2 * umip.c Emulation for instruction protected by the User-Mode Instruction
5 * Copyright (c) 2017, Intel Corporation.
6 * Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
9 #include <linux/uaccess.h>
11 #include <asm/traps.h>
13 #include <asm/insn-eval.h>
14 #include <linux/ratelimit.h>
17 #define pr_fmt(fmt) "umip: " fmt
19 /** DOC: Emulation for User-Mode Instruction Prevention (UMIP)
21 * User-Mode Instruction Prevention is a security feature present in recent
22 * x86 processors that, when enabled, prevents a group of instructions (SGDT,
23 * SIDT, SLDT, SMSW and STR) from being run in user mode by issuing a general
24 * protection fault if the instruction is executed with CPL > 0.
26 * Rather than relaying to the user space the general protection fault caused by
27 * the UMIP-protected instructions (in the form of a SIGSEGV signal), it can be
28 * trapped and emulate the result of such instructions to provide dummy values.
29 * This allows to both conserve the current kernel behavior and not reveal the
30 * system resources that UMIP intends to protect (i.e., the locations of the
31 * global descriptor and interrupt descriptor tables, the segment selectors of
32 * the local descriptor table, the value of the task state register and the
33 * contents of the CR0 register).
35 * This emulation is needed because certain applications (e.g., WineHQ and
36 * DOSEMU2) rely on this subset of instructions to function.
38 * The instructions protected by UMIP can be split in two groups. Those which
39 * return a kernel memory address (SGDT and SIDT) and those which return a
40 * value (SLDT, STR and SMSW).
42 * For the instructions that return a kernel memory address, applications
43 * such as WineHQ rely on the result being located in the kernel memory space,
44 * not the actual location of the table. The result is emulated as a hard-coded
45 * value that, lies close to the top of the kernel memory. The limit for the GDT
46 * and the IDT are set to zero.
48 * The instruction SMSW is emulated to return the value that the register CR0
49 * has at boot time as set in the head_32.
50 * SLDT and STR are emulated to return the values that the kernel programmatically
52 * - SLDT returns (GDT_ENTRY_LDT * 8) if an LDT has been set, 0 if not.
53 * - STR returns (GDT_ENTRY_TSS * 8).
55 * Emulation is provided for both 32-bit and 64-bit processes.
57 * Care is taken to appropriately emulate the results when segmentation is
58 * used. That is, rather than relying on USER_DS and USER_CS, the function
59 * insn_get_addr_ref() inspects the segment descriptor pointed by the
60 * registers in pt_regs. This ensures that we correctly obtain the segment
61 * base address and the address and operand sizes even if the user space
62 * application uses a local descriptor table.
65 #define UMIP_DUMMY_GDT_BASE 0xfffffffffffe0000ULL
66 #define UMIP_DUMMY_IDT_BASE 0xffffffffffff0000ULL
69 * The SGDT and SIDT instructions store the contents of the global descriptor
70 * table and interrupt table registers, respectively. The destination is a
71 * memory operand of X+2 bytes. X bytes are used to store the base address of
72 * the table and 2 bytes are used to store the limit. In 32-bit processes X
73 * has a value of 4, in 64-bit processes X has a value of 8.
75 #define UMIP_GDT_IDT_BASE_SIZE_64BIT 8
76 #define UMIP_GDT_IDT_BASE_SIZE_32BIT 4
77 #define UMIP_GDT_IDT_LIMIT_SIZE 2
79 #define UMIP_INST_SGDT 0 /* 0F 01 /0 */
80 #define UMIP_INST_SIDT 1 /* 0F 01 /1 */
81 #define UMIP_INST_SMSW 2 /* 0F 01 /4 */
82 #define UMIP_INST_SLDT 3 /* 0F 00 /0 */
83 #define UMIP_INST_STR 4 /* 0F 00 /1 */
85 static const char * const umip_insns
[5] = {
86 [UMIP_INST_SGDT
] = "SGDT",
87 [UMIP_INST_SIDT
] = "SIDT",
88 [UMIP_INST_SMSW
] = "SMSW",
89 [UMIP_INST_SLDT
] = "SLDT",
90 [UMIP_INST_STR
] = "STR",
93 #define umip_pr_err(regs, fmt, ...) \
94 umip_printk(regs, KERN_ERR, fmt, ##__VA_ARGS__)
95 #define umip_pr_warn(regs, fmt, ...) \
96 umip_printk(regs, KERN_WARNING, fmt, ##__VA_ARGS__)
99 * umip_printk() - Print a rate-limited message
100 * @regs: Register set with the context in which the warning is printed
101 * @log_level: Kernel log level to print the message
102 * @fmt: The text string to print
104 * Print the text contained in @fmt. The print rate is limited to bursts of 5
105 * messages every two minutes. The purpose of this customized version of
106 * printk() is to print messages when user space processes use any of the
107 * UMIP-protected instructions. Thus, the printed text is prepended with the
108 * task name and process ID number of the current task as well as the
109 * instruction and stack pointers in @regs as seen when entering kernel mode.
115 static __printf(3, 4)
116 void umip_printk(const struct pt_regs
*regs
, const char *log_level
,
117 const char *fmt
, ...)
119 /* Bursts of 5 messages every two minutes */
120 static DEFINE_RATELIMIT_STATE(ratelimit
, 2 * 60 * HZ
, 5);
121 struct task_struct
*tsk
= current
;
122 struct va_format vaf
;
125 if (!__ratelimit(&ratelimit
))
131 printk("%s" pr_fmt("%s[%d] ip:%lx sp:%lx: %pV"), log_level
, tsk
->comm
,
132 task_pid_nr(tsk
), regs
->ip
, regs
->sp
, &vaf
);
137 * identify_insn() - Identify a UMIP-protected instruction
138 * @insn: Instruction structure with opcode and ModRM byte.
140 * From the opcode and ModRM.reg in @insn identify, if any, a UMIP-protected
141 * instruction that can be emulated.
145 * On success, a constant identifying a specific UMIP-protected instruction that
148 * -EINVAL on error or when not an UMIP-protected instruction that can be
151 static int identify_insn(struct insn
*insn
)
153 /* By getting modrm we also get the opcode. */
154 insn_get_modrm(insn
);
156 if (!insn
->modrm
.nbytes
)
159 /* All the instructions of interest start with 0x0f. */
160 if (insn
->opcode
.bytes
[0] != 0xf)
163 if (insn
->opcode
.bytes
[1] == 0x1) {
164 switch (X86_MODRM_REG(insn
->modrm
.value
)) {
166 return UMIP_INST_SGDT
;
168 return UMIP_INST_SIDT
;
170 return UMIP_INST_SMSW
;
174 } else if (insn
->opcode
.bytes
[1] == 0x0) {
175 if (X86_MODRM_REG(insn
->modrm
.value
) == 0)
176 return UMIP_INST_SLDT
;
177 else if (X86_MODRM_REG(insn
->modrm
.value
) == 1)
178 return UMIP_INST_STR
;
187 * emulate_umip_insn() - Emulate UMIP instructions and return dummy values
188 * @insn: Instruction structure with operands
189 * @umip_inst: A constant indicating the instruction to emulate
190 * @data: Buffer into which the dummy result is stored
191 * @data_size: Size of the emulated result
192 * @x86_64: true if process is 64-bit, false otherwise
194 * Emulate an instruction protected by UMIP and provide a dummy result. The
195 * result of the emulation is saved in @data. The size of the results depends
196 * on both the instruction and type of operand (register vs memory address).
197 * The size of the result is updated in @data_size. Caller is responsible
198 * of providing a @data buffer of at least UMIP_GDT_IDT_BASE_SIZE +
199 * UMIP_GDT_IDT_LIMIT_SIZE bytes.
203 * 0 on success, -EINVAL on error while emulating.
205 static int emulate_umip_insn(struct insn
*insn
, int umip_inst
,
206 unsigned char *data
, int *data_size
, bool x86_64
)
208 if (!data
|| !data_size
|| !insn
)
211 * These two instructions return the base address and limit of the
212 * global and interrupt descriptor table, respectively. According to the
213 * Intel Software Development manual, the base address can be 24-bit,
214 * 32-bit or 64-bit. Limit is always 16-bit. If the operand size is
215 * 16-bit, the returned value of the base address is supposed to be a
216 * zero-extended 24-byte number. However, it seems that a 32-byte number
217 * is always returned irrespective of the operand size.
219 if (umip_inst
== UMIP_INST_SGDT
|| umip_inst
== UMIP_INST_SIDT
) {
223 /* SGDT and SIDT do not use registers operands. */
224 if (X86_MODRM_MOD(insn
->modrm
.value
) == 3)
227 if (umip_inst
== UMIP_INST_SGDT
)
228 dummy_base_addr
= UMIP_DUMMY_GDT_BASE
;
230 dummy_base_addr
= UMIP_DUMMY_IDT_BASE
;
233 * 64-bit processes use the entire dummy base address.
234 * 32-bit processes use the lower 32 bits of the base address.
235 * dummy_base_addr is always 64 bits, but we memcpy the correct
236 * number of bytes from it to the destination.
239 *data_size
= UMIP_GDT_IDT_BASE_SIZE_64BIT
;
241 *data_size
= UMIP_GDT_IDT_BASE_SIZE_32BIT
;
243 memcpy(data
+ 2, &dummy_base_addr
, *data_size
);
245 *data_size
+= UMIP_GDT_IDT_LIMIT_SIZE
;
246 memcpy(data
, &dummy_limit
, UMIP_GDT_IDT_LIMIT_SIZE
);
248 } else if (umip_inst
== UMIP_INST_SMSW
|| umip_inst
== UMIP_INST_SLDT
||
249 umip_inst
== UMIP_INST_STR
) {
250 unsigned long dummy_value
;
252 if (umip_inst
== UMIP_INST_SMSW
) {
253 dummy_value
= CR0_STATE
;
254 } else if (umip_inst
== UMIP_INST_STR
) {
255 dummy_value
= GDT_ENTRY_TSS
* 8;
256 } else if (umip_inst
== UMIP_INST_SLDT
) {
257 #ifdef CONFIG_MODIFY_LDT_SYSCALL
258 down_read(¤t
->mm
->context
.ldt_usr_sem
);
259 if (current
->mm
->context
.ldt
)
260 dummy_value
= GDT_ENTRY_LDT
* 8;
263 up_read(¤t
->mm
->context
.ldt_usr_sem
);
270 * For these 3 instructions, the number
271 * of bytes to be copied in the result buffer is determined
272 * by whether the operand is a register or a memory location.
273 * If operand is a register, return as many bytes as the operand
274 * size. If operand is memory, return only the two least
275 * siginificant bytes.
277 if (X86_MODRM_MOD(insn
->modrm
.value
) == 3)
278 *data_size
= insn
->opnd_bytes
;
282 memcpy(data
, &dummy_value
, *data_size
);
291 * force_sig_info_umip_fault() - Force a SIGSEGV with SEGV_MAPERR
292 * @addr: Address that caused the signal
293 * @regs: Register set containing the instruction pointer
295 * Force a SIGSEGV signal with SEGV_MAPERR as the error code. This function is
296 * intended to be used to provide a segmentation fault when the result of the
297 * UMIP emulation could not be copied to the user space memory.
301 static void force_sig_info_umip_fault(void __user
*addr
, struct pt_regs
*regs
)
303 struct task_struct
*tsk
= current
;
305 tsk
->thread
.cr2
= (unsigned long)addr
;
306 tsk
->thread
.error_code
= X86_PF_USER
| X86_PF_WRITE
;
307 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
309 force_sig_fault(SIGSEGV
, SEGV_MAPERR
, addr
);
311 if (!(show_unhandled_signals
&& unhandled_signal(tsk
, SIGSEGV
)))
314 umip_pr_err(regs
, "segfault in emulation. error%x\n",
315 X86_PF_USER
| X86_PF_WRITE
);
319 * fixup_umip_exception() - Fixup a general protection fault caused by UMIP
320 * @regs: Registers as saved when entering the #GP handler
322 * The instructions SGDT, SIDT, STR, SMSW and SLDT cause a general protection
323 * fault if executed with CPL > 0 (i.e., from user space). This function fixes
324 * the exception up and provides dummy results for SGDT, SIDT and SMSW; STR
325 * and SLDT are not fixed up.
327 * If operands are memory addresses, results are copied to user-space memory as
328 * indicated by the instruction pointed by eIP using the registers indicated in
329 * the instruction operands. If operands are registers, results are copied into
330 * the context that was saved when entering kernel mode.
334 * True if emulation was successful; false if not.
336 bool fixup_umip_exception(struct pt_regs
*regs
)
338 int nr_copied
, reg_offset
, dummy_data_size
, umip_inst
;
339 /* 10 bytes is the maximum size of the result of UMIP instructions */
340 unsigned char dummy_data
[10] = { 0 };
341 unsigned char buf
[MAX_INSN_SIZE
];
342 unsigned long *reg_addr
;
349 nr_copied
= insn_fetch_from_user(regs
, buf
);
352 * The insn_fetch_from_user above could have failed if user code
353 * is protected by a memory protection key. Give up on emulation
354 * in such a case. Should we issue a page fault?
359 if (!insn_decode(&insn
, regs
, buf
, nr_copied
))
362 umip_inst
= identify_insn(&insn
);
366 umip_pr_warn(regs
, "%s instruction cannot be used by applications.\n",
367 umip_insns
[umip_inst
]);
369 umip_pr_warn(regs
, "For now, expensive software emulation returns the result.\n");
371 if (emulate_umip_insn(&insn
, umip_inst
, dummy_data
, &dummy_data_size
,
372 user_64bit_mode(regs
)))
376 * If operand is a register, write result to the copy of the register
377 * value that was pushed to the stack when entering into kernel mode.
378 * Upon exit, the value we write will be restored to the actual hardware
381 if (X86_MODRM_MOD(insn
.modrm
.value
) == 3) {
382 reg_offset
= insn_get_modrm_rm_off(&insn
, regs
);
385 * Negative values are usually errors. In memory addressing,
386 * the exception is -EDOM. Since we expect a register operand,
387 * all negative values are errors.
392 reg_addr
= (unsigned long *)((unsigned long)regs
+ reg_offset
);
393 memcpy(reg_addr
, dummy_data
, dummy_data_size
);
395 uaddr
= insn_get_addr_ref(&insn
, regs
);
396 if ((unsigned long)uaddr
== -1L)
399 nr_copied
= copy_to_user(uaddr
, dummy_data
, dummy_data_size
);
402 * If copy fails, send a signal and tell caller that
403 * fault was fixed up.
405 force_sig_info_umip_fault(uaddr
, regs
);
410 /* increase IP to let the program keep going */
411 regs
->ip
+= insn
.length
;