1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * x86 SMP booting functions
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
64 #include <asm/realmode.h>
67 #include <asm/tlbflush.h>
69 #include <asm/mwait.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 #include <asm/stackprotector.h>
85 #ifdef CONFIG_ACPI_CPPC_LIB
86 #include <acpi/cppc_acpi.h>
89 /* representing HT siblings of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t
, cpu_sibling_map
);
91 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map
);
93 /* representing HT and core siblings of each logical CPU */
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t
, cpu_core_map
);
95 EXPORT_PER_CPU_SYMBOL(cpu_core_map
);
97 /* representing HT, core, and die siblings of each logical CPU */
98 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t
, cpu_die_map
);
99 EXPORT_PER_CPU_SYMBOL(cpu_die_map
);
101 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t
, cpu_llc_shared_map
);
103 /* Per CPU bogomips and other parameters */
104 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86
, cpu_info
);
105 EXPORT_PER_CPU_SYMBOL(cpu_info
);
107 /* Logical package management. We might want to allocate that dynamically */
108 unsigned int __max_logical_packages __read_mostly
;
109 EXPORT_SYMBOL(__max_logical_packages
);
110 static unsigned int logical_packages __read_mostly
;
111 static unsigned int logical_die __read_mostly
;
113 /* Maximum number of SMT threads on any online core */
114 int __read_mostly __max_smt_threads
= 1;
116 /* Flag to indicate if a complete sched domain rebuild is required */
117 bool x86_topology_update
;
119 int arch_update_cpu_topology(void)
121 int retval
= x86_topology_update
;
123 x86_topology_update
= false;
127 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip
)
131 spin_lock_irqsave(&rtc_lock
, flags
);
132 CMOS_WRITE(0xa, 0xf);
133 spin_unlock_irqrestore(&rtc_lock
, flags
);
134 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH
)) =
136 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW
)) =
140 static inline void smpboot_restore_warm_reset_vector(void)
145 * Paranoid: Set warm reset code and vector here back
148 spin_lock_irqsave(&rtc_lock
, flags
);
150 spin_unlock_irqrestore(&rtc_lock
, flags
);
152 *((volatile u32
*)phys_to_virt(TRAMPOLINE_PHYS_LOW
)) = 0;
155 static void init_freq_invariance(bool secondary
, bool cppc_ready
);
158 * Report back to the Boot Processor during boot time or to the caller processor
161 static void smp_callin(void)
166 * If waken up by an INIT in an 82489DX configuration
167 * cpu_callout_mask guarantees we don't get here before
168 * an INIT_deassert IPI reaches our local APIC, so it is
169 * now safe to touch our local APIC.
171 cpuid
= smp_processor_id();
174 * the boot CPU has finished the init stage and is spinning
175 * on callin_map until we finish. We are free to set up this
176 * CPU, first the APIC. (this is probably redundant on most
182 * Save our processor parameters. Note: this information
183 * is needed for clock calibration.
185 smp_store_cpu_info(cpuid
);
188 * The topology information must be up to date before
189 * calibrate_delay() and notify_cpu_starting().
191 set_cpu_sibling_map(raw_smp_processor_id());
193 init_freq_invariance(true, false);
197 * Update loops_per_jiffy in cpu_data. Previous call to
198 * smp_store_cpu_info() stored a value that is close but not as
199 * accurate as the value just calculated.
202 cpu_data(cpuid
).loops_per_jiffy
= loops_per_jiffy
;
203 pr_debug("Stack at about %p\n", &cpuid
);
207 notify_cpu_starting(cpuid
);
210 * Allow the master to continue.
212 cpumask_set_cpu(cpuid
, cpu_callin_mask
);
215 static int cpu0_logical_apicid
;
216 static int enable_start_cpu0
;
218 * Activate a secondary processor.
220 static void notrace
start_secondary(void *unused
)
223 * Don't put *anything* except direct CPU state initialization
224 * before cpu_init(), SMP booting is too fragile that we want to
225 * limit the things done here to the most necessary things.
230 /* switch away from the initial page table */
231 load_cr3(swapper_pg_dir
);
234 cpu_init_exception_handling();
236 rcu_cpu_starting(raw_smp_processor_id());
237 x86_cpuinit
.early_percpu_clock_init();
241 enable_start_cpu0
= 0;
243 /* otherwise gcc will move up smp_processor_id before the cpu_init */
246 * Check TSC synchronization with the boot CPU:
248 check_tsc_sync_target();
250 speculative_store_bypass_ht_init();
253 * Lock vector_lock, set CPU online and bring the vector
254 * allocator online. Online must be set with vector_lock held
255 * to prevent a concurrent irq setup/teardown from seeing a
256 * half valid vector space.
259 set_cpu_online(smp_processor_id(), true);
261 unlock_vector_lock();
262 cpu_set_state_online(smp_processor_id());
263 x86_platform
.nmi_init();
265 /* enable local interrupts */
268 x86_cpuinit
.setup_percpu_clockev();
271 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE
);
275 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
278 bool topology_is_primary_thread(unsigned int cpu
)
280 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid
, cpu
));
284 * topology_smt_supported - Check whether SMT is supported by the CPUs
286 bool topology_smt_supported(void)
288 return smp_num_siblings
> 1;
292 * topology_phys_to_logical_pkg - Map a physical package id to a logical
294 * Returns logical package id or -1 if not found
296 int topology_phys_to_logical_pkg(unsigned int phys_pkg
)
300 for_each_possible_cpu(cpu
) {
301 struct cpuinfo_x86
*c
= &cpu_data(cpu
);
303 if (c
->initialized
&& c
->phys_proc_id
== phys_pkg
)
304 return c
->logical_proc_id
;
308 EXPORT_SYMBOL(topology_phys_to_logical_pkg
);
310 * topology_phys_to_logical_die - Map a physical die id to logical
312 * Returns logical die id or -1 if not found
314 int topology_phys_to_logical_die(unsigned int die_id
, unsigned int cur_cpu
)
317 int proc_id
= cpu_data(cur_cpu
).phys_proc_id
;
319 for_each_possible_cpu(cpu
) {
320 struct cpuinfo_x86
*c
= &cpu_data(cpu
);
322 if (c
->initialized
&& c
->cpu_die_id
== die_id
&&
323 c
->phys_proc_id
== proc_id
)
324 return c
->logical_die_id
;
328 EXPORT_SYMBOL(topology_phys_to_logical_die
);
331 * topology_update_package_map - Update the physical to logical package map
332 * @pkg: The physical package id as retrieved via CPUID
333 * @cpu: The cpu for which this is updated
335 int topology_update_package_map(unsigned int pkg
, unsigned int cpu
)
339 /* Already available somewhere? */
340 new = topology_phys_to_logical_pkg(pkg
);
344 new = logical_packages
++;
346 pr_info("CPU %u Converting physical %u to logical package %u\n",
350 cpu_data(cpu
).logical_proc_id
= new;
354 * topology_update_die_map - Update the physical to logical die map
355 * @die: The die id as retrieved via CPUID
356 * @cpu: The cpu for which this is updated
358 int topology_update_die_map(unsigned int die
, unsigned int cpu
)
362 /* Already available somewhere? */
363 new = topology_phys_to_logical_die(die
, cpu
);
369 pr_info("CPU %u Converting physical %u to logical die %u\n",
373 cpu_data(cpu
).logical_die_id
= new;
377 void __init
smp_store_boot_cpu_info(void)
379 int id
= 0; /* CPU 0 */
380 struct cpuinfo_x86
*c
= &cpu_data(id
);
384 topology_update_package_map(c
->phys_proc_id
, id
);
385 topology_update_die_map(c
->cpu_die_id
, id
);
386 c
->initialized
= true;
390 * The bootstrap kernel entry code has set these up. Save them for
393 void smp_store_cpu_info(int id
)
395 struct cpuinfo_x86
*c
= &cpu_data(id
);
397 /* Copy boot_cpu_data only on the first bringup */
402 * During boot time, CPU0 has this setup already. Save the info when
403 * bringing up AP or offlined CPU0.
405 identify_secondary_cpu(c
);
406 c
->initialized
= true;
410 topology_same_node(struct cpuinfo_x86
*c
, struct cpuinfo_x86
*o
)
412 int cpu1
= c
->cpu_index
, cpu2
= o
->cpu_index
;
414 return (cpu_to_node(cpu1
) == cpu_to_node(cpu2
));
418 topology_sane(struct cpuinfo_x86
*c
, struct cpuinfo_x86
*o
, const char *name
)
420 int cpu1
= c
->cpu_index
, cpu2
= o
->cpu_index
;
422 return !WARN_ONCE(!topology_same_node(c
, o
),
423 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
424 "[node: %d != %d]. Ignoring dependency.\n",
425 cpu1
, name
, cpu2
, cpu_to_node(cpu1
), cpu_to_node(cpu2
));
428 #define link_mask(mfunc, c1, c2) \
430 cpumask_set_cpu((c1), mfunc(c2)); \
431 cpumask_set_cpu((c2), mfunc(c1)); \
434 static bool match_smt(struct cpuinfo_x86
*c
, struct cpuinfo_x86
*o
)
436 if (boot_cpu_has(X86_FEATURE_TOPOEXT
)) {
437 int cpu1
= c
->cpu_index
, cpu2
= o
->cpu_index
;
439 if (c
->phys_proc_id
== o
->phys_proc_id
&&
440 c
->cpu_die_id
== o
->cpu_die_id
&&
441 per_cpu(cpu_llc_id
, cpu1
) == per_cpu(cpu_llc_id
, cpu2
)) {
442 if (c
->cpu_core_id
== o
->cpu_core_id
)
443 return topology_sane(c
, o
, "smt");
445 if ((c
->cu_id
!= 0xff) &&
446 (o
->cu_id
!= 0xff) &&
447 (c
->cu_id
== o
->cu_id
))
448 return topology_sane(c
, o
, "smt");
451 } else if (c
->phys_proc_id
== o
->phys_proc_id
&&
452 c
->cpu_die_id
== o
->cpu_die_id
&&
453 c
->cpu_core_id
== o
->cpu_core_id
) {
454 return topology_sane(c
, o
, "smt");
461 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
463 * These are Intel CPUs that enumerate an LLC that is shared by
464 * multiple NUMA nodes. The LLC on these systems is shared for
465 * off-package data access but private to the NUMA node (half
466 * of the package) for on-package access.
468 * CPUID (the source of the information about the LLC) can only
469 * enumerate the cache as being shared *or* unshared, but not
470 * this particular configuration. The CPU in this case enumerates
471 * the cache to be shared across the entire package (spanning both
475 static const struct x86_cpu_id snc_cpu
[] = {
476 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X
, NULL
),
480 static bool match_llc(struct cpuinfo_x86
*c
, struct cpuinfo_x86
*o
)
482 int cpu1
= c
->cpu_index
, cpu2
= o
->cpu_index
;
484 /* Do not match if we do not have a valid APICID for cpu: */
485 if (per_cpu(cpu_llc_id
, cpu1
) == BAD_APICID
)
488 /* Do not match if LLC id does not match: */
489 if (per_cpu(cpu_llc_id
, cpu1
) != per_cpu(cpu_llc_id
, cpu2
))
493 * Allow the SNC topology without warning. Return of false
494 * means 'c' does not share the LLC of 'o'. This will be
495 * reflected to userspace.
497 if (!topology_same_node(c
, o
) && x86_match_cpu(snc_cpu
))
500 return topology_sane(c
, o
, "llc");
504 * Unlike the other levels, we do not enforce keeping a
505 * multicore group inside a NUMA node. If this happens, we will
506 * discard the MC level of the topology later.
508 static bool match_pkg(struct cpuinfo_x86
*c
, struct cpuinfo_x86
*o
)
510 if (c
->phys_proc_id
== o
->phys_proc_id
)
515 static bool match_die(struct cpuinfo_x86
*c
, struct cpuinfo_x86
*o
)
517 if ((c
->phys_proc_id
== o
->phys_proc_id
) &&
518 (c
->cpu_die_id
== o
->cpu_die_id
))
524 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
525 static inline int x86_sched_itmt_flags(void)
527 return sysctl_sched_itmt_enabled
? SD_ASYM_PACKING
: 0;
530 #ifdef CONFIG_SCHED_MC
531 static int x86_core_flags(void)
533 return cpu_core_flags() | x86_sched_itmt_flags();
536 #ifdef CONFIG_SCHED_SMT
537 static int x86_smt_flags(void)
539 return cpu_smt_flags() | x86_sched_itmt_flags();
544 static struct sched_domain_topology_level x86_numa_in_package_topology
[] = {
545 #ifdef CONFIG_SCHED_SMT
546 { cpu_smt_mask
, x86_smt_flags
, SD_INIT_NAME(SMT
) },
548 #ifdef CONFIG_SCHED_MC
549 { cpu_coregroup_mask
, x86_core_flags
, SD_INIT_NAME(MC
) },
554 static struct sched_domain_topology_level x86_topology
[] = {
555 #ifdef CONFIG_SCHED_SMT
556 { cpu_smt_mask
, x86_smt_flags
, SD_INIT_NAME(SMT
) },
558 #ifdef CONFIG_SCHED_MC
559 { cpu_coregroup_mask
, x86_core_flags
, SD_INIT_NAME(MC
) },
561 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
566 * Set if a package/die has multiple NUMA nodes inside.
567 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
568 * Sub-NUMA Clustering have this.
570 static bool x86_has_numa_in_package
;
572 void set_cpu_sibling_map(int cpu
)
574 bool has_smt
= smp_num_siblings
> 1;
575 bool has_mp
= has_smt
|| boot_cpu_data
.x86_max_cores
> 1;
576 struct cpuinfo_x86
*c
= &cpu_data(cpu
);
577 struct cpuinfo_x86
*o
;
580 cpumask_set_cpu(cpu
, cpu_sibling_setup_mask
);
583 cpumask_set_cpu(cpu
, topology_sibling_cpumask(cpu
));
584 cpumask_set_cpu(cpu
, cpu_llc_shared_mask(cpu
));
585 cpumask_set_cpu(cpu
, topology_core_cpumask(cpu
));
586 cpumask_set_cpu(cpu
, topology_die_cpumask(cpu
));
591 for_each_cpu(i
, cpu_sibling_setup_mask
) {
594 if ((i
== cpu
) || (has_smt
&& match_smt(c
, o
)))
595 link_mask(topology_sibling_cpumask
, cpu
, i
);
597 if ((i
== cpu
) || (has_mp
&& match_llc(c
, o
)))
598 link_mask(cpu_llc_shared_mask
, cpu
, i
);
603 * This needs a separate iteration over the cpus because we rely on all
604 * topology_sibling_cpumask links to be set-up.
606 for_each_cpu(i
, cpu_sibling_setup_mask
) {
609 if ((i
== cpu
) || (has_mp
&& match_pkg(c
, o
))) {
610 link_mask(topology_core_cpumask
, cpu
, i
);
613 * Does this new cpu bringup a new core?
616 topology_sibling_cpumask(cpu
)) == 1) {
618 * for each core in package, increment
619 * the booted_cores for this new cpu
622 topology_sibling_cpumask(i
)) == i
)
625 * increment the core count for all
626 * the other cpus in this package
629 cpu_data(i
).booted_cores
++;
630 } else if (i
!= cpu
&& !c
->booted_cores
)
631 c
->booted_cores
= cpu_data(i
).booted_cores
;
633 if (match_pkg(c
, o
) && !topology_same_node(c
, o
))
634 x86_has_numa_in_package
= true;
636 if ((i
== cpu
) || (has_mp
&& match_die(c
, o
)))
637 link_mask(topology_die_cpumask
, cpu
, i
);
640 threads
= cpumask_weight(topology_sibling_cpumask(cpu
));
641 if (threads
> __max_smt_threads
)
642 __max_smt_threads
= threads
;
645 /* maps the cpu to the sched domain representing multi-core */
646 const struct cpumask
*cpu_coregroup_mask(int cpu
)
648 return cpu_llc_shared_mask(cpu
);
651 static void impress_friends(void)
654 unsigned long bogosum
= 0;
656 * Allow the user to impress friends.
658 pr_debug("Before bogomips\n");
659 for_each_possible_cpu(cpu
)
660 if (cpumask_test_cpu(cpu
, cpu_callout_mask
))
661 bogosum
+= cpu_data(cpu
).loops_per_jiffy
;
662 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
665 (bogosum
/(5000/HZ
))%100);
667 pr_debug("Before bogocount - setting activated=1\n");
670 void __inquire_remote_apic(int apicid
)
672 unsigned i
, regs
[] = { APIC_ID
>> 4, APIC_LVR
>> 4, APIC_SPIV
>> 4 };
673 const char * const names
[] = { "ID", "VERSION", "SPIV" };
677 pr_info("Inquiring remote APIC 0x%x...\n", apicid
);
679 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
680 pr_info("... APIC 0x%x %s: ", apicid
, names
[i
]);
685 status
= safe_apic_wait_icr_idle();
687 pr_cont("a previous APIC delivery may have failed\n");
689 apic_icr_write(APIC_DM_REMRD
| regs
[i
], apicid
);
694 status
= apic_read(APIC_ICR
) & APIC_ICR_RR_MASK
;
695 } while (status
== APIC_ICR_RR_INPROG
&& timeout
++ < 1000);
698 case APIC_ICR_RR_VALID
:
699 status
= apic_read(APIC_RRR
);
700 pr_cont("%08x\n", status
);
709 * The Multiprocessor Specification 1.4 (1997) example code suggests
710 * that there should be a 10ms delay between the BSP asserting INIT
711 * and de-asserting INIT, when starting a remote processor.
712 * But that slows boot and resume on modern processors, which include
713 * many cores and don't require that delay.
715 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
716 * Modern processor families are quirked to remove the delay entirely.
718 #define UDELAY_10MS_DEFAULT 10000
720 static unsigned int init_udelay
= UINT_MAX
;
722 static int __init
cpu_init_udelay(char *str
)
724 get_option(&str
, &init_udelay
);
728 early_param("cpu_init_udelay", cpu_init_udelay
);
730 static void __init
smp_quirk_init_udelay(void)
732 /* if cmdline changed it from default, leave it alone */
733 if (init_udelay
!= UINT_MAX
)
736 /* if modern processor, use no delay */
737 if (((boot_cpu_data
.x86_vendor
== X86_VENDOR_INTEL
) && (boot_cpu_data
.x86
== 6)) ||
738 ((boot_cpu_data
.x86_vendor
== X86_VENDOR_HYGON
) && (boot_cpu_data
.x86
>= 0x18)) ||
739 ((boot_cpu_data
.x86_vendor
== X86_VENDOR_AMD
) && (boot_cpu_data
.x86
>= 0xF))) {
743 /* else, use legacy delay */
744 init_udelay
= UDELAY_10MS_DEFAULT
;
748 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
749 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
750 * won't ... remember to clear down the APIC, etc later.
753 wakeup_secondary_cpu_via_nmi(int apicid
, unsigned long start_eip
)
755 u32 dm
= apic
->dest_mode_logical
? APIC_DEST_LOGICAL
: APIC_DEST_PHYSICAL
;
756 unsigned long send_status
, accept_status
= 0;
760 /* Boot on the stack */
761 /* Kick the second */
762 apic_icr_write(APIC_DM_NMI
| dm
, apicid
);
764 pr_debug("Waiting for send to finish...\n");
765 send_status
= safe_apic_wait_icr_idle();
768 * Give the other CPU some time to accept the IPI.
771 if (APIC_INTEGRATED(boot_cpu_apic_version
)) {
772 maxlvt
= lapic_get_maxlvt();
773 if (maxlvt
> 3) /* Due to the Pentium erratum 3AP. */
774 apic_write(APIC_ESR
, 0);
775 accept_status
= (apic_read(APIC_ESR
) & 0xEF);
777 pr_debug("NMI sent\n");
780 pr_err("APIC never delivered???\n");
782 pr_err("APIC delivery error (%lx)\n", accept_status
);
784 return (send_status
| accept_status
);
788 wakeup_secondary_cpu_via_init(int phys_apicid
, unsigned long start_eip
)
790 unsigned long send_status
= 0, accept_status
= 0;
791 int maxlvt
, num_starts
, j
;
793 maxlvt
= lapic_get_maxlvt();
796 * Be paranoid about clearing APIC errors.
798 if (APIC_INTEGRATED(boot_cpu_apic_version
)) {
799 if (maxlvt
> 3) /* Due to the Pentium erratum 3AP. */
800 apic_write(APIC_ESR
, 0);
804 pr_debug("Asserting INIT\n");
807 * Turn INIT on target chip
812 apic_icr_write(APIC_INT_LEVELTRIG
| APIC_INT_ASSERT
| APIC_DM_INIT
,
815 pr_debug("Waiting for send to finish...\n");
816 send_status
= safe_apic_wait_icr_idle();
820 pr_debug("Deasserting INIT\n");
824 apic_icr_write(APIC_INT_LEVELTRIG
| APIC_DM_INIT
, phys_apicid
);
826 pr_debug("Waiting for send to finish...\n");
827 send_status
= safe_apic_wait_icr_idle();
832 * Should we send STARTUP IPIs ?
834 * Determine this based on the APIC version.
835 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
837 if (APIC_INTEGRATED(boot_cpu_apic_version
))
843 * Run STARTUP IPI loop.
845 pr_debug("#startup loops: %d\n", num_starts
);
847 for (j
= 1; j
<= num_starts
; j
++) {
848 pr_debug("Sending STARTUP #%d\n", j
);
849 if (maxlvt
> 3) /* Due to the Pentium erratum 3AP. */
850 apic_write(APIC_ESR
, 0);
852 pr_debug("After apic_write\n");
859 /* Boot on the stack */
860 /* Kick the second */
861 apic_icr_write(APIC_DM_STARTUP
| (start_eip
>> 12),
865 * Give the other CPU some time to accept the IPI.
867 if (init_udelay
== 0)
872 pr_debug("Startup point 1\n");
874 pr_debug("Waiting for send to finish...\n");
875 send_status
= safe_apic_wait_icr_idle();
878 * Give the other CPU some time to accept the IPI.
880 if (init_udelay
== 0)
885 if (maxlvt
> 3) /* Due to the Pentium erratum 3AP. */
886 apic_write(APIC_ESR
, 0);
887 accept_status
= (apic_read(APIC_ESR
) & 0xEF);
888 if (send_status
|| accept_status
)
891 pr_debug("After Startup\n");
894 pr_err("APIC never delivered???\n");
896 pr_err("APIC delivery error (%lx)\n", accept_status
);
898 return (send_status
| accept_status
);
901 /* reduce the number of lines printed when booting a large cpu count system */
902 static void announce_cpu(int cpu
, int apicid
)
904 static int current_node
= NUMA_NO_NODE
;
905 int node
= early_cpu_to_node(cpu
);
906 static int width
, node_width
;
909 width
= num_digits(num_possible_cpus()) + 1; /* + '#' sign */
912 node_width
= num_digits(num_possible_nodes()) + 1; /* + '#' */
915 printk(KERN_INFO
"x86: Booting SMP configuration:\n");
917 if (system_state
< SYSTEM_RUNNING
) {
918 if (node
!= current_node
) {
919 if (current_node
> (-1))
923 printk(KERN_INFO
".... node %*s#%d, CPUs: ",
924 node_width
- num_digits(node
), " ", node
);
927 /* Add padding for the BSP */
929 pr_cont("%*s", width
+ 1, " ");
931 pr_cont("%*s#%d", width
- num_digits(cpu
), " ", cpu
);
934 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
938 static int wakeup_cpu0_nmi(unsigned int cmd
, struct pt_regs
*regs
)
942 cpu
= smp_processor_id();
943 if (cpu
== 0 && !cpu_online(cpu
) && enable_start_cpu0
)
950 * Wake up AP by INIT, INIT, STARTUP sequence.
952 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
953 * boot-strap code which is not a desired behavior for waking up BSP. To
954 * void the boot-strap code, wake up CPU0 by NMI instead.
956 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
957 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
958 * We'll change this code in the future to wake up hard offlined CPU0 if
959 * real platform and request are available.
962 wakeup_cpu_via_init_nmi(int cpu
, unsigned long start_ip
, int apicid
,
963 int *cpu0_nmi_registered
)
971 * Wake up AP by INIT, INIT, STARTUP sequence.
974 boot_error
= wakeup_secondary_cpu_via_init(apicid
, start_ip
);
979 * Wake up BSP by nmi.
981 * Register a NMI handler to help wake up CPU0.
983 boot_error
= register_nmi_handler(NMI_LOCAL
,
984 wakeup_cpu0_nmi
, 0, "wake_cpu0");
987 enable_start_cpu0
= 1;
988 *cpu0_nmi_registered
= 1;
989 id
= apic
->dest_mode_logical
? cpu0_logical_apicid
: apicid
;
990 boot_error
= wakeup_secondary_cpu_via_nmi(id
, start_ip
);
999 int common_cpu_up(unsigned int cpu
, struct task_struct
*idle
)
1003 /* Just in case we booted with a single CPU. */
1004 alternatives_enable_smp();
1006 per_cpu(current_task
, cpu
) = idle
;
1007 cpu_init_stack_canary(cpu
, idle
);
1009 /* Initialize the interrupt stack(s) */
1010 ret
= irq_init_percpu_irqstack(cpu
);
1014 #ifdef CONFIG_X86_32
1015 /* Stack for startup_32 can be just as for start_secondary onwards */
1016 per_cpu(cpu_current_top_of_stack
, cpu
) = task_top_of_stack(idle
);
1018 initial_gs
= per_cpu_offset(cpu
);
1024 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1025 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1026 * Returns zero if CPU booted OK, else error code from
1027 * ->wakeup_secondary_cpu.
1029 static int do_boot_cpu(int apicid
, int cpu
, struct task_struct
*idle
,
1030 int *cpu0_nmi_registered
)
1032 /* start_ip had better be page-aligned! */
1033 unsigned long start_ip
= real_mode_header
->trampoline_start
;
1035 unsigned long boot_error
= 0;
1036 unsigned long timeout
;
1038 idle
->thread
.sp
= (unsigned long)task_pt_regs(idle
);
1039 early_gdt_descr
.address
= (unsigned long)get_cpu_gdt_rw(cpu
);
1040 initial_code
= (unsigned long)start_secondary
;
1041 initial_stack
= idle
->thread
.sp
;
1043 /* Enable the espfix hack for this CPU */
1044 init_espfix_ap(cpu
);
1046 /* So we see what's up */
1047 announce_cpu(cpu
, apicid
);
1050 * This grunge runs the startup process for
1051 * the targeted processor.
1054 if (x86_platform
.legacy
.warm_reset
) {
1056 pr_debug("Setting warm reset code and vector.\n");
1058 smpboot_setup_warm_reset_vector(start_ip
);
1060 * Be paranoid about clearing APIC errors.
1062 if (APIC_INTEGRATED(boot_cpu_apic_version
)) {
1063 apic_write(APIC_ESR
, 0);
1064 apic_read(APIC_ESR
);
1069 * AP might wait on cpu_callout_mask in cpu_init() with
1070 * cpu_initialized_mask set if previous attempt to online
1071 * it timed-out. Clear cpu_initialized_mask so that after
1072 * INIT/SIPI it could start with a clean state.
1074 cpumask_clear_cpu(cpu
, cpu_initialized_mask
);
1078 * Wake up a CPU in difference cases:
1079 * - Use the method in the APIC driver if it's defined
1081 * - Use an INIT boot APIC message for APs or NMI for BSP.
1083 if (apic
->wakeup_secondary_cpu
)
1084 boot_error
= apic
->wakeup_secondary_cpu(apicid
, start_ip
);
1086 boot_error
= wakeup_cpu_via_init_nmi(cpu
, start_ip
, apicid
,
1087 cpu0_nmi_registered
);
1091 * Wait 10s total for first sign of life from AP
1094 timeout
= jiffies
+ 10*HZ
;
1095 while (time_before(jiffies
, timeout
)) {
1096 if (cpumask_test_cpu(cpu
, cpu_initialized_mask
)) {
1098 * Tell AP to proceed with initialization
1100 cpumask_set_cpu(cpu
, cpu_callout_mask
);
1110 * Wait till AP completes initial initialization
1112 while (!cpumask_test_cpu(cpu
, cpu_callin_mask
)) {
1114 * Allow other tasks to run while we wait for the
1115 * AP to come online. This also gives a chance
1116 * for the MTRR work(triggered by the AP coming online)
1117 * to be completed in the stop machine context.
1123 if (x86_platform
.legacy
.warm_reset
) {
1125 * Cleanup possible dangling ends...
1127 smpboot_restore_warm_reset_vector();
1133 int native_cpu_up(unsigned int cpu
, struct task_struct
*tidle
)
1135 int apicid
= apic
->cpu_present_to_apicid(cpu
);
1136 int cpu0_nmi_registered
= 0;
1137 unsigned long flags
;
1140 lockdep_assert_irqs_enabled();
1142 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu
);
1144 if (apicid
== BAD_APICID
||
1145 !physid_isset(apicid
, phys_cpu_present_map
) ||
1146 !apic
->apic_id_valid(apicid
)) {
1147 pr_err("%s: bad cpu %d\n", __func__
, cpu
);
1152 * Already booted CPU?
1154 if (cpumask_test_cpu(cpu
, cpu_callin_mask
)) {
1155 pr_debug("do_boot_cpu %d Already started\n", cpu
);
1160 * Save current MTRR state in case it was changed since early boot
1161 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1165 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1166 err
= cpu_check_up_prepare(cpu
);
1167 if (err
&& err
!= -EBUSY
)
1170 /* the FPU context is blank, nobody can own it */
1171 per_cpu(fpu_fpregs_owner_ctx
, cpu
) = NULL
;
1173 err
= common_cpu_up(cpu
, tidle
);
1177 err
= do_boot_cpu(apicid
, cpu
, tidle
, &cpu0_nmi_registered
);
1179 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err
, cpu
);
1185 * Check TSC synchronization with the AP (keep irqs disabled
1188 local_irq_save(flags
);
1189 check_tsc_sync_source(cpu
);
1190 local_irq_restore(flags
);
1192 while (!cpu_online(cpu
)) {
1194 touch_nmi_watchdog();
1199 * Clean up the nmi handler. Do this after the callin and callout sync
1200 * to avoid impact of possible long unregister time.
1202 if (cpu0_nmi_registered
)
1203 unregister_nmi_handler(NMI_LOCAL
, "wake_cpu0");
1209 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1211 void arch_disable_smp_support(void)
1213 disable_ioapic_support();
1217 * Fall back to non SMP mode after errors.
1219 * RED-PEN audit/test this more. I bet there is more state messed up here.
1221 static __init
void disable_smp(void)
1223 pr_info("SMP disabled\n");
1225 disable_ioapic_support();
1227 init_cpu_present(cpumask_of(0));
1228 init_cpu_possible(cpumask_of(0));
1230 if (smp_found_config
)
1231 physid_set_mask_of_physid(boot_cpu_physical_apicid
, &phys_cpu_present_map
);
1233 physid_set_mask_of_physid(0, &phys_cpu_present_map
);
1234 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1235 cpumask_set_cpu(0, topology_core_cpumask(0));
1236 cpumask_set_cpu(0, topology_die_cpumask(0));
1240 * Various sanity checks.
1242 static void __init
smp_sanity_check(void)
1246 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1247 if (def_to_bigsmp
&& nr_cpu_ids
> 8) {
1251 pr_warn("More than 8 CPUs detected - skipping them\n"
1252 "Use CONFIG_X86_BIGSMP\n");
1255 for_each_present_cpu(cpu
) {
1257 set_cpu_present(cpu
, false);
1262 for_each_possible_cpu(cpu
) {
1264 set_cpu_possible(cpu
, false);
1272 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map
)) {
1273 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1274 hard_smp_processor_id());
1276 physid_set(hard_smp_processor_id(), phys_cpu_present_map
);
1280 * Should not be necessary because the MP table should list the boot
1281 * CPU too, but we do it for the sake of robustness anyway.
1283 if (!apic
->check_phys_apicid_present(boot_cpu_physical_apicid
)) {
1284 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1285 boot_cpu_physical_apicid
);
1286 physid_set(hard_smp_processor_id(), phys_cpu_present_map
);
1291 static void __init
smp_cpu_index_default(void)
1294 struct cpuinfo_x86
*c
;
1296 for_each_possible_cpu(i
) {
1298 /* mark all to hotplug */
1299 c
->cpu_index
= nr_cpu_ids
;
1303 static void __init
smp_get_logical_apicid(void)
1306 cpu0_logical_apicid
= apic_read(APIC_LDR
);
1308 cpu0_logical_apicid
= GET_APIC_LOGICAL_ID(apic_read(APIC_LDR
));
1312 * Prepare for SMP bootup.
1313 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1314 * for common interface support.
1316 void __init
native_smp_prepare_cpus(unsigned int max_cpus
)
1320 smp_cpu_index_default();
1323 * Setup boot CPU information
1325 smp_store_boot_cpu_info(); /* Final full version of the data */
1326 cpumask_copy(cpu_callin_mask
, cpumask_of(0));
1329 for_each_possible_cpu(i
) {
1330 zalloc_cpumask_var(&per_cpu(cpu_sibling_map
, i
), GFP_KERNEL
);
1331 zalloc_cpumask_var(&per_cpu(cpu_core_map
, i
), GFP_KERNEL
);
1332 zalloc_cpumask_var(&per_cpu(cpu_die_map
, i
), GFP_KERNEL
);
1333 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map
, i
), GFP_KERNEL
);
1337 * Set 'default' x86 topology, this matches default_topology() in that
1338 * it has NUMA nodes as a topology level. See also
1339 * native_smp_cpus_done().
1341 * Must be done before set_cpus_sibling_map() is ran.
1343 set_sched_topology(x86_topology
);
1345 set_cpu_sibling_map(0);
1346 init_freq_invariance(false, false);
1349 switch (apic_intr_mode
) {
1351 case APIC_VIRTUAL_WIRE_NO_CONFIG
:
1354 case APIC_SYMMETRIC_IO_NO_ROUTING
:
1356 /* Setup local timer */
1357 x86_init
.timers
.setup_percpu_clockev();
1359 case APIC_VIRTUAL_WIRE
:
1360 case APIC_SYMMETRIC_IO
:
1364 /* Setup local timer */
1365 x86_init
.timers
.setup_percpu_clockev();
1367 smp_get_logical_apicid();
1370 print_cpu_info(&cpu_data(0));
1374 set_mtrr_aps_delayed_init();
1376 smp_quirk_init_udelay();
1378 speculative_store_bypass_ht_init();
1381 void arch_thaw_secondary_cpus_begin(void)
1383 set_mtrr_aps_delayed_init();
1386 void arch_thaw_secondary_cpus_end(void)
1392 * Early setup to make printk work.
1394 void __init
native_smp_prepare_boot_cpu(void)
1396 int me
= smp_processor_id();
1397 switch_to_new_gdt(me
);
1398 /* already set me in cpu_online_mask in boot_cpu_init() */
1399 cpumask_set_cpu(me
, cpu_callout_mask
);
1400 cpu_set_state_online(me
);
1401 native_pv_lock_init();
1404 void __init
calculate_max_logical_packages(void)
1409 * Today neither Intel nor AMD support heterogenous systems so
1410 * extrapolate the boot cpu's data to all packages.
1412 ncpus
= cpu_data(0).booted_cores
* topology_max_smt_threads();
1413 __max_logical_packages
= DIV_ROUND_UP(total_cpus
, ncpus
);
1414 pr_info("Max logical packages: %u\n", __max_logical_packages
);
1417 void __init
native_smp_cpus_done(unsigned int max_cpus
)
1419 pr_debug("Boot done\n");
1421 calculate_max_logical_packages();
1423 if (x86_has_numa_in_package
)
1424 set_sched_topology(x86_numa_in_package_topology
);
1431 static int __initdata setup_possible_cpus
= -1;
1432 static int __init
_setup_possible_cpus(char *str
)
1434 get_option(&str
, &setup_possible_cpus
);
1437 early_param("possible_cpus", _setup_possible_cpus
);
1441 * cpu_possible_mask should be static, it cannot change as cpu's
1442 * are onlined, or offlined. The reason is per-cpu data-structures
1443 * are allocated by some modules at init time, and don't expect to
1444 * do this dynamically on cpu arrival/departure.
1445 * cpu_present_mask on the other hand can change dynamically.
1446 * In case when cpu_hotplug is not compiled, then we resort to current
1447 * behaviour, which is cpu_possible == cpu_present.
1450 * Three ways to find out the number of additional hotplug CPUs:
1451 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1452 * - The user can overwrite it with possible_cpus=NUM
1453 * - Otherwise don't reserve additional CPUs.
1454 * We do this because additional CPUs waste a lot of memory.
1457 __init
void prefill_possible_map(void)
1461 /* No boot processor was found in mptable or ACPI MADT */
1462 if (!num_processors
) {
1463 if (boot_cpu_has(X86_FEATURE_APIC
)) {
1464 int apicid
= boot_cpu_physical_apicid
;
1465 int cpu
= hard_smp_processor_id();
1467 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu
);
1469 /* Make sure boot cpu is enumerated */
1470 if (apic
->cpu_present_to_apicid(0) == BAD_APICID
&&
1471 apic
->apic_id_valid(apicid
))
1472 generic_processor_info(apicid
, boot_cpu_apic_version
);
1475 if (!num_processors
)
1479 i
= setup_max_cpus
?: 1;
1480 if (setup_possible_cpus
== -1) {
1481 possible
= num_processors
;
1482 #ifdef CONFIG_HOTPLUG_CPU
1484 possible
+= disabled_cpus
;
1490 possible
= setup_possible_cpus
;
1492 total_cpus
= max_t(int, possible
, num_processors
+ disabled_cpus
);
1494 /* nr_cpu_ids could be reduced via nr_cpus= */
1495 if (possible
> nr_cpu_ids
) {
1496 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1497 possible
, nr_cpu_ids
);
1498 possible
= nr_cpu_ids
;
1501 #ifdef CONFIG_HOTPLUG_CPU
1502 if (!setup_max_cpus
)
1505 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1506 possible
, setup_max_cpus
);
1510 nr_cpu_ids
= possible
;
1512 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1513 possible
, max_t(int, possible
- num_processors
, 0));
1515 reset_cpu_possible_mask();
1517 for (i
= 0; i
< possible
; i
++)
1518 set_cpu_possible(i
, true);
1521 #ifdef CONFIG_HOTPLUG_CPU
1523 /* Recompute SMT state for all CPUs on offline */
1524 static void recompute_smt_state(void)
1526 int max_threads
, cpu
;
1529 for_each_online_cpu (cpu
) {
1530 int threads
= cpumask_weight(topology_sibling_cpumask(cpu
));
1532 if (threads
> max_threads
)
1533 max_threads
= threads
;
1535 __max_smt_threads
= max_threads
;
1538 static void remove_siblinginfo(int cpu
)
1541 struct cpuinfo_x86
*c
= &cpu_data(cpu
);
1543 for_each_cpu(sibling
, topology_core_cpumask(cpu
)) {
1544 cpumask_clear_cpu(cpu
, topology_core_cpumask(sibling
));
1546 * last thread sibling in this cpu core going down
1548 if (cpumask_weight(topology_sibling_cpumask(cpu
)) == 1)
1549 cpu_data(sibling
).booted_cores
--;
1552 for_each_cpu(sibling
, topology_die_cpumask(cpu
))
1553 cpumask_clear_cpu(cpu
, topology_die_cpumask(sibling
));
1554 for_each_cpu(sibling
, topology_sibling_cpumask(cpu
))
1555 cpumask_clear_cpu(cpu
, topology_sibling_cpumask(sibling
));
1556 for_each_cpu(sibling
, cpu_llc_shared_mask(cpu
))
1557 cpumask_clear_cpu(cpu
, cpu_llc_shared_mask(sibling
));
1558 cpumask_clear(cpu_llc_shared_mask(cpu
));
1559 cpumask_clear(topology_sibling_cpumask(cpu
));
1560 cpumask_clear(topology_core_cpumask(cpu
));
1561 cpumask_clear(topology_die_cpumask(cpu
));
1563 c
->booted_cores
= 0;
1564 cpumask_clear_cpu(cpu
, cpu_sibling_setup_mask
);
1565 recompute_smt_state();
1568 static void remove_cpu_from_maps(int cpu
)
1570 set_cpu_online(cpu
, false);
1571 cpumask_clear_cpu(cpu
, cpu_callout_mask
);
1572 cpumask_clear_cpu(cpu
, cpu_callin_mask
);
1573 /* was set by cpu_init() */
1574 cpumask_clear_cpu(cpu
, cpu_initialized_mask
);
1575 numa_remove_cpu(cpu
);
1578 void cpu_disable_common(void)
1580 int cpu
= smp_processor_id();
1582 remove_siblinginfo(cpu
);
1584 /* It's now safe to remove this processor from the online map */
1586 remove_cpu_from_maps(cpu
);
1587 unlock_vector_lock();
1592 int native_cpu_disable(void)
1596 ret
= lapic_can_unplug_cpu();
1600 cpu_disable_common();
1603 * Disable the local APIC. Otherwise IPI broadcasts will reach
1604 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1607 * Disabling the APIC must happen after cpu_disable_common()
1608 * which invokes fixup_irqs().
1610 * Disabling the APIC preserves already set bits in IRR, but
1611 * an interrupt arriving after disabling the local APIC does not
1612 * set the corresponding IRR bit.
1614 * fixup_irqs() scans IRR for set bits so it can raise a not
1615 * yet handled interrupt on the new destination CPU via an IPI
1616 * but obviously it can't do so for IRR bits which are not set.
1617 * IOW, interrupts arriving after disabling the local APIC will
1620 apic_soft_disable();
1625 int common_cpu_die(unsigned int cpu
)
1629 /* We don't do anything here: idle task is faking death itself. */
1631 /* They ack this in play_dead() by setting CPU_DEAD */
1632 if (cpu_wait_death(cpu
, 5)) {
1633 if (system_state
== SYSTEM_RUNNING
)
1634 pr_info("CPU %u is now offline\n", cpu
);
1636 pr_err("CPU %u didn't die...\n", cpu
);
1643 void native_cpu_die(unsigned int cpu
)
1645 common_cpu_die(cpu
);
1648 void play_dead_common(void)
1653 (void)cpu_report_death();
1656 * With physical CPU hotplug, we should halt the cpu
1658 local_irq_disable();
1661 static bool wakeup_cpu0(void)
1663 if (smp_processor_id() == 0 && enable_start_cpu0
)
1670 * We need to flush the caches before going to sleep, lest we have
1671 * dirty data in our caches when we come back up.
1673 static inline void mwait_play_dead(void)
1675 unsigned int eax
, ebx
, ecx
, edx
;
1676 unsigned int highest_cstate
= 0;
1677 unsigned int highest_subcstate
= 0;
1681 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_AMD
||
1682 boot_cpu_data
.x86_vendor
== X86_VENDOR_HYGON
)
1684 if (!this_cpu_has(X86_FEATURE_MWAIT
))
1686 if (!this_cpu_has(X86_FEATURE_CLFLUSH
))
1688 if (__this_cpu_read(cpu_info
.cpuid_level
) < CPUID_MWAIT_LEAF
)
1691 eax
= CPUID_MWAIT_LEAF
;
1693 native_cpuid(&eax
, &ebx
, &ecx
, &edx
);
1696 * eax will be 0 if EDX enumeration is not valid.
1697 * Initialized below to cstate, sub_cstate value when EDX is valid.
1699 if (!(ecx
& CPUID5_ECX_EXTENSIONS_SUPPORTED
)) {
1702 edx
>>= MWAIT_SUBSTATE_SIZE
;
1703 for (i
= 0; i
< 7 && edx
; i
++, edx
>>= MWAIT_SUBSTATE_SIZE
) {
1704 if (edx
& MWAIT_SUBSTATE_MASK
) {
1706 highest_subcstate
= edx
& MWAIT_SUBSTATE_MASK
;
1709 eax
= (highest_cstate
<< MWAIT_SUBSTATE_SIZE
) |
1710 (highest_subcstate
- 1);
1714 * This should be a memory location in a cache line which is
1715 * unlikely to be touched by other processors. The actual
1716 * content is immaterial as it is not actually modified in any way.
1718 mwait_ptr
= ¤t_thread_info()->flags
;
1724 * The CLFLUSH is a workaround for erratum AAI65 for
1725 * the Xeon 7400 series. It's not clear it is actually
1726 * needed, but it should be harmless in either case.
1727 * The WBINVD is insufficient due to the spurious-wakeup
1728 * case where we return around the loop.
1733 __monitor(mwait_ptr
, 0, 0);
1737 * If NMI wants to wake up CPU0, start CPU0.
1744 void hlt_play_dead(void)
1746 if (__this_cpu_read(cpu_info
.x86
) >= 4)
1752 * If NMI wants to wake up CPU0, start CPU0.
1759 void native_play_dead(void)
1762 tboot_shutdown(TB_SHUTDOWN_WFS
);
1764 mwait_play_dead(); /* Only returns on failure */
1765 if (cpuidle_play_dead())
1769 #else /* ... !CONFIG_HOTPLUG_CPU */
1770 int native_cpu_disable(void)
1775 void native_cpu_die(unsigned int cpu
)
1777 /* We said "no" in __cpu_disable */
1781 void native_play_dead(void)
1788 #ifdef CONFIG_X86_64
1790 * APERF/MPERF frequency ratio computation.
1792 * The scheduler wants to do frequency invariant accounting and needs a <1
1793 * ratio to account for the 'current' frequency, corresponding to
1794 * freq_curr / freq_max.
1796 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1797 * our P-state setting is little more than a request/hint, we need to observe
1798 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1799 * interval after discarding idle time. This is given by:
1801 * BusyMHz = delta_APERF / delta_MPERF * freq_base
1803 * where freq_base is the max non-turbo P-state.
1805 * The freq_max term has to be set to a somewhat arbitrary value, because we
1806 * can't know which turbo states will be available at a given point in time:
1807 * it all depends on the thermal headroom of the entire package. We set it to
1808 * the turbo level with 4 cores active.
1810 * Benchmarks show that's a good compromise between the 1C turbo ratio
1811 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1812 * which would ignore the entire turbo range (a conspicuous part, making
1813 * freq_curr/freq_max always maxed out).
1815 * An exception to the heuristic above is the Atom uarch, where we choose the
1816 * highest turbo level for freq_max since Atom's are generally oriented towards
1819 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1820 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1823 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key
);
1825 static DEFINE_PER_CPU(u64
, arch_prev_aperf
);
1826 static DEFINE_PER_CPU(u64
, arch_prev_mperf
);
1827 static u64 arch_turbo_freq_ratio
= SCHED_CAPACITY_SCALE
;
1828 static u64 arch_max_freq_ratio
= SCHED_CAPACITY_SCALE
;
1830 void arch_set_max_freq_ratio(bool turbo_disabled
)
1832 arch_max_freq_ratio
= turbo_disabled
? SCHED_CAPACITY_SCALE
:
1833 arch_turbo_freq_ratio
;
1836 static bool turbo_disabled(void)
1841 err
= rdmsrl_safe(MSR_IA32_MISC_ENABLE
, &misc_en
);
1845 return (misc_en
& MSR_IA32_MISC_ENABLE_TURBO_DISABLE
);
1848 static bool slv_set_max_freq_ratio(u64
*base_freq
, u64
*turbo_freq
)
1852 err
= rdmsrl_safe(MSR_ATOM_CORE_RATIOS
, base_freq
);
1856 err
= rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS
, turbo_freq
);
1860 *base_freq
= (*base_freq
>> 16) & 0x3F; /* max P state */
1861 *turbo_freq
= *turbo_freq
& 0x3F; /* 1C turbo */
1866 #include <asm/cpu_device_id.h>
1867 #include <asm/intel-family.h>
1869 #define X86_MATCH(model) \
1870 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \
1871 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1873 static const struct x86_cpu_id has_knl_turbo_ratio_limits
[] = {
1874 X86_MATCH(XEON_PHI_KNL
),
1875 X86_MATCH(XEON_PHI_KNM
),
1879 static const struct x86_cpu_id has_skx_turbo_ratio_limits
[] = {
1880 X86_MATCH(SKYLAKE_X
),
1884 static const struct x86_cpu_id has_glm_turbo_ratio_limits
[] = {
1885 X86_MATCH(ATOM_GOLDMONT
),
1886 X86_MATCH(ATOM_GOLDMONT_D
),
1887 X86_MATCH(ATOM_GOLDMONT_PLUS
),
1891 static bool knl_set_max_freq_ratio(u64
*base_freq
, u64
*turbo_freq
,
1892 int num_delta_fratio
)
1894 int fratio
, delta_fratio
, found
;
1898 err
= rdmsrl_safe(MSR_PLATFORM_INFO
, base_freq
);
1902 *base_freq
= (*base_freq
>> 8) & 0xFF; /* max P state */
1904 err
= rdmsrl_safe(MSR_TURBO_RATIO_LIMIT
, &msr
);
1908 fratio
= (msr
>> 8) & 0xFF;
1912 if (found
>= num_delta_fratio
) {
1913 *turbo_freq
= fratio
;
1917 delta_fratio
= (msr
>> (i
+ 5)) & 0x7;
1921 fratio
-= delta_fratio
;
1930 static bool skx_set_max_freq_ratio(u64
*base_freq
, u64
*turbo_freq
, int size
)
1936 err
= rdmsrl_safe(MSR_PLATFORM_INFO
, base_freq
);
1940 *base_freq
= (*base_freq
>> 8) & 0xFF; /* max P state */
1942 err
= rdmsrl_safe(MSR_TURBO_RATIO_LIMIT
, &ratios
);
1946 err
= rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1
, &counts
);
1950 for (i
= 0; i
< 64; i
+= 8) {
1951 group_size
= (counts
>> i
) & 0xFF;
1952 if (group_size
>= size
) {
1953 *turbo_freq
= (ratios
>> i
) & 0xFF;
1961 static bool core_set_max_freq_ratio(u64
*base_freq
, u64
*turbo_freq
)
1966 err
= rdmsrl_safe(MSR_PLATFORM_INFO
, base_freq
);
1970 err
= rdmsrl_safe(MSR_TURBO_RATIO_LIMIT
, &msr
);
1974 *base_freq
= (*base_freq
>> 8) & 0xFF; /* max P state */
1975 *turbo_freq
= (msr
>> 24) & 0xFF; /* 4C turbo */
1977 /* The CPU may have less than 4 cores */
1979 *turbo_freq
= msr
& 0xFF; /* 1C turbo */
1984 static bool intel_set_max_freq_ratio(void)
1986 u64 base_freq
, turbo_freq
;
1989 if (slv_set_max_freq_ratio(&base_freq
, &turbo_freq
))
1992 if (x86_match_cpu(has_glm_turbo_ratio_limits
) &&
1993 skx_set_max_freq_ratio(&base_freq
, &turbo_freq
, 1))
1996 if (x86_match_cpu(has_knl_turbo_ratio_limits
) &&
1997 knl_set_max_freq_ratio(&base_freq
, &turbo_freq
, 1))
2000 if (x86_match_cpu(has_skx_turbo_ratio_limits
) &&
2001 skx_set_max_freq_ratio(&base_freq
, &turbo_freq
, 4))
2004 if (core_set_max_freq_ratio(&base_freq
, &turbo_freq
))
2011 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2012 * but then fill all MSR's with zeroes.
2013 * Some CPUs have turbo boost but don't declare any turbo ratio
2014 * in MSR_TURBO_RATIO_LIMIT.
2016 if (!base_freq
|| !turbo_freq
) {
2017 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2021 turbo_ratio
= div_u64(turbo_freq
* SCHED_CAPACITY_SCALE
, base_freq
);
2023 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2027 arch_turbo_freq_ratio
= turbo_ratio
;
2028 arch_set_max_freq_ratio(turbo_disabled());
2033 #ifdef CONFIG_ACPI_CPPC_LIB
2034 static bool amd_set_max_freq_ratio(void)
2036 struct cppc_perf_caps perf_caps
;
2037 u64 highest_perf
, nominal_perf
;
2041 rc
= cppc_get_perf_caps(0, &perf_caps
);
2043 pr_debug("Could not retrieve perf counters (%d)\n", rc
);
2047 highest_perf
= perf_caps
.highest_perf
;
2048 nominal_perf
= perf_caps
.nominal_perf
;
2050 if (!highest_perf
|| !nominal_perf
) {
2051 pr_debug("Could not retrieve highest or nominal performance\n");
2055 perf_ratio
= div_u64(highest_perf
* SCHED_CAPACITY_SCALE
, nominal_perf
);
2056 /* midpoint between max_boost and max_P */
2057 perf_ratio
= (perf_ratio
+ SCHED_CAPACITY_SCALE
) >> 1;
2059 pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2063 arch_turbo_freq_ratio
= perf_ratio
;
2064 arch_set_max_freq_ratio(false);
2069 static bool amd_set_max_freq_ratio(void)
2075 static void init_counter_refs(void)
2079 rdmsrl(MSR_IA32_APERF
, aperf
);
2080 rdmsrl(MSR_IA32_MPERF
, mperf
);
2082 this_cpu_write(arch_prev_aperf
, aperf
);
2083 this_cpu_write(arch_prev_mperf
, mperf
);
2086 static void init_freq_invariance(bool secondary
, bool cppc_ready
)
2090 if (!boot_cpu_has(X86_FEATURE_APERFMPERF
))
2094 if (static_branch_likely(&arch_scale_freq_key
)) {
2095 init_counter_refs();
2100 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_INTEL
)
2101 ret
= intel_set_max_freq_ratio();
2102 else if (boot_cpu_data
.x86_vendor
== X86_VENDOR_AMD
) {
2106 ret
= amd_set_max_freq_ratio();
2110 init_counter_refs();
2111 static_branch_enable(&arch_scale_freq_key
);
2112 pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio
);
2114 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2118 #ifdef CONFIG_ACPI_CPPC_LIB
2119 static DEFINE_MUTEX(freq_invariance_lock
);
2121 void init_freq_invariance_cppc(void)
2123 static bool secondary
;
2125 mutex_lock(&freq_invariance_lock
);
2127 init_freq_invariance(secondary
, true);
2130 mutex_unlock(&freq_invariance_lock
);
2134 static void disable_freq_invariance_workfn(struct work_struct
*work
)
2136 static_branch_disable(&arch_scale_freq_key
);
2139 static DECLARE_WORK(disable_freq_invariance_work
,
2140 disable_freq_invariance_workfn
);
2142 DEFINE_PER_CPU(unsigned long, arch_freq_scale
) = SCHED_CAPACITY_SCALE
;
2144 void arch_scale_freq_tick(void)
2146 u64 freq_scale
= SCHED_CAPACITY_SCALE
;
2150 if (!arch_scale_freq_invariant())
2153 rdmsrl(MSR_IA32_APERF
, aperf
);
2154 rdmsrl(MSR_IA32_MPERF
, mperf
);
2156 acnt
= aperf
- this_cpu_read(arch_prev_aperf
);
2157 mcnt
= mperf
- this_cpu_read(arch_prev_mperf
);
2159 this_cpu_write(arch_prev_aperf
, aperf
);
2160 this_cpu_write(arch_prev_mperf
, mperf
);
2162 if (check_shl_overflow(acnt
, 2*SCHED_CAPACITY_SHIFT
, &acnt
))
2165 if (check_mul_overflow(mcnt
, arch_max_freq_ratio
, &mcnt
) || !mcnt
)
2168 freq_scale
= div64_u64(acnt
, mcnt
);
2172 if (freq_scale
> SCHED_CAPACITY_SCALE
)
2173 freq_scale
= SCHED_CAPACITY_SCALE
;
2175 this_cpu_write(arch_freq_scale
, freq_scale
);
2179 pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2180 schedule_work(&disable_freq_invariance_work
);
2183 static inline void init_freq_invariance(bool secondary
, bool cppc_ready
)
2186 #endif /* CONFIG_X86_64 */