Merge tag 'sched-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / arch / powerpc / sysdev / xive / common.c
blob595310e056f4dec4d00e10bafd6f1f639e6ec9a3
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2016,2017 IBM Corporation.
4 */
6 #define pr_fmt(fmt) "xive: " fmt
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 #include <linux/vmalloc.h>
24 #include <asm/debugfs.h>
25 #include <asm/prom.h>
26 #include <asm/io.h>
27 #include <asm/smp.h>
28 #include <asm/machdep.h>
29 #include <asm/irq.h>
30 #include <asm/errno.h>
31 #include <asm/xive.h>
32 #include <asm/xive-regs.h>
33 #include <asm/xmon.h>
35 #include "xive-internal.h"
37 #undef DEBUG_FLUSH
38 #undef DEBUG_ALL
40 #ifdef DEBUG_ALL
41 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \
42 smp_processor_id(), ## __VA_ARGS__)
43 #else
44 #define DBG_VERBOSE(fmt...) do { } while(0)
45 #endif
47 bool __xive_enabled;
48 EXPORT_SYMBOL_GPL(__xive_enabled);
49 bool xive_cmdline_disabled;
51 /* We use only one priority for now */
52 static u8 xive_irq_priority;
54 /* TIMA exported to KVM */
55 void __iomem *xive_tima;
56 EXPORT_SYMBOL_GPL(xive_tima);
57 u32 xive_tima_offset;
59 /* Backend ops */
60 static const struct xive_ops *xive_ops;
62 /* Our global interrupt domain */
63 static struct irq_domain *xive_irq_domain;
65 #ifdef CONFIG_SMP
66 /* The IPIs all use the same logical irq number */
67 static u32 xive_ipi_irq;
68 #endif
70 /* Xive state for each CPU */
71 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
73 /* An invalid CPU target */
74 #define XIVE_INVALID_TARGET (-1)
77 * Read the next entry in a queue, return its content if it's valid
78 * or 0 if there is no new entry.
80 * The queue pointer is moved forward unless "just_peek" is set
82 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
84 u32 cur;
86 if (!q->qpage)
87 return 0;
88 cur = be32_to_cpup(q->qpage + q->idx);
90 /* Check valid bit (31) vs current toggle polarity */
91 if ((cur >> 31) == q->toggle)
92 return 0;
94 /* If consuming from the queue ... */
95 if (!just_peek) {
96 /* Next entry */
97 q->idx = (q->idx + 1) & q->msk;
99 /* Wrap around: flip valid toggle */
100 if (q->idx == 0)
101 q->toggle ^= 1;
103 /* Mask out the valid bit (31) */
104 return cur & 0x7fffffff;
108 * Scans all the queue that may have interrupts in them
109 * (based on "pending_prio") in priority order until an
110 * interrupt is found or all the queues are empty.
112 * Then updates the CPPR (Current Processor Priority
113 * Register) based on the most favored interrupt found
114 * (0xff if none) and return what was found (0 if none).
116 * If just_peek is set, return the most favored pending
117 * interrupt if any but don't update the queue pointers.
119 * Note: This function can operate generically on any number
120 * of queues (up to 8). The current implementation of the XIVE
121 * driver only uses a single queue however.
123 * Note2: This will also "flush" "the pending_count" of a queue
124 * into the "count" when that queue is observed to be empty.
125 * This is used to keep track of the amount of interrupts
126 * targetting a queue. When an interrupt is moved away from
127 * a queue, we only decrement that queue count once the queue
128 * has been observed empty to avoid races.
130 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
132 u32 irq = 0;
133 u8 prio = 0;
135 /* Find highest pending priority */
136 while (xc->pending_prio != 0) {
137 struct xive_q *q;
139 prio = ffs(xc->pending_prio) - 1;
140 DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
142 /* Try to fetch */
143 irq = xive_read_eq(&xc->queue[prio], just_peek);
145 /* Found something ? That's it */
146 if (irq) {
147 if (just_peek || irq_to_desc(irq))
148 break;
150 * We should never get here; if we do then we must
151 * have failed to synchronize the interrupt properly
152 * when shutting it down.
154 pr_crit("xive: got interrupt %d without descriptor, dropping\n",
155 irq);
156 WARN_ON(1);
157 continue;
160 /* Clear pending bits */
161 xc->pending_prio &= ~(1 << prio);
164 * Check if the queue count needs adjusting due to
165 * interrupts being moved away. See description of
166 * xive_dec_target_count()
168 q = &xc->queue[prio];
169 if (atomic_read(&q->pending_count)) {
170 int p = atomic_xchg(&q->pending_count, 0);
171 if (p) {
172 WARN_ON(p > atomic_read(&q->count));
173 atomic_sub(p, &q->count);
178 /* If nothing was found, set CPPR to 0xff */
179 if (irq == 0)
180 prio = 0xff;
182 /* Update HW CPPR to match if necessary */
183 if (prio != xc->cppr) {
184 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
185 xc->cppr = prio;
186 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
189 return irq;
193 * This is used to perform the magic loads from an ESB
194 * described in xive-regs.h
196 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
198 u64 val;
200 if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
201 offset |= XIVE_ESB_LD_ST_MO;
203 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
204 val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
205 else
206 val = in_be64(xd->eoi_mmio + offset);
208 return (u8)val;
211 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
213 if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
214 xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
215 else
216 out_be64(xd->eoi_mmio + offset, data);
219 #ifdef CONFIG_XMON
220 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
222 u32 i0, i1, idx;
224 if (!q->qpage)
225 return;
226 idx = q->idx;
227 i0 = be32_to_cpup(q->qpage + idx);
228 idx = (idx + 1) & q->msk;
229 i1 = be32_to_cpup(q->qpage + idx);
230 xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
231 q->idx, q->toggle, i0, i1);
234 notrace void xmon_xive_do_dump(int cpu)
236 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
238 xmon_printf("CPU %d:", cpu);
239 if (xc) {
240 xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
242 #ifdef CONFIG_SMP
244 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
246 xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
247 val & XIVE_ESB_VAL_P ? 'P' : '-',
248 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
250 #endif
251 xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
253 xmon_printf("\n");
256 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
258 struct irq_chip *chip = irq_data_get_irq_chip(d);
259 int rc;
260 u32 target;
261 u8 prio;
262 u32 lirq;
264 if (!is_xive_irq(chip))
265 return -EINVAL;
267 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
268 if (rc) {
269 xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
270 return rc;
273 xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
274 hw_irq, target, prio, lirq);
276 if (d) {
277 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
278 u64 val = xive_esb_read(xd, XIVE_ESB_GET);
280 xmon_printf("flags=%c%c%c PQ=%c%c",
281 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
282 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
283 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
284 val & XIVE_ESB_VAL_P ? 'P' : '-',
285 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
288 xmon_printf("\n");
289 return 0;
292 #endif /* CONFIG_XMON */
294 static unsigned int xive_get_irq(void)
296 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
297 u32 irq;
300 * This can be called either as a result of a HW interrupt or
301 * as a "replay" because EOI decided there was still something
302 * in one of the queues.
304 * First we perform an ACK cycle in order to update our mask
305 * of pending priorities. This will also have the effect of
306 * updating the CPPR to the most favored pending interrupts.
308 * In the future, if we have a way to differentiate a first
309 * entry (on HW interrupt) from a replay triggered by EOI,
310 * we could skip this on replays unless we soft-mask tells us
311 * that a new HW interrupt occurred.
313 xive_ops->update_pending(xc);
315 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
317 /* Scan our queue(s) for interrupts */
318 irq = xive_scan_interrupts(xc, false);
320 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
321 irq, xc->pending_prio);
323 /* Return pending interrupt if any */
324 if (irq == XIVE_BAD_IRQ)
325 return 0;
326 return irq;
330 * After EOI'ing an interrupt, we need to re-check the queue
331 * to see if another interrupt is pending since multiple
332 * interrupts can coalesce into a single notification to the
333 * CPU.
335 * If we find that there is indeed more in there, we call
336 * force_external_irq_replay() to make Linux synthetize an
337 * external interrupt on the next call to local_irq_restore().
339 static void xive_do_queue_eoi(struct xive_cpu *xc)
341 if (xive_scan_interrupts(xc, true) != 0) {
342 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
343 force_external_irq_replay();
348 * EOI an interrupt at the source. There are several methods
349 * to do this depending on the HW version and source type
351 static void xive_do_source_eoi(struct xive_irq_data *xd)
353 u8 eoi_val;
355 xd->stale_p = false;
357 /* If the XIVE supports the new "store EOI facility, use it */
358 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) {
359 xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
360 return;
364 * For LSIs, we use the "EOI cycle" special load rather than
365 * PQ bits, as they are automatically re-triggered in HW when
366 * still pending.
368 if (xd->flags & XIVE_IRQ_FLAG_LSI) {
369 xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
370 return;
374 * Otherwise, we use the special MMIO that does a clear of
375 * both P and Q and returns the old Q. This allows us to then
376 * do a re-trigger if Q was set rather than synthesizing an
377 * interrupt in software
379 eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
380 DBG_VERBOSE("eoi_val=%x\n", eoi_val);
382 /* Re-trigger if needed */
383 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
384 out_be64(xd->trig_mmio, 0);
387 /* irq_chip eoi callback, called with irq descriptor lock held */
388 static void xive_irq_eoi(struct irq_data *d)
390 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
391 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
393 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
394 d->irq, irqd_to_hwirq(d), xc->pending_prio);
397 * EOI the source if it hasn't been disabled and hasn't
398 * been passed-through to a KVM guest
400 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
401 !(xd->flags & XIVE_IRQ_FLAG_NO_EOI))
402 xive_do_source_eoi(xd);
403 else
404 xd->stale_p = true;
407 * Clear saved_p to indicate that it's no longer occupying
408 * a queue slot on the target queue
410 xd->saved_p = false;
412 /* Check for more work in the queue */
413 xive_do_queue_eoi(xc);
417 * Helper used to mask and unmask an interrupt source.
419 static void xive_do_source_set_mask(struct xive_irq_data *xd,
420 bool mask)
422 u64 val;
425 * If the interrupt had P set, it may be in a queue.
427 * We need to make sure we don't re-enable it until it
428 * has been fetched from that queue and EOId. We keep
429 * a copy of that P state and use it to restore the
430 * ESB accordingly on unmask.
432 if (mask) {
433 val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
434 if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
435 xd->saved_p = true;
436 xd->stale_p = false;
437 } else if (xd->saved_p) {
438 xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
439 xd->saved_p = false;
440 } else {
441 xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
442 xd->stale_p = false;
447 * Try to chose "cpu" as a new interrupt target. Increments
448 * the queue accounting for that target if it's not already
449 * full.
451 static bool xive_try_pick_target(int cpu)
453 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
454 struct xive_q *q = &xc->queue[xive_irq_priority];
455 int max;
458 * Calculate max number of interrupts in that queue.
460 * We leave a gap of 1 just in case...
462 max = (q->msk + 1) - 1;
463 return !!atomic_add_unless(&q->count, 1, max);
467 * Un-account an interrupt for a target CPU. We don't directly
468 * decrement q->count since the interrupt might still be present
469 * in the queue.
471 * Instead increment a separate counter "pending_count" which
472 * will be substracted from "count" later when that CPU observes
473 * the queue to be empty.
475 static void xive_dec_target_count(int cpu)
477 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
478 struct xive_q *q = &xc->queue[xive_irq_priority];
480 if (WARN_ON(cpu < 0 || !xc)) {
481 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
482 return;
486 * We increment the "pending count" which will be used
487 * to decrement the target queue count whenever it's next
488 * processed and found empty. This ensure that we don't
489 * decrement while we still have the interrupt there
490 * occupying a slot.
492 atomic_inc(&q->pending_count);
495 /* Find a tentative CPU target in a CPU mask */
496 static int xive_find_target_in_mask(const struct cpumask *mask,
497 unsigned int fuzz)
499 int cpu, first, num, i;
501 /* Pick up a starting point CPU in the mask based on fuzz */
502 num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
503 first = fuzz % num;
505 /* Locate it */
506 cpu = cpumask_first(mask);
507 for (i = 0; i < first && cpu < nr_cpu_ids; i++)
508 cpu = cpumask_next(cpu, mask);
510 /* Sanity check */
511 if (WARN_ON(cpu >= nr_cpu_ids))
512 cpu = cpumask_first(cpu_online_mask);
514 /* Remember first one to handle wrap-around */
515 first = cpu;
518 * Now go through the entire mask until we find a valid
519 * target.
521 do {
523 * We re-check online as the fallback case passes us
524 * an untested affinity mask
526 if (cpu_online(cpu) && xive_try_pick_target(cpu))
527 return cpu;
528 cpu = cpumask_next(cpu, mask);
529 /* Wrap around */
530 if (cpu >= nr_cpu_ids)
531 cpu = cpumask_first(mask);
532 } while (cpu != first);
534 return -1;
538 * Pick a target CPU for an interrupt. This is done at
539 * startup or if the affinity is changed in a way that
540 * invalidates the current target.
542 static int xive_pick_irq_target(struct irq_data *d,
543 const struct cpumask *affinity)
545 static unsigned int fuzz;
546 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
547 cpumask_var_t mask;
548 int cpu = -1;
551 * If we have chip IDs, first we try to build a mask of
552 * CPUs matching the CPU and find a target in there
554 if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
555 zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
556 /* Build a mask of matching chip IDs */
557 for_each_cpu_and(cpu, affinity, cpu_online_mask) {
558 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
559 if (xc->chip_id == xd->src_chip)
560 cpumask_set_cpu(cpu, mask);
562 /* Try to find a target */
563 if (cpumask_empty(mask))
564 cpu = -1;
565 else
566 cpu = xive_find_target_in_mask(mask, fuzz++);
567 free_cpumask_var(mask);
568 if (cpu >= 0)
569 return cpu;
570 fuzz--;
573 /* No chip IDs, fallback to using the affinity mask */
574 return xive_find_target_in_mask(affinity, fuzz++);
577 static unsigned int xive_irq_startup(struct irq_data *d)
579 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
580 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
581 int target, rc;
583 xd->saved_p = false;
584 xd->stale_p = false;
585 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
586 d->irq, hw_irq, d);
588 #ifdef CONFIG_PCI_MSI
590 * The generic MSI code returns with the interrupt disabled on the
591 * card, using the MSI mask bits. Firmware doesn't appear to unmask
592 * at that level, so we do it here by hand.
594 if (irq_data_get_msi_desc(d))
595 pci_msi_unmask_irq(d);
596 #endif
598 /* Pick a target */
599 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
600 if (target == XIVE_INVALID_TARGET) {
601 /* Try again breaking affinity */
602 target = xive_pick_irq_target(d, cpu_online_mask);
603 if (target == XIVE_INVALID_TARGET)
604 return -ENXIO;
605 pr_warn("irq %d started with broken affinity\n", d->irq);
608 /* Sanity check */
609 if (WARN_ON(target == XIVE_INVALID_TARGET ||
610 target >= nr_cpu_ids))
611 target = smp_processor_id();
613 xd->target = target;
616 * Configure the logical number to be the Linux IRQ number
617 * and set the target queue
619 rc = xive_ops->configure_irq(hw_irq,
620 get_hard_smp_processor_id(target),
621 xive_irq_priority, d->irq);
622 if (rc)
623 return rc;
625 /* Unmask the ESB */
626 xive_do_source_set_mask(xd, false);
628 return 0;
631 /* called with irq descriptor lock held */
632 static void xive_irq_shutdown(struct irq_data *d)
634 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
635 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
637 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
638 d->irq, hw_irq, d);
640 if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
641 return;
643 /* Mask the interrupt at the source */
644 xive_do_source_set_mask(xd, true);
647 * Mask the interrupt in HW in the IVT/EAS and set the number
648 * to be the "bad" IRQ number
650 xive_ops->configure_irq(hw_irq,
651 get_hard_smp_processor_id(xd->target),
652 0xff, XIVE_BAD_IRQ);
654 xive_dec_target_count(xd->target);
655 xd->target = XIVE_INVALID_TARGET;
658 static void xive_irq_unmask(struct irq_data *d)
660 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
662 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
664 xive_do_source_set_mask(xd, false);
667 static void xive_irq_mask(struct irq_data *d)
669 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
671 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
673 xive_do_source_set_mask(xd, true);
676 static int xive_irq_set_affinity(struct irq_data *d,
677 const struct cpumask *cpumask,
678 bool force)
680 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
681 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
682 u32 target, old_target;
683 int rc = 0;
685 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
687 /* Is this valid ? */
688 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
689 return -EINVAL;
691 /* Don't do anything if the interrupt isn't started */
692 if (!irqd_is_started(d))
693 return IRQ_SET_MASK_OK;
696 * If existing target is already in the new mask, and is
697 * online then do nothing.
699 if (xd->target != XIVE_INVALID_TARGET &&
700 cpu_online(xd->target) &&
701 cpumask_test_cpu(xd->target, cpumask))
702 return IRQ_SET_MASK_OK;
704 /* Pick a new target */
705 target = xive_pick_irq_target(d, cpumask);
707 /* No target found */
708 if (target == XIVE_INVALID_TARGET)
709 return -ENXIO;
711 /* Sanity check */
712 if (WARN_ON(target >= nr_cpu_ids))
713 target = smp_processor_id();
715 old_target = xd->target;
718 * Only configure the irq if it's not currently passed-through to
719 * a KVM guest
721 if (!irqd_is_forwarded_to_vcpu(d))
722 rc = xive_ops->configure_irq(hw_irq,
723 get_hard_smp_processor_id(target),
724 xive_irq_priority, d->irq);
725 if (rc < 0) {
726 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
727 return rc;
730 pr_devel(" target: 0x%x\n", target);
731 xd->target = target;
733 /* Give up previous target */
734 if (old_target != XIVE_INVALID_TARGET)
735 xive_dec_target_count(old_target);
737 return IRQ_SET_MASK_OK;
740 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
742 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
745 * We only support these. This has really no effect other than setting
746 * the corresponding descriptor bits mind you but those will in turn
747 * affect the resend function when re-enabling an edge interrupt.
749 * Set set the default to edge as explained in map().
751 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
752 flow_type = IRQ_TYPE_EDGE_RISING;
754 if (flow_type != IRQ_TYPE_EDGE_RISING &&
755 flow_type != IRQ_TYPE_LEVEL_LOW)
756 return -EINVAL;
758 irqd_set_trigger_type(d, flow_type);
761 * Double check it matches what the FW thinks
763 * NOTE: We don't know yet if the PAPR interface will provide
764 * the LSI vs MSI information apart from the device-tree so
765 * this check might have to move into an optional backend call
766 * that is specific to the native backend
768 if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
769 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
770 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
771 d->irq, (u32)irqd_to_hwirq(d),
772 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
773 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
776 return IRQ_SET_MASK_OK_NOCOPY;
779 static int xive_irq_retrigger(struct irq_data *d)
781 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
783 /* This should be only for MSIs */
784 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
785 return 0;
788 * To perform a retrigger, we first set the PQ bits to
789 * 11, then perform an EOI.
791 xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
792 xive_do_source_eoi(xd);
794 return 1;
798 * Caller holds the irq descriptor lock, so this won't be called
799 * concurrently with xive_get_irqchip_state on the same interrupt.
801 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
803 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
804 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
805 int rc;
806 u8 pq;
809 * This is called by KVM with state non-NULL for enabling
810 * pass-through or NULL for disabling it
812 if (state) {
813 irqd_set_forwarded_to_vcpu(d);
815 /* Set it to PQ=10 state to prevent further sends */
816 pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
817 if (!xd->stale_p) {
818 xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
819 xd->stale_p = !xd->saved_p;
822 /* No target ? nothing to do */
823 if (xd->target == XIVE_INVALID_TARGET) {
825 * An untargetted interrupt should have been
826 * also masked at the source
828 WARN_ON(xd->saved_p);
830 return 0;
834 * If P was set, adjust state to PQ=11 to indicate
835 * that a resend is needed for the interrupt to reach
836 * the guest. Also remember the value of P.
838 * This also tells us that it's in flight to a host queue
839 * or has already been fetched but hasn't been EOIed yet
840 * by the host. This it's potentially using up a host
841 * queue slot. This is important to know because as long
842 * as this is the case, we must not hard-unmask it when
843 * "returning" that interrupt to the host.
845 * This saved_p is cleared by the host EOI, when we know
846 * for sure the queue slot is no longer in use.
848 if (xd->saved_p) {
849 xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
852 * Sync the XIVE source HW to ensure the interrupt
853 * has gone through the EAS before we change its
854 * target to the guest. That should guarantee us
855 * that we *will* eventually get an EOI for it on
856 * the host. Otherwise there would be a small window
857 * for P to be seen here but the interrupt going
858 * to the guest queue.
860 if (xive_ops->sync_source)
861 xive_ops->sync_source(hw_irq);
863 } else {
864 irqd_clr_forwarded_to_vcpu(d);
866 /* No host target ? hard mask and return */
867 if (xd->target == XIVE_INVALID_TARGET) {
868 xive_do_source_set_mask(xd, true);
869 return 0;
873 * Sync the XIVE source HW to ensure the interrupt
874 * has gone through the EAS before we change its
875 * target to the host.
877 if (xive_ops->sync_source)
878 xive_ops->sync_source(hw_irq);
881 * By convention we are called with the interrupt in
882 * a PQ=10 or PQ=11 state, ie, it won't fire and will
883 * have latched in Q whether there's a pending HW
884 * interrupt or not.
886 * First reconfigure the target.
888 rc = xive_ops->configure_irq(hw_irq,
889 get_hard_smp_processor_id(xd->target),
890 xive_irq_priority, d->irq);
891 if (rc)
892 return rc;
895 * Then if saved_p is not set, effectively re-enable the
896 * interrupt with an EOI. If it is set, we know there is
897 * still a message in a host queue somewhere that will be
898 * EOId eventually.
900 * Note: We don't check irqd_irq_disabled(). Effectively,
901 * we *will* let the irq get through even if masked if the
902 * HW is still firing it in order to deal with the whole
903 * saved_p business properly. If the interrupt triggers
904 * while masked, the generic code will re-mask it anyway.
906 if (!xd->saved_p)
907 xive_do_source_eoi(xd);
910 return 0;
913 /* Called with irq descriptor lock held. */
914 static int xive_get_irqchip_state(struct irq_data *data,
915 enum irqchip_irq_state which, bool *state)
917 struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
918 u8 pq;
920 switch (which) {
921 case IRQCHIP_STATE_ACTIVE:
922 pq = xive_esb_read(xd, XIVE_ESB_GET);
925 * The esb value being all 1's means we couldn't get
926 * the PQ state of the interrupt through mmio. It may
927 * happen, for example when querying a PHB interrupt
928 * while the PHB is in an error state. We consider the
929 * interrupt to be inactive in that case.
931 *state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
932 (xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
933 return 0;
934 default:
935 return -EINVAL;
939 static struct irq_chip xive_irq_chip = {
940 .name = "XIVE-IRQ",
941 .irq_startup = xive_irq_startup,
942 .irq_shutdown = xive_irq_shutdown,
943 .irq_eoi = xive_irq_eoi,
944 .irq_mask = xive_irq_mask,
945 .irq_unmask = xive_irq_unmask,
946 .irq_set_affinity = xive_irq_set_affinity,
947 .irq_set_type = xive_irq_set_type,
948 .irq_retrigger = xive_irq_retrigger,
949 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
950 .irq_get_irqchip_state = xive_get_irqchip_state,
953 bool is_xive_irq(struct irq_chip *chip)
955 return chip == &xive_irq_chip;
957 EXPORT_SYMBOL_GPL(is_xive_irq);
959 void xive_cleanup_irq_data(struct xive_irq_data *xd)
961 if (xd->eoi_mmio) {
962 unmap_kernel_range((unsigned long)xd->eoi_mmio,
963 1u << xd->esb_shift);
964 iounmap(xd->eoi_mmio);
965 if (xd->eoi_mmio == xd->trig_mmio)
966 xd->trig_mmio = NULL;
967 xd->eoi_mmio = NULL;
969 if (xd->trig_mmio) {
970 unmap_kernel_range((unsigned long)xd->trig_mmio,
971 1u << xd->esb_shift);
972 iounmap(xd->trig_mmio);
973 xd->trig_mmio = NULL;
976 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
978 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
980 struct xive_irq_data *xd;
981 int rc;
983 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
984 if (!xd)
985 return -ENOMEM;
986 rc = xive_ops->populate_irq_data(hw, xd);
987 if (rc) {
988 kfree(xd);
989 return rc;
991 xd->target = XIVE_INVALID_TARGET;
992 irq_set_handler_data(virq, xd);
995 * Turn OFF by default the interrupt being mapped. A side
996 * effect of this check is the mapping the ESB page of the
997 * interrupt in the Linux address space. This prevents page
998 * fault issues in the crash handler which masks all
999 * interrupts.
1001 xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1003 return 0;
1006 static void xive_irq_free_data(unsigned int virq)
1008 struct xive_irq_data *xd = irq_get_handler_data(virq);
1010 if (!xd)
1011 return;
1012 irq_set_handler_data(virq, NULL);
1013 xive_cleanup_irq_data(xd);
1014 kfree(xd);
1017 #ifdef CONFIG_SMP
1019 static void xive_cause_ipi(int cpu)
1021 struct xive_cpu *xc;
1022 struct xive_irq_data *xd;
1024 xc = per_cpu(xive_cpu, cpu);
1026 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1027 smp_processor_id(), cpu, xc->hw_ipi);
1029 xd = &xc->ipi_data;
1030 if (WARN_ON(!xd->trig_mmio))
1031 return;
1032 out_be64(xd->trig_mmio, 0);
1035 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1037 return smp_ipi_demux();
1040 static void xive_ipi_eoi(struct irq_data *d)
1042 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1044 /* Handle possible race with unplug and drop stale IPIs */
1045 if (!xc)
1046 return;
1048 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1049 d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1051 xive_do_source_eoi(&xc->ipi_data);
1052 xive_do_queue_eoi(xc);
1055 static void xive_ipi_do_nothing(struct irq_data *d)
1058 * Nothing to do, we never mask/unmask IPIs, but the callback
1059 * has to exist for the struct irq_chip.
1063 static struct irq_chip xive_ipi_chip = {
1064 .name = "XIVE-IPI",
1065 .irq_eoi = xive_ipi_eoi,
1066 .irq_mask = xive_ipi_do_nothing,
1067 .irq_unmask = xive_ipi_do_nothing,
1070 static void __init xive_request_ipi(void)
1072 unsigned int virq;
1075 * Initialization failed, move on, we might manage to
1076 * reach the point where we display our errors before
1077 * the system falls appart
1079 if (!xive_irq_domain)
1080 return;
1082 /* Initialize it */
1083 virq = irq_create_mapping(xive_irq_domain, XIVE_IPI_HW_IRQ);
1084 xive_ipi_irq = virq;
1086 WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1087 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1090 static int xive_setup_cpu_ipi(unsigned int cpu)
1092 struct xive_cpu *xc;
1093 int rc;
1095 pr_debug("Setting up IPI for CPU %d\n", cpu);
1097 xc = per_cpu(xive_cpu, cpu);
1099 /* Check if we are already setup */
1100 if (xc->hw_ipi != XIVE_BAD_IRQ)
1101 return 0;
1103 /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1104 if (xive_ops->get_ipi(cpu, xc))
1105 return -EIO;
1108 * Populate the IRQ data in the xive_cpu structure and
1109 * configure the HW / enable the IPIs.
1111 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1112 if (rc) {
1113 pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1114 return -EIO;
1116 rc = xive_ops->configure_irq(xc->hw_ipi,
1117 get_hard_smp_processor_id(cpu),
1118 xive_irq_priority, xive_ipi_irq);
1119 if (rc) {
1120 pr_err("Failed to map IPI CPU %d\n", cpu);
1121 return -EIO;
1123 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1124 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1126 /* Unmask it */
1127 xive_do_source_set_mask(&xc->ipi_data, false);
1129 return 0;
1132 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1134 /* Disable the IPI and free the IRQ data */
1136 /* Already cleaned up ? */
1137 if (xc->hw_ipi == XIVE_BAD_IRQ)
1138 return;
1140 /* Mask the IPI */
1141 xive_do_source_set_mask(&xc->ipi_data, true);
1144 * Note: We don't call xive_cleanup_irq_data() to free
1145 * the mappings as this is called from an IPI on kexec
1146 * which is not a safe environment to call iounmap()
1149 /* Deconfigure/mask in the backend */
1150 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1151 0xff, xive_ipi_irq);
1153 /* Free the IPIs in the backend */
1154 xive_ops->put_ipi(cpu, xc);
1157 void __init xive_smp_probe(void)
1159 smp_ops->cause_ipi = xive_cause_ipi;
1161 /* Register the IPI */
1162 xive_request_ipi();
1164 /* Allocate and setup IPI for the boot CPU */
1165 xive_setup_cpu_ipi(smp_processor_id());
1168 #endif /* CONFIG_SMP */
1170 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1171 irq_hw_number_t hw)
1173 int rc;
1176 * Mark interrupts as edge sensitive by default so that resend
1177 * actually works. Will fix that up below if needed.
1179 irq_clear_status_flags(virq, IRQ_LEVEL);
1181 #ifdef CONFIG_SMP
1182 /* IPIs are special and come up with HW number 0 */
1183 if (hw == XIVE_IPI_HW_IRQ) {
1185 * IPIs are marked per-cpu. We use separate HW interrupts under
1186 * the hood but associated with the same "linux" interrupt
1188 irq_set_chip_and_handler(virq, &xive_ipi_chip,
1189 handle_percpu_irq);
1190 return 0;
1192 #endif
1194 rc = xive_irq_alloc_data(virq, hw);
1195 if (rc)
1196 return rc;
1198 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1200 return 0;
1203 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1205 struct irq_data *data = irq_get_irq_data(virq);
1206 unsigned int hw_irq;
1208 /* XXX Assign BAD number */
1209 if (!data)
1210 return;
1211 hw_irq = (unsigned int)irqd_to_hwirq(data);
1212 if (hw_irq != XIVE_IPI_HW_IRQ)
1213 xive_irq_free_data(virq);
1216 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1217 const u32 *intspec, unsigned int intsize,
1218 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1221 *out_hwirq = intspec[0];
1224 * If intsize is at least 2, we look for the type in the second cell,
1225 * we assume the LSB indicates a level interrupt.
1227 if (intsize > 1) {
1228 if (intspec[1] & 1)
1229 *out_flags = IRQ_TYPE_LEVEL_LOW;
1230 else
1231 *out_flags = IRQ_TYPE_EDGE_RISING;
1232 } else
1233 *out_flags = IRQ_TYPE_LEVEL_LOW;
1235 return 0;
1238 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1239 enum irq_domain_bus_token bus_token)
1241 return xive_ops->match(node);
1244 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1245 static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" };
1247 static const struct {
1248 u64 mask;
1249 char *name;
1250 } xive_irq_flags[] = {
1251 { XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" },
1252 { XIVE_IRQ_FLAG_LSI, "LSI" },
1253 { XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" },
1254 { XIVE_IRQ_FLAG_NO_EOI, "NO_EOI" },
1257 static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d,
1258 struct irq_data *irqd, int ind)
1260 struct xive_irq_data *xd;
1261 u64 val;
1262 int i;
1264 /* No IRQ domain level information. To be done */
1265 if (!irqd)
1266 return;
1268 if (!is_xive_irq(irq_data_get_irq_chip(irqd)))
1269 return;
1271 seq_printf(m, "%*sXIVE:\n", ind, "");
1272 ind++;
1274 xd = irq_data_get_irq_handler_data(irqd);
1275 if (!xd) {
1276 seq_printf(m, "%*snot assigned\n", ind, "");
1277 return;
1280 val = xive_esb_read(xd, XIVE_ESB_GET);
1281 seq_printf(m, "%*sESB: %s\n", ind, "", esb_names[val & 0x3]);
1282 seq_printf(m, "%*sPstate: %s %s\n", ind, "", xd->stale_p ? "stale" : "",
1283 xd->saved_p ? "saved" : "");
1284 seq_printf(m, "%*sTarget: %d\n", ind, "", xd->target);
1285 seq_printf(m, "%*sChip: %d\n", ind, "", xd->src_chip);
1286 seq_printf(m, "%*sTrigger: 0x%016llx\n", ind, "", xd->trig_page);
1287 seq_printf(m, "%*sEOI: 0x%016llx\n", ind, "", xd->eoi_page);
1288 seq_printf(m, "%*sFlags: 0x%llx\n", ind, "", xd->flags);
1289 for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) {
1290 if (xd->flags & xive_irq_flags[i].mask)
1291 seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name);
1294 #endif
1296 static const struct irq_domain_ops xive_irq_domain_ops = {
1297 .match = xive_irq_domain_match,
1298 .map = xive_irq_domain_map,
1299 .unmap = xive_irq_domain_unmap,
1300 .xlate = xive_irq_domain_xlate,
1301 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1302 .debug_show = xive_irq_domain_debug_show,
1303 #endif
1306 static void __init xive_init_host(struct device_node *np)
1308 xive_irq_domain = irq_domain_add_nomap(np, XIVE_MAX_IRQ,
1309 &xive_irq_domain_ops, NULL);
1310 if (WARN_ON(xive_irq_domain == NULL))
1311 return;
1312 irq_set_default_host(xive_irq_domain);
1315 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1317 if (xc->queue[xive_irq_priority].qpage)
1318 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1321 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1323 int rc = 0;
1325 /* We setup 1 queues for now with a 64k page */
1326 if (!xc->queue[xive_irq_priority].qpage)
1327 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1329 return rc;
1332 static int xive_prepare_cpu(unsigned int cpu)
1334 struct xive_cpu *xc;
1336 xc = per_cpu(xive_cpu, cpu);
1337 if (!xc) {
1338 struct device_node *np;
1340 xc = kzalloc_node(sizeof(struct xive_cpu),
1341 GFP_KERNEL, cpu_to_node(cpu));
1342 if (!xc)
1343 return -ENOMEM;
1344 np = of_get_cpu_node(cpu, NULL);
1345 if (np)
1346 xc->chip_id = of_get_ibm_chip_id(np);
1347 of_node_put(np);
1348 xc->hw_ipi = XIVE_BAD_IRQ;
1350 per_cpu(xive_cpu, cpu) = xc;
1353 /* Setup EQs if not already */
1354 return xive_setup_cpu_queues(cpu, xc);
1357 static void xive_setup_cpu(void)
1359 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1361 /* The backend might have additional things to do */
1362 if (xive_ops->setup_cpu)
1363 xive_ops->setup_cpu(smp_processor_id(), xc);
1365 /* Set CPPR to 0xff to enable flow of interrupts */
1366 xc->cppr = 0xff;
1367 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1370 #ifdef CONFIG_SMP
1371 void xive_smp_setup_cpu(void)
1373 pr_devel("SMP setup CPU %d\n", smp_processor_id());
1375 /* This will have already been done on the boot CPU */
1376 if (smp_processor_id() != boot_cpuid)
1377 xive_setup_cpu();
1381 int xive_smp_prepare_cpu(unsigned int cpu)
1383 int rc;
1385 /* Allocate per-CPU data and queues */
1386 rc = xive_prepare_cpu(cpu);
1387 if (rc)
1388 return rc;
1390 /* Allocate and setup IPI for the new CPU */
1391 return xive_setup_cpu_ipi(cpu);
1394 #ifdef CONFIG_HOTPLUG_CPU
1395 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1397 u32 irq;
1399 /* We assume local irqs are disabled */
1400 WARN_ON(!irqs_disabled());
1402 /* Check what's already in the CPU queue */
1403 while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1405 * We need to re-route that interrupt to its new destination.
1406 * First get and lock the descriptor
1408 struct irq_desc *desc = irq_to_desc(irq);
1409 struct irq_data *d = irq_desc_get_irq_data(desc);
1410 struct xive_irq_data *xd;
1411 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1414 * Ignore anything that isn't a XIVE irq and ignore
1415 * IPIs, so can just be dropped.
1417 if (d->domain != xive_irq_domain || hw_irq == XIVE_IPI_HW_IRQ)
1418 continue;
1421 * The IRQ should have already been re-routed, it's just a
1422 * stale in the old queue, so re-trigger it in order to make
1423 * it reach is new destination.
1425 #ifdef DEBUG_FLUSH
1426 pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1427 cpu, irq);
1428 #endif
1429 raw_spin_lock(&desc->lock);
1430 xd = irq_desc_get_handler_data(desc);
1433 * Clear saved_p to indicate that it's no longer pending
1435 xd->saved_p = false;
1438 * For LSIs, we EOI, this will cause a resend if it's
1439 * still asserted. Otherwise do an MSI retrigger.
1441 if (xd->flags & XIVE_IRQ_FLAG_LSI)
1442 xive_do_source_eoi(xd);
1443 else
1444 xive_irq_retrigger(d);
1446 raw_spin_unlock(&desc->lock);
1450 void xive_smp_disable_cpu(void)
1452 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1453 unsigned int cpu = smp_processor_id();
1455 /* Migrate interrupts away from the CPU */
1456 irq_migrate_all_off_this_cpu();
1458 /* Set CPPR to 0 to disable flow of interrupts */
1459 xc->cppr = 0;
1460 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1462 /* Flush everything still in the queue */
1463 xive_flush_cpu_queue(cpu, xc);
1465 /* Re-enable CPPR */
1466 xc->cppr = 0xff;
1467 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1470 void xive_flush_interrupt(void)
1472 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1473 unsigned int cpu = smp_processor_id();
1475 /* Called if an interrupt occurs while the CPU is hot unplugged */
1476 xive_flush_cpu_queue(cpu, xc);
1479 #endif /* CONFIG_HOTPLUG_CPU */
1481 #endif /* CONFIG_SMP */
1483 void xive_teardown_cpu(void)
1485 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1486 unsigned int cpu = smp_processor_id();
1488 /* Set CPPR to 0 to disable flow of interrupts */
1489 xc->cppr = 0;
1490 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1492 if (xive_ops->teardown_cpu)
1493 xive_ops->teardown_cpu(cpu, xc);
1495 #ifdef CONFIG_SMP
1496 /* Get rid of IPI */
1497 xive_cleanup_cpu_ipi(cpu, xc);
1498 #endif
1500 /* Disable and free the queues */
1501 xive_cleanup_cpu_queues(cpu, xc);
1504 void xive_shutdown(void)
1506 xive_ops->shutdown();
1509 bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops,
1510 void __iomem *area, u32 offset, u8 max_prio)
1512 xive_tima = area;
1513 xive_tima_offset = offset;
1514 xive_ops = ops;
1515 xive_irq_priority = max_prio;
1517 ppc_md.get_irq = xive_get_irq;
1518 __xive_enabled = true;
1520 pr_devel("Initializing host..\n");
1521 xive_init_host(np);
1523 pr_devel("Initializing boot CPU..\n");
1525 /* Allocate per-CPU data and queues */
1526 xive_prepare_cpu(smp_processor_id());
1528 /* Get ready for interrupts */
1529 xive_setup_cpu();
1531 pr_info("Interrupt handling initialized with %s backend\n",
1532 xive_ops->name);
1533 pr_info("Using priority %d for all interrupts\n", max_prio);
1535 return true;
1538 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1540 unsigned int alloc_order;
1541 struct page *pages;
1542 __be32 *qpage;
1544 alloc_order = xive_alloc_order(queue_shift);
1545 pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1546 if (!pages)
1547 return ERR_PTR(-ENOMEM);
1548 qpage = (__be32 *)page_address(pages);
1549 memset(qpage, 0, 1 << queue_shift);
1551 return qpage;
1554 static int __init xive_off(char *arg)
1556 xive_cmdline_disabled = true;
1557 return 0;
1559 __setup("xive=off", xive_off);
1561 static void xive_debug_show_cpu(struct seq_file *m, int cpu)
1563 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1565 seq_printf(m, "CPU %d:", cpu);
1566 if (xc) {
1567 seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1569 #ifdef CONFIG_SMP
1571 u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
1573 seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
1574 val & XIVE_ESB_VAL_P ? 'P' : '-',
1575 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1577 #endif
1579 struct xive_q *q = &xc->queue[xive_irq_priority];
1580 u32 i0, i1, idx;
1582 if (q->qpage) {
1583 idx = q->idx;
1584 i0 = be32_to_cpup(q->qpage + idx);
1585 idx = (idx + 1) & q->msk;
1586 i1 = be32_to_cpup(q->qpage + idx);
1587 seq_printf(m, "EQ idx=%d T=%d %08x %08x ...",
1588 q->idx, q->toggle, i0, i1);
1592 seq_puts(m, "\n");
1595 static void xive_debug_show_irq(struct seq_file *m, u32 hw_irq, struct irq_data *d)
1597 struct irq_chip *chip = irq_data_get_irq_chip(d);
1598 int rc;
1599 u32 target;
1600 u8 prio;
1601 u32 lirq;
1603 if (!is_xive_irq(chip))
1604 return;
1606 rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1607 if (rc) {
1608 seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1609 return;
1612 seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1613 hw_irq, target, prio, lirq);
1615 if (d) {
1616 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1617 u64 val = xive_esb_read(xd, XIVE_ESB_GET);
1619 seq_printf(m, "flags=%c%c%c PQ=%c%c",
1620 xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
1621 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
1622 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
1623 val & XIVE_ESB_VAL_P ? 'P' : '-',
1624 val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1626 seq_puts(m, "\n");
1629 static int xive_core_debug_show(struct seq_file *m, void *private)
1631 unsigned int i;
1632 struct irq_desc *desc;
1633 int cpu;
1635 if (xive_ops->debug_show)
1636 xive_ops->debug_show(m, private);
1638 for_each_possible_cpu(cpu)
1639 xive_debug_show_cpu(m, cpu);
1641 for_each_irq_desc(i, desc) {
1642 struct irq_data *d = irq_desc_get_irq_data(desc);
1643 unsigned int hw_irq;
1645 if (!d)
1646 continue;
1648 hw_irq = (unsigned int)irqd_to_hwirq(d);
1650 /* IPIs are special (HW number 0) */
1651 if (hw_irq != XIVE_IPI_HW_IRQ)
1652 xive_debug_show_irq(m, hw_irq, d);
1654 return 0;
1656 DEFINE_SHOW_ATTRIBUTE(xive_core_debug);
1658 int xive_core_debug_init(void)
1660 if (xive_enabled())
1661 debugfs_create_file("xive", 0400, powerpc_debugfs_root,
1662 NULL, &xive_core_debug_fops);
1663 return 0;