1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Copyright (C) 2012 Regents of the University of California
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
12 #include <asm/pgtable-bits.h>
16 /* Page Upper Directory not used in RISC-V */
17 #include <asm-generic/pgtable-nopud.h>
19 #include <asm/tlbflush.h>
20 #include <linux/mm_types.h>
24 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
25 #define VMALLOC_END (PAGE_OFFSET - 1)
26 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
28 #define BPF_JIT_REGION_SIZE (SZ_128M)
29 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
30 #define BPF_JIT_REGION_END (VMALLOC_END)
33 * Roughly size the vmemmap space to be large enough to fit enough
34 * struct pages to map half the virtual address space. Then
35 * position vmemmap directly below the VMALLOC region.
37 #define VMEMMAP_SHIFT \
38 (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
39 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
40 #define VMEMMAP_END (VMALLOC_START - 1)
41 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
44 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
45 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
47 #define vmemmap ((struct page *)VMEMMAP_START)
49 #define PCI_IO_SIZE SZ_16M
50 #define PCI_IO_END VMEMMAP_START
51 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
53 #define FIXADDR_TOP PCI_IO_START
55 #define FIXADDR_SIZE PMD_SIZE
57 #define FIXADDR_SIZE PGDIR_SIZE
59 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
64 #include <asm/pgtable-64.h>
66 #include <asm/pgtable-32.h>
67 #endif /* CONFIG_64BIT */
70 /* Number of entries in the page global directory */
71 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
72 /* Number of entries in the page table */
73 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
75 /* Number of PGD entries that a user-mode program can use */
76 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
78 /* Page protection bits */
79 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
81 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE)
82 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
83 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
84 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
85 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
86 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
87 _PAGE_EXEC | _PAGE_WRITE)
89 #define PAGE_COPY PAGE_READ
90 #define PAGE_COPY_EXEC PAGE_EXEC
91 #define PAGE_COPY_READ_EXEC PAGE_READ_EXEC
92 #define PAGE_SHARED PAGE_WRITE
93 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
95 #define _PAGE_KERNEL (_PAGE_READ \
101 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
102 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
103 #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
104 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
105 #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
108 #define PAGE_TABLE __pgprot(_PAGE_TABLE)
111 * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
112 * change the properties of memory regions.
114 #define _PAGE_IOREMAP _PAGE_KERNEL
116 extern pgd_t swapper_pg_dir
[];
118 /* MAP_PRIVATE permissions: xwr (copy-on-write) */
119 #define __P000 PAGE_NONE
120 #define __P001 PAGE_READ
121 #define __P010 PAGE_COPY
122 #define __P011 PAGE_COPY
123 #define __P100 PAGE_EXEC
124 #define __P101 PAGE_READ_EXEC
125 #define __P110 PAGE_COPY_EXEC
126 #define __P111 PAGE_COPY_READ_EXEC
128 /* MAP_SHARED permissions: xwr */
129 #define __S000 PAGE_NONE
130 #define __S001 PAGE_READ
131 #define __S010 PAGE_SHARED
132 #define __S011 PAGE_SHARED
133 #define __S100 PAGE_EXEC
134 #define __S101 PAGE_READ_EXEC
135 #define __S110 PAGE_SHARED_EXEC
136 #define __S111 PAGE_SHARED_EXEC
138 static inline int pmd_present(pmd_t pmd
)
140 return (pmd_val(pmd
) & (_PAGE_PRESENT
| _PAGE_PROT_NONE
));
143 static inline int pmd_none(pmd_t pmd
)
145 return (pmd_val(pmd
) == 0);
148 static inline int pmd_bad(pmd_t pmd
)
150 return !pmd_present(pmd
);
153 #define pmd_leaf pmd_leaf
154 static inline int pmd_leaf(pmd_t pmd
)
156 return pmd_present(pmd
) &&
157 (pmd_val(pmd
) & (_PAGE_READ
| _PAGE_WRITE
| _PAGE_EXEC
));
160 static inline void set_pmd(pmd_t
*pmdp
, pmd_t pmd
)
165 static inline void pmd_clear(pmd_t
*pmdp
)
167 set_pmd(pmdp
, __pmd(0));
170 static inline pgd_t
pfn_pgd(unsigned long pfn
, pgprot_t prot
)
172 return __pgd((pfn
<< _PAGE_PFN_SHIFT
) | pgprot_val(prot
));
175 static inline unsigned long _pgd_pfn(pgd_t pgd
)
177 return pgd_val(pgd
) >> _PAGE_PFN_SHIFT
;
180 static inline struct page
*pmd_page(pmd_t pmd
)
182 return pfn_to_page(pmd_val(pmd
) >> _PAGE_PFN_SHIFT
);
185 static inline unsigned long pmd_page_vaddr(pmd_t pmd
)
187 return (unsigned long)pfn_to_virt(pmd_val(pmd
) >> _PAGE_PFN_SHIFT
);
190 /* Yields the page frame number (PFN) of a page table entry */
191 static inline unsigned long pte_pfn(pte_t pte
)
193 return (pte_val(pte
) >> _PAGE_PFN_SHIFT
);
196 #define pte_page(x) pfn_to_page(pte_pfn(x))
198 /* Constructs a page table entry */
199 static inline pte_t
pfn_pte(unsigned long pfn
, pgprot_t prot
)
201 return __pte((pfn
<< _PAGE_PFN_SHIFT
) | pgprot_val(prot
));
204 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
206 static inline int pte_present(pte_t pte
)
208 return (pte_val(pte
) & (_PAGE_PRESENT
| _PAGE_PROT_NONE
));
211 static inline int pte_none(pte_t pte
)
213 return (pte_val(pte
) == 0);
216 static inline int pte_write(pte_t pte
)
218 return pte_val(pte
) & _PAGE_WRITE
;
221 static inline int pte_exec(pte_t pte
)
223 return pte_val(pte
) & _PAGE_EXEC
;
226 static inline int pte_huge(pte_t pte
)
228 return pte_present(pte
)
229 && (pte_val(pte
) & (_PAGE_READ
| _PAGE_WRITE
| _PAGE_EXEC
));
232 static inline int pte_dirty(pte_t pte
)
234 return pte_val(pte
) & _PAGE_DIRTY
;
237 static inline int pte_young(pte_t pte
)
239 return pte_val(pte
) & _PAGE_ACCESSED
;
242 static inline int pte_special(pte_t pte
)
244 return pte_val(pte
) & _PAGE_SPECIAL
;
247 /* static inline pte_t pte_rdprotect(pte_t pte) */
249 static inline pte_t
pte_wrprotect(pte_t pte
)
251 return __pte(pte_val(pte
) & ~(_PAGE_WRITE
));
254 /* static inline pte_t pte_mkread(pte_t pte) */
256 static inline pte_t
pte_mkwrite(pte_t pte
)
258 return __pte(pte_val(pte
) | _PAGE_WRITE
);
261 /* static inline pte_t pte_mkexec(pte_t pte) */
263 static inline pte_t
pte_mkdirty(pte_t pte
)
265 return __pte(pte_val(pte
) | _PAGE_DIRTY
);
268 static inline pte_t
pte_mkclean(pte_t pte
)
270 return __pte(pte_val(pte
) & ~(_PAGE_DIRTY
));
273 static inline pte_t
pte_mkyoung(pte_t pte
)
275 return __pte(pte_val(pte
) | _PAGE_ACCESSED
);
278 static inline pte_t
pte_mkold(pte_t pte
)
280 return __pte(pte_val(pte
) & ~(_PAGE_ACCESSED
));
283 static inline pte_t
pte_mkspecial(pte_t pte
)
285 return __pte(pte_val(pte
) | _PAGE_SPECIAL
);
288 static inline pte_t
pte_mkhuge(pte_t pte
)
293 /* Modify page protection bits */
294 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
296 return __pte((pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
));
299 #define pgd_ERROR(e) \
300 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
303 /* Commit new configuration to MMU hardware */
304 static inline void update_mmu_cache(struct vm_area_struct
*vma
,
305 unsigned long address
, pte_t
*ptep
)
308 * The kernel assumes that TLBs don't cache invalid entries, but
309 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
310 * cache flush; it is necessary even after writing invalid entries.
311 * Relying on flush_tlb_fix_spurious_fault would suffice, but
312 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
314 local_flush_tlb_page(address
);
317 #define __HAVE_ARCH_PTE_SAME
318 static inline int pte_same(pte_t pte_a
, pte_t pte_b
)
320 return pte_val(pte_a
) == pte_val(pte_b
);
324 * Certain architectures need to do special things when PTEs within
325 * a page table are directly modified. Thus, the following hook is
328 static inline void set_pte(pte_t
*ptep
, pte_t pteval
)
333 void flush_icache_pte(pte_t pte
);
335 static inline void set_pte_at(struct mm_struct
*mm
,
336 unsigned long addr
, pte_t
*ptep
, pte_t pteval
)
338 if (pte_present(pteval
) && pte_exec(pteval
))
339 flush_icache_pte(pteval
);
341 set_pte(ptep
, pteval
);
344 static inline void pte_clear(struct mm_struct
*mm
,
345 unsigned long addr
, pte_t
*ptep
)
347 set_pte_at(mm
, addr
, ptep
, __pte(0));
350 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
351 static inline int ptep_set_access_flags(struct vm_area_struct
*vma
,
352 unsigned long address
, pte_t
*ptep
,
353 pte_t entry
, int dirty
)
355 if (!pte_same(*ptep
, entry
))
356 set_pte_at(vma
->vm_mm
, address
, ptep
, entry
);
358 * update_mmu_cache will unconditionally execute, handling both
359 * the case that the PTE changed and the spurious fault case.
364 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
365 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
366 unsigned long address
, pte_t
*ptep
)
368 return __pte(atomic_long_xchg((atomic_long_t
*)ptep
, 0));
371 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
372 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
373 unsigned long address
,
376 if (!pte_young(*ptep
))
378 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET
, &pte_val(*ptep
));
381 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
382 static inline void ptep_set_wrprotect(struct mm_struct
*mm
,
383 unsigned long address
, pte_t
*ptep
)
385 atomic_long_and(~(unsigned long)_PAGE_WRITE
, (atomic_long_t
*)ptep
);
388 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
389 static inline int ptep_clear_flush_young(struct vm_area_struct
*vma
,
390 unsigned long address
, pte_t
*ptep
)
393 * This comment is borrowed from x86, but applies equally to RISC-V:
395 * Clearing the accessed bit without a TLB flush
396 * doesn't cause data corruption. [ It could cause incorrect
397 * page aging and the (mistaken) reclaim of hot pages, but the
398 * chance of that should be relatively low. ]
400 * So as a performance optimization don't flush the TLB when
401 * clearing the accessed bit, it will eventually be flushed by
402 * a context switch or a VM operation anyway. [ In the rare
403 * event of it not getting flushed for a long time the delay
404 * shouldn't really matter because there's no real memory
405 * pressure for swapout to react to. ]
407 return ptep_test_and_clear_young(vma
, address
, ptep
);
411 * Encode and decode a swap entry
413 * Format of swap PTE:
414 * bit 0: _PAGE_PRESENT (zero)
415 * bit 1: _PAGE_PROT_NONE (zero)
416 * bits 2 to 6: swap type
417 * bits 7 to XLEN-1: swap offset
419 #define __SWP_TYPE_SHIFT 2
420 #define __SWP_TYPE_BITS 5
421 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
422 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
424 #define MAX_SWAPFILES_CHECK() \
425 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
427 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
428 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
429 #define __swp_entry(type, offset) ((swp_entry_t) \
430 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
432 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
433 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
436 * In the RV64 Linux scheme, we give the user half of the virtual-address space
437 * and give the kernel the other (upper) half.
440 #define KERN_VIRT_START (-(BIT(CONFIG_VA_BITS)) + TASK_SIZE)
442 #define KERN_VIRT_START FIXADDR_START
446 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
447 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
450 #define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
452 #define TASK_SIZE FIXADDR_START
455 #else /* CONFIG_MMU */
457 #define PAGE_SHARED __pgprot(0)
458 #define PAGE_KERNEL __pgprot(0)
459 #define swapper_pg_dir NULL
460 #define TASK_SIZE 0xffffffffUL
461 #define VMALLOC_START 0
462 #define VMALLOC_END TASK_SIZE
464 #endif /* !CONFIG_MMU */
466 #define kern_addr_valid(addr) (1) /* FIXME */
468 extern void *dtb_early_va
;
469 extern uintptr_t dtb_early_pa
;
470 void setup_bootmem(void);
471 void paging_init(void);
473 #define FIRST_USER_ADDRESS 0
476 * ZERO_PAGE is a global shared page that is always zero,
477 * used for zero-mapped memory areas, etc.
479 extern unsigned long empty_zero_page
[PAGE_SIZE
/ sizeof(unsigned long)];
480 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
482 #endif /* !__ASSEMBLY__ */
484 #endif /* _ASM_RISCV_PGTABLE_H */