 * This saved_p is cleared by the host EOI, when we know
846 * for sure the queue slot is no longer in use.
849 xive_esb_read(xd
, XIVE_ESB_SET_PQ_11
);
852 * Sync the XIVE source HW to ensure the interrupt
853 * has gone through the EAS before we change its
854 * target to the guest. That should guarantee us
855 * that we *will* eventually get an EOI for it on
856 * the host. Otherwise there would be a small window
857 * for P to be seen here but the interrupt going
858 * to the guest queue.
860 if (xive_ops
->sync_source
)
861 xive_ops
->sync_source(hw_irq
);
864 irqd_clr_forwarded_to_vcpu(d
);
866 /* No host target ? hard mask and return */
867 if (xd
->target
== XIVE_INVALID_TARGET
) {
868 xive_do_source_set_mask(xd
, true);
873 * Sync the XIVE source HW to ensure the interrupt
874 * has gone through the EAS before we change its
875 * target to the host.
877 if (xive_ops
->sync_source
)
878 xive_ops
->sync_source(hw_irq
);
881 * By convention we are called with the interrupt in
882 * a PQ=10 or PQ=11 state, ie, it won't fire and will
883 * have latched in Q whether there's a pending HW
886 * First reconfigure the target.
888 rc
= xive_ops
->configure_irq(hw_irq
,
889 get_hard_smp_processor_id(xd
->target
),
890 xive_irq_priority
, d
->irq
);
895 * Then if saved_p is not set, effectively re-enable the
896 * interrupt with an EOI. If it is set, we know there is
897 * still a message in a host queue somewhere that will be
900 * Note: We don't check irqd_irq_disabled(). Effectively,
901 * we *will* let the irq get through even if masked if the
902 * HW is still firing it in order to deal with the whole
903 * saved_p business properly. If the interrupt triggers
904 * while masked, the generic code will re-mask it anyway.
907 xive_do_source_eoi(xd
);
913 /* Called with irq descriptor lock held. */
914 static int xive_get_irqchip_state(struct irq_data
*data
,
915 enum irqchip_irq_state which
, bool *state
)
917 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(data
);
921 case IRQCHIP_STATE_ACTIVE
:
922 pq
= xive_esb_read(xd
, XIVE_ESB_GET
);
925 * The esb value being all 1's means we couldn't get
926 * the PQ state of the interrupt through mmio. It may
927 * happen, for example when querying a PHB interrupt
928 * while the PHB is in an error state. We consider the
929 * interrupt to be inactive in that case.
931 *state
= (pq
!= XIVE_ESB_INVALID
) && !xd
->stale_p
&&
932 (xd
->saved_p
|| !!(pq
& XIVE_ESB_VAL_P
));
939 static struct irq_chip xive_irq_chip
= {
941 .irq_startup
= xive_irq_startup
,
942 .irq_shutdown
= xive_irq_shutdown
,
943 .irq_eoi
= xive_irq_eoi
,
944 .irq_mask
= xive_irq_mask
,
945 .irq_unmask
= xive_irq_unmask
,
946 .irq_set_affinity
= xive_irq_set_affinity
,
947 .irq_set_type
= xive_irq_set_type
,
948 .irq_retrigger
= xive_irq_retrigger
,
949 .irq_set_vcpu_affinity
= xive_irq_set_vcpu_affinity
,
950 .irq_get_irqchip_state
= xive_get_irqchip_state
,
953 bool is_xive_irq(struct irq_chip
*chip
)
955 return chip
== &xive_irq_chip
;
957 EXPORT_SYMBOL_GPL(is_xive_irq
);
959 void xive_cleanup_irq_data(struct xive_irq_data
*xd
)
962 unmap_kernel_range((unsigned long)xd
->eoi_mmio
,
963 1u << xd
->esb_shift
);
964 iounmap(xd
->eoi_mmio
);
965 if (xd
->eoi_mmio
== xd
->trig_mmio
)
966 xd
->trig_mmio
= NULL
;
970 unmap_kernel_range((unsigned long)xd
->trig_mmio
,
971 1u << xd
->esb_shift
);
972 iounmap(xd
->trig_mmio
);
973 xd
->trig_mmio
= NULL
;
976 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data
);
978 static int xive_irq_alloc_data(unsigned int virq
, irq_hw_number_t hw
)
980 struct xive_irq_data
*xd
;
983 xd
= kzalloc(sizeof(struct xive_irq_data
), GFP_KERNEL
);
986 rc
= xive_ops
->populate_irq_data(hw
, xd
);
991 xd
->target
= XIVE_INVALID_TARGET
;
992 irq_set_handler_data(virq
, xd
);
995 * Turn OFF by default the interrupt being mapped. A side
996 * effect of this check is the mapping the ESB page of the
997 * interrupt in the Linux address space. This prevents page
998 * fault issues in the crash handler which masks all
1001 xive_esb_read(xd
, XIVE_ESB_SET_PQ_01
);
1006 static void xive_irq_free_data(unsigned int virq
)
1008 struct xive_irq_data
*xd
= irq_get_handler_data(virq
);
1012 irq_set_handler_data(virq
, NULL
);
1013 xive_cleanup_irq_data(xd
);
1019 static void xive_cause_ipi(int cpu
)
1021 struct xive_cpu
*xc
;
1022 struct xive_irq_data
*xd
;
1024 xc
= per_cpu(xive_cpu
, cpu
);
1026 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1027 smp_processor_id(), cpu
, xc
->hw_ipi
);
1030 if (WARN_ON(!xd
->trig_mmio
))
1032 out_be64(xd
->trig_mmio
, 0);
1035 static irqreturn_t
xive_muxed_ipi_action(int irq
, void *dev_id
)
1037 return smp_ipi_demux();
1040 static void xive_ipi_eoi(struct irq_data
*d
)
1042 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1044 /* Handle possible race with unplug and drop stale IPIs */
1048 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1049 d
->irq
, irqd_to_hwirq(d
), xc
->hw_ipi
, xc
->pending_prio
);
1051 xive_do_source_eoi(&xc
->ipi_data
);
1052 xive_do_queue_eoi(xc
);
1055 static void xive_ipi_do_nothing(struct irq_data
*d
)
1058 * Nothing to do, we never mask/unmask IPIs, but the callback
1059 * has to exist for the struct irq_chip.
1063 static struct irq_chip xive_ipi_chip
= {
1065 .irq_eoi
= xive_ipi_eoi
,
1066 .irq_mask
= xive_ipi_do_nothing
,
1067 .irq_unmask
= xive_ipi_do_nothing
,
1070 static void __init
xive_request_ipi(void)
1075 * Initialization failed, move on, we might manage to
1076 * reach the point where we display our errors before
1077 * the system falls appart
1079 if (!xive_irq_domain
)
1083 virq
= irq_create_mapping(xive_irq_domain
, XIVE_IPI_HW_IRQ
);
1084 xive_ipi_irq
= virq
;
1086 WARN_ON(request_irq(virq
, xive_muxed_ipi_action
,
1087 IRQF_PERCPU
| IRQF_NO_THREAD
, "IPI", NULL
));
1090 static int xive_setup_cpu_ipi(unsigned int cpu
)
1092 struct xive_cpu
*xc
;
1095 pr_debug("Setting up IPI for CPU %d\n", cpu
);
1097 xc
= per_cpu(xive_cpu
, cpu
);
1099 /* Check if we are already setup */
1100 if (xc
->hw_ipi
!= XIVE_BAD_IRQ
)
1103 /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1104 if (xive_ops
->get_ipi(cpu
, xc
))
1108 * Populate the IRQ data in the xive_cpu structure and
1109 * configure the HW / enable the IPIs.
1111 rc
= xive_ops
->populate_irq_data(xc
->hw_ipi
, &xc
->ipi_data
);
1113 pr_err("Failed to populate IPI data on CPU %d\n", cpu
);
1116 rc
= xive_ops
->configure_irq(xc
->hw_ipi
,
1117 get_hard_smp_processor_id(cpu
),
1118 xive_irq_priority
, xive_ipi_irq
);
1120 pr_err("Failed to map IPI CPU %d\n", cpu
);
1123 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu
,
1124 xc
->hw_ipi
, xive_ipi_irq
, xc
->ipi_data
.trig_mmio
);
1127 xive_do_source_set_mask(&xc
->ipi_data
, false);
1132 static void xive_cleanup_cpu_ipi(unsigned int cpu
, struct xive_cpu
*xc
)
1134 /* Disable the IPI and free the IRQ data */
1136 /* Already cleaned up ? */
1137 if (xc
->hw_ipi
== XIVE_BAD_IRQ
)
1141 xive_do_source_set_mask(&xc
->ipi_data
, true);
1144 * Note: We don't call xive_cleanup_irq_data() to free
1145 * the mappings as this is called from an IPI on kexec
1146 * which is not a safe environment to call iounmap()
1149 /* Deconfigure/mask in the backend */
1150 xive_ops
->configure_irq(xc
->hw_ipi
, hard_smp_processor_id(),
1151 0xff, xive_ipi_irq
);
1153 /* Free the IPIs in the backend */
1154 xive_ops
->put_ipi(cpu
, xc
);
1157 void __init
xive_smp_probe(void)
1159 smp_ops
->cause_ipi
= xive_cause_ipi
;
1161 /* Register the IPI */
1164 /* Allocate and setup IPI for the boot CPU */
1165 xive_setup_cpu_ipi(smp_processor_id());
1168 #endif /* CONFIG_SMP */
1170 static int xive_irq_domain_map(struct irq_domain
*h
, unsigned int virq
,
1176 * Mark interrupts as edge sensitive by default so that resend
1177 * actually works. Will fix that up below if needed.
1179 irq_clear_status_flags(virq
, IRQ_LEVEL
);
1182 /* IPIs are special and come up with HW number 0 */
1183 if (hw
== XIVE_IPI_HW_IRQ
) {
1185 * IPIs are marked per-cpu. We use separate HW interrupts under
1186 * the hood but associated with the same "linux" interrupt
1188 irq_set_chip_and_handler(virq
, &xive_ipi_chip
,
1194 rc
= xive_irq_alloc_data(virq
, hw
);
1198 irq_set_chip_and_handler(virq
, &xive_irq_chip
, handle_fasteoi_irq
);
1203 static void xive_irq_domain_unmap(struct irq_domain
*d
, unsigned int virq
)
1205 struct irq_data
*data
= irq_get_irq_data(virq
);
1206 unsigned int hw_irq
;
1208 /* XXX Assign BAD number */
1211 hw_irq
= (unsigned int)irqd_to_hwirq(data
);
1212 if (hw_irq
!= XIVE_IPI_HW_IRQ
)
1213 xive_irq_free_data(virq
);
1216 static int xive_irq_domain_xlate(struct irq_domain
*h
, struct device_node
*ct
,
1217 const u32
*intspec
, unsigned int intsize
,
1218 irq_hw_number_t
*out_hwirq
, unsigned int *out_flags
)
1221 *out_hwirq
= intspec
[0];
1224 * If intsize is at least 2, we look for the type in the second cell,
1225 * we assume the LSB indicates a level interrupt.
1229 *out_flags
= IRQ_TYPE_LEVEL_LOW
;
1231 *out_flags
= IRQ_TYPE_EDGE_RISING
;
1233 *out_flags
= IRQ_TYPE_LEVEL_LOW
;
1238 static int xive_irq_domain_match(struct irq_domain
*h
, struct device_node
*node
,
1239 enum irq_domain_bus_token bus_token
)
1241 return xive_ops
->match(node
);
1244 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1245 static const char * const esb_names
[] = { "RESET", "OFF", "PENDING", "QUEUED" };
1247 static const struct {
1250 } xive_irq_flags
[] = {
1251 { XIVE_IRQ_FLAG_STORE_EOI
, "STORE_EOI" },
1252 { XIVE_IRQ_FLAG_LSI
, "LSI" },
1253 { XIVE_IRQ_FLAG_H_INT_ESB
, "H_INT_ESB" },
1254 { XIVE_IRQ_FLAG_NO_EOI
, "NO_EOI" },
1257 static void xive_irq_domain_debug_show(struct seq_file
*m
, struct irq_domain
*d
,
1258 struct irq_data
*irqd
, int ind
)
1260 struct xive_irq_data
*xd
;
1264 /* No IRQ domain level information. To be done */
1268 if (!is_xive_irq(irq_data_get_irq_chip(irqd
)))
1271 seq_printf(m
, "%*sXIVE:\n", ind
, "");
1274 xd
= irq_data_get_irq_handler_data(irqd
);
1276 seq_printf(m
, "%*snot assigned\n", ind
, "");
1280 val
= xive_esb_read(xd
, XIVE_ESB_GET
);
1281 seq_printf(m
, "%*sESB: %s\n", ind
, "", esb_names
[val
& 0x3]);
1282 seq_printf(m
, "%*sPstate: %s %s\n", ind
, "", xd
->stale_p
? "stale" : "",
1283 xd
->saved_p
? "saved" : "");
1284 seq_printf(m
, "%*sTarget: %d\n", ind
, "", xd
->target
);
1285 seq_printf(m
, "%*sChip: %d\n", ind
, "", xd
->src_chip
);
1286 seq_printf(m
, "%*sTrigger: 0x%016llx\n", ind
, "", xd
->trig_page
);
1287 seq_printf(m
, "%*sEOI: 0x%016llx\n", ind
, "", xd
->eoi_page
);
1288 seq_printf(m
, "%*sFlags: 0x%llx\n", ind
, "", xd
->flags
);
1289 for (i
= 0; i
< ARRAY_SIZE(xive_irq_flags
); i
++) {
1290 if (xd
->flags
& xive_irq_flags
[i
].mask
)
1291 seq_printf(m
, "%*s%s\n", ind
+ 12, "", xive_irq_flags
[i
].name
);
1296 static const struct irq_domain_ops xive_irq_domain_ops
= {
1297 .match
= xive_irq_domain_match
,
1298 .map
= xive_irq_domain_map
,
1299 .unmap
= xive_irq_domain_unmap
,
1300 .xlate
= xive_irq_domain_xlate
,
1301 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1302 .debug_show
= xive_irq_domain_debug_show
,
1306 static void __init
xive_init_host(struct device_node
*np
)
1308 xive_irq_domain
= irq_domain_add_nomap(np
, XIVE_MAX_IRQ
,
1309 &xive_irq_domain_ops
, NULL
);
1310 if (WARN_ON(xive_irq_domain
== NULL
))
1312 irq_set_default_host(xive_irq_domain
);
1315 static void xive_cleanup_cpu_queues(unsigned int cpu
, struct xive_cpu
*xc
)
1317 if (xc
->queue
[xive_irq_priority
].qpage
)
1318 xive_ops
->cleanup_queue(cpu
, xc
, xive_irq_priority
);
1321 static int xive_setup_cpu_queues(unsigned int cpu
, struct xive_cpu
*xc
)
1325 /* We setup 1 queues for now with a 64k page */
1326 if (!xc
->queue
[xive_irq_priority
].qpage
)
1327 rc
= xive_ops
->setup_queue(cpu
, xc
, xive_irq_priority
);
1332 static int xive_prepare_cpu(unsigned int cpu
)
1334 struct xive_cpu
*xc
;
1336 xc
= per_cpu(xive_cpu
, cpu
);
1338 struct device_node
*np
;
1340 xc
= kzalloc_node(sizeof(struct xive_cpu
),
1341 GFP_KERNEL
, cpu_to_node(cpu
));
1344 np
= of_get_cpu_node(cpu
, NULL
);
1346 xc
->chip_id
= of_get_ibm_chip_id(np
);
1348 xc
->hw_ipi
= XIVE_BAD_IRQ
;
1350 per_cpu(xive_cpu
, cpu
) = xc
;
1353 /* Setup EQs if not already */
1354 return xive_setup_cpu_queues(cpu
, xc
);
1357 static void xive_setup_cpu(void)
1359 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1361 /* The backend might have additional things to do */
1362 if (xive_ops
->setup_cpu
)
1363 xive_ops
->setup_cpu(smp_processor_id(), xc
);
1365 /* Set CPPR to 0xff to enable flow of interrupts */
1367 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0xff);
1371 void xive_smp_setup_cpu(void)
1373 pr_devel("SMP setup CPU %d\n", smp_processor_id());
1375 /* This will have already been done on the boot CPU */
1376 if (smp_processor_id() != boot_cpuid
)
1381 int xive_smp_prepare_cpu(unsigned int cpu
)
1385 /* Allocate per-CPU data and queues */
1386 rc
= xive_prepare_cpu(cpu
);
1390 /* Allocate and setup IPI for the new CPU */
1391 return xive_setup_cpu_ipi(cpu
);
1394 #ifdef CONFIG_HOTPLUG_CPU
1395 static void xive_flush_cpu_queue(unsigned int cpu
, struct xive_cpu
*xc
)
1399 /* We assume local irqs are disabled */
1400 WARN_ON(!irqs_disabled());
1402 /* Check what's already in the CPU queue */
1403 while ((irq
= xive_scan_interrupts(xc
, false)) != 0) {
1405 * We need to re-route that interrupt to its new destination.
1406 * First get and lock the descriptor
1408 struct irq_desc
*desc
= irq_to_desc(irq
);
1409 struct irq_data
*d
= irq_desc_get_irq_data(desc
);
1410 struct xive_irq_data
*xd
;
1411 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
1414 * Ignore anything that isn't a XIVE irq and ignore
1415 * IPIs, so can just be dropped.
1417 if (d
->domain
!= xive_irq_domain
|| hw_irq
== XIVE_IPI_HW_IRQ
)
1421 * The IRQ should have already been re-routed, it's just a
1422 * stale in the old queue, so re-trigger it in order to make
1423 * it reach is new destination.
1426 pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1429 raw_spin_lock(&desc
->lock
);
1430 xd
= irq_desc_get_handler_data(desc
);
1433 * Clear saved_p to indicate that it's no longer pending
1435 xd
->saved_p
= false;
1438 * For LSIs, we EOI, this will cause a resend if it's
1439 * still asserted. Otherwise do an MSI retrigger.
1441 if (xd
->flags
& XIVE_IRQ_FLAG_LSI
)
1442 xive_do_source_eoi(xd
);
1444 xive_irq_retrigger(d
);
1446 raw_spin_unlock(&desc
->lock
);
1450 void xive_smp_disable_cpu(void)
1452 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1453 unsigned int cpu
= smp_processor_id();
1455 /* Migrate interrupts away from the CPU */
1456 irq_migrate_all_off_this_cpu();
1458 /* Set CPPR to 0 to disable flow of interrupts */
1460 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0);
1462 /* Flush everything still in the queue */
1463 xive_flush_cpu_queue(cpu
, xc
);
1465 /* Re-enable CPPR */
1467 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0xff);
1470 void xive_flush_interrupt(void)
1472 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1473 unsigned int cpu
= smp_processor_id();
1475 /* Called if an interrupt occurs while the CPU is hot unplugged */
1476 xive_flush_cpu_queue(cpu
, xc
);
1479 #endif /* CONFIG_HOTPLUG_CPU */
1481 #endif /* CONFIG_SMP */
1483 void xive_teardown_cpu(void)
1485 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1486 unsigned int cpu
= smp_processor_id();
1488 /* Set CPPR to 0 to disable flow of interrupts */
1490 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0);
1492 if (xive_ops
->teardown_cpu
)
1493 xive_ops
->teardown_cpu(cpu
, xc
);
1496 /* Get rid of IPI */
1497 xive_cleanup_cpu_ipi(cpu
, xc
);
1500 /* Disable and free the queues */
1501 xive_cleanup_cpu_queues(cpu
, xc
);
1504 void xive_shutdown(void)
1506 xive_ops
->shutdown();
1509 bool __init
xive_core_init(struct device_node
*np
, const struct xive_ops
*ops
,
1510 void __iomem
*area
, u32 offset
, u8 max_prio
)
1513 xive_tima_offset
= offset
;
1515 xive_irq_priority
= max_prio
;
1517 ppc_md
.get_irq
= xive_get_irq
;
1518 __xive_enabled
= true;
1520 pr_devel("Initializing host..\n");
1523 pr_devel("Initializing boot CPU..\n");
1525 /* Allocate per-CPU data and queues */
1526 xive_prepare_cpu(smp_processor_id());
1528 /* Get ready for interrupts */
1531 pr_info("Interrupt handling initialized with %s backend\n",
1533 pr_info("Using priority %d for all interrupts\n", max_prio
);
1538 __be32
*xive_queue_page_alloc(unsigned int cpu
, u32 queue_shift
)
1540 unsigned int alloc_order
;
1544 alloc_order
= xive_alloc_order(queue_shift
);
1545 pages
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, alloc_order
);
1547 return ERR_PTR(-ENOMEM
);
1548 qpage
= (__be32
*)page_address(pages
);
1549 memset(qpage
, 0, 1 << queue_shift
);
1554 static int __init
xive_off(char *arg
)
1556 xive_cmdline_disabled
= true;
1559 __setup("xive=off", xive_off
);
1561 static void xive_debug_show_cpu(struct seq_file
*m
, int cpu
)
1563 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
1565 seq_printf(m
, "CPU %d:", cpu
);
1567 seq_printf(m
, "pp=%02x CPPR=%02x ", xc
->pending_prio
, xc
->cppr
);
1571 u64 val
= xive_esb_read(&xc
->ipi_data
, XIVE_ESB_GET
);
1573 seq_printf(m
, "IPI=0x%08x PQ=%c%c ", xc
->hw_ipi
,
1574 val
& XIVE_ESB_VAL_P
? 'P' : '-',
1575 val
& XIVE_ESB_VAL_Q
? 'Q' : '-');
1579 struct xive_q
*q
= &xc
->queue
[xive_irq_priority
];
1584 i0
= be32_to_cpup(q
->qpage
+ idx
);
1585 idx
= (idx
+ 1) & q
->msk
;
1586 i1
= be32_to_cpup(q
->qpage
+ idx
);
1587 seq_printf(m
, "EQ idx=%d T=%d %08x %08x ...",
1588 q
->idx
, q
->toggle
, i0
, i1
);
1595 static void xive_debug_show_irq(struct seq_file
*m
, u32 hw_irq
, struct irq_data
*d
)
1597 struct irq_chip
*chip
= irq_data_get_irq_chip(d
);
1603 if (!is_xive_irq(chip
))
1606 rc
= xive_ops
->get_irq_config(hw_irq
, &target
, &prio
, &lirq
);
1608 seq_printf(m
, "IRQ 0x%08x : no config rc=%d\n", hw_irq
, rc
);
1612 seq_printf(m
, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1613 hw_irq
, target
, prio
, lirq
);
1616 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
1617 u64 val
= xive_esb_read(xd
, XIVE_ESB_GET
);
1619 seq_printf(m
, "flags=%c%c%c PQ=%c%c",
1620 xd
->flags
& XIVE_IRQ_FLAG_STORE_EOI
? 'S' : ' ',
1621 xd
->flags
& XIVE_IRQ_FLAG_LSI
? 'L' : ' ',
1622 xd
->flags
& XIVE_IRQ_FLAG_H_INT_ESB
? 'H' : ' ',
1623 val
& XIVE_ESB_VAL_P
? 'P' : '-',
1624 val
& XIVE_ESB_VAL_Q
? 'Q' : '-');
1629 static int xive_core_debug_show(struct seq_file
*m
, void *private)
1632 struct irq_desc
*desc
;
1635 if (xive_ops
->debug_show
)
1636 xive_ops
->debug_show(m
, private);
1638 for_each_possible_cpu(cpu
)
1639 xive_debug_show_cpu(m
, cpu
);
1641 for_each_irq_desc(i
, desc
) {
1642 struct irq_data
*d
= irq_desc_get_irq_data(desc
);
1643 unsigned int hw_irq
;
1648 hw_irq
= (unsigned int)irqd_to_hwirq(d
);
1650 /* IPIs are special (HW number 0) */
1651 if (hw_irq
!= XIVE_IPI_HW_IRQ
)
1652 xive_debug_show_irq(m
, hw_irq
, d
);
1656 DEFINE_SHOW_ATTRIBUTE(xive_core_debug
);
1658 int xive_core_debug_init(void)
1661 debugfs_create_file("xive", 0400, powerpc_debugfs_root
,
1662 NULL
, &xive_core_debug_fops
);